48 research outputs found

    GEWEX water vapor assessment (G-VAP): final report

    Get PDF
    Este es un informe dentro del Programa para la Investigación del Clima Mundial (World Climate Research Programme, WCRP) cuya misión es facilitar el análisis y la predicción de la variabilidad de la Tierra para proporcionar un valor añadido a la sociedad a nivel práctica. La WCRP tiene varios proyectos centrales, de los cuales el de Intercambio Global de Energía y Agua (Global Energy and Water Exchanges, GEWEX) es uno de ellos. Este proyecto se centra en estudiar el ciclo hidrológico global y regional, así como sus interacciones a través de la radiación y energía y sus implicaciones en el cambio global. Dentro de GEWEX existe el proyecto de Evaluación del Vapor de Agua (VAP, Water Vapour Assessment) que estudia las medidas de concentraciones de vapor de agua en la atmósfera, sus interacciones radiativas y su repercusión en el cambio climático global.El vapor de agua es, de largo, el gas invernadero más importante que reside en la atmósfera. Es, potencialmente, la causa principal de la amplificación del efecto invernadero causado por emisiones de origen humano (principalmente el CO2). Las medidas precisas de su concentración en la atmósfera son determinantes para cuantificar este efecto de retroalimentación positivo al cambio climático. Actualmente, se está lejos de tener medidas de concentraciones de vapor de agua suficientemente precisas para sacar conclusiones significativas de dicho efecto. El informe del WCRP titulado "GEWEX water vapor assessment. Final Report" detalla el estado actual de las medidas de las concentraciones de vapor de agua en la atmósfera. AEMET ha colaborado en la generación de este informe y tiene a unos de sus miembros, Xavier Calbet, como co-autor de este informe

    Variability and trends of Arctic water vapour from passive microwave satellites Special role of Polar lows and Atmospheric rivers

    Get PDF
    Water in the vapour phase is the most important component of the hydrological cycle. It is formed by processes of evaporation and sublimation during which a lot of energy as latent heat is absorbed from the atmosphere. Through atmospheric large and small scale circulation, this energy is transported and released elsewhere through the process of condensation. Water vapour is the most important greenhouse gas (GHG) due to its abundance and its effectiveness in absorbing longwave radiation. In the light of global climate change, it is of great importance to identify trends of water vapour amounts in the atmosphere and its variability. Climate change in terms of the near-surface temperature is most pronounced in the Arctic, known as Arctic Amplification. Since most of the Arctic are either open ocean or sea-ice covered surfaces, only sparse ground-based observations, mostly confined to land areas are available. Therefore, one must resort to usage of the satellite based observations which offer a great advantage by their large spatial coverage. For water vapour assessment, passive microwave satellites are well suited due to their ability to sense water vapour under clear and cloudy sky conditions independent of sun light. A number of products of integrated water vapour (IWV) from various satellites are available. However, these are often inconsistent and prone to have biases due to various assumptions and uncertainties of a priori data included in the retrieval algorithms. According to the Clausius-Clapeyron relation, water vapour is constrained by the saturation vapour pressure which is constrained only by the temperature. Therefore, this thesis investigates the hypothesis that brightness temperatures (Tbs) from spaceborne passive microwave instruments can be used as a proxy for water vapour trends. To test this hypothesis, satellites based Tbs are compared to synthetic Tbs derived from the Arctic System Reanalysis (ASR). To enable the comparison, the ASR has been evaluated in Tb space by employing the Passive and Active Microwave TRAnsfer forward model (PAMTRA). Moreover, Tbs from sounding channels were correlated with corresponding IWV based on the weighted absolute humidity profiles peaks. The hypothesis is tested for the dry, cold and sun-absent winter season (January) and the sun-return transitional spring season (May). The results show that Tbs from frequency channels can explain trends in the corresponding IWV columns derived from ASR for regions with significant positive trends for both, Tb and IWV since high correlation coefficients, reaching 0.98, have been found. This is true for different time scales, daily, monthly and for the period of 17 years (2000-2016). The exception to this has been found for May for daily time scale for frequency channel dominated by the signal from the upper troposphere lower stratosphere (UTLS). For this combination of Tbs and IWV correlations tend to be weaker and at some locations even negative. This is consistent with theoretical calculations and observational studies which report a cooling in the UTLS region for increasing IWV. However, Tbs from the corresponding channel seem less reliable in explaining trends of the corresponding IWV derived from the ASR. This indicates the importance of other processes relevant in the UTLS region during spring. Furthermore, this thesis investigates synoptic features which are associated with water vapour transport and precipitation. Previous studies have shown that Arctic cyclone activity during winter has a large impact on the sea ice melt in the following seasons making them important players in the complex feedback mechanism of the climate change in the Arctic. However, the life cycle of the most intense of such cyclones, also known as polar lows (PL) are not yet fully understood. To analyse their dynamics, this thesis investigates different environmental conditions (and their combination) between genesis and maturity stage of January PLs. PLs with overall lower thermal instability between the surface and 500 hPa during formation stage are typically accompanied by higher and steeper lapse rates throughout the boundary layer. Therefore these PLs were fostering convective development. However, as observed for a few cases, a decreased thermal instability alongside a simultaneous decrease of convection coincides with high relative humidity (mostly above 90%). Furthermore, higher relative humidity at lower levels during genesis stage promoted stronger winds at the maturity stage. Besides water vapour turnover associated with Arctic cyclones, atmospheric rivers (ARs) transport major amounts of moisture from tropical and extratropical regions into the Arctic. Studies have shown that about 90% of the total mid-latitude vertically integrated water vapour transport (IVT) is related to these synoptic features. To study the influence of ARs on PL precipitation, an event with a coupled AR and PL is compared to an event which featured only a PL. The AR had a strong influence on the PL resulting in higher snow amounts on the order of ∼ 4 kg/m2 higher wind speeds and a longer distance traveled during its life cycle, compared to the PL only case

    Analysis of the precipitation characteristics on the Tibetan Plateau using Remote Sensing, Ground-Based Instruments and Cloud models

    Get PDF
    In this Thesis work, carried out in the frame of CEOP-AEGIS, an EU FP7 funded project, the problem of the precipitation monitoring over the Tibetan Plateau has been addressed. Despite the Plateau key role in water cycle of South East Asia (and in the life of 1.5 billions of people), there is a critical lack of knowledge, because the current estimates of relevant geophysical parameters are based on sparse and scarce observations than can not provide the required accuracy for quantitative studies and reliable monitoring, especially on a climate change perspective. This is particularly true for precipitation, the geophysical parameter with highest spatial and temporal variability. The constantly increasing availability of Earth system observation from spaceborne sensors makes the remote sensing an effective option for precipitation monitoring and the main focus of the present work is the implementation and applications for three years of data (2008, 2009 and 2010) of an array of satellite precipitation techniques, based on different methodological approaches and data sources. First, a sensitivity study on the capability of the most used satellite sensors to detect precipitation at the ground, assessed with respect to raingauges data for selected case studies, has been carried out. Then, two physically based techniques have been implemented based on satelliteborne active (for snow-rate) and passive (for rain-rate) microwave sensor data and the output used for calibrate geostationary IR-based techniques. Finally, two well established global multisensor precipitation products have been considered for reference and intercomparison. All the techniques have been implemented for the 3 years and the results compared at different spatial and temporal scales. The analysis of daily rain amount has shown that in general global algorithms are able to estimate rain amount larger than the ones estimated by other techniques during the monsoon season. In cold months global techniques underestimate precipitation amount and areas, resulting in a dry bias with respect to IR calibrated techniques. Case studies compared with ground radar precipitation data on convective episodes shown that global products tend to underestimate precipitation areas, while IR calibrated techniques provides reliable rainrate patterns, as compared with radar data. Unfortunately, the number of radar case studies was not large enough to allow significant validation studies, and also non data were available for cold months. Annual precipitation cumulated maps show marked differences among the techniques: IR calibrated techniques generally overestimate precipitation amount by a factor of 2 with respect of global products. Reasons for discrepancies are investigated and discussed, pointing out the uncertainties that will probably be solved only with the exploitation of new satellite missions

    Remote Sensing of Precipitation: Volume 2

    Get PDF
    Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne

    Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project

    Get PDF
    Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project has been established in 2016. It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, ship-borne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data

    Review of Environmental Monitoring by Means of Radio Waves in the Polar Regions: From Atmosphere to Geospace

    Get PDF
    The Antarctic and Arctic regions are Earth's open windows to outer space. They provide unique opportunities for investigating the troposphere–thermosphere–ionosphere–plasmasphere system at high latitudes, which is not as well understood as the mid- and low-latitude regions mainly due to the paucity of experimental observations. In addition, different neutral and ionised atmospheric layers at high latitudes are much more variable compared to lower latitudes, and their variability is due to mechanisms not yet fully understood. Fortunately, in this new millennium the observing infrastructure in Antarctica and the Arctic has been growing, thus providing scientists with new opportunities to advance our knowledge on the polar atmosphere and geospace. This review shows that it is of paramount importance to perform integrated, multi-disciplinary research, making use of long-term multi-instrument observations combined with ad hoc measurement campaigns to improve our capability of investigating atmospheric dynamics in the polar regions from the troposphere up to the plasmasphere, as well as the coupling between atmospheric layers. Starting from the state of the art of understanding the polar atmosphere, our survey outlines the roadmap for enhancing scientific investigation of its physical mechanisms and dynamics through the full exploitation of the available infrastructures for radio-based environmental monitoring

    The Assimilation of Hyperspectral Satellite Radiances in Global Numerical Weather Prediction

    Get PDF
    Hyperspectral infrared radiance data present opportunities for significant improvements in data assimilation and Numerical Weather Prediction (NWP). The increase in spectral resolution available from the Atmospheric Infrared Sounder (AIRS) sensor, for example, will make it possible to improve the accuracy of temperature and moisture fields. Improved accuracy of the NWP analyses and forecasts should result. In this thesis we incorporate these hyperspectral data, using new assimilation methods, into the National Centers for Environmental Prediction's (NCEP) operational Global Data Assimilation System/Global Forecast System (GDAS/GFS) and investigate their impact on the weather analysis and forecasts. The spatial and spectral resolution of AIRS data used by NWP centers was initially based on theoretical calculations. Synthetic data were used to determine channel selection and spatial density for real time data assimilation. Several problems were previously not fully addressed. These areas include: cloud contamination, surface related issues, dust, and temperature inversions. In this study, several improvements were made to the methods used for assimilation. Spatial resolution was increased to examine every field of view, instead of one in nine or eighteen fields of view. Improved selection criteria were developed to find the best profile for assimilation from a larger sample. New cloud and inversion tests were used to help identify the best profiles to be assimilated in the analysis. The spectral resolution was also increased from 152 to 251 channels. The channels added were mainly near the surface, in the water vapor absorption band, and in the shortwave region. The GFS was run at or near operational resolution and contained all observations available to the operational system. For each experiment the operational version of the GFS was used during that time. The use of full spatial and enhanced spectral resolution data resulted in the first demonstration of significant impact of the AIRS data in both the Northern and Southern Hemisphere. Experiments were performed to show the contribution to the improvements in global weather forecasts from the increase in spatial and spectral resolution. Both spatial and spectral resolution increases were shown to make significant contributions to forecast skill. New methods were also developed to check for clouds, inversions and for estimating surface emissivity. Overall, an improved methodology for assimilating hyperspectral AIRS data was achieved

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort

    Earth Observations for Addressing Global Challenges

    Get PDF
    "Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph
    corecore