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Abstract 

Environmental concerns are among the main drives of the energy transition in power systems. 

Smart grids are the natural evolution of power systems to become more efficient and sustainable. 

This modernization coincides with the vast and wide integration of energy generation and storage 

systems dependent on power electronics. At the same time, the low inertia power electronics, 

introduce new challenges in power system dynamics. In fact, the synchronisation capabilities of 

power systems are threatened by the emergence of new oscillations and the displacement of 

conventional solutions for ensuring the stability of power systems. This necessitates an equal 

modernization of the methods to maintain the rotor angle stability in the future smart grids. The 

applications of artificial intelligence in power systems are constantly increasing. The thesis 

reviews the most relevant works for monitoring, predicting, and controlling the rotor angle stability 

of power systems and presents a novel controller for power oscillation damping.  

The intelligent Power Oscillation Damper (iPOD) proposed in this thesis integrates the modelling 

power of artificial intelligence (superficially the Random Forest ensemble) and the ability of power 

converters to emulate the behaviour of a synchronous generator. The iPOD can attenuate an 

underdamped oscillation while adapting in the changing operating conditions. The multi-band 

iPOD (MiPOD) extends the controller to target more than one oscillation by emulating three rotors. 

In both cases, however, the main idea is that the oscillation frequencies are treated as a known 

parameter, hence making this implementation possible. The effectiveness and simplicity of the 

proposed controllers is demonstrated through a series of simulations for different types of 

contingencies. To demonstrate the adaptability of the iPOD, in each simulation the operating 

conditions vary randomly.  

Following the above rationale, this thesis presents the development of a deep neural network to 

monitor the electromechanical interactions of a gas-turbine power plant for a system in Europe for 

the FLEXITRANSTORE project. The trained neural network is embedded into a controller to 

adaptively update the parameters of the PSS device installed in the power plant. The neural 

network is trained using measurements within the area on influence of the power plant to predict 

the oscillation frequency to compute the parameters for the phase compensation. The applications 

of artificial intelligence are restricted to simulation platforms; therefore, this project is a unique 

opportunity to obtain invaluable results about the effectiveness, limitations, performance of the 

application of neural networks in real life conditions. 
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CHAPTER 1 

Introduction 

Energy Transition and Smart Grids 

Over the course of time, energy has been an indispensable part of the empowerment and rise of 

human civilization. At a great extent our society depends on energy such that demand keeps 

increasing. However, environmental concerns are among the major drives of the energy transition 

for a sustainable future. The Paris Agreement formally recognises the impact of human activity 

with regards to Greenhouse Gas1 (GHG) emissions and sets a target of limiting the temperature 

increase at 2 degrees Celsius maximum with respect to pre-industrial levels [1]. Naturally, the 

electricity sector, which accounts for a high share of GHG emissions [2], is at the core of this 

transition.  

The drastic measures needed to reduce GHG emissions leads towards the higher participation of 

carbon-neutral resources, such as Renewable Energy Systems (RES) and Battery Energy Storage 

Systems (BESS) [3]. At a greater extent, this decarbonisation is particularly appealing to countries 

with limited and/or costly access to fossil fuels as the exploitation of abundant sources can lead to 

energy independence and financial gains [4]–[8]. Yet, under the centralized operational paradigm 

the integration of new energy assets is challenging due the majority of RES and BESS located at 

the medium- and low-voltage (MV/LV) distribution networks. In fact, residential, commercial, 

and industrial consumers can actively contribute in markets and support mechanisms as producers 

or flexibility resources leading to higher efficiency and lower costs [9]–[12]. For instance, 

industrial consumers, which are used to deal with automatized and optimized processes, have been 

providing flexibility through demand response schemes typically under bilateral agreements [13]. 

To cope with the large number of actors and complexity, digital technologies like communications, 

cloud/fog/edge computing and Internet-of-Things (IoT) are vital for (i) connectivity, (ii) data 

collection, and (iii) advance analytics [14]. Therefore, power systems are faced with an 

unprecedented transformation characterized by three strongly couple pillars: Decarbonisation, 

Decentralization and Digitalization [15].  

 
1 Greenhouse gases include Carbon Dioxide (𝐶02), methane (𝐶𝐻4), nitrous oxide (𝑁2𝑂) and Fluorinated gases. 
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Smart grids (SG) are the natural evolution of power systems to become more efficient and 

sustainable. Naturally, the development of SG coincides with the energy transition as the vast and 

diverse integration of carbon-free resources increases the complexity and uncertainty in the 

system. Even though there are several definitions about what constitutes a SG the underlying 

structure, goals and objectives are similar [16]. Specifically, SG incorporate state-of-the-art 

Information and Communications Technologies (ICT) on top of the electrical infrastructure to 

permit the dynamic interaction between the various elements/actors/entities in the grid. This cyber-

physical system is based on a larger network of sensors and metering devices, automatized control, 

two-way communications and big data analytics [17], [18].  

The operation of power systems is monitored using Supervisory Control and Data Acquisition 

Systems (SCADA) where the slow update rate (up to 15 seconds) add difficulties regarding real 

time dynamic analysis. In contrast, SG incorporate an information and data exchange network in 

to increase connectivity among the various elements in the system and integrate ubiquitous sensing 

and artificial intelligence (AI) [19]. Specifically, the development of Phasor Measurement Unit 

(PMU) [20], [21] and Wide Area Monitoring Systems (WAMS) [22] has led to new approaches 

for monitoring and controlling the power systems. Commercial PMU's have a sampling rate of 60 

samples per second, ideal for dynamic analysis [23]. To illustrate the high resolution that PMU 

measurements offer, [24] states that for a single day and for a single parameter, a PMU can 

generate over 2.5 million samples. Furthermore, [25] shows that a network, located in central 

China with 155 PMUs installed in different parts of the grid, can process almost 300 GB of data 

per day. Besides PMUs, other measurement devices such as advanced meter reading (AMR) and 

intelligent electronic devices (IED) allow the use of artificial intelligence to improve system 

reliability, efficiency and sustainability [26].  

Dynamic stability in future smart grids 

Generally, Power system stability is defined as the capability of a power system (a) to operate in 

an equilibrium state and (b) to reach a stable equilibrium point when subjected to a disturbance 

[27]. However, because of the complexity of the problem, stability has been traditionally 

categorised into Rotor Angle Stability, Voltage Stability and Frequency Stability. Since the first 

classification of stability [28], power systems have experienced a wide transformation. The 

decarbonisation of generation along with the use of energy storage introduces new challenges. For 

example, the stochastic nature of atmospheric conditions affects the power output of RES-based 
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power plants. The varying patterns of wind speed and nebulosity cause fluctuations in the power 

output of wind and solar power plants creating power imbalances, which result in frequency 

deviations [29] [30]. Coupling RES and ESS can mitigate that variability [31]. However, as power 

electronics are required for the connection between RES/ESS and the grid, in HVDC lines, loads 

(such as EV) and FACTS devices, their presence is expected to rise resulting in complex intra- 

and inter-connection synergies [32]. For instance, due to the lack of mechanical parts, the overall 

system inertia will be significantly implying that during a disturbance the system will respond 

much faster [33].  

Evidently, the dynamics and stability of power systems is affected dramatically by the increased 

presence of power electronics. The significance of this impact is depicted by the recently revised 

version of the stability problem in power systems, shown in Figure 1 where the Resonance Stability 

and Converter-driven Stability have been added [34]. The former refers to the torsional and 

electrical resonances while the latter to the fast and slow interactions between the control systems 

of power electronics.   

In this thesis the focus of the work is on Rotor Angle Stability, which will become even more 

relevant with the integration of power electronics. In fact, ENTSO-E has identified the angular 

stability of power systems as one of the key challenges related to High Penetration of Power 

Electronic Interfaced Power Sources [35]. It is expected that in future SG (a) new power 

oscillations will emerge, (b) damping of existing modes will decrease and (c) transient stability 

margins will be reduced [34], [36].  

 

Figure 1: Power System Stability Classification 
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Overview of Conventional Methods in Rotor Angle Stability 

Rotor Angle Stability is defined as the ability of a power system to remain in synchronism after a 

disturbance [27]. Small Signal Stability analyses the synchronism of the system under mild 

disturbances, such as load variations. Predominately, instability of this form is expressed as 

oscillations with higher amplitudes due to insufficient damping torque. In contrast, Transient 

Stability refers to the synchronization capabilities under severe disturbances, such as short circuits. 

Lack of synchronizing torque results in aperiodic divergence from equilibrium. After the 

disturbance, the time frame of interest is typically lower for Transient Stability than for Small 

Signal Stability. De-synchronization of the system may lead to unintentional separation of parts of 

the grid (i.e. islanding), cascading events and even widespread blackouts [37]. Such an event is 

the blackout in the USA and Canada, during the summer of 2003, affecting 50 million people and 

incurring financial losses estimated at 7 billion dollars [38]. Besides the particular sequence of 

events prior to the blackout, insufficient situational awareness lessen the operators' ability to detect 

the contingency and prevent its grave effects [39]. Similar cases have been recorded in Europe 

[40], [41] and Asia [42]. 

Until recently, there were two dominant approaches to determine the Transient Stability of the 

system: Time Domain Simulations (TDS) and Direct (or analytical) Methods (DM). In Small 

Signal Stability, Modal Analysis (MA) has been the most reliable and accurate method used by 

system operators, while Ringdown Analysis (RA) is based on signal processing techniques 

developed for the same purpose. In this section, the above conventional methods are briefly 

described for the readers' convenience.  

Time Domain Simulations 

In TDS, the non-linear ordinary differential equations (ODE) describing the power system, are 

solved using numerical integration techniques with respect to time: (1.1) and (1.2) where 𝒙 ∈ ℝ𝑛𝑥, 𝒚 ∈ ℝ𝑛𝑦 are the state and algebraic variables respectively, whereas 𝑓(⋅) and 𝑔(⋅) are continuous 

functions. Conclusions can be made about the stability of the system by evaluating the evolving 

trajectories. This method is very accurate and flexible in terms of model design and complexity. 

TDS is widely adopted in off-line applications, where a predefined list of credible operating and 

contingency scenarios is studied thoroughly through simulations to create the operating guidelines 

[43]. 
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𝐱̇ = 𝑓(𝐱, 𝐲) (1.1) 

𝟎 = 𝑔(𝐱, 𝐲) (1.2) 

Direct Methods 

The foundation of DM is based on Lyapunov's stability theorem [27], which can estimate the 

transient stability of a system without solving the nonlinear equations. DM does not replace TDS; 

instead both methods complement each other to provide stability estimates faster [44]. Generally, 

DM approaches determine stability by comparing the energy of the system at fault clearance with 

the critical energy of the system. The system is stable if the energy of the system is less than the 

critical energy [44], [45]. Formally, the energy is defined as the sum of the kinetic and potential 

energy stored in the system and is calculated using Lyapunov's transient energy function, as in 

(1.3) where 𝑉𝐾𝐸 is the kinetic energy defined in (1.4) while 𝑉𝑃𝐸𝑚𝑒𝑐ℎ, 𝑉𝑃𝐸𝑒𝑙𝑒𝑐 and 𝑉𝑃𝐸𝑑𝑎𝑚𝑝
 are the 

potential energy components defined in equations (1.5) - (1.7) respectively, where 𝑀 is generator 

inertia, 𝜔 is generator speed, 𝑃𝑚,𝑖 is generator mechanical power, 𝑃𝑒,𝑖 is generator electrical power, 𝐷𝑖 is generator damping coefficient, 𝛿𝑖 is the generator rotor angle with 𝑖 = 1, … , 𝑛 is the generator 

index. 

V = VKE − VPEmech + VPEelec + VPEdamp
 (1.3) 

VKE = 
12 ∑ Μin

i=1 ωi2 (1.4) 

VPEmech = 
12 ∑ ∫ Pm,in

i=1 dδi (1.5) 

VPEelec = 
12 ∑ ∫ Pe,in

i=1 dδi (1.6) 

VPEdamp
 = 

12 ∑ ∫ Di ωin
i=1 dδi (1.7) 



6 

 

DM based stability analysis procedure can be broadly summarized into two fundamental steps. 

First, TDS is implemented up to the point of fault clearance to retrieve the system state at that 

point. Second, the critical energy (𝑉𝑐𝑟) and current system energy (𝑉𝑒𝑛) is calculated. Several 

methods have been developed for calculating 𝑉𝑐𝑟. One such method, the boundary controlling 

unstable equilibrium (BCU) has been widely adopted by system operators [46].  

Modal Analysis   

The assumption that a system is linear within a region near an equilibrium point is the basis of 

modal analysis. Conversely, the oscillatory response of a system after an event can be represented 

by a number of superimposed response signals [43], as in (1.8) where (𝜎, 𝜔) are the modal 

parameters representing damping and frequency respectively, 𝐴0 denotes amplitude at 𝑡 = 0 while 𝜃 is the phase of the signal 𝑠(𝑡).  𝑠(𝑡) = 𝐴0𝑒(−𝑎𝑡) cos(𝑏𝑡 + 𝜃) (1.8) 

Further, the ODE describing a system can be transformed into their state space representation. 

Specifically, (1.1) and (1.2) can be written as in (1.9) and (1.10) respectively, where 𝐀 ∈ ℝ𝑛𝑥×𝑛𝑥 

is the state matrix, 𝐁 ∈ ℝ𝑛𝑥×𝑛𝑢 is the input matrix, 𝐂 ∈ ℝ𝑛𝑦×𝑛𝑥 is the output matrix, 𝐃 ∈ ℝ𝑛𝑦×𝑛𝑢 

is the feedthrough matrix and 𝐮 ∈ ℝ𝑛𝑢 is the input vector. An eigen-decomposition of matrix 𝐀 

returns the full list of eigenvalues 𝜆 = 𝑎 + 𝑗𝑏 along with their corresponding left and right 

eigenvectors. Modal analysis is highly accurate, able to provide all the details of the possible 

oscillatory response of the system. 

𝐱̇ = 𝐀𝐱 + 𝐁𝐮 (1.9) 𝐲 = 𝐂𝐱 + 𝐃𝐮 (1.10) 

Ringdown Analysis 

In reality, the model of the system can be either too complex or not fully known, making MA 

infeasible [47]. As an alternative, Ringdown Analysis (RA) focus on the multi-modal 

decomposition of a signal because of a contingency e.g. a 3-phase fault. Prony analysis a typical 

method for determining the modes that constitute the measured signal. For instance, for a signal 𝑠̂ 

discretized with a constant time step Δ𝑡 as in (1.11), where 𝑧𝑖  =  𝑒𝜆𝑖Δ𝑡, 𝐵𝑖 are the residues and 𝑛 

is the number of modes to be extracted. By finding the roots 𝑧𝑖 of the characteristic polynomial 

described by (1.12), it is possible to calculate the frequencies and amplitudes comprising the 
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measured signal. The coefficients 𝑎1, … , 𝑎𝑛−1 can be computed by a least square fit using the 

vector of the discretized signal. Other RA methods are the Matrix-Pencil and Eigensystem 

Realization Algorithm [48]. 

𝑠̂(k) = ∑ 𝐵𝑖𝑛
𝑖=1 𝑧𝑖𝑘 (1.11) 

𝑧𝑛 − (𝑎1𝑧𝑛−1 + ⋯ + 𝑎𝑛−1𝑧0) = 0 (1.12) 

Limitations of Conventional Methods 

Despite its accuracy, TDS requires high processing power for on-line applications, which can 

become impractical and expensive. In addition, current ODE solvers are time consuming rendering 

TDS unsuitable for on-line applications [45]. As an alternative, the AC emulation approach 

developed in [49] showed that simulation of power systems can be faster than real time although 

model limitations still exist. A trade-off between the model complexity and necessary processing 

resources exists, indicating that it is vital to determine the optimal balance among them  [50].  

Overall, after removing a large part of numerical integrations, the use of DM for stability 

assessment can be faster than and provide insights into the degree of stability. Nevertheless, DM 

depends on the existence of an UEP, whose calculation is considered to be a NP-hard problem. 

Moreover, deriving a transient energy function is not always possible; hence model simplifications 

are necessary [51]. Signal processing methods such as Prony Analysis, although able to process 

multiple signals, are prone to noise and non-linearities, possibly hindering their ability to identify 

modal properties [43].  

Regarding the effects of power electronics in power systems, most research efforts are concerned 

with Small Signal Stability analysis by linearizing the system around an operation point and 

evaluating its eigenvalue trajectories [27]. Although this technique, as well as others suitable for 

linear systems such as Nyquist or Routh-Hurwitz analyses, has been used in small power systems 

(microgrids) with high penetration of grid-connected power converters [52], they cannot examine 

the system response under large disturbances. Specifically, during a severe contingency, the 

operating point of the non-linear system changes and the state-space model used for the Small 

Signal Stability is no longer valid. Therefore, large signal analysis i.e. Transient Stability, which 

is mainly focused on analysing the energy state of the system during the disturbance and after its 

clearance, should be used. 
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Furthermore, recent studies that evaluate the transient behaviour of power electronic devices use 

the equal area criterion approach [53], [54], [55], which assumes a single machine infinite bus 

system (SMIB) structure. Assuming a complex system such as a SMIB, the results of the transient 

stability analysis are limited to a single interaction i.e. between a power electronic interface device 

and an infinite bus. This is sub-optimal considering the increasing number of power electronics in 

the future smart grids, where interactions between different devices affect stability. A summary of 

the mature methods used in Rotor Angle Stability along with their advantages and limitations can 

be found in Figure 2.  

 

Figure 2: Summary of Rotor Angle Stability problem 

Objectives 

Evidently the conventional assessment methods have significant limitations with respect to the 

transition of power systems into SG, where the complexity and dynamics will be much harder to 

model. The AI is an alternative that can complement existing methods to improve the stability of 

the system. Driven by the high penetration of power electronics, RES, BESS, EV and in 

conjunction with the expectation that the Rotor Angle Stability of future SG will play an important 

role, this thesis proposes novel methods for ensuring the synchronism of the system under large or 

small disturbances. Specifically, this thesis examines the effectiveness of AI to model the 

oscillatory characteristics of the system, it integrates AI predictions in the control loop of power 

converters, which will dominated future power systems and describes the implementation of an AI 
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model in an actual power plant for providing adaptive PSS tuning to support with the rotor angle 

stability of the system. The latter is particularly significant as there a very few actual demonstrators 

of AI applications in power system stability. 

Outline 

The rest of the thesis is structured as follows. In Chapter 2 the review of relevant papers is 

presented. The focus is on the applications of AI in power systems and rotor angle stability. 

Chapter 2 is classified into monitoring, prediction, and control according to the theme of the review 

of the papers. In Chapter 3 the methods used in this thesis are thoroughly described. Specifically, 

form the methods of learning to the general model development framework and finally towards a 

description of ML type that is used throughout this thesis. Chapter 4 presents the development of 

the prediction models for the two-area system following the development framework presented in 

Chapter 3. The intelligent Power Oscillation Damper is presented in Chapter 5 for a single and 

multiple mode attenuation using the prediction models to track the characteristics of the oscillatory 

modes in the system. Chapter 6 presents the development of prediction models for an actual power 

system in Europe for the adaptive tuning of an actual PSS installed in a Gas-Turbine power plant. 

The work described therein is part of the work conducted for the FLEXITRANSTORE H2020 

project. Finally, in Chapter 7 the conclusions of this thesis are summarized along with the 

indications for future work.  
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CHAPTER 2 

Artificial intelligence Applications 

The sources of energy data are growing and expanding, introducing the big data concept into power 

systems. As a result, research studies focus on the adoption of novel techniques based on AI to 

enhance efficiency and reliability. For instance, extensive surveys summarize the machine learning 

applications applied in SG [56]–[58] and in power electronics [59]. In this section relevant papers 

to monitoring, prediction and control are presented. Monitoring refers to algorithms that receive 

as inputs system variables at time 𝑡𝑘 and provide outputs regarding the status of the system for the 

same time instance (see Figure 3), as in (2.1) and (2.2) where 𝐱(tk) is the input vector at time tk, 𝑓(⋅) is the mapping function, such as a NN, and 𝑦̂(𝑡𝑘) is the output of the AI model. In other 

words, system measurements drawn from time tk are used to provide information regarding the 

system status for the same time instance tk. In contrast, prediction related applications receive 

similar inputs and provide outputs for time 𝑡𝑐. Finally, control applications represent algorithms 

that directly or indirectly aim to improve control actions of power systems. 

 

Figure 3: Example of monitoring and prediction AI models 
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𝑦̂(tk) = 𝑓(𝐱(tk)), 𝑘 ∈ ℤ+ (2.1) 

𝑦̂(tc) = 𝑓(𝐱(tk)), 𝑐 > 𝑘 ∈ ℤ+ (2.2) 

Monitoring 

CCT based Stability Assessment 

The critical clearing time (CCT) is an indicator of the system strength against unplanned 

contingencies. It is defined as the maximum allowable fault duration for the given system 

conditions. Faults with a duration longer than the CCT will cause the system to lose synchronism 

due to the kinetic energy accumulation in the rotating masses of generators [27], [43] . Early 

studies of AI applications in power system stability train ML models to classify operating points 

as CCT stable/unstable. Specifically, in [60] a general framework is proposed, based on the CART 

algorithm, to develop binary DTs suitable for binomial and multivariate classification. The input-

output pairs consist of simulation results of a single three phase fault for 201 operating points, 

which are labelled as secure/insecure according to their corresponding CCT. Following the above 

rationale, [61] implements a kernel ridge regression to derive the stability boundary of the system, 

as defined by the CCT of the current operating conditions. In other words, the CCT is directly 

estimated and compared to the fault clearing time (FCT), although only for a single contingency 

event. Similarly, in [62] a lasso regression is adopted to estimate the stability boundary. Yet in this 

study, the FCT is a tunable parameter representing a threshold value that can be modified 

according to the severity of the event under evaluation. This approach is further expanded in [63] 

to improve accuracy and reduce complexity; Lasso regression is used to eliminate redundant 

features and a univariate regression function is developed for each of the remaining features.  

A type-2 fuzzy neural network (NN) is adopted in [64] to estimate CCT of four fault scenarios. 

Initially, an NN is used to construct the input feature vector. The fuzzy NN, first assigns each 

feature to a fuzzy set with an associated degree of membership and second the NN makes use of 

the fuzzified features to provide CCT estimations. Furthermore, a two-stage hybrid method is 

proposed by [65], consisting of an ensemble weighted Support Vector Machine (SVM) and an 

adaptive neuro fuzzy inference system (ANFIS). The hybrid method can achieve 98% 

classification accuracy under different contingencies and network topologies. However, the model 
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has limited capability in generalizing to new/unseen events. This is because the model is trained 

with CCT of a fixed number of fault scenarios.  

Estimation of Stability Margins 

Considering the gap on applications of AI in stability margin estimation, in [66] a Regression Tree 

(RT) is developed to assess the oscillatory and voltage stability margins of a system. The first two 

statistical moments i.e. mean and variance respectively, of the training samples of each RT 

terminal leaf were used to determine these stability margins. Authors in [67] argue that by 

estimating the value of the Transient Energy Margin (TEM) index, it is possible to determine the 

stability status and margin of the system. This approach is closely related to the CCT and critical 

energy of the system. Therefore, estimating the aforementioned index can provide additional 

information about the status of the system [27]. Subsequently, one NN is developed for each of 

the two events to estimate their TEM. From the results, it appears that accuracy depends on the 

type of the event, which the NN is trained for. In particular, the root mean square error (RMSE) 

between the two cases differs by a factor of 10. To mitigate this sensitivity, authors expand on 

their approach in [68] where an analysis is conducted with regards to feature selection and accuracy 

of estimation. 

Similarly, [69] develops two RTs for the evaluation of the operating conditions of the Salt River 

Project system. An RT is developed to classify voltage violations from voltage magnitude 

deviations whereas another RT estimates the line thermal limits violations from deviations of 

current flows. Critical contingencies and operating conditions are identified, and for the less 

probable scenarios, N-2, N-3 and N-4, two additional CTs were trained to characterize them as 

secure or insecure in terms of transient and voltage stability.   

The TEM index is used as the stability index of a system in order to develop four fuzzy sets in 

[70]. Several heuristic and direct system variables are ranked according to their correlation with 

the stability index. Concretely, the developed fuzzy model classifies the samples into the following 

four fuzzy sets: danger, high-risk, low-risk and safe. This approach provides additional details 

about the status of the system as opposed to the usual stable-unstable classification.  

Likewise, [71] defines three classes of system stability: unstable, critical and stable. That 

distinction is derived from the relationship of FCT and stability of the system. Specifically, FCT 

between 5 and 7 cycles that result in instability are characterized as critical. The k-nearest 

neighbours (KNN) algorithm based on the Euclidean distance is implemented to classify the pre-
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fault data into the classes. The model is evaluated for three contingency scenarios and the 

maximum and minimum misclassification errors are 2.54% and 0.42%, respectively.  

Delivering or exchanging power between areas located geographically far apart requires long 

transmission lines. Yet, long lines are characterized by a reduced damping of oscillatory modes. 

As a result, operators enforce strict constraints on the maximum capacity of these lines. Several 

attempts have been made to correlate system variables with the damping of oscillatory modes 

using statistical and computational intelligence methods. Usually, regression approaches aim to 

directly estimate the modes of the system. For instance, in [72] a multiple regression model is 

proposed for estimating the damping ratio of the dominant mode in the Manitoba transmission 

system, where AC and DC long transmission lines interconnect two major regions. Due to the high 

length of those tie-lines, damping of oscillatory modes is of great importance. Likewise, in [73] 

operating points are classified according to the damping of a 0.35 Hz mode into low or well 

damped using a NN.  

False Dismissals Mitigation 

In the context of power systems stability analysis, False Dismissals (FD) are the type of error 

where inputs are wrongly classified as Stable. Such an outcome can put power systems in a critical 

condition or even lead to instability. In this regard, [74] defines a “High Risk” region for 

encompassing samples close to the decision boundary of a polynomial SVM. Points within that 

region are left unclassified while a warning informs the system operator about the critical state of 

the system. Concretely, the possibility of unstable cases being classified as stable (i.e. false 

dismissals) is minimized. The error rate is close to 4.8%, albeit this result is directly related to the 

size of the “High Risk”. It is apparent, therefore, that a trade-off between false dismissals and SVM 

accuracy is present. 

Following the above rationale, [75] defines the area close to the stability boundary as unreliable 

region. However, the points that lie within that area are re-evaluated instead of being ignored. 

Specifically, first, a Gaussian SVM evaluates the stability of input samples and checks if they 

belong to the incredible region. A second group of Gaussian SVM re-evaluates the samples that 

are located within the incredible region. Equally, [76] proposes the use of two separate SVM 

specifically designed so that both hyperplanes will constitute the boundaries of a grey zone. The 

difference between the two SVMs lies in the constraints of each algorithm that ensures purity of 

samples in one side of the hyperplane. If the outputs of the two SVMs do not agree, the instance 

is neither stable nor unstable and a warning flag is raised. 
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Further, in [77] a bagging ensemble of 30 Gaussian-SVMs is developed. The final output is 

designed based on a unanimous scheme as follows: 

• A new sample is stable when the output of all individual Gaussian-SVMs is stable. 

• A new sample is unstable when the output of at least one Gaussian-SVM is unstable. 

By designing the ensemble in such a way, the possibility of a false dismissal is reduced. 

Additionally, a confidence index is proposed that calculates the distance between the hyperplane 

and sample. Low confidence outputs are flagged as unreliable and therefore not considered in the 

unanimous scheme presented above. Two tunable parameters discriminate between the reliable 

and unreliable results for stable and unstable classes. However, the selection of the threshold 

values is significant as it can lead to many cases being labelled as unreliable. 

Generally, by design systems demonstrate resiliency against some disturbances. Therefore, 

databases contain more information about stable cases than unstable cases [78]. This imbalance 

will cause ML models to be biased towards the majority class i.e. resulting in an increased number 

of FD. 

According to [79], a single DT cannot achieve high accuracy and generalization when faced with 

imbalanced datasets; hence, an ensemble model is adopted to classify the transient security status 

of a system. To defend the above statement, the authors develop a single DT and an RF and 

compare them over the same modified dataset, which consisted of 25% unstable cases and 75% 

stable cases. To counter this imbalance, usually one of the following options are used: 

oversampling and under-sampling. An oversampling approach is followed here that extends the 

original dataset by replicating the minority (unstable) samples three times. Ultimately, the RF 

achieves 99% accuracy, almost 10% higher than the single DT, proving the initial hypothesis in 

[79].  

The class imbalance in power systems can be reduced more efficiently by using the Synthetic 

Minority Oversampling Technique (SMOTE) [80]. SMOTE creates synthetic samples that are 

similar but not identical with the samples in the minority class. In contrast, [81] develops a 

weighted RF that focuses on the correct classification of the minority class. Weights of 3 and 1 are 

assigned to the unstable and stable samples respectively. A feature reduction method based on the 

out-of-bag2 error is used to determine the optimal feature vector. Only 45 out of the total 263 

 
2 Out-Of-Bag are samples left out in the training process. 
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features are used for the RF model, resulting in an improved accuracy of approximately 99% and 

in a 4% reduction on the classification error for the unstable cases.  

Following the above, [82] attempts to implement a robust DT using information from the day-

ahead market in order to formulate a database that can incorporate the intra-day variations of 

demand. Historical data of operating conditions, contingencies and data retrieved from several 

TDS are added to enrich the dataset. However, even with a large dataset, the authors argue that 

periodical tests are needed to assess the performance of the DT to maintain acceptable results. 

The DT developed in [83], has more than two outgoing branches at its root node. This approach 

classifies the input variables as secure (or insecure) by first assessing the type of the contingency 

at the root node. In other words, it separates the data according to a predefined list that describes 

the type of topology and contingency. The rest of the DT has the same structure as the binary trees 

discussed thus far. For a specific network topology, the accuracy of the proposed algorithm reaches 

98.6%. Because the foundation of this DT is a predefined list, it is unlikely that we could know 

beforehand which contingency will occur; hence, the proposed model is more suitable to be used 

as an indicator for preventive actions with visual aids.  

Alternatively, [84] suggests encoding the system variables into an RGB image. An ensemble of 

CNN processes the input images to classify them as stable, unstable, and uncertain. Once 

classified, the images of the encoded voltages are used to estimate the stability margin for a 

predefined list of contingencies. The uncertain cases are included with the stable cases and unstable 

cases to create the datasets 𝐷𝑠𝑡𝑎𝑏𝑙𝑒𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 and 𝐷𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛. For each dataset a CNN model is developed 

to estimate both margins. The outputs from the two networks provide a robust estimation for the 

uncertain cases.  In [85] a variation of SVM called the Core Vector Machine3 (CVM) algorithm is 

implemented for the classification of transient stability system status. To emphasize the specific 

attributes of CVM, besides accuracy, false alarm and false dismissal, the CPU time and number of 

support vectors are also considered as performance metrics. Overall, CVM appears to perform 

better than SVM both in FD mitigation but also CPU time. Training time is considered as an 

important factor for online stability assessment. A variation called the TWin-SVM4 (TWSVM) 

 
3 CVM is based on computational geometry and the minimum enclosing ball problem. Generally, it requires less 

resources both in time and space when dealing with big data. Briefly, an CVM aims to discover a hyper-sphere 

with centre 𝒄 and radius 𝒓 that encircles a set of points [189]. 
4 The TWSVM algorithm aims to construct as many, non-parallel, hyperplanes as classes using the patterns of 

each class only, resulting in faster training time [190]. 
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and the CNN algorithm is adopted by [86]. Practically, the objective function of the TWSVM is 

integrated in each CNN to improve speed and generalization.  

Coherency Identification 

The effectiveness of a LS-SVM model is validated in [87] where a TSA system is developed to 

predict generator coherency groups and stability. Three coherent groups are defined according to 

the values of the Transient Stability Index (TSI). A sensitivity analysis showed that the largest 

span of the TSI can be achieved when the maximum stable angle deviation is 120 degrees. By 

choosing the maximum angular deviation for the highest range of TSI, the first group consists of 

highly critical generators i.e. TSI >1, the second group consists of advanced generators i.e. 1 >TSI 

>0.75 and the last group consists of non-critical generators i.e. TSI >0.75. For the first and last 

group the authors have associated preventive actions, which refer to the rescheduling of active 

power generation. A particle swarm optimization is used to optimally select the features among all 

the active and reactive power of generator and load buses. 

Likewise, the author of the thesis presents in [88] a coherency analysis method based on SOM. 

Therein, rotor angle signals are fed onto the SOM algorithm to identify the similarity between the 

oscillating response of the generators. Due to the 2-D graphical representation of clustering by 

SOM, this approach can be used as a situational awareness tool for real time coherency 

identification. The same authors present an extension of this approach in [89] using the Growing-

SOM algorithm, which does not require the specification of the size of the SOM grid but expands 

according to a tunable parameter and the complexity of the data.  

Detection of Islanding 

Recently, the integration of DG into many parts of the grid has led to the development of intelligent 

methods for islanding detection. For instance, in [90], [91] a DT based approach is adopted for 

fast detection of islands through transient signal pattern recognition. These signals consist of 

voltage and current that are pre-processed by using discrete wavelet transformation to formulate 

the inputs of the DT. A database of 800 islanding and non-islanding cases are generated for the 

training of the DT. Overall accuracy of islanding detection is over 99% with less than 100ms of 

relay response after event detection. 

Furthermore, in [92], the authors argue that conventional methods possess a high non-detection 

zone and that DT based relays are able to reduce it. In fact, the proposed DT-based relay was able 

to achieve higher detection rates while minimizing the cases where islanding is not detected. 
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Interestingly, the variables that affect the decision of the DT are RoCoF5, frequency deviation, 

active and reactive power. 

Further, in [93], features based on voltage, frequency and rotor angle over a sliding window of 

size 𝑘Δ𝑡 are used along with an SVM to predict islanding and trigger DG protection relay’s. 

Approximately 3000 scenarios are simulated to generate the appropriate dataset size for training 

and testing the proposed algorithm. The SVM has been tested under different sizes of 𝑘Δ𝑡 and 

kernel functions. A 3rd order polynomial kernel yields the highest accuracy with an average 

detection speed for each scenario (less than 160 ms). 

Prediction 

Fixed Window Predictions 

One of the first attempts to adopt NN for transient stability has been made by [94]. Specifically, a 

predictive tool is developed using rotor angle measurements from each generator after 3 and 6 

cycles from fault occurrence time (FOT), as shown in Figure 4. These generators are divided into 

N subgroups where each subgroup consists of a unique pair of generators. Subsequently, N number 

of NNs are trained to map the relation between generators and their angular deviation after a 

contingency. The proposed scheme can predict the stability of the system and provide details about 

which pair of generators will cause the de-synchronization of the system. Furthermore, an 

improvement of the above approach is presented in [95], where generators are evaluated w.r.t. to 

Center of Inertia (COI) instead of other generators. This allows to detect which of the generator(s) 

will become unstable. 

Alternatively, [96] proposes a multivariate boosting C5.0 ensemble to predict the out-of-step 

generators (rather than stability status). Using TDS, it is possible to identify 14 patterns (classes) 

of the generators' behaviour. In a comparison with single DT and SVM, it is shown that the 

boosting C5.0 ensemble achieves the highest accuracy, close to 91% within a fixed 30 cycle 

observation window as opposed to the other models achieving accuracy of 90% within a 60 cycle 

observation window.  

 
5 Rate of Change of Frequency 
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Figure 4: Timeframe of AI based Transient Stability Prediction 

Faster predictions are attempted by [97] using rotor angle measurements of the 1st  and 3rd  cycle 

after FCT. Equally, in [98], stability predictions are attempted within one cycle after FC. The 

voltage magnitudes recorded from each bus at five different cycles - immediately, before and after 

fault occurrence - are used as inputs. By capturing the snapshots of the system at the above cycles, 

the severity of the fault can be incorporated within the input data. This approach yields an overall 

accuracy of approximately 99% for their test case. Speed of estimation is further improved in [99] 

by using a stability index vector consisting of the potential and kinetic energy computed at the 

fault occurrence and fault clearance. The stability index vector is used as input to a boosting DT, 

which returns accurate estimations even with high penetration of RES. Likewise, in [100] the on-

fault period is used to predict the stability status and stability level. These are converted into a set 

of binary variables, which ensure the validity of the predictions. 

Rolling Window Predictions 

A two-step prediction model is designed in [101]. A pre-processing module is placed in series with 

a DT that consists of 19 Linear SVM (one for each feature) to transform the nth cycle time series 

vector into a scalar. Conversely, the DT inputs are reduced to just 19 rotor angle measurements 

instead of 171. The proposed approach yields a similar performance to a single SVM but the main 

advantage of this particular design is the 97% acceleration of the training process. Nonetheless, 

this model is vulnerable to critical cases (near the decision boundary). 

In a like manner, [102] implements a ML-based relay comprised of three DTs. The relay uses a 6-

cycle rolling window for all DTs, trained for different tasks. These tasks include the detection of 

faults by DT1, detection of fault clearance by DT2 and instability prediction within 6 cycles from 

FCT by DT3. To protect the generator, the relay trips according to the stability prediction or when 
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a fault clearance is not detected. By following this approach, the instability of the generator can be 

detected 140ms faster than the actual occurrence time. In [103] a NN predicts stability according 

to the fault type, which is provided by a fault detection algorithm. The proposed scheme returns 

additional details if an unstable case arises, such as the time frame until instability. 

The exploitation of time dependencies within time series signals is discussed by [104]. Concretely, 

a LSTM-RNN6 is adopted for fast transient instability prediction. Notably, performance appears 

to remain high even with noisy data. The gated recurrent unit RNN (GRU-RNN) capture the long-

term dependencies of sequential inputs by implementing an information flow regulation without 

independent memory cells [105], meaning a lower number of parameters per unit. The authors in  

[106] study the effectiveness of an GRU-RNN ensemble to achieve higher accuracy and feature 

extraction. Prediction accuracy of the system status is compared with a GRU-RNN and a LSTM-

RNN. Although accuracy with the other models is comparable, the average response time is 220ms 

to 240ms faster; hence, subsequent control actions can be initiated sooner. 

High Penetration of RES 

As integration of RES increases, stability is affected due to (a) the intermittent nature of RES prime 

movers and (b) the grid connection based on low-inertia power electronic converters. To analyse 

RES integration with respect to transient stability, [107] examines the effects of different wind 

power penetration levels to the overall generation mix. Modified systems with a ratio of 4: 1 

between wind and conventional power plants indicate there are more unstable cases with a higher 

penetration of wind generation. An Extreme Learning Machine (ELM)7 predicts the stability status 

with an accuracy of 97.5%, and the value of a frequency stability index (as in (2.3) where, 𝑓𝑚𝑖𝑛,𝑖 
is minimum frequency in bus 𝑖 and 𝑓𝑐𝑟,𝑖 + 𝑘 ∗ 𝑡𝑐𝑟,𝑖 is the acceptable frequency dip) with mean 

average percentage error (MAPE) of 0.64%, 

𝐹𝑆𝐼 = (𝑓𝑚𝑖𝑛,𝑖 − 𝑓𝑐𝑟,𝑖 + 𝑘 ∗ 𝑡𝑐𝑟,𝑖) ∗ 100 (2.3) 

A decision forest (DF) is suggested by [108] for stability status prediction of the modified NETS-

NYPS with 20% RES penetration. The DF consists of several trees, each trained and tested under 

a specific topology so that the model will be robust against different network configurations. The 

 
6 The Long Short Term Memory Recurrent Neural Network has the distinct characteristic to store data of 

preceding cycles and process them together with the current data 
7 ELM is a special type of NN that comprises an input, a hidden and an output layer. The key aspect of the ELM 

is that it does not tune the parameters of the hidden layer through back-propagation or similar methods. Yet, the 

ELM guarantees convergence to the global minima at a much faster rate than conventional NN [191] 
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authors tried to incorporate into their study the uncertainty of high RES penetration, thus an 

optimal power flow is utilized, which considers the probability distribution function of those 

sources. Essentially, the prediction output answers the binary (stable/unstable) question through a 

multi-class (topology ID) approach. Furthermore, hierarchical clustering groups the generators that 

exceed 360o angle separation, as well as the sequence of de-synchronization (patterns) to provide 

more details to system operators. 

The sensitivity of DT models in regard to uncertainties is examined by [109]. These uncertainties 

are defined within four different test sets consisting of fault location, fault duration, operating 

conditions, and network topology. Each test set is used to examine the performance of a DT model 

according to the classification accuracy for different (i) inputs and (ii) previously unseen 

measurements (by the DT) of post-fault cycles. The results reveal that DT performance is not 

robust against uncertainties related to operating conditions and network configurations. As a 

general observation, the authors show that the accuracy of a DT improves when post fault 

measurements from longer cycles are used. 

Control 

Remedial Action Schemes 

Generally, a remedial action scheme (RAS) detects potential cases of instability and performs 

control actions in order to maintain stability. Usually, RAS is either event-based, developed 

according to a particular combination of operating conditions and types of disturbances, or 

response-based, activated when measurement signals exceed a specific safety threshold. 

Consequently, a DT algorithm triggering a RAS to ensure system security is examined by [110]. 

The DT evaluates the security of operating points against a set of credible contingencies. For the 

insecure cases, a transient stability constrained optimal power flow (TSC-OPF) reschedules 

generator power output to move the insecure case to secure regions at the lowest cost. The secure 

and insecure regions as defined by the DT in the parameter space provide an additional 

transparency in the operational limits of the system. 

Likewise, [111] develops two SVMs for evaluating the transient security of a system coupled, also 

with control actions. Specifically, a pair of linear-SVM and Gaussian-SVM work in series to 

classify critical operating points as secure or insecure. The Relief-F algorithm selects the most 

important system variables reducing the size of feature vector while the Liner SVM screens out 
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critical samples that lie close to the hyperplane. Because of the linear Kernel, the trained SVM (in 

(3.6)) can be integrated into the TSC-OPF to ensure generator dispatch is transient stable. 

However, the linear Kernel might not provide the required performance in more complex cases. A 

reformulation of the ReLU converts the NN into mixed-integer linear program, which permits the 

modelling of more complex tasks with non-linear transformations while ensuring the problem 

tractable [112]. As shown in [113], both dynamic and static constraints can be integrated into the 

OPF, approximating the feasible space with higher accuracy. 

As suggested by [114], a combination of the event and response based RAS can provide better 

results, both in speed of detection and adaptability to unseen scenarios. Specifically, a DT is trained 

to detect instability and activate RAS, considering the mode of disturbance (MOD) as well. The 

designed RAS aims to minimize the probability of islanding in the modified IEEE 39-Bus system. 

The proposed scheme, as the authors point out, needs improvement in detecting unstable cases 

caused by a wider range of MODs. 

A hybrid model consisting of an unsupervised NN-based model called self organizing maps 

(SOM) and DT is proposed by [115]. This hybrid model initially clusters the set of probable 

operating points of the Greek National Grid into different nodes according to a similarity index. 

Subsequently, and for each node, the ratio of secure operating points to the total operating points 

is calculated. For a ratio close or equal to one, the node is characterized as secure. Conversely, 

nodes with a ratio close or equal to zero are characterized as insecure. However, nodes with an 

indeterminate ratio that cannot be recognized as belonging to either category (secure/insecure) are 

passed on to a DT for further examination. A load shedding scheme is also designed to curtail load 

so that a node's insecure operating points can move to a secure one. 

Integration of Power Electronics 

Microgrids and Distributed Generation (DG), in general, impose certain challenges to the 

conventional operation of power systems, such as frequency fluctuations. Concretely, [116] 

propose a ML pipeline comprised of three modules. The first two modules work independently to 

generate (a) the estimates of the load angle using an ANFIS and (b) the speed and electromagnetic 

torque using a state estimator. The last module predicts the torque coefficients of the generator 

using a NN to minimize frequency variations.  

The response of RES with power electronics can be significantly improved with ML. For instance, 

using NN instead of PI modules in the grid connected converters (GCC) of a WPP result in faster 
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convergence to steady state and lower oscillation amplitudes [117]. Similar results are reported for 

an offshore power plant [118], for WPPs [119], [120] and for an ultra-capacitor [121]. 

LCL-filtered GCC coupled with conventional controllers are prone to instability. To mitigate this 

issue, [122] propose a NN to estimate the voltage control references from the current deviations, 

all in dq frame. The loss function modifies the NN parameters to minimize the errors of the d and 

q currents for the provision of suitable voltage references. This NN based control for a single phase 

GCC with an LCL filter demonstrates robustness to parameter changes, operated at low sampling 

rates with no special damping strategies. Regarding inverters, transient stability at Point of 

Common Coupling (PCC) can be predicted with an accuracy higher than 99% within 100mu s 

using a DNN [123], while its transients can be reduced through the derivation of a linear regression 

model and its integration with the phase-locked loop [124]. 

Power oscillations can limit the capacity of transmission lines, or even cause widespread 

blackouts. Damping of such oscillating can be improved by regulating properly the parameters of 

static series synchronous control as shown in [125]. The optimal regulation of the voltage 

magnitude and polarity is achieved through a Fuzzy-NN with self-constructing attributes, which 

allow for online training. The results show a 10-fold increase in the inter area oscillation damping 

with respect to conventional Power System Stabilizers (PSS).  

Noisy and Missing Data 

Communication delays or corrupted and missing information packages are highly likely to occur. 

For instance, communication delays can impose an upper bound of 6 cycles on the available 

predicting time [114]. In addition, during transients, PMU measurements can differ from true 

values. Driven by the above, [126] argues that global system variables incorporate higher 

discriminant power and computational efficiency, regardless of scale and robustness against 

missing data. Two groups of global variables are proposed based on rotor angles and voltage 

magnitudes. The Gaussian-SVMs, developed for the stability assessment, achieve 99% accuracy 

although voltage based SVM has a faster detection speed (≈10 cycles less). Given the selection of 

the specified features, missing PMU data do not seem to affect performance when signals from 

critical generators are still active.  

Considering data limitations imposed by PMU availability, in [127], only 8 buses out of the 39 

buses of the New England Benchmark system have PMU installed. A boosting ensemble is 

developed to evaluate the security of operating conditions against a scenario list. The proposed 
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model could easily incorporate new cases by recalculating the weights of the elements in the 

training subset and by modifying only the subtree associated with the new case. 

Also, a data denoising algorithm is proposed by [128]. The algorithm consists of stacked 

autoencoders8 (AE) and a convolutional9 NN. This approach increases robustness and suitability 

to highly non-linear problems with high dimensionality. Compared to other NN and SVM based 

models, the stacked AE-CNN achieves the highest accuracy of over 97% when evaluated against 

noisy inputs. Instead of feeding directly the PMU measurements into the ML model, [129] propose 

using the last steady state snapshot to extract equivalent dynamic models of the system for running 

TDS, which will provide clear signals. On average, this process takes around half a second to 

complete after fault occurrence. 

Remarks 

Despite the advantages of the AI methods presented in the above applications, several limitations 

exist. For instance, in fixed window predictions the authors use specific time points of an event to 

construct the feature vector. Identifying these time points can be extremely difficult. The process 

that triggers the ML model to make the prediction is not described although this is a crucial aspect 

and especially relevant for actual implementations.  

Additionally, most of the reviewed papers assume either full observability of the system, no 

communication delays or very fast sampling rates. However, these assumptions are often invalid. 

Different studies suggest the use of rotor angles and speeds [130], the potential and kinetic energy 

[131] or the frequency deviation [132], [133], all of which are not readily available. Feature 

engineering [134] and dimensionality reduction techniques [63], [66] improve the performance 

but increase the computation time. 

The natural imbalance between stable and unstable cases can result in (a) overestimating 

performance and (b) biasing the ML model towards the majority class. Authors prefer designing 

their models so that when unsure, they classify cases as unstable or uncertain. This reveals a limited 

capability to define the stability boundary accurately. Furthermore, the accuracy of stability 

predictions is not enough [135], therefore the sensitivity of ML models to small changes of the 

 
8 The auto-encoder is a type of unsupervised learning model consisting by an encoder and a decoder. The 

encoding-decoding process makes those models robust to noisy data as well as providing an alternative approach 

to dimensionality reduction 
9 The Convolutional Neural Network is commonly used in image processing. The convolution layer of the 

network uses filters to isolate specific patterns in the data to extract the characteristics of an image. 
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system measurements needs to be studied. This is known as Adversarial Examples [136] and 

describes the impact of small perturbations of inputs that cause the ML model to give highly 

confident but false predictions. 

To improve the accuracy and credibility of their methods, many of the reviewed papers introduce 

the uncertain class, which includes critical cases that cannot be classified as stable/unstable with 

high confidence. Research should focus on approximating the decision boundary with higher 

precision to minimize cases with inconclusive results. Potentially a more efficient formulation of 

the training database can help towards that end [137].  

Nevertheless, a better understanding of the above issues can arise from demonstrations in real life 

conditions. Currently there are projects involving actual demonstrators such as the FNET/GridEye 

project [138] and FLEXITRANSTORE project [139]. Finally, recent developments in computer 

science have shown that NN can learn the mathematical expressions describing a system [140]. 

Indeed, the NN can solve the differential equations faster than numerical integrators, making them 

an ideal alternative for accelerating TDS for power system rotor angle stability. Currently, this 

approach is used for state estimation in power systems [141]. 
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CHAPTER 3 

Artificial intelligence Methodologies 

Among the plethora of emerging measurement devices, the PMU with its high sampling rate allows 

for the adoption of data-driven methods in Rotor Angle Stability. Machine Learning (ML) and 

Deep Learning (DL) can fully exploit the vast amount of data to enhance the stability of the system.  

 

Figure 5: Overview of Machine Learning  
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In contrast to traditional approaches, such as TDS and MA, ML does not assume any knowledge 

of the physical system. Nevertheless, machines can learn from data to perform a specific task 

“without being explicitly programmed” [142]. ML encompasses a wide range of algorithms based 

on the type of learning and task as summarized in Figure 5. 

Methods of Learning 

ML consists of three distinct branches, each representing a different learning method; namely, 

supervised, unsupervised and reinforced learning. In supervised learning, machines use example 

input-output pairs to learn a mapping function that approximates the true relationship between 

them. Supervised learning tasks are regression for continuous output and classification for discrete. 

In regression tasks the algorithm tries to learn the best fit for the training data, while in 

classification the decision boundary that separates the classes,  as shown in Figure 6. In contrast, 

unsupervised learning does not require the outputs to be known because it identifies hidden 

patterns within the input data to provide insights about the structure and characteristics of the 

system. Typical unsupervised learning tasks involve clustering and anomaly detection. Semi-

supervised learning (Figure 5) combines the two previous learning types using both labelled and 

unlabelled samples to enhance generalization. Finally, in reinforced learning the model interacts 

with its environment in order to determine the optimal sequence of actions through a 

reward/penalty scheme [143]. 

 
a) Classification b) Regression 

Figure 6: Supervised Learning Tasks 
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Naturally, to evaluate the performance of an algorithm for each task is different. Specifically, the 

metrics used in regression measure the error between the estimated and true output such as the 

mean absolute error (MAE) in (3.1), mean squared error (MSE) in (3.2) and root mean squared 

error (RMSE) in (3.3) being the most common. The suitability of the model w.r.t. the given task 

is measured by the R2 score in (3.4). Accuracy in classification is defined as number of correct 

classifications over the total number of classifications. When classes are unevenly distributed 

accuracy can be a misleading measure. Instead, for uneven class distributions, a holistic 

performance evaluation of the model is necessary thus, the confusion matrix in Table 1, and the 

receiver operating characteristic curve are preferred over the simple accuracy ratio.  

MAE = 
1𝑚 ∑|𝑦𝑖 − 𝑦̂𝑖|𝑚

𝑖=1  (3.1) 

MSE = 
1𝑚 ∑(𝑦𝑖 − 𝑦̂𝑖)2𝑚

𝑖=1  (3.2) 

RMSE = √ 1𝑚 ∑(𝑦𝑖 − 𝑦̂𝑖)2𝑚
𝑖=1  (3.3) 

𝑅2(𝑦, 𝑦̂) = 1 – ∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑚𝑖=1∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑚𝑖=1  (3.3) 

Table 1: Confusion Matrix 

  Actual   Positive  Actual   Negative 

Predicted Positive  True Positive (TP)  False Positive (FP) 

Predicted Negative  False Negative (FN)  True Negative (TN) 

Model Development Framework 

The development of a machine learning model can be achieved by following the steps shown in 

Figure 7. The pre-process involves all these actions that prepare the dataset to be used for learning 

the given task. Some of these actions are cleaning, scaling, sampling, and transforming the 

inputs/outputs. Some algorithms, such as NN, are sensitive to inputs of different scales meaning 

that the ones with larger range will dominate over the other ones. 
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 Normalization and standardization are two typical approaches for data scaling. The former refers 

to the rescaling of input features within the desired range (3.4), while the latter centres features to 

mean μ=0 and deviation to σ=1 (3.5).  

𝑥̅ = 𝑥 − 𝑥𝑚𝑖𝑛𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 (𝑚𝑎𝑥𝑛𝑒𝑤 − 𝑚𝑖𝑛𝑛𝑒𝑤) + 𝑚𝑖𝑛𝑛𝑒𝑤   (3.4) 

𝑥̅ = 𝑥 − 𝜇𝑥𝜎𝑥  (3.5) 

 

Figure 7: Model Development Workflow 

Apart from general suggestions and guidelines there is now formal way to determine the best 

model a priori. Usually, a set of candidate models is trained using the same inputs and after an 

analysis of their errors and performance the least performing models are eliminated, and the 

process is repeated for the best models with hyper-parameter tuning. Concretely, the learn and 

evaluate steps are both closely related as the performance of the model in the unseen cases is the 

final selection tool. In many cases revisiting the pre-process step can result in improving the 

performance. The final step is to deploy the model to perform the required task using real data. As 

power systems are continuously change, it is necessary to monitor the performance of the model.  

Machine Learning Models 

Linear Regression 

Simple yet effective, Linear Regression can solve a wide range of problems with good accuracy. 

It aims to find the parameters 𝒘 ∈ ℝ𝑛×1 that minimize the error between the set of independent 

variables 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑛] and dependent variable(s) 𝑦. This relationship is given by the linear 

combination between the inputs and parameters, as in (3.6). The optimal weights can be estimated 

by using iterative methods or the closed form expression in (3.7), where 𝑿 ∈ ℝ𝑛×𝑚 are the inputs, 𝒚 ∈ ℝ𝑛×1 are the outputs 𝑚 and 𝑁 are the number of patterns and features, respectively while the 𝑿+ is the Moore–Penrose inverse. 
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𝑦̂(𝒙, 𝒘) = 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 + 𝑤𝑜 (3.6) 𝒚 = 𝑿𝒘⊺ → 𝒘 = argmin𝒘 ‖𝑿𝒘 − 𝑦‖ ⇒ 𝒘 =  𝑿+𝒚 (3.7) 

Decision Trees 

Traditionally, Decision Trees (DT) were designed manually by analysts and researchers as a highly 

intuitive decision-making tool. Naturally, DT in machine learning follows the same structure i.e. 

nodes represent a decision and links the possible outcomes. A DT resembles an upended tree, 

meaning that the root lies at the top and the leaves at the bottom. Several algorithms have been 

developed for the construction of a DT. For instance, the ID3 algorithm, which uses the 

information gain  to decide the splitting at each node, is one of the simpler methods [144]. The 

C4.5 algorithm, based on the ID3, includes a pruning stage, which reduces DT complexity by 

removing branches that add little discrimination power and can also increase robustness in relation 

to missing values [144]. Both algorithms, however, are suitable only for discrete classes. The 

classification and regression trees (CART) algorithm was developed to include continuous values 

as well. The main characteristics of the CART algorithm are (a) that it can generate both 

classification trees (CT) and regression trees (RT) and (b) all non-leaf nodes have exactly two 

outgoing branches, hence the term binary trees [145].  

Support Vector Machines 

Maximum margin classifiers or SVM separate samples into the predefined classes by constructing 

a decision boundary or hyperplane that maximizes the marginal space between them. A hyperplane 

can be mathematically expressed as in (3.8), where 𝐰 ∈ ℝ𝑁×1 is the weight vector  𝒙 =[𝑥1, … , 𝑥𝑁] ∈ ℝ𝑁×1 is the feature vector and b ∈ ℝ is the bias. The perpendicular distance 𝑑 

between a point and a hyperplane is given by (3.9), where ‖⋅‖2 is the Euclidean norm. Therefore, 

to maximize the margin, it is necessary to minimize the norm of the weight vector as shown in 

(3.10) subject to (3.11) and (3.12). 

𝐰⊺𝐱 + b = 0 (3.8) 

𝑑 = 𝐰⊺𝐱 + b‖𝒘‖2  (3.9) 
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min𝒘,𝑏   12 𝐰⊺𝐰 (3.10) 

s. t. 𝑡𝑗(𝐰⊺𝐱 + b) ≥ 1 (3.11) 

 𝑡𝑗 = {−1, 𝑦𝑗 = 01,     𝑦𝑗 = 1 ∀𝑗 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛 (3.12) 

Formulating the optimization problem in this way does not allow misclassifications, which can 

cause overfitting and, in certain cases, convergence issues. To overcome these limitations, a slack 

variable 𝜁 measures the margin violation of inputs, and parameter C defines the balance between 

maximizing the margin size and minimizing the violations. Hence, the soft margin SVM shown is 

defined in (3.13) subject to (3.14), (3.15) and (3.12). 

min𝒘,𝑏   12 𝐰⊺𝐰 + C ∑ 𝜁𝑗𝑗∈𝑆  (3.13) 

s. t. 𝑡𝑗(𝐰⊺𝐱 + b) ≥ 1 − ζj ∀𝑗 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛 (3.14) 

 𝜁𝑗 ≥ 0 ∀𝑗 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛 (3.15) 

The above optimization problem it is usually expressed in its dual form using the Lagrange 

multiplier 𝛂 = [α1, … , α𝑛] ∈ ℝ, as shown in (3.16). By solving the dual problem, it is possible to 

incorporate the kernel function, a very important aspect of SVM for the non-linear cases [146]. In 

addition, the Lagrange multipliers identify the inputs, also known as support vectors (SV), which 

contribute to the construction of the hyperplane, i.e. with 𝛼𝑗 > 0. The number of SV indicate the 

complexity of the decision boundary [144].  

min𝜶   12 ∑ ∑ 𝑎𝑗𝑎𝑖𝑡𝑗𝑡𝑖𝐾(𝐱𝑗 , 𝐱𝑖) − ∑ 𝑎𝑗𝑗∈𝑆𝑖∈𝑆𝑗∈𝑆  (3.16) 

s. t. 𝑎𝑗 ≥ 0 ∀𝑗 ∈ 𝑆𝑡𝑟𝑎𝑖𝑛 (3.17) 

From (3.18) the classification of new samples solely depends on the kernel function 𝐾(⋅,⋅). For 

problems where the input space is non-linear, this function defines a feature space that can linearly 

separate the data [147]. In general, Kernel functions enable SVM to use dot products to separate 

the data in higher dimensions without explicitly defining a mapping function, which is difficult to 

find.  



31 

 

An example regarding the mapping of the input space into a linear separable feature space is shown 

in Figure 8. The XOR classification problem is non-linear separable at the input space as indicated 

by the four data points that correspond to the truth table of the XOR gate. By applying a mapping 

function 𝜙 the input space is raised into a higher dimension feature space where the problem 

becomes a linear separable one.  The most used Kernel functions are the Gaussian, the polynomial 

and linear as listed in Table 2. Gaussian and polynomial can be slower than the linear kernel but 

they have greater power in separating highly non-linear datasets [148]. 

𝑦̂(𝐱) = ∑ 𝑎𝑗𝑡𝑗𝐾(𝐱, 𝐱𝑗) + 𝑏 𝑗∈𝑆  (3.18) 

 

Figure 8: Input space mapping to feature space: the XOR classification problem. 

Table 2: Common Kernel Functions [149] 

  Kernels 

Polynomial  𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖𝑥𝑗)𝑝
 ,   𝑝 : degree 

Gaussian 
 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖22 ,   𝛾 = 12𝜎2 > 0 

Linear  𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖𝑥𝑗 + 𝑐 ,   𝑐 : constant 

Neural Networks 

Neural Networks (NN) are nonlinear ML models based on the architecture and function of the 

human brain cells. In principle, NNs aim to solve highly complex problems through linear 

combinations of the outputs among the set of nodes (neurons) grouped together in different layers, 

which communicate with each other via weighted links (synapses). A NN is characterized by the 

number of layers 𝐿 and number of neurons 𝐾𝑙 at each layer, where 𝑙 ∈  {0,1, … , 𝐿}. In supervised 

learning the NN is a function 𝑔(𝑥; 𝑾, 𝒃): ℝ𝑁 →  ℝ𝑀, which is parameterized by weights 𝑾 and 

biases 𝒃.  
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Graphically this can be represented as in Figure 9, where inputs and outputs are denoted by the 

vector 𝒙 = [𝑥1, … , 𝑥𝑁] ∈ ℝ𝑁 and 𝒚̂ = [𝑦̂1, … , 𝑦̂𝑀] ∈ ℝ𝑀, respectively. Note that 𝐾0 ≔ 𝑁 and 𝐾𝐿 ≔ 𝑀 are the dimensions of the input and output vector respectively. Connections between the 

neurons are represented by weights 𝑾𝑙 ∈  ℝ𝐾𝑙× 𝐾𝑙−1∀  𝑙 ∈  {1, … , 𝐿} and biases 𝒃𝑙 ∈  ℝ𝐾𝑙   ∀ ∈ {1, … , 𝐿}. For convenience, it is customary to augment the weight matrices with the biases, 

introducing an auxiliary neuron at each layer with a fixed value equal to unity.  

 

Figure 9: Typical NN structure 

The principal operations conducted by the NN (see (3.19)-(3.23)) are the linear combination of the 

inputs at each neuron, as in (3.21) and a transformation 𝜎(⋅), usually through a nonlinear function 

e.g. hyperbolic tangent (i.e. tanh), sigmoid and Rectified Linear Unit (ReLU). Some of the most 

common activation functions along with their first derivatives are plotted in Figure 10. Input-

output pairs, {(𝒙𝑗, 𝒚𝑗)}𝑗∈ 𝑆 of train set 𝑆 are presented to the model, where parameters are modified 

to minimize a loss ℰ(𝑦, 𝑦̂) according to the error metric ℰ. Generally, all NN are known for their 

ability to approximate any function [150], [151]. 

ℎ𝑖(0) = 𝑥𝑖  ∀ 𝑖 ∈ {1, … , 𝑁} (3.19) 

𝑦̂𝑖(𝐿) = ℎ𝑖𝐿 ∀ ∈ {1, … , 𝐾𝐿}  (3.20) 

𝒉̅𝑖(𝑙) = 𝑾(𝑙)𝒉(𝑙−1) + 𝒃(𝑙) ∀ 𝑙 ∈ {1, … , 𝐿 − 1}  (3.21) 

𝒉(𝑙) = 𝜎(𝒉̅𝑖(𝑙)) ∀ 𝑙 ∈ {1, … , 𝐿 − 1}  (3.22) 
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𝒚̂(𝐿) = 𝑾(𝐿)𝒉(𝐿−1) + 𝒃(𝐿)  (3.23) 

Since the late 80s, backpropagation [152] has been the standard training procedure of NN. This 

procedure consists of two stages: the forward pass for computing the error and the backward pass 

for the gradient of that error w.r.t. each parameter. Once the gradients are computed, the parameters 

are modified towards the opposite direction. The procedure is repeated for a given number of 

iterations. Typical optimization algorithms used in backpropagation are Stochastic Gradient 

Descent, RMSprop and Adam [150], [153]. In power systems the use of neural networks has been 

studied since the early 1990s in many areas like planning, operation and analysis [154]. 

 

Figure 10: Common Activation Functions 

Ensemble Models 

Ensemble learning refers to the aggregation of a group of base learners that work collectively for 

the same objective to achieve more accurate results. By using different subsets of the training set 

it is possible to incorporate diversity (i.e. low correlation between the individual classifiers) to 

improve generalization, even in datasets with highly imbalanced class distributions [155]. There 

are two main techniques for developing ensemble models: bagging and boosting.   

In Bagging, 𝑘 classifiers are trained separately, each using the 𝑆𝑘 subset of the original dataset 𝑆. 

The base classifiers operate independently each providing its own output. In classification tasks, 

the final output is usually determined through a voting scheme [155], [156] whereas in regression 

tasks, a weighted average. A representative application of this approach is Random Forests (RF) 

which, as the name indicates, consists of k uncorrelated classifiers which are trained using random 

subsets of dataset 𝑆 in addition to random features. The output of RF is determined either through 

a majority voting scheme (for classification ) or through soft voting (for regression) [79], [157].  



34 

 

In Boosting, classifiers are trained in series using a sample weighting scheme to improve the 

correct classification of misclassified samples. Initially each element of the dataset 𝑆 is assigned 

an equal weight. Then 𝑘 classifiers are developed through 𝑘 iterations. After each iteration, the 

weight of each element in 𝑆 is adjusted upwards if misclassified by the current learner and 

downwards if otherwise [155]. This approach creates a new train set after each iteration for the 

next classifier which helps favour the misclassified elements. Lastly, the output of the boosting 

ensemble is generated through the voting procedure as mentioned before, but this time each 

classifier vote is associated with a weight factor based on its classification accuracy [156]. 
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CHAPTER 4 

Monitoring Electromechanical Modes 

The electromechanical interactions expressed through low frequency oscillations (LFO) are a 

phenomenon that exists naturally in power systems due to the operation of generators in parallel 

and the transfer of power over long distances [158]. Fast control devices such as the Automatic 

Voltage Regulator (AVR) improve the transient stability but have the opposite effect on the 

oscillatory response of the system. Besides damping, LFO are characterized by their frequency 

and damping ratio. In general, frequencies of LFO range between 0.1Hz - 2.0Hz and are further 

categorised into Local and Inter-area [27]. The latter have a deeper impact in the stability and 

operation of power systems. Underdamped inter-area modes of oscillation limit the maximum 

available power transfer capacity of transmission lines leading to significant financial costs [159]. 

In addition, power swings of with increasing amplitudes can trip protective devices and cause 

power outages [160]. Ensuring that sufficient damping resources with the capacity to adapt are 

vital, especially as power electronics impact the stability of power systems. 

As discussed, conventional methods for identifying the characteristics of LFO are either unsuitable 

for online applications or too slow for control purposes. Specifically, MA is accurate but requires 

the state space model of the system and its slow. Signal processing methods, such as Fast Fourier 

Transform (FFT) or Prony require a probing signal and the selection of a time window, which is 

difficult to determine [159]. On the other hand, with AI it is possible to model the relationship 

between the operating points of the system with the corresponding characteristics of targeted LFO 

to provide faster the estimation results. To illustrate, Figure 11 shows both the steady state and 

ringdown response of a system where an AI model can provide faster the prediction of the mode 

characteristics that the signal processing methods like Prony and FFT.   

Two-area system 

The two-area system is a popular model for analysing oscillations and damping methods [161], 

originally presented in [27]. As shown in Figure 12, it is a symmetric system that consists of two 

areas each with two generators (G1-G2, G3-G4) one load (L7, L9) and one shunt capacitor (C7, 

C9) connected through a tie line with two parallel circuits.  
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Every generator has installed an IEEE Type AC4A Excitation System (AVR), a steam turbine 

governor (GOV) and a PSS of type 1. By design Area 1 exports to Area 2 approximately 400 MW. 

There are three LFO: an inter-area at 0.55 Hz and two local modes with frequencies of 1.05 Hz 

and 1.08 Hz in Area 1 and Area2, respectively. The system is modelled in Digsilent’s Powerfactory 

2019 SP3 simulation platform.  

 
Figure 11: Differences between AI  and signal processing methods 

 

 

Figure 12: Two-area system 

Table 3: Number of elements in Two area system 

Elements  Number 

Buses 11 

Lines 8 

Transformers 4 

Generators 4 

Loads 2 
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Database Generation 

The performance of data-driven approaches, such as AI, depends on the quality and quantity of 

the data. In many cases these data are not readily available or not labelled for the desired supervised 

learning task. Using the system model and a simulation platform it is possible to manipulate the 

parameters and operating conditions of the system to generate a database by simulating each 

scenario. Naturally, the accuracy of the system model to the real system is critical for generating 

data that will reflect the actual conditions. However, at the case of benchmark systems, such as the 

two-area system, this is not an issue.  

The characteristics of both local and inter-area modes are closely related with the operating 

conditions of the system, i.e. generation dispatch, loading levels, and network topology [27]. For 

instance, as demand stress the system towards its limits the damping of the modes moves closer to 

the y-axis and the stability boundary. Concretely, the database should consist of a wide range of 

operating scenarios to capture as accurately as possible the behaviour of the inter-area modes. 

Algorithm 1 summarizes the process followed to generate the required data by considering loads 

to be random variables drawn from a Gaussian distribution. Apart from the number of Simulations, 

the initial active and reactive power Pinitial and Qinitial respectively, the mean μ and standard 

deviation σ of the Gaussian distribution are given as inputs to the algorithm.  

ALGORITHM 1: DATABASE GENERATION 

1: input: Simulations, μ, σ, Pinitial, Qinitial 

2: i ← 0 

3: while (i < Simulations) do 

4:  r1, r2 ~U(0,1) 

5:  scaling ← μ+ σ√(-2log(r1))cos(2πr2) 

6:  P ← Pinitial×scaling 

7:  Q ← Qinitial×scaling 

8:  failed ← Calculate Power Flow ( .ComLdf ) 

9:  if failed then  

10:   continue 

11:  end if 

12:  Calculate Modal Analysis ( .ComMod ) 

13:  Export Results 

14:  I ← i+1 

15:  end while 
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Here the Box-Muller transformation is used to convert a uniform to a Gaussian distribution [162]. 

The r1 and r2 coefficients are drawn randomly from the Uniform distribution of the open interval 

(0, 1) before calculating the scaling factor. In lines 6 and 7 of the algorithm the initial active and 

reactive power are scaled up or down. The power flow is computed and if converged the modal 

analysis returns the corresponding eigenvalues and eigenvalues of the system. Finally, both results 

are exported in .csv format and the process is repeated until the maximum number of simulations 

is reached.  To automate the process the algorithm has been implemented in Python 3.6 to generate 

the random points and to interact with Powerfactory to execute the power flow (.ComLdf) and 

modal analysis (.ComMod) commands. 

Data analysis and pre-processing.  

For the two-area system, approximately 23000 scenarios have been simulated using Algorithm 1 

with μ = 1 and σ = 0.1. The dataset, therefore, consists of equal input-output pairs represented by 

the system variables for each operating point and the corresponding eigenvalues. During these 

simulations it is assumed that the system is fully observable, meaning that all variables are 

available. The full dataset 𝑆 ∈ ℝ𝑚×(𝑛+2𝑔) where 𝑚 = 23000 is the total number of simulations 𝑛 = 122  is the number of system variables and 𝑔 = 3 are the number of modes. Before analysing 

the dataset, the three subsets  are created 𝑆𝑡𝑟𝑎𝑖𝑛, 𝑆𝑣𝑎𝑙, 𝑆𝑡𝑒𝑠𝑡 for training, validating, and testing the 

ML models with a ratio of 75%/15%/15%, respectively. The reason is that the final score needs to 

be recorded for the testing set that will remain unseen until the very end to prevent overfitting.  

An overview of the characteristics of the train dataset 𝑿𝑡𝑟𝑎𝑖𝑛 ∈ ℝ17250×𝑛, 𝒀𝑡𝑟𝑎𝑖𝑛 ∈ ℝ17250×2𝑔, is 

depicted in Figure 13 where the variance of each variable is plotted as a function of its mean in 

log scale. This figure reveals the different scales of the data (i.e. per unit, MW, kW, degrees to 

name a few) and the low variance of some of the variables. Due to the nature of power systems 

and the co-dependence of the system variables there is a certain degree of collinearity in the 

dataset. In fact, most of the recorded variables have either positive or negative linear correlation 

above ±0.95. The correlation 𝑟 is computed using the Pearson formula in (4.1) where 𝑥𝑖, 𝑦𝑖 are two 

variables and 𝑥̅, 𝑦̅ are their respective means.  

𝑟 = ∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖∈𝑀√∑ (𝑥𝑖 −𝑖∈𝑀 𝑥̅)2√∑ (𝑦𝑖 −𝑖∈𝑀 𝑦̅)2 ∈ [−1, 1] (4.1) 

The highly correlated features (i.e. blue dots in Figure 13) are discarded to remove redundant 

information. In addition, it has been shown that low variance features hold minimum predictive 
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power therefore, the remaining uncorrelated features that lie in the shaded area have a variance of 

less than 0.006 and can be eliminated from the dataset. The inter-area mode results are summarized 

in Figure 14. 

 

Figure 13 Mean vs Variance of System Variables 

The majority of the simulated scenarios have shown that the damping of the inter-area mode is 

less than 5%. In many cases it is recorded a negative damping meaning that the system is in critical 

condition. Only a handful of cases has higher than 5% damping ratio. In contrast, the local mode 

in Area 2 (i.e. between generators G3 and G4) has several cases where the damping ratio is less 

than 5%, as depicted in Figure 15. The frequency of both modes varies significantly between the 

simulations. 

 

Figure 14: Inter-area mode results 
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Figure 15: Local mode Area 2 results 

Following the above the number of features are reduced from 122 to 22 hence the train and 

validations sets consist by 17250 and 3450 patterns respectively, i.e. 𝑿𝑡𝑟𝑎𝑖𝑛 ∈ ℝ17250×22, 𝒀𝑡𝑟𝑎𝑖𝑛 ∈ℝ17250×4, 𝑿𝑣𝑎𝑙 ∈ ℝ3450×22, 𝒀𝑣𝑎𝑙 ∈ ℝ3450×4. It should be noted that because the algorithms cannot 

handle complex numbers directly, they are treated as separate target variables. As shown in Figure 

13, the scale of the input features varies significantly due to the nature of the different variables. 

For instance, voltage magnitude is measured in per units while active power flow in MW. To 

alleviate any problems this may cause in the development of certain algorithms, all features are 

scaled to have mean 𝜇 = 0  and standard deviation 𝜎 = 1 using the formula (4.2). However, cyclic 

features such as voltage angles should be treated differently because normalization does not reflect 

the actual relation between angles close to each other. For example, in Figure 16 reveals the 

difference between normalization and trigonometric representations for cyclic variables. It should 

be noted that the mean and standard deviation of the training set are used for normalizing the test 

and validation sets.  

𝑥𝑖′ =  𝑥𝑖 − 𝜇𝑥𝑖𝜎  (4.2) 

Model Learning and evaluation 

The preliminary list of candidate models consists of Linear Regression, Gradient Boosting, 

Random Forests and Neural Networks. The latter has been developed using the Tensorflow library 

using the Keras Sequential API [163] while the rest using the Scikit-learn machine learning library 

[164]. The scikit models use the default hyper-parameters while the NN uses the ReLu activation 
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function for the two hidden layers of 50 neuros each. The adaptive momentum (Adam) optimize 

is used to train the NN using the default hyper-parameters. The goal is to learn a function 𝑓: 𝑿 →𝒚 that maps the system operating conditions to the inter-area mode frequency. The candidate 

models are trained and validated using the corresponding sets described in the previous subsection.  

 

Figure 16: Illustration of normalizing cyclic variables using trigonometric representations 

Using the training set and a 5-fold cross validation the learning curves of each model are plotted 

along with their fitting times in Figure 17. The dotted lines indicate the mean training error, the 

lines indicate the mean cross-validated error while the shade area around the line the standard 

deviation of the estimates.From the results the Gradient Boosting model has the lowest cross 

validated MAE with Random Forests being second to best. However, RF seem to have high 

variance, which can be reduced by identified the optimal hyper-parameters. The only issue is that 

the RF scales poorly w.r.t. the other models. In any case, the dataset size is small therefore, it 

permits an extensive parameter grid search. After performing grid search on the Random Forests, 

After identifying the optimal selection of parameters the new results are shown in Table 4. Figure 

18 depicts a subset of the test set inter-area mode against the predict one from optimized RF. 

There are some appealing properties about RF. They inherent their robustness to inputs of different 

types and scales, e.g. categorical features without encoding from decision trees. This eliminates 

the need of additional pre-processing steps that are necessary for the NN. However, as an ensemble 

the transparency of the decision-making process of a DT is diminished. In addition, RF have the 

capacity to provide a measure of importance with regards to the input features. This can help 

remove even further unnecessary features to reduce the complexity of the model but also it can be 

an indicator of where to install measurement devices.  
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Table 4: Optimized Random Forests Results. 

RF 

 

MAE 

 Parameters 

  DT Min Pattern/Split Max Features Max Depth 

Optimized  0.0866  1000 5 log25 80 

Default  0.1501  100 2 - - 

 

Figure 17: Learning curves of candidate models 

 

Figure 18: Inter-area mode actual vs RF-predicted. 
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Frequency Prediction of Multiple Modes  

The above prediction RF model is providing estimates about the frequency of a single mode. 

However, in larger scale systems there are more than one inter-area and local modes. Therefore, 

in the following subsections two architectures of univariate and multivariate RF are compared with 

respect to their errors in estimating the frequencies of two modes. An illustration of the two 

architectures is shown in Figure 19. In the univariate approach an RF is trained for each of the 

targeted mode frequencies, for the two-area system these are the inter-area mode (see Figure 14) 

and the local mode between generators G3-G4 (see Figure 15). On the other hand, the multivariate 

RF aims to estimate the two frequencies simultaneously by optimizing the same parameters to 

achieve good performance in both targets. 

 

a) Univariate 

 

b) Multivariate 

Figure 19: Structures for predicting two frequencies in the two-area system 

To obtain a more accurate approximation of the true error a 5-fold cross validation is used [165]. 

Apart from the MAE, the R2 score is included to measure the performance of the models. Recall, 

that the R2 score takes values from 0 to 1 depending on how well the model is performing on the 

given task. The two approaches are compared not only on the two metrics (i.e. MAE and R2 score) 

but also with respect to their CPU processing time.  

The results are listed in Table 5 reveal that a trade-off exists among the prediction accuracy and 

processing speed. Logically, by training each RF for each frequency the error is lower, although 

the impact is more apparent in the predictions about the local mode. Regardless, by having a single 

model making two predictions at the same time has a faster processing time at the cost of slightly 

lower accuracy. Speed for control applications is more important given that the difference between 

the errors is very small. It should be noted that using parallel computing the processing time can 

be reduced.  
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Table 5: Performance on the test set for univariate and multivariate RF 

  Inter-area  Local  Overall  CPU 

 MAE R2  MAE R2  MAE R2  Time (s) 

Univariate  1.4e-3 0.9883  5.0e-4 0.9942  9.5e-4 0.9913  3.9 

Multivariate  1.5e-3 0.9882  8.0e-4 0.9886  11.5e-4 0.9882  2.7 

IEEE 39-Bus System 

The 39-bus system is a larger power system that is used for analysing the electromechanical 

interactions between different areas, depicted in Figure 20. In terms of developing ML models for 

larger scale systems it is necessary to evaluate their scalability. To consider a wide range of 

possible scenarios that will accurately capture the behaviour of the system the number of 

simulations will be higher than in small scale systems. In addition, in a realistic case partial 

observability is more likely than having measurements form every point in the system. For this 

reason, it is assumed that measuring devices are only available from bus 2 and bus 26 with red 

colour in Figure 20. 

 

Figure 20: IEEE 39-bus test system 
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Table 6: Number of elements in 39-bus test system 

Elements  Number 

Buses 39 

Lines 34 

Transformers 11 

Generators 10 

Loads 20 

Due to the larger number of elements in this system the database generation Algorithm 1 is 

revisited to improve the sampling of random operating points. Specifically, the process of 

computing the random demand of the loads now is computed using the Latin Hypercube Sampling 

(LHS) technique. The main reason is that with random sampling the required number of 

simulations to obtain sufficient and good data is much higher with larger power systems. In 

addition, the random points might not be unique, or they are very close to each other. On the other 

hand, the LHS generates the samples by dividing the parameter space a given number of evenly 

sized subsets [166] [167]. In two dimensions this can be thought of fitting a grid in the parameter 

space defined by two parameters, as shown in Figure 21. The 4 figures are generated by using 

random sampling (left) and LHS (right). Random sampling creates points that are not distributed 

in the full span of the parameter space, while the LHS creates a grid dividing the space into equal 

squares from which only one sample can be drawn per column and per row. In contrast to random 

sampling the size of the grid must be defined in advance hence the number of samples is fixed 

during simulations.  

Algorithm 2 receives as inputs the matrix of the scaling factors Ls for each load and for each 

scenario. The Pinitial,and Qinitial are the default set points of loads active and reactive power demand. 

Dispatch scenarios Gs are also included in this algorithm that have been generated as well using 

the LHS method. The total number of converged simulations is close to 70000 and the final number 

of input features are 47 after removing the highly correlated variables and the ones that have low 

variance. The features include the voltage angles and the power flows at each feeder of these two 

buses. 

 

Figure 21: Random Sampling (left) and Latin Hypercube Sampling (right) example. 
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ALGORITHM 2: DATABASE GENERATION WITH LHS 

1: input: Ls, Ds, Pinitial, Qinitial 

2: for (scaling ∈ Ls) do 

3:  PL ← Pinitial×scaling 

4:  QL ← Qinitial×scaling 

5:  for (dispatch ∈ Gs) do 

6:   PG ← dispatch 

7:   failed ← Calculate Power Flow ( .ComLdf ) 

8:   if failed then 

9:    continue 

10:   end if 

11:   Calculate Modal Analysis ( .ComMod ) 

12:   Export Results 

13:  end for 

14: end for 

 

Development of Prediction Models 

Following the same procedure as in the previous section, the original dataset is split into train 

validation and test sets. The candidate models are trained to predict the inter-area mode between 

generator G1 with the rest of the system (i.e. G2-G10), where their learning curves are shown in 

Figure 22. The NN have the highest MAE, which might be due to the low number of epochs. The 

RF and GB perform the best although the former has a high variance10. The LR model has a 

comparable performance, which scales better as the size of the training set increases compare to 

RF and GB. Note that the size of the training set seems irrelevant to the error of the RF.  

In contrast, to GB the cross-validation error does not reduce as more data are used in the training. 

Regardless, both models are able to approximate the true characteristics of the mode even though 

performance drops in cases when the frequency and damping deviates further from the mean, see 

Figure 23. These predictions are for the unseen test therefore their overall performance is 

promising, also considering that with fine-tuning the error can be increased further.  

 
10 Variance is the difference between the error in training and validation set 
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Figure 22 Learning curves for candidate models of 39 bus system 

 

Figure 23: Inter-area mode frequency predictions 
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CHAPTER 5 

Intelligent Power Oscillation Damper (iPOD).  

The rotor angle stability of a power system can be modelled using machine learning given that the 

communication infrastructure and measurement devices exist. As discussed in Chapter 2 the 

applications of AI in rotor angle stability becomes more popular, especially with the advent of 

computational intelligence and resources as well as the transformation of power systems in SG. In 

the previous chapter it was demonstrated that it is possible to model the oscillatory characteristics 

of local and inter-area modes using a set of monitored system variables.  Apart from monitoring, 

the information obtain from these models should be used to improve current control methods.  

In the future, SG will experience faster and more complex dynamics as part of the wider integration 

of RES, BESS and power electronics interfaced resources in general. With regards to the rotor 

angle stability, damping of low frequency oscillatory modes will be reduce and new ones will 

emerge. To ensure the system synchronisation against different contingencies it is vital to plan for 

sufficient damping resources. In addition, these resources should always have the capacity to adapt 

to the ever-changing conditions in power systems to provide maximum damping.  

Nevertheless, with the high penetration of power electronics and RES, many of the existing PSS 

will be displaced as a result of the decommissioning of old/carbon-based power plants [33]. 

Besides the main purpose, power electronic interfaced resources possess faster response (recall the 

absence of mechanical parts) than synchronous generators and therefore can support the system 

and its stability in case of a disturbance [168]. For instance, the control system of a grid-forming 

power converters can be based on either on droop [169] or on the virtual synchronous machine 

(VSM) [170]. With the former the converter can contribute in regulating voltage and frequency 

while with the latter it can emulate inertia or provide power oscillation damping [171]. In 

particular, the Synchronous Power Controller (SPC) is a popular approach for implementing a 

VSM [172].  

Converters with SPC can provide virtual damping and synthetic inertia to the grid adding 

flexibility t to the system that can improve both local and inter-area stability [173], [174].  An SPC 

design with quasi-parallel power loop controllers (PLC) has been already presented in [175]. 

Specifically, the design based on the combination of a band-pass filter with a modified swing 
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equation can attenuate an oscillation at a specific frequency given that this frequency is known. In 

other words, the centre frequency of the bad-pass filter must match closely the frequency of the 

targeted mode centre. This information is not available by conventional means. Driven by the 

discussion in the previous section, here it is proposed to develop an intelligent Power Oscillation 

Damper (iPOD) with the ability to adaptively tune the centre frequency to provide maximum 

damping even when operating conditions change [176].  

Control structure  

Without focusing on the detailed control structure of a power electronic interfaced resource power 

plant, Figure 24 shows the iPOD receiving as input the active power deviation and sending to the 

voltage source converter the clean from the targeted frequency rotor speed deviation signal. The 

iPOD is comprised of two gains, a bandpass filter, the PLC and the ML model Figure 25, in this 

case this model is the RF from Chapter 4.  

 

Figure 24: Overview of Power Electronics Interfaced Power Plant with iPOD 

The PLC is essentially the swing equation with transfer function as in (5.1), where H is the inertia 

constant and D is the damping coefficient. However, this is not the only option; other alternatives 

can be easily adopted [168]. The use of a bandpass filter is supported by the argument that the 

centre frequency ωc is known. Its transfer function is defined as in (5.2) where B is the passing 

band B. Furthermore, to remove the component of the input signal ΔP corresponding to the 

targeted frequency the gains k1 is set to -1 before the signal goes into the PLC. The gain k2 

determines the amount of damping that the iPOD provides at the specified frequency. In contrast 

to the two gains the ωc is updated by the predictions of the ML model.  
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𝐺𝑃𝐿𝐶(𝑠) = 1𝐻𝑠 + 𝐷 (5.1) 

𝐺𝐵𝑃𝐹(𝑠) = 𝐵𝑠𝑠2 + 𝐵𝑠 + 𝜔𝑐2 (5.2) 

 

Figure 25: Control Structure of iPOD 

 

The transfer function of the iPOD is therefore defined as in (5.3). As it can be seen the GiPOD(s) 

has two parts that correspond to the PLC and the integration of the bandpass filter with the gains. 

The second part can be reformulated as to resemble a lead-lag filter as in (5.4). Form this the 

significance of the two gains (k1 and k2) is revealed. Specifically, by tuning properly their values 

both the phase lag and the damping amount can be optimized.  

𝐺𝑖𝑃𝑂𝐷(𝑠) = 𝐺𝑃𝐿𝐶(𝑠) + 𝐺𝐵𝑃𝐹(𝑠)[𝑘1𝐺𝑃𝐿𝐶(𝑠) + 𝑘2] ⟹ (5.3.a) 𝐺𝑖𝑃𝑂𝐷(𝑠) = 𝐺𝑃𝐿𝐶(𝑠) + 𝐺𝐵𝑃𝐹(𝑠)𝐺𝑙𝑙(𝑠) ⟹ (5.3.b) 

𝐺𝑖𝑃𝑂𝐷(𝑠) =  (2𝐵𝐻𝑘2 + 1)𝑠2 + (𝐵 + 𝐵𝑘1 + 𝐵𝐷𝑘2)𝑠 + 𝜔𝑐2 2𝐻𝑠3 + (𝐷 + 2𝐵𝐻)𝑠2 + (2𝐻𝜔𝑐2 + 𝐵𝐷)𝑠 + 𝐷𝜔𝑐2 (5.3.c) 

𝐺𝑙𝑙(𝑠) = 2𝑘2𝐻𝑆 + (𝑘1 + 𝑘2𝐷)2𝐻𝑠 + 𝐷  (5.4) 
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Single Mode Attenuation 

Modified two area-system 

A description of the two-area system has already been given in Chapter 4. However, to verify the 

proposed iPOD a few changes had to be made, see Figure 26. Specifically, at bus 7 a power 

electronics interfaced resource is connected through two step-up transformers. The new resource 

is equipped with an SPC and the iPOD presented above and has an apparent power equal to 

100MVA. Note that the ML model used in the iPOD is trained using the dataset from the original 

system to track the frequency of the inter-area mode. Through trial and error, the gain k2 is set to 

0.018 while k1 is equal to -1.  

 

Figure 26: Modified two area system11 

Verification 

The proposed mode attenuation control scheme (i.e. the iPOD) is based on the premises that a ML 

model, like RF, can predict in real time the inter-area mode. Here the iPOD and the response of 

the system will be tested for a series of events. As a reference the same conditions and scenarios 

will be applied to the system for different case where the iPOD is out of service. It should be 

mentioned that communication delays are out of scope of this study and all inputs to the iPOD are 

in sync. This is mainly because in practical cases, a data processing module such as the Remote 

Terminal Unit (RTU) manage the exchange of information [177]. For instance, the IEC 61850 

protocol support timestamping for ensuring that measurements can be grouped based on their time 

tags [178], [179]. 

 
11 Recall that the system is modelled in Powerfactory 2019 SP3.  
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System Response to Disturbance 

A three-phase fault in the middle of the tie line will most likely excite the inter-area mode. For this 

reason, a fault is defined at the middle of the upper line connecting buses 7 and 8, denoted L7-8-1 

for a duration of 100 ms. In addition, to evaluate the contribution of the RF model to tune the 

centre frequency of the bandpass filter correctly, the loads at bus 7 and 9 are set randomly using 

the same procedure as in lines 4-5 of Algorithm 1. The system’s frequency response is plotted in 

Figure 27 for buses 6 and 10 that correspond to areas 1 and 2, respectively.  From these results it 

becomes apparent that the SPC has already the capability to provide damping to the system [180]. 

However, as the SPC is not targeting a specific frequency but rather a range of frequencies the 

amount of damping is much less that then one provided by the iPOD. The random variations of 

the system’s operating conditions affect the frequency and the damping of the inter-area mode to 

vary in both frequency and damping. This is depicted in Figure 28 where the real and imaginary 

components of the inter-area mode vary along for random operating points. As expected, the SPC 

can improve the damping of inter-area but not as much as the iPOD. The accuracy of the RF 

estimations are reflected by the increased damping of iPOD. 

 
a) Bus 6 

 
b) Bus 10 

Figure 27: Frequency response during a fault in line L7-8-1 for a random operating point 
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Figure 28: Modal characteristics for random loading levels 

 Oscillation Damping Impact of iPOD to Synchronous Generators 

Area 2 is importing energy from area 1 due to the higher demand of load at bus 9. This dependence 

to area 1 become more apparent by examining the power output of each generator. To do so the 

same fault is applied but a new random point for the system loads is generated. As expected, the 

impact of the fault in generators of area 2, shown in Figure 29, is much more severe than in area 

1. Nevertheless, with the iPOD the oscillation converges to a steady state faster and in addition the 

maximum power is lower compared to the base case. The performance of the system with the 

iPOD is interesting because the nominal capacity of the power plant is approximately 85% less 

than the synchronous generators.  

 

Figure 29: Active power output of generators after a fault for a random operating point 
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iPOD Comparison with PSS 

Among the LFO damping solutions, the PSS is very popular. Therefore, it is logical to compare 

the performance of the iPOD individually with the PSS in the system. The tuning of the PSS 

parameters is done following the procedure in [181]. Like the previous scenarios, random 

operating points are generated, and the modal analysis of the system is calculated for each control 

case and random point. The average inter-area mode characteristics are listed in Table 7. The PSS 

of generators 1 and 3 provide (on average) the highest amount of damping  

Clearly, PSS1 and PSS3, on average, possess the highest contribution towards inter-area power 

oscillation damping. On the other hand, the iPOD is in the middle meaning that it dominates the 

contributions of PSS2 and PSS4 but cannot surpass the damping of PSS1 and PSS3. Regardless, 

the average damping ratio is higher than 5%, which is acceptable. Perhaps increasing the capacity 

of the iPOD power plant this amount can be increased.  

Table 7: Average Interarea mode characterises for each control case 

Case Frequency (Hz) Damping (1/s)  Damping ratio (%) 

Base 0.613 0.019 0.50 

PSS1 0.604 0.289 7.60 

PSS2 0.614 0.022 0.58 

PSS3 0.582 0.359 9.79 

PSS4 0.617 0.061 1.59 

iPOD 0.659 0.229 5.55 

 

Multiple Mode Attenuation: Multi-band iPOD 

The iPOD presented above can provide additional damping for a single mode by adapting online 

a single parameter, the centre frequency of the bandpass filter. An extension is the Multi-band 

intelligent Power Oscillation Damper (MiPOD) that can increase the damping of two oscillatory 

modes instead of just one [182]. 

Control structure 

The main variation of the control structure of the MiPOD is that the two gains have been replaced 

by a frequency selective POD, that has two band-pass filters and PLCs with the swing equation. 

Specifically, the swing equation is defined as in (5.5) while the transfer function of the bandpass 

filter is given by (5.6) where 𝜁𝑝 is the damping ratio while subscript p indicates to which block the 

transfer function is referring to i.e. the zero refers to the main PLC block1 and 2 for the other two.  
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The MiPOD exploits the fact that regulating the virtual inertia the amount of damping to LFO can 

be controlled.  The decoupling of the two frequency bands is achieved by feeding back the output 

of the bandpass filter of the first to the second and vice versa as defined by the transfer functions 

(5.7) and (5.8). This decoupling network is important not only for each damper to act on the 

specific frequency but also for the tuning procedure.  

𝐺𝑃𝐿𝐶,𝑞(𝑠) = 12𝐻𝑞𝑠 + 𝐷𝑞 , 𝑞 ∈ {0,1,2} (5.5) 

𝐺𝐵𝑃𝐹,𝑞(𝑠) = 2𝜁𝑞𝜔𝑐,𝑞𝑠𝑠2 + 2𝜁𝑞𝜔𝑐,𝑞𝑠 + 𝜔𝑐,𝑞2 , 𝑞 ∈ {1,2} (5.6) 

𝐺𝑝,1(𝑠) = (1 − 𝐺𝐵𝑃𝐹,2(𝑠)) 𝐺𝐵𝑃𝐹,1(𝑠) (5.7) 

𝐺𝑝,2(𝑠) = (1 − 𝐺𝐵𝑃𝐹,1(𝑠)) 𝐺𝐵𝑃𝐹,2(𝑠) (5.8) 

 

Figure 30: Control Structure of MiPOD 

Modified two-area system 

For implementing the MiPOD, two RES power plants are connected to bus 10 of the two-area 

system Figure 12, through a virtual synchronous power converter. The total apparent power of the 

plant is 200 MVA, around 6% of the total apparent power for the four synchronous generators. 

The reason of connecting the RES plants at bus 10 is for attenuation apart from the interarea mode, 

the local mode between generators G3 and G4.  
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The connection of the RES power plants increases the interarea and local mode frequency from 

0.55 to 0.61 Hz and from 1.10 to 1.14 Hz respectively. The MiPOD is equipped with the 

multivariate RF model described in Chapter 4.  

Verification 

Like in the case of iPOD, to emulate the changing conditions of power systems, the active and 

reactive power of the two loads are scaled up and down using lines 4-5 from Algorithm 1. In the 

following sections the MiPOD performance is evaluated with respect to the base, the SPC and 

iPOD cases. The contingency events occur all at FOT=2s, with a sampling rate of 1kHz and a total 

simulation duration of 20 seconds.  

Modal analysis for random operating points 

Around 100 random active-reactive power parameters were generated for each load. Modal 

analysis computed the small signal characteristic of the system focusing on the inter-area and local 

mode. The Gaussian Kernel density estimation for each case and for the damping and A1/A2 ratios 

are illustrated in Figure 31. The area under the curve corresponds to the probability, which equals 

1. By comparing the area defined by each curve and the vertical lines conclusions can be made 

about the different cases. Specifically, with the MiPOD the probability of new random operating 

points having a damping ratio above 5% (or A1/A2 ratio above 2) is much higher than the SPC or 

base case. Considering the performance of iPOD, it is still better than SPC however it cannot 

surpass the proposed MiPOD.  

 

Figure 31: Probability density functions of damping and A1/A2 ratio for all random points  
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Symmetrical short circuit 

A three-phase fault is defined at bus 7 with a duration of 100ms. The same event has been repeated 

for more than 30 random operating points. The frequency and active power response at bus 8 is 

recorded and plotted in Figure 32. For brevity only two operating points are shown in this (and the 

following figures). From these responses the contribution of the MiPOD to damp LFO is clear. 

The system reaches an equilibrium faster that in the other two cases. However, there is a significant 

frequency overshoot due to the severity of the fault that is present in all cases. Most likely such 

frequency increase would have caused the tripping of protective devices. Nevertheless, with 

MiPOD this overshoot follows the same trend, but it is smaller. 

 

Figure 32: Frequency and Active power at B08 under a fault at B07  

Step change of load active and reactive power 

One of the most common disturbances in power systems are load variations. In power system 

analysis these variations are represented by either a ramp or step change. Both types affect the 

power balance albeit in a different way. For instance, a sudden load variation (i.e. step change) has 

a more severe impact in the stability of the system. Therefore, a 5% increase of the reactive power 

of load 9 is defined and repeated for 30 new random operating points. The system response is 

shown in Figure 33. Although the oscillations in the frequency have very small amplitude the 

impact of this event is present in the active power flowing through bus 8. Once again, the system 

oscillations for a smaller period and the new steady state point is closer to the synchronous speed.  
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The same responses are plotted in Figure 34 for a 5% increase of the active power demand of load 

9. The response of the system when the MiPOD is connected is smoother, with lower amplitudes 

and a faster convergence to equilibrium. 

 

Figure 33: Frequency and Active power at B08 after an increase of L9 reactive power. 

 

Figure 34: Frequency and Active power at B08 after an increase of L9 active power 

Synchronous Generation Event 

The local mode in the two-area system is already adequately damped. Attempting to excite the 

local mode G3 experiences a 0.1 per unit increase of its mechanical input torque while an equal is 

reduced from G4. The component of the local mode appears in the frequency of bus 8 but for a 

very brief period, Figure 35. Overall, the inter-area mode dominates the local mode for the rest of 

the simulation.  
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For the base case this event leads the system into instability as the active power oscillations with 

increasing amplitudes. Even for the SPC case the system seems to be in a critical state.  

 

Figure 35: Frequency and active power at B08 after a synchronous machine event 

Variation of Network Topology 

The same three phase fault is applied however, the upper transmission line connecting buses 8 and 

9 is out of service. As a result, the rest of the system is under high stress meaning that the modes 

of the system will move closer to the stability boundary. This contingency event aims to evaluate 

the MiPOD under the most severe case but also its ability to adapt in situations that the predictions 

model hadn’t been trained before. From the results shown in the MiPOD is able to adapt to these 

new conditions and also to provide optimally additional damping Figure 36.  

 

Figure 36: Frequency and active power at B08 under a fault at B7 with line L8-9-1 out of service 
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CHAPTER 6 

Gas Turbine Power Plant Adaptive PSS Tuning   

To date, the PSS has been the main solution to LFO due to their simplicity and cost-effectiveness. 

Briefly, by controlling the excitation of a synchronous generator it is possible to create a damping 

torque that is in phase with the input signal deviation (usually the rotor speed) such that the overall 

damping of the system is improved. If the governor is fast enough this torque component can be 

provided by the governor-turbine system [183] although the majority are excitation-based PSS. 

There are many variations of the PSS ranging from the classical PSS1 controller to the more 

advanced designs of the PSS2B and PSS4B controllers [184]. In its simplest form the single input-

output PSS consists of a gain (Kpss), a low-pass (Tl), a washout (Tw)and lead-lag filters as depicted 

in Figure 37. The low pass filter eliminates any high frequency components in the input signal 

while the washout filter removes the DC component [185]. The lead-lag filter creates the required 

phase compensation to attenuate the LFO in the signal. The tuning of the PSS parameters (e.g. 

Kpss, Tlp, Tw ,Tl ,T2)  is typically done when during the installation of the PSS and afterwards only 

when it is absolutely necessary to be updated [186]. Improper parameter settings can lead to the 

PSS providing minimum damping and even amplify oscillations. In future SG, the oscillatory 

characteristics of the system will vary more frequently and as a result the possibility of updating 

the settings of the PSS adaptively is becoming a popular topic in the literature [185].  

 

Figure 37: PSS1A structure 

The iPOD presented in the previous section makes use of AI to monitor specific oscillatory modes’ 

frequency to tune its parameter for maximum damping. This adaptive tuning however could be 

useful with the conventional damping devices, such as the PSS. For this reason, in the 

FLEXITRANSTORE project an AI model is developed to estimate the frequency of an interarea 

mode in an actual power system in Europe. This information will be used to compute the proper 

set of parameters for the lead-lag filter (s) of a PSS installed in a Gas-Turbine Power Plant (GTPP). 

Sensitive information with regards to the power system or the GTPP will be kept private. 
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Development of Prediction model 

To create the required dataset Algorithm 2 is used. In addition, this algorithm has been repeated 

for a list of probable N-1 cases leading to a total number of simulations around 600000. After 

analysing the system states with respect to the system eigenvalues, the inter-area mode frequency 

that the GTPP has the highest participation is around 0.85Hz. The maximum and minimum values 

that have been recorded from the simulation results have indicated that the frequency of the mode 

does not deviate much from the mean, i.e. min = 0.81 Hz and max = 0.92Hz. The monitored system 

variables include voltage magnitudes, active and reactive power flows measured within the area 

of influence of GTPP and form a selected buses and lines. The linear correlation of these variables, 

shown in Figure 38, reveal that in general the correlation of the dataset is relatively low. The high 

correlation corresponds to variables from measurement points that are close to each other and 

mainly for the voltage magnitude. Nevertheless, all variables will be used as inputs to the AI 

model. The train, validation and test subsets are form by random selecting sample from the original 

dataset with a size ratio of 75%/15%/15% for each set respectively. A min max scaler is fitted on 

the train set to scale the inputs between the interval (-1,1).  From a preliminary analysis the DNN 

can most accurately estimate the mode inter-areas mode frequency. Therefore, the DNN is selected 

to be finetuned and finally used in the adaptive tuning of the PSS.  

 

Figure 38: Demonstrator System Variables Correlation Plot 
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The DNN were trained using the TensorFlow Python library with the Sequential API from Keras. 

Several architectures fully connected architectures are tested with respect to the number of layers, 

number of neurons per layer and activation functions. In addition, different optimizers are used 

with different learning rates as well as different loss functions. All models are trained for 50 epochs 

however an earlystopping callback is included to stop the training when the models reach a plateau 

and do not improve their error for 3 consecutive epochs.  

The parameters of the top 7 DNN models are listed in Table 8. The optimizers used are the Gradient 

Descent (GD) and the Nesterov Adaptive Momentum (NADAM) with different learning rates. The 

batch size is equal to 32 patterns while the remaining parameters (i.e. the momentum) are the 

default ones used by Tensorflow. The MAE on the validation set per each epoch is plotted in 

Figure 39. Models with the GD optimizer have higher error than the ones using the NADAM. This 

is common as GD often reach the local optima while NADAM is more robust in escaping them 

[153]. This is reflected both in the validation set MAE but also in the test set error. The model with 

the Huber loss function achieved the lowest loss value, however the MAE is not the lowest. In 

contrast, the best model uses the NADAM with a small learning rate and the MSE loss function.  

Table 8: DNN models 

  Parameters  Test Set 

ID  𝜎(⋅) Layers12 Neurons Optimizer 𝜆 LOSS  MAE 

1  ELU13 2 50 GD 0.01 MSE  2.3e-2 

2  ReLU 2 50 GD 0.01 MSE  2.6e-2 

3  RELU 2+1 50+25 GD 0.01 MSE  2.1e-2 

4  RELU 2+1 50+25 NADAM 0.001 MSE  1.6e-2 

5  RELU 2+1 50+25 NADAM 0.001 HUBER  1.6e-2 

6  ReLU 3 50 NADAM 0.0005 MSE  1.5e-2 

7  ReLU 3 50 NADAM 0.0001 MSE  1.7e-2 

 

 

Figure 39: MAE on the validation set for each epoch for the models in Table 8. 

 
12 This column refers to the hidden layers of the network 
13 Exponential Linear Unit 
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Analysing the errors of the models on the test set it is possible to identify the limitations of the 

existing models. To illustrate models 3 and 6 are consider for their errors. Specifically, Figure 40 

shows the predicted mode frequency (left) and the residuals (right) as a function of the true mode 

frequency. Using the zero error predictions as a reference, the lowest error of the model 6 is 

apparent. However, there is a pattern in these plots that reveal that both DNN are having difficulties 

on explaining properly the frequency. The red ellipsis emphasizes this issue by focusing on the 

clear error patterns. Revisiting some of the previous steps (i.e. scaling, sampling, feature 

engineering) might be able to solve this issue and reduce even further the performance. 

  
Figure 40: DNN models error analysis 

Adaptive Tuner 

The measurements are transmitted to the adaptive tuner so that the DNN can provide the estimation 

about the inter-area mode frequency. This estimation is then used by the tuner algorithm to 

compute the values of the time constants for the phase compensation block with the two-lead lag 

filters of the generators PSS, depicted in Figure 41. The adaptive tuner must operate in real-time 

so that the time constants are update regularly. To do so, the DNN and the tuning algorithm must 

be hard coded in a dedicated controller that will communicate with PSS using a suitable 

communication protocol. Recall that the DNN is developed using Python, which although is 

supported by the controller it is preferred to migrate from the high level programming language to 

the low level Structure Text (ST) language using TwinCAT because it is more robust and suitable 

for this application. Once trained, the DNN is represented by the set of optimized weights and 

biases of each layer. Importing these parameters is straightforward, as it is the implementation of 

the NN principal operation along with the ReLU activation function.  
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Figure 41: Overview of adaptive tuner 

Hardware-in-the-loop simulations 

The integration of the adaptive tuner controller in the real GTPP is tested using hardware in the 

loop simulations. Specifically, the power system and the power plant are modelled in real-time 

simulations and the communication systems and protocols are replicated fully. The controller 

receives the measurements from the area of influence, the adaptive tuner estimates the mode 

frequency and computes the new time constants that are transmitted to the GTPP PSS device. A 

graphical representation of the above architecture is presented in Figure 42. The different line 

colours indicate the different communication protocols, which have been omitted form this figure.   

The FLEXITRANSTORE project is expected to end during 2022 and the next step for this 

demonstration is the deployment of the adaptive tuner in the GTPP site. The results from the field 

experiments will provide invaluable information about the effectiveness of the DNN to contribute 

in an actual system by improving the performance of the widely used PSS. Through 

FLEXITRANSTORE it will be possible to identify potential limitation of AI that cannot be seen 

in a fully controller environment that is in simulations.  
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Figure 42: Hardware-in-the-loop architecture for simulations 
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CHAPTER 7 

Conclusions 

The energy transition necessitates the transformation of power systems into Smart Grids able to 

support decarbonisation, decentralization, and digitalization. The wide integration of carbon-

neutral resources and the electrification of traditionally fossil-based sectors increase the 

complexity of the system at all levels. The newest classification of power system stability 

introduces additional branches for addressing specifically the issues related to the increasing 

presence of power electronics, which act as interfaces for the renewable energy resources. Apart 

from the uncertainty in both generation and demand, the absence of mechanical parts lowers the 

overall system inertia causing the dynamics to evolve much faster. The decarbonisation of power 

generation will lead to the displacement of conventional solutions for ensuring the stability of 

power systems. In fact, the higher penetration of power electronics has a deeper impact to the 

systems Rotor Angle Stability.   

The digitalization of power systems with a state-of-the-art communication infrastructure and 

advanced metering, increases the volume, velocity, and variety of data in power systems. Artificial 

intelligence algorithms are becoming a popular alternative to complement conventional methods 

(or even surpass them) in monitoring, predicting, or controlling the stability of power systems. As 

shown, studies have developed solutions using a wide range of machine learning algorithms 

demonstrating high performance. Many of the related works in the literature, assume favourable 

conditions in terms of data availability (full observability) and communications (very high 

sampling rates) to name a few. 

In this thesis, popular machine learning algorithms such as linear regression, neural networks, 

gradient boosting, and random forests are trained to estimate the modal characteristics of 

electromechanical interactions in a small and medium scale power system. The results show that 

these data-driven solutions can accurately approximate the changes of the modal characteristics as 

system conditions change. Apart from the monitoring purposes this information is proposed in this 

thesis to be used to increase the attenuation of underdamped oscillations. Once trained these 

models are fast enough to update near real-time the parameters of a controller to target the critical 

oscillations.  
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Power electronics reduce the damping of existing oscillations and introduce additional ones 

however, their fast response and flexibility have the potential to actively contribute in supporting 

the power system stability and alleviate certain challenges. The thesis presents the intelligent 

Power Oscillation Damper (iPOD) that combines the capability of power electronics to emulate 

the synchronous behaviour of conventional generators and the modelling capabilities of artificial 

intelligence. Specifically, the iPOD treats the frequency of the oscillations to be a known 

parameter. This is provided by the very accurate machine learning models developed to monitor 

the modal characteristics of the system. An extension of the iPOD to target two modes instead of 

one is the Multi-band intelligent Power Oscillation Damper (MiPOD). Driven by the assumption 

that the frequencies of the oscillations are known the MiPOD implements multiple rotors with a 

decoupling network to oscillate the attenuation at the specific frequencies. The integration of 

artificial intelligence permits the adaptation of the iPOD and MiPOD to the changing operating 

conditions that affect the modal characteristics.  

The results presented in this thesis demonstrate the effectiveness of the proposed controllers. 

Simulations of various contingency scenarios for random variations of the operating conditions 

show that carbon-neutral power plant with the proposed controllers can provide enough damping 

to under-damped oscillations as to ensure that the system will remain stable. Note that the nominal 

capacity consider in the study is much lower than the conventional synchronous generators. In 

addition, the adaptive parameters for both iPOD and MiPOD are fewer for the Power System 

Stabilizers.  

The applicability of machine learning in monitoring and control is investigated by the 

FLEXITRANSTORE project, which has supported this thesis. Specifically, following the above 

rationale, a deep neural network is developed to monitor the electromechanical interaction of a 

gas-turbine power plant for a system in Europe. The trained model is embedded into a controller 

along with a tuning algorithm that computes the optimal set of parameters for the phase 

compensation block according to model’s predictions. The controller communicates with a wide 

area measurement system that provides with measurements within the area of influence of the 

plant and with the PSS device installed in the power plant to update its parameters near-real time 

and increase the damping of the system. The update rate is closely related to the sampling rate of 

the wide area measurement system. This project is still ongoing and by the year 2022 with field 

testing being the next step. The applications of artificial intelligence are restricted to simulation 
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platforms; therefore, this project is a unique opportunity to obtain invaluable results about the 

effectiveness, limitations, performance of the application of neural networks in real life conditions. 

Future work 

The iPOD and MiPOD do not require any knowledge about the type of the carbon-neutral 

resources behind the power converter. However, the prime mover can have an impact of the overall 

performance of the power plant. In addition, renewable energy source power plants can range from 

small scale to larger, connected at either the distribution or the transmission system. The impact 

of the capacity of the power plant to the performance of the iPOD will be further investigated.  

The performance of the data-driven approaches, used in this thesis for monitoring and control 

purposes, depend on the quality and quantity of the data. In contrast to other fields, in power 

systems the required data are either unavailable, unlabelled or have low quality. Hence, equivalent 

system models are used to gather the necessary information. However, the design of the database 

generation process can create biased models, which can lead to an overestimation of its 

performance during evaluation. As a result, it is necessary to research further into their robustness 

and reliability. This is particularly important for black box models.  

Towards that end, large scale, and actual applications, which currently are limited, can reveal 

valuable insights. For instance, the data generation process scales poorly with the size of power 

systems. Therefore, other alternatives will be investigated to improve the scalability of this models. 

Transfer learning appears to be a promising solution. Briefly, transfer learning is a human-inspired 

concept that encapsulates a wide spectrum of methods and techniques to make use of trained 

models for a given task and a given domain to aid the learning of another task that most likely 

exist in a different domain [187]. It has been shown that transfer learning can improve both 

scalability and adaptability [188]. 
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