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1 Executive summary 
The executive summary provides an overview of the structure of the report and an 

overview of the main results and conclusions. In the latter case links to corresponding sections 
are provided to ease access to specific details.  

To date, a large variety of satellite based water vapour data records is available (see 
section  3.3, http://gewex-vap.org/?page_id=309 or http://ecv-inventory.com). Without proper 
background information and an understanding of the limitations of available data records, 
these data may be incorrectly utilised or misinterpreted. The need for quality assessments of 
Essential Climate Variables (ECVs) Climate Data Records (CDRs) is part of the GCOS guidelines 
for the generation of data products. Assessments in general give an overview of available data 
records and enable users to judge the quality and fitness for purpose of CDRs by informing 
them about the strengths and weaknesses of existing and readily available records. With this in 
mind, the GEWEX Data and Assessments Panel (GDAP) has initiated the GEWEX Water Vapor 
Assessment (G-VAP) which has the major purpose to quantify the current state of the art in 
water vapour products being constructed for climate applications and to support the selection 
process of suitable water vapour products by GDAP for its production of globally consistent 
water and energy cycle products. The assessment is geared to the needs of GDAP needs and 
to the requirements defined by GCOS which are recalled in section  2.2. They serve as baseline 
guidance to judge the fitness for purpose of the data records, in particular in terms of accuracy 
and stability. The usage of the products within GDAP activities essentially implied to study long-
term data records. It is emphasised that data record specific user communities and application 
areas apply and that the data records have not been ranked. Within G-VAP all three products 
defined by GCOS to present the Essential Climate Variable water vapour were considered, 
namely upper tropospheric humidity (UTH), specific humidity (q) and temperature profiles (T) 
as well as total column water vapour (TCWV). The G-VAP report provides an overview of 
available satellite sensors and their general advantages and limitations as well as a data record 
inventory covering all available records of more than 10 years of temporal coverage. The 
corresponding tables are available for water vapour data records from satellites, in-situ and 
ground-based observations as well as from reanalyses (sections  3.1,  3.3, and  3.4). The tables 
include links to the section in which they have been analysed and a link to a webpage, a 
publication or a data fact sheet. This data fact sheet was explicitly developed for G-VAP and 
contains valuable information at a detailed level per data record. In order to guide the 
evaluation of data records within G-VAP, key science questions have been formulated. These 
questions are given in section  2.3 and a summary of answers to these questions is given in the 
conclusions (section  7).  

In order to find answers to the G-VAP science questions three main classes of analyses were 
carried out: 

• Analysis of long-term, gridded data records (section  4) 

• Intercomparison of data records from full archive (section  5) 

• Analysis of instantaneous data (section  6) 

 

After a short summary, the applied methods and achieved results and conclusions are 
summarized for each of these three different classes of analyses.  

The majority of long-term data records are affected by inhomogeneities. These 
inhomogeneities are typically caused by changes in the observing system and have a strong 
regional imprint. It is a major effort and challenge to increase the level of stability and to fully 
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understand the uncertainties on all regional scales which were induced by the methods applied 
to improve the stability. Steps in this direction need to involve (additional) reprocessing of input 
data, i.e., the generation of FCDRs, further improvements in retrieval design to handle changes 
in the observing systems and to handle regional issues and to reassess the improvement.  

A series of regions with distinct features in differences among the data records and among 
trend estimates were observed. These regions include stratus regions, the poles and tropical 
land surfaces. In particular, at the top of stratus clouds and in the upper troposphere over 
tropical land areas, fairly large differences among the profile data records were observed. 
Dedicated evaluation studies are required to better understand these differences, the quality of 
the individual retrievals and the actual state of the climate and how it might have changed. 

Moreover, gridded data records often suffer from missing information due to incomplete spatio-
temporal sampling. The strength of the diurnal cycle of water vapour is typically small even on 
regional scales. However, several data records are clear sky or cloudy sky products. At a 
minimum, the clear sky products are impacted by sampling of the clear sky bias which is 
modulated by the diurnal cycle of clouds. In combination with orbital drifts artificial trends 
might be observed. Similar biases might occur in presence of rain. Sampling, retrieval design 
and increased uncertainties at small and large values might hamper a proper analysis of the 
PDF of water vapour, its extremes and how the PDF and the extremes change in a changing 
climate. Joint analyses using various parameters and various observing systems are needed to 
better constraint associated uncertainties. 

 

Analysis of long-term, gridded data records 

Applied methods and analysed data records included: 

• Intercomparison                      

o TCWV: CFSR, ERA20C, ERA-Interim, HOAPS, JRA55, MERRA, MERRA2, nnHIRS, 
NVAP-M Climate, NVAP-M Ocean, SSM/I (REMSS) 

o Profiles: CFSR, ERA20C, ERA-Interim, JRA55, MERRA, MERRA2, nnHIRS, NVAP-M 
Climate 

o UTH: AMSU-B, HIRS, METEOSAT 

• Variability                                      

o TCWV: CFSR, ERA-Interim, HOAPS, MERRA, NVAP-M Climate, SSM/I (REMSS), EC 
Earth, MPI ESM 

o UTH: AMSU-B, HIRS, METEOSAT 

• Homogeneity and trend estimates                    

o TCWV: CFSR, ERA20C, ERA-Interim, HOAPS, JRA55, MERRA, MERRA2, nnHIRS, 
NVAP-M Climate, NVAP-M Ocean, SSM/I (REMSS) 

o Profiles: CFSR, ERA20C, ERA-Interim, JRA55, MERRA, MERRA2, nnHIRS, NVAP-M 
Climate 

• Stability 

o TCWV: HIRS NOAA, HOAPS 

• Consistency  

o AMSU-B, CFSR, ERA-Interim, HIRS, HOAPS, MERRA, NVAP-M Climate, SSM/I 
(REMSS) 
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Results from intercomparison studies provide a good overview of differences among the various 
long-term (more than 20 years, starting in the 1980s) data records. The comparisons were 
carried out relative to the ensemble mean. In response to an essential GEWEX need, the 
assessment analysed the stability of the long-term data records. Here it was differentiated 
between the degree of homogeneity, that is, the presence of breakpoints, and stability, that is, 
the change of the bias relative to a reference over time. Thus, Hovmöller diagrams, 
homogeneity test results and trend estimates were considered. Trend estimation needs to be 
understood in this context as an intercomparison toolas G-VAP does not assess climate change. 
Interesting agreements/disagreements were observed between standard deviations relative to 
ensemble means and differences among trend estimates as well as between TCWV, UTH and 
profiles. The degree of homogeneity is largely impacted by breakpoints. Thus, the stability has 
been assessed using exemplary data only. Also, Hovmöller diagrams, homogeneity tests and 
trend estimation are affected by climate variability. For this reason, the correlations to major 
climate indices, e.g., related to ENSO, to NAO and to PDO and the associated consistency were 
assessed as well. Finally, the long-term, gridded data records have been compared to long-
term multi station radiosonde data archives. Here time series of differences at GRUAN sites are 
shown, with two objectives: first, to further strengthen the stability analysis and second, to link 
the analysis of gridded data records to the analysis of instantaneous profile data. 

The following list provides conclusions for the analysis of long-term, gridded data records 
together with links to the sections in which more details can be found: 

TCWV 

• The intercomparison of long-term TCWV data records revealed largest differences over 
tropical land regions (e.g., Central Africa and South America), deserts (e.g., Sahara), 
mountainous regions and the poles. The intercomparison of time series exhibited artefacts 
and breakpoints in the majority of data records (section  4.1.1).  

• On a global ice-free ocean scale the TCWV trend estimates exhibit large differences 
(ranging from -0.11±0.09 to 1.21±0.16 kg/m2/decade considering 10 data records of more 
than 20 years temporal coverage) and are often significantly different among the different 
data records (section  4.3.1). 

• Except for HOAPS and REMSS (within uncertainty estimates) all data records exhibit 
regression values outside the theoretically expected range. This is an indication of issues in 
long-term stability (section  4.3.1). 

• Regions with maxima in mean absolute difference of the TCWV trend estimates largely 
coincide with the maxima in ensemble standard deviations (section  4.1.1). The most 
pronounced regions are again tropical land regions (e.g., Central Africa and South America), 
deserts (e.g., Sahara), mountainous regions and the poles (section  4.3.1). 

• The differences in trend estimates in these regions and over global ice-free ocean were 
found to be caused by breakpoints or series of breakpoints. The break size can reach values 
of almost 2 kg/m2. In most cases these breakpoints coincide temporally with changes in the 
observing system. The time of occurrence, sign, and step size of breakpoints are typically a 
function of region and data record. The majority of these breakpoints are not evident when 
comparisons to the HomoRS92 data record were carried out. One reason is that areas with 
distinct differences in trend estimates are not covered with stations. It is obviously 
important to verify the homogeneity and stability on global and all regional scales 
(section  4.3.1). 

• Noise and autocorrelation determine the temporal length (time-to-detect, TTD) of a data 
record which is needed to detect an expected trend. It is shown that uncertainties higher 
than 3% result in TTDs above 15 years. Advanced water vapour products from AIRS and 
IASI exhibit uncertainties in the extreme bin which exceed 5%. This emphasises the value 
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of analysing uncertainties as a function of dependent variables such as, in this case, TCWV 
(section  4.3.1). 
It is further recommended to characterise the TTD by taking into account the vertical 
resolution and sensitivity of satellite sounders (section  2.5). 

• All long-term TCWV data records are highly correlated with ENSO and exhibit different 
levels of correlation with other climate indices. The correlations of two considered climate 
models do not differ significantly from the satellite based TCWV data records when SST-
based indices were analysed (section  4.2.1). 

• The identification of regions with significant correlation to climate indices, common to all 
data records, is a potentially valuable approach to guide climate model evaluation 
(section  4.2.1), thus enhancing the value and usability of satellite data records. 
 

Spedific humitiy and temperature profiles 

• Regions of maximum differences among the profile data records (that is maximum 
ensemble standard deviations) do not typically coincide with those of TCWV, except for 
maxima at the poles and over Central Africa. Regions with local maxima typically occur over 
the ocean, e.g., the stratus regions (section  4.1.2).  

• Maxima in trend differences of profile data generally occur over the ocean, except for 
Central Africa. The distinct ocean regions are the stratus region and the southern edge of 
the ITCZ. Regions of maximum standard deviation and of maxima in trend differences 
generally do not coincide, except for stratus regions off the coast of South Africa. Profiles of 
trend estimates, based on regional averages over the tropics and the northern and 
southern hemispheres, are typically significantly different. Differences are smallest near the 
surface (section  4.3.2). 

• Stratus regions appear as local maxima in ensemble standard deviations and in trend 
differences in water vapour and temperature profiles. Position of cloud top and amount of 
water vapour above cloud top are major differences. Also, the differences in the upper 
troposphere overwest Africa are comparably large over tropical land areas.  

• Vertical and spatial features in intercomparison and trend estimation results are often 
different between temperature and water vapour profiles. 

• As for TCWV the profile data records exhibit inhomogeneities on regional scale 
(section  4.3.2). 
 

UTH 

• A dry bias of more than 20% was observed between IR and microwave based UTH 
products. This can be explained by a clear sky bias, i.e., a systematic bias caused by 
differences in sampling. Collocated HIRS and Meteosat UTH products exhibit a systematic 
difference of >20% which is largely caused by the utilisation of different weighting 
functions during retrieval design. 

• The UTH products exhibit similar amplitudes and associated variability after 1998. The 
potential of using UTH to monitor long-term changes in large-scale atmospheric circulation 
and for locating teleconnections was shown (section  4.2.2).  

• During El Nino, absolute water vapour contents increase significantly over large areas of 
the tropics. In contrast UTH decreases over large areas of the tropics corresponding to 
changes in the general circulation. The increase in UTH is confined over a small area at the 
central eastern equatorial Pacific. Thus, UTH and TCWV/profiles are in opposite phase 
when looking at tropical averages. Note that complex lag (between parameter and ENSO 
index) correlations are found as well (section  4.5). 
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General 

• A careful recalibration and intercalibration of raw data records, retrieval 
harmonisation/improvements and refined assimilation schemes are key elements to 
increase the level of homogeneity and stability. A sound uncertainty estimation is required 
as well and such efforts should be carried out in conjunction with a reassessment of the 
achieved change in quality (section  4.3.1). 

 

Intercomparison of data records from the full archive    
 

Considered data records: AIRWAVE, AMSRE (JAXA), AMSRE (REMSS), ATOVS (CM SAF), 
CFSR, EMiR, ERA20C, ERA-Interim, GOME GlobVapour, HOAPS, JRA55, MERIS, MERRA, 
MERRA2, MODIS AQUA,  nnHIRS, NVAP-M Climate, NVAP-M Ocean, SSM/I (REMSS), 
SSMI+MERIS, TMI (REMSS), UWHIRS 

Ten long-term data records are available to G-VAP. However, the number of data records which 
have at least a temporal coverage of 10 years is much larger and exceeds twenty-five. In order 
to provide a first assessment of the full archive these data records have been intercompared 
relative to the ensemble mean. Also differences among ensembles based on weather types 
such as clear sky and cloudy sky are presented. We conclude that the weather type analysis 
does not seem to highlight differences among the different weather types because the internal 
variability of the weather types is generally larger than the differences between the bins. 

 

Analysis of instantaneous data 

Applied methods and considered data records included: 

• Sampling 

TCWV: COSMIC, GNSS, NVAP-M Ocean, SSM/I REMSS  

• PDF 

Profiles: AIRS, CFSR, COSMIC, ECMWF IFS, ERA-Interim, MERRA, NCEP FNL 

• Collocation 

• Intercomparison 

Profiles: AIRS, ECMWF IFS, HIRS NOAA, IASI NOAA  

The focus here is on the comparison of profiles using instantaneous data from recent years. 
The profile quality in the upper troposphere, near the surface and over the ocean is assessed 
by considering bias-corrected and quality controlled RS92 radiosondes and GRUAN radiosondes. 
In order to build a bridge between the analysis of long-term gridded and instantaneous data 
sampling issues arising from diurnal sampling, gap filling, retrieval constrains and the added 
value / the need for analysis of PDFs are discussed. The collocation aspect is discussed with 
focus on collocation uncertainty. In the following conclusions are provided, again with links to 
corresponding sections: 

• Comparison results are strongly affected by sampling differences. It is recalled that the 
clear sky (dry) bias, that is, the difference between TCWV from clear sky and clear + cloudy 
sky observations is typically -2 kg/m2 and can regionally exceed values of -7 kg/m2 or even 
-10 kg/m2, also depending on the considered data records (literature review in 
section  6.1.2). Also for UTH a clear sky (dry) bias is observed with typical values of – 9 
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%RH (or >25% relative) and maximum values of -30 %RH (50% relative) (section  4.1.3 
and section  6.1.2). Data gaps can occur in presence of strong rain events and can be filled 
by using information from surrounding pixels. This way the PDF is filled at the wet end, 
leading to larger values (up to 1.5 kg/m2 or 4% for TCWV, section  6.1.3). Finally, the 
uncertainty of an SSM/I based TCWV retrieval has been analysed as function of LWP and 
precipitation amounts using GPS RO data as reference. An increase in bias and RMS is 
evident in presence of rain (section  6.1.6). Finally, the bias in TCWV due to diurnal 
sampling issues is <0.1 kg/m2 on a global scale and hardly exceeds 10% bias when looking 
at individual locations. It seems that the relatively large differences between the various 
data records are not predominantly affected by the diurnal cycle of water vapour but the 
diurnal cycle of clouds and thus the sampling of the clear sky bias explains the observed 
differences (section  6.1.4).  

• The value, if not the need, of computing and analysing PDFs is shown in section  6.2. A 
large diversity in density at the high end of the PDF is shown (547 hPa, specific humidity). 
None of the analyses or climate model PDFs exhibits the peak at the dry end of the PDF 
(725 hPa). It is strongly recommended not to interpolate to lower resolutions in this 
approach. In general, it needs to be kept in mind that the PDF of water vapour is not 
Gaussian and thus, the consideration of mean values blurs issues in the retrieval and might 
not be representative. 

• Comparison results are further impacted by collocation uncertainties (section  6.3). It is 
shown that variability scales are as low as 2 km and 10 min. New approaches are briefly 
introduced that reach comparison results within accuracy of the reference observations and 
that allow the estimation of the collocation uncertainty. 

• The information content (resolution, degrees of freedom, vertical coverage) of sounder 
observations requires careful attention. A potential lack of sensitivity in humidity sounding 
by hyperspectral sounders is evident at near surface layers and in the tropopause and 
above (section  2.5). The provision of averaging kernels, a priori information and error 
covariance matrices are highly recommended (sections  2.5 and 3.2).  

• A new approach to analyse the quality of water vapour profile data records was developed 
and consists of the following steps: proper use of averaging kernels and uncertainty 
estimates from reference and retrieval, consistency test, z-test, and uncertainty estimation 
of the bias between retrieval and reference. The added value of consistency and z-testing 
was shown via uncertainty analysis. The presented results point to the need for accurate 
surface characterisation in order to overcome the ambiguity in IR based near surface 
retrievals over land (section  6.4.2).  

• Based on results from the well established evaluation tool NPROVS+ it was shown that the 
performance of advanced retrievals such as from AIRS, IASI and HIRS and analysis systems 
such as from ECMWF decreases with height. It further seems that the satellite retrievals 
have reduced sensitivity in dry atmospheres and lower quality over non-tropical land than 
over tropical oceans. GRUAN radiosondes have been used as reference. It is argued that 
the uncertainty of GRUAN humidity data is too large at large humidity values. Feedback to 
the GRUAN Lead Centre was provided and in general such comparison results can also 
provide valuable feedback to the reference observation operator (section  6.4). 

 

In this report, differences in advanced and freely available water vapour data records were 
identified, documented and to a large extend explained. This will allow data record providers to 
easily assess their data record’s improved quality and stability in future updates given the 
results presented here. In fact, lessons learned about regional changes have already provided 
guidance for future improvements of data records. One of the major advantages of an effort 
like G-VAP is to suggest and encourage improvements to data records included in the G-VAP 
analysis. Discussions between G-VAP participants over the last years have allowed participants 
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to receive new perspectives on their work. Analyses of data records by outside, independent 
scientists willing to provide critical feedbacks are of great benefit. For example, the discovery 
of the regional breakpoints in NVAP-M over the Sahara by G-VAP members has prompted 
further investigation by the NVAP-M team into the challenges of using infrared data over a 
surface with variable emissivity and a variable atmosphere that is often impacted by dust 
storms. These factors will be addressed in future production efforts. 

 

Recommendations 

The following recommendations have been compiled on basis of the discussions at the 
G-VAP workshops. These consensus results have been made available via the minutes of 
meetings which are available at www.gewex-vap.org. Finally, minor updates have been 
included following discussions at the GDAP meeting in fall 2016. References to corresponding 
sections are given as well. 

• CGMS, Space Agencies: Improve upon current satellite profiling capabilities with goals 
of providing high precision and long term stability, with sufficient vertical resolution, 
complete, unbiased global sampling and independency of models (sections  4.3.2.3 
and  6.2). 

• CGMS, Space Agencies: Dedicated validation archive for all water vapour sensors, 
also including ship based RS (sections  4.1,  6.4). 

• CGMS, WMO, GRUAN: Aim at the sustained generation and development of a stable, 
bias corrected multi-station radiosonde archive including reprocessing of historical 
data (section  6.4). 

• CGMS, WMO: Achieve consistency among reference observing systems and sustain 
corresponding services (section  6.3). 

• WMO, GCOS: Oppose and balance user, scientific and product requirements with 
focus on climate analysis. 

• Space Agencies: Need for continental high quality satellite data records. 
• Space Agencies: Need for inter-calibrated radiance/brightness temperature data 

records and homogeneously reprocessed instantaneous satellite data records 
(sections  4.2.2,  4.3,  4.4). 

• Space Agencies, GEWEX: Provide water vapour transport product in order to analyse 
atmospheric dynamics and to evaluate the constancy of relative humidity. 

• Space Agencies, PIs: Develop and provide PDF based climatology of satellite-based 
radio-occultation data (section  6.2). 

• Space Agencies, PIs: Provide averaging kernels, a priori state vectors and associated 
error covariance matrices together with the release of profile products (section  2.5). 

• Space Agencies, PIs, G-VAP: Estimate and provide uncertainty information and assess 
uncertainty estimates, also as function of total amounts and other dependent 
parameters (sections  3.2,  4.3.1.4,  6.4). 

• Space Agencies, PIs, G-VAP: Improve stability of long-term data records and 
(re)assess improvement in stability (sections  4.3,  4.4).  

• Space Agencies, PIs: Provide information on input to data records such as precise 
start and stop dates and number of observations as function of time and input data 
type (section  4.3). 

• GEWEX, SPARC, G-VAP, WAVAS: Joint WAVAS and G-VAP analysis of data records 
covering the upper troposphere and lower stratosphere using the same methodology. 

• GRUAN: Include station over tropical land (sections  4.1,  4.3,  6.4.2). 
• GRUAN: Reassess the uncertainty estimates at large humidity values (section  6.4). 
• GRUAN: Provide estimates of the correlation uncertainty between levels or guidance 
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on how to compute it from information already available (ideally the covariance 
matrix of uncertainties is provided, section  6.3). 

• GEWEX: Continuous support to G-VAP, beyond acceptance of first report. 
• G-VAP, Space Agencies, PIs: Enhance quality analysis of profile data records over 

open ocean, in particular over high pressure areas/subsidence areas and stratus 
(sections  4.1.2,  4.3.2). 

• G-VAP, Space Agencies, PIs: Analyse differences between observations under all-sky 
as well as cloudy and clear sky conditions (sections  4.1.1,  4.1.2,  6.1). 

• G-VAP: Reassess the TTD of humidity profile data by taking into account the vertical 
resolution and sensitivity and the characteristics of the PDF at certain levels/layers 
(section  2.5, section  6.2). 

• G-VAP: Assess the joint effect of orbital drift, clear sky sampling/bias and the diurnal 
cycle of clouds on biases and how this might change with climate change 
(section  6.1). 

• G-VAP supports the ITSC-20 recommendation on the reinstallation of the TPW ARM 
station. 

• G-VAP supports the ITSC-20 initiative to collect SRF data in common format at a 
common location. 

• G-VAP supports the concluding remarks from the Joint workshop on uncertainties at 
183 GHz. 

 

In addition to the main conclusions and recommendations an overview of the main output from 
G-VAP is given in section  2.1.   
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2 Introduction 

2.1 Overview 

M. Schröder (DWD) 

Several dedicated studies have been carried out to characterise the quality of individual 
and/or subsets of freely available water vapour data records. This was achieved in various 
ways: intercomparison (e.g., Divakarla et al., 2014; Schröder et al. 2013; Sohn and Smith 
2003), comparison to ground-based  / in-situ data (e.g., Bedka et al., 2010; Lindstrot et al., 
2014; Rienecker et al., 2011) or both (e.g., Bühler et al., 2012; Reale et al., 2012), and 
intercomparison of trend estimates (e.g., Dessler and Davis, 2010; Mears et al., 2007; Mieruch 
et al., 2014; Trenberth et al., 2005). Here only a few examples are given. A far more 
comprehensive overview is given in Kämpfer (2012) and at http://www.watervapour.org, with 
an extensive literature database with entries up to 2009. Wulfmeyer et al. (2015) provide an 
overview of precision and bias for various spaceborne observing system types with respect to 
humidity and temperature profiling (their tables 2 and 3). It is interpreted that this overview is 
based on a literature review and is mainly concerned about retrieval uncertainty. Results from 
these and other studies are often difficult to compare and interprete because the considered 
data records might have been subjected to different types of preprocessing, different metrics 
might have been considered, or different periods and/or regions were analyzed. To our 
knowledge a consistent analysis of the quality of all mature and freely available long-term data 
records has not been carried out to date. This gap is filled by G-VAP. The overall goal of the 
GEWEX water vapor assessment (G-VAP) is to characterise freely available satellite data 
records. The characterisation is guided by a set of science questions. Finding answers to these 
questions is done in different ways in this report: analysis of data from full archive, analysis 
using a subset of data records, and literature review. 

This WCRP report on G-VAP is structured as follows: after recalling the scope, the GEWEX 
needs, GCOS requirements and the scientific questions, the applicable sensors and data 
records are briefly introduced and a general discussion of uncertainties is given. The core of 
the report is separated into three parts where results from the analysis of long-term (more 
than 20 years, start in the 1980s or earlier) gridded data records (Level 3 or higher, section  4), 
of short-term (minimum of 10 years) gridded data records (section  5) and of instantaneous 
(Level 2) data records (section  6) are presented. Section  4 has a strong focus on the 
characterisation of homogeneity and stability while section  6 concentrates on systematic and 
random uncertainties associated with retrievals. An overview of uncertainties arising from 
sampling and collocation is also given in section  6.  

Generally, TCWV, water vapour and temperature profiles as well as UTH were analysed but not 
all those parameters have been assessed in each section. Whenever feasible the full suite of 
long-term data records has been analysed. However, a series of case studies or studies using a 
subset of data records were carried out. Section  3.3 provides an overview of available data 
records. It also shows which data record and parameter are analysed in which section. 

Section  7 provides answers to the G-VAP science and technical questions and additional 
conclusions. 

Teams of authors have drafted each section as stand alone reports. If not included as a whole, 
summaries are included here together with a link to the complete report. In such cases the 
reports are available at http://www.gewex-vap.org. Individual sections may include definitions 
of e.g. uncertainty different from definitions given in section  2.4. 

The following list provides an overview on output from G-VAP: 
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• Scientific papers in peer reviewed journals  

(see section  9),   

• WCRP report on G-VAP 

(available online at www.gewex-vap.org -> DISSEMINATION -> G-VAP REPORT), 

• Stand alone (sectional) reports and documents 

(available online at www.gewex-vap.org-> DISSEMINATION -> DOCUMENTS),  

• Recommendations 

(see section  1), 

• Information data base 

(available online at www.gewex-vap.org-> DATA RECORDS), 

• Regridded data records 

(available online at www.gewex-vap.org -> G-VAP DATA ARCHIVE). 

 

2.2 Scope, GEWEX needs and GCOS requirements 

M. Schröder (DWD) 
 

The need for quality assessments of Essential Climate Variables (ECVs) Climate Data 
Records (CDRs) is part of the GCOS guidelines for the generation of data products. The 
assessment process shall give an overview of available data records and enable users to judge 
the quality and fitness for purpose of CDRs by informing them about the strengths and 
weaknesses of existing and readily available records. This is achieved by inter-comparison and 
evaluation, and by providing reasons for differences and limitations where possible. 
Assessments of data records related to the global energy and water cycles became an integral 
part of GEWEX activities over the last decades.  
 
The GEWEX Radiation Panel (GRP, renamed to GEWEX Data and Assessments Panel - GDAP) 
has initiated the GEWEX Water Vapor Assessment in 2011, further on referred to as G-VAP. 
The major purpose of G-VAP is to1: 
 

• Quantify the current state of the art in water vapour products being constructed for 
climate applications, and by this, 

• Support the selection process of suitable water vapour products by GDAP for its 
production of globally consistent water and energy cycle products.  

 
The optimum GEWEX needs on satellite based temperature and humidity products are2: 
 

• Global coverage,  
• 3 hourly temporal resolution,  
• 10 km spatial resolution,  
• Availability from 1979 to present,  

                                            
1 http://www.gewex.org/gewexnews/May2011.pdf 
2 http://due.esrin.esa.int/meetings/meetings247PRE.php 
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• Verified high quality (uncertainty and in particular temporal stability). 
 
While the requirements on resolution are similar between GCOS-154 and the GEWEX needs, G-
VAP considers the GCOS requirements on accuracy and stability as baseline guidance. The 
GCOS requirements on TCWV, UTH, q(p) and T(p) are recalled in Table  2-1. 
The data records are not ranked, nor is there an in/out split of data records with respect to 
GCOS requirements or GEWEX needs. In this context we note that the various data records 
have been produced for different application areas. Thus, the application areas and, when 
available, the associated requirements have been collected by distributing questionnaires, 
namely a data fact sheet (DFS), to data records PIs and by receiving filled DFS. They are 
provided online at http://gewex-vap.org/?page_id=13. 
 

 
The assessment of atmospheric profiles (specific humidity preferred) is of highest interest to 
GDAP as such profiles are the input to the GEWEX products (see www.gewex.org for an 
overview). The usage of the products within GDAP activities essentially implies to study long-
term data records. 
 
The first G-VAP workshop was hosted in March 2011 by the European Space Agency’s 
European Space Research Institute (ESA-ESRIN) with support from the ESA DUE GlobVapour 
(see www.globvapour.info) project and the second workshop was hosted in September 2012 
by Deutscher Wetterdienst (DWD) and the Satellite Application Facility on Climate Monitoring 
(CM SAF)3. The results of these workshops together with feedback from the GDAP meeting 
held in Paris in October 2012 led to the following refinement of the scope of G-VAP: 
 

• All three products defined by GCOS to represent the Essential Climate Variable (ECV) 
water vapour are considered (see GCOS-154):  

o Total column water vapour (TCWV), ECV Product A.5.1, 
o Tropospheric and lower-stratospheric profiles of water vapour (WV), ECV 

Product A.5.2, and their related temperature products, ECV Product A.5.2, 
o Upper tropospheric humidity (UTH), ECV Product A.5.3. 

G-VAP does not include sea-/land-surface temperature or 2m temperature/humidity 
unless these are integral parts of the water vapour profile; 

• G-VAP considers all data records that are longer than approximately ten years. Thus, 
the assessment considers data records that may not be used as input for GEWEX water 
and energy cycle data records but which are important to establish a deeper 
understanding of atmospheric water vapour observations. This considerably increases 
the number of data records that can be analysed; 

                                            
3 http://www.gewex.org/gewexnews/Nov2012.pdf  

Table  2-1: GCOS accuracy and stability requirements on applicable G-VAP parameters (see also GCOS-
154). 

 TCWV UTH q(p) T(p) 

Accuracy 2% 5% 5% 0.5 K 

Decadal 
stability 

0.3% 0.3% 0.3% 0.05 K 
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• The assessment considers data records that are provided by assessment participants 
and that are readily available and well documented; 

• The assessment focuses on overall characteristics of participating satellite and 
reanalysis data records as determined from inter-comparisons and comparisons against 
in situ observations and ground-based products; 

• The consistency of TCWV and UTH with the profile data is studied as well; 
• Long-term Level-3 (gridded products) products are analysed on different time and 

space scales in order to get an overview of issues in Level-3 products. These issues can 
then be studied in more detail using Level-2 and/or Level-1 data and by dedicated 
Level-2 data comparisons employing high quality satellite and ground-based 
observations; 

• G-VAP built up a database including collocated products and “reference” data of 
sufficient quality, in particular long-term stability, which serves as  main repository for 
the current assessment and which will be also useful for the development of improved 
products. 

• G-VAP pursues information exchange with the SPARC water vapour activity, with SPARC 
focusing on the stratosphere and G-VAP focusing on the troposphere. 

 

2.3 Scientific questions 

M. Schröder (DWD) 
 

Following presentations and discussions at the first GDAP meeting in October 2012 key 
questions for the evaluation of data records have been formulated. The questions below 
determine the metric to identify strengths and limitations, to analyse differences and to find 
reasons for distinct differences and limitations. 
The science questions are: 
 
Q1) 

a) How large are the differences in observed temporal changes in long-term satellite data 
records of water vapour on global and regional scales? 

b) Are the observed temporal changes and anomalies, on global and regional scale, in line 
with theoretical expectations? 

c) Are the differences in observed temporal changes within uncertainty limits? 
d) What is the degree of homogeneity (breakpoints) and stability of each long-term 

satellite data record? 
e) How can we enhance value and usability of the satellite data records (e.g., through 

analysis of consistency in climate related features such as position and strength of dry 
zones, regional annual cycles, and El Nino response)? 

 
Q2) What is the degree of consistency among the products? 
 
Q3)  

a)  Do the satellite data records exhibit areas of distinct quality and how can the distinct 
differences and limitations be explained? 

b) What is the quality of long-term satellite WV products in the lowermost part of the 
atmosphere and in the upper troposphere?  

c) What is the quality of long-term satellite TCWV and WV products over ocean where 
ground-based and in-situ observations are rarely available? 
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Q4) What are the differences in quality between satellite products and products from reanalysis 
and are the observed differences significant? 
 
The technical question is: 
Q5) How easily can the satellite data records be downloaded, read and understood? 
 
This report provides answers to these questions and a summary of the answers is given in 
section  7. 
 

2.4 Definitions 

M. Lockhoff (DWD), lead authors 
 

Provided below are the definitions of terms used throughout this report. 
 

Total column water vapour (TCWV) 
Vertical integral of absolute water vapour amounts 
from the ground to the top of the atmosphere in 
unit kg/m2 

Water vapour / Temperature profiles 

Specific humidity (g/kg) and temperature (K) 
values at pressure levels.  
NVAP-M and UW HIRS contain layer integrated 
water vapour in unit kg/m2 at 4 and 3 layers, 
respectively. 
In case spatial maps are analysed the following 
levels are considered: 1000 hPa, 700 hPa, 500 
hPa, and 300 hPa. 

Upper Tropospheric Humidity (UTH) 

Mean relative humidity integrated over a broad 
layer in the upper troposphere. Layer thickness 
and position depends on atmospheric condition, 
channel characteristics and weighting functions 
used for integration. 

Homogeneity 

Following the definition of Köppen & Geiger 
(1936) time series are considered to be 
homogeneous, if their variations are caused only 
by meteorological influence. Inhomogeneities may 
arise from: 
• Satellite changes, 
• Instrument changes and calibration, 
• Observation and sampling time, 
• Orbital drift, 
• Algorithm changes, 
• etc. 
Within the report a homogeneous data record 
does not contain significant breakpoints.  

Stability 

“The user requirement for stability is in general a 
requirement on the extent to which the error of a 
product remains constant over a long period...The 
relevant component of error of a product for 
climate application is often the systematic 
component defined by the mean error... Values 
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quoted under the heading “stability” in this 
document refer to the maximum acceptable 
change in systematic error per decade... Stability 
of the random component may also be a 
requirement...” [GCOS-154] 
“Stability may be thought of as the extent to 
which the accuracy remains constant with time. 
Over time periods of interest for climate, the 
relevant component of total uncertainty is 
expected to be its systematic component as 
measured over the averaging period. Stability is 
therefore measured by the maximum excursion of 
the difference between a true value and the short-
term average measured value of a variable under 
identical conditions over a decade. The smaller 
the maximum excursion, the greater the stability 
of the data set.” [Dowell et al., 2013] 
In the report stability is defined as the change of 
the systematic uncertainty over time relative to a 
reference if not defined differently. 

Correlation 
Here the Pearson correlation coefficient is used if 
not stated differently. 

Long-term data records 
All data records covering time series with a 
minimum record length of 20 years and with a 
start date in the 1980s. 

Short-term data records 
All data records covering time series longer than 
10 years. 

 

2.5 Information content and value of averaging kern els 

T. August (EUMETSAT), T. Trent (U. Leicester) 

The notions of vertical sensitivity and vertical resolution applied to space-borne sounding 
products have been explained in great details in (Rodgers, 2000). This section reviews the 
main concepts and discusses how to interpret, validate and use satellite atmospheric sounding 
products.  
Atmospheric sounding with passive microwave (MW) and thermal infrared (TIR) instruments is 
achieved by measuring the outgoing radiances at the top of the atmosphere (TOA), which 
result from the complex radiative transfer from the upwelling emitted radiation at the Earth 
surface through the atmosphere. The amount of atmospheric information in the measurements 
is directly related to the ability to accurately measure the spectral emission and absorption 
signatures (rotational, vibrational lines, bands and continua) contained in the TOA radiances. 
This is determined by the following instrument characteristics: 

1. The spectral coverage: which atmospheric constituent has spectral signatures included 
in spectral domain measured. 

2. The spectral resolution: how well can spectral features from two different constituents 
be distinguished; how well can the wings of absorption lines shaped by contributions 
from different vertical layers be resolved and characterised. 

3. The radiometric precision of the measurements: how much an atmospheric signal can 
be separated from the noise in the measurements. 
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The ability to measure an atmospheric signal in the lowest layers is a function of the first two 
instrument characteristics above and of the geophysical situation itself: e.g. the water-vapour 
can saturate an absorption line in the infrared, clouds are usually opaque to the infrared and so 
little to no water-vapour information from the lower troposphere is present in TIR spectrum, 
whereas microwave can usually provide temperature and humidity information from below the 
cloud top down to the surface. Depending on the wavelength microwaves can retrieve water 
vapour and also detect water and ice particle contamination. Conversely, large thermal 
contrasts –i.e. the difference between the skin surface temperature and the temperature of the 
first atmospheric layer- favour infrared sounding in the boundary layer (Clerbaux, 2009). This 
vertical sensitivity to a parameter is represented with the derivative of the TOA radiance to that 
parameter, e.g. the water-vapour content in the scope of this working group. The value is 
called the Jacobian of the radiative transfer function and is often represented with the letter K 
 

 

 Eq.  2.1 

with  the radiances measured in channel  and  the humidity content at vertical level . 
The Figure  2-1 illustrates Jacobians computed with the radiative transfer model RTTOV 
(Matricardi et al., 2004) for temperature and humidity. 
 

 
Figure  2-1: Jacobians of temperature (left) and humidity (right) computed in IASI channel 3000 

(1395 cm-1) with the radiative transfer model RTTOV for a Nadir view (black) and a viewing angle of 
50°. 

The retrieval of atmospheric parameters is the act of determining from a set of measurements 
the atmospheric state vector (e.g. temperature, humidity profiles, surface temperature, surface 
emissivity,...) which was sensed by one or a set of instruments. When the retrieval 
methodology involves modelling the radiative transfer equation, the uncertainties intrinsic to 
the radiative transfer modelling itself add to the instrument noise (point 3. in the above list), 
which also includes spectral correlations. The modelling uncertainties come for instance from 
the underlying spectroscopy or inaccurate representation of state vector elements not retrieved 
in this process (e.g. land surface emissivity, trace gas profiles etc.). They must be taken into 
account when evaluating the signal to noise ratio and the capability to distinguish an 
atmospheric signal in the measurements. The overall uncertainties on the observations write 
into a covariance matrix denoted  here. 
The added-value of a measurement resides in how much knowledge one has gained in the 
characterisation of a given geophysical parameter by making this measurement, compared to a 
prior knowledge of that parameter, for instance from a climatology. The prior uncertainty about 
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a parameter is given by its variance around its a priori value –before the measurement is 
made- and the covariance with other parameters –e.g. variance of the humidity at a given level 
and covariance with humidity in the rest of the profile-. It is here denoted .  
The information content of a measurement is conveniently computed with the innovation 
matrix , (Rodgers, 2000), which combines the theoretical vertical sensitivity of a 
measurement to a given parameter for a given instrument, K; the uncertainty in distinguishing 
and reproducing an observation, ; and the uncertainty on the prior knowledge of the 
geophysical situation, . 
 
  Eq.  2.2 

The number of degrees of freedom for signal (DoFS), or independent pieces of information, 
one will evaluate from measurements is hence dependent on the assumptions made on the 
observation and a priori error covariance matrices. Underestimating the measurement errors 
(e.g. by ignoring the radiative transfer modelling uncertainties) will numerically blow the 
expected information content and artificially raise the DoFS. Conversely, underestimating the 
uncertainties on the prior knowledge will result in underestimating the information extracted 
from the measurements. 
The vertical sensitivity of a retrieval is characterised by a quantity called the averaging kernel, 
A. It explains how much a retrieved parameter, e.g. the humidity at 500 hPa, is effectively 
sensitive to true variations of that parameter. 
 

 

 
Eq.  2.3 

 
 
where  and  are the retrieved and true quantities, respectively. It can further decompose 
into: 

 
 

 
Eq.  2.4 

 
where  is the radiative transfer Jacobian as introduced before and  is the gain function, 
related to the retrieval operator.  can be seen as the generalised inverse of . In an ideal 
world, the averaging kernel function is a Dirac, meaning that the retrieved quantity is only 
sensitive to the related true quantity, with infinite vertical resolution. In reality, because of the 
instrument characteristics introduced above and because of the uncertainties inherent to the 
retrieval method, the retrieved quantity at a given vertical level is actually a weighted 
summation of contributions from adjacent and sometimes distant levels. Typical averaging 
kernels for temperature and water-vapour are provided in Figure  2-2. The colour encoding 
relates to the altitude of the sought retrieved parameter, from red next to the surface to dark 
blue in the stratosphere. 
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Figure  2-2: IASI L2 averaging kernels for temperature (left) and water-vapour (right) profiles for a mid-

latitude ocean observation sampled on 12/09/2014. 

The vertical resolution of the retrieval can then be characterised by the width of the main mode 
of an averaging kernel. For TIR hyperspectral sounders like AIRS, IASI and CrIS in clear-sky, 
the vertical resolution in the troposphere is typically of about 1-2 km for temperature and 2-
3 km for humidity. An additional important piece of information contained in the averaging 
kernels is the vertical sensitivity. From the example above, one can see that the water-vapour 
retrieved in the bottom levels (dark red) have hardly any contributions from the actual targeted 
levels (pointed at by the green arrow) but merely from the levels above, unlike for 
temperatures where the retrievals have actual contributions from these levels. A profile 
provided in a sounding product is a combination of the true profile inferred from the 
measurements and of prior knowledge of the state vector, weighted with the averaging kernels: 

 

  Eq.  2.5 
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 and  are the retrieved and true profiles, respectively;  is the a priori profile;  is the 
identity matrix and  is the averaging kernels. 
Where there is no information extracted from the measurements (averaging kernels close to 0), 
the retrieved quantities provided in the sounding products actually come from the prior 
knowledge. 
The vertical sampling (i.e. number of levels) in satellite sounding products is usually much 
higher (typically ~100 levels) than the actual number of independent vertical pieces of 
information in this product. The latter is related to the number of degrees of freedom in that 
product and can be evaluated by the trace of the averaging kernels (Rodgers, 2000). For 
hyperspectral IR sounders, there are usually in clear-sky 5 to 9 independent pieces for humidity 
and 8 to 12 for temperature.  
Because they characterise the vertical resolution and sensitivity of the satellite sounding 
products, the averaging kernels are important information which should be provided together 
with a sounding product to allow proper utilisation for a given application. Also important is the 
provision of the a priori state vector and the associated error covariance matrix, to understand 
what in the final product came from the measurements and what came from the a priori. 
For validation purposes, for instance, the reference profiles can be smoothed by convolution 
with the averaging kernel to assess the satellite products at their intrinsic vertical resolution. 
Also, in order to validate the information retrieved from the measurement, the prior information 
combined in the satellite products  can be subtracted before comparison to the 
reference profile, as nicely exemplified in the didactic paper by (Illingworth, 2010) with carbon 
monoxide and in (Pougatchev, 2009) for water vapour.  

 
Figure  2-3: Systematic (dash) and standard-deviation (plain) differences between retrieved and 

numerical model humidity profiles from IASI/Metop-B between 27/06 and 11/09/2014 over maritime 
cases in [30°N; 60°N] before (red) and after (green) application of the IASI L2 averaging kernels. 

The effect of applying the averaging kernels is illustrated in Figure  2-3, where EUMETSAT IASI 
L2 products (August et al, 2012) with the version 6.0 have been used and compared to ECMWF 
analysis fields. The precision obtained when handling the sounding products at their intrinsic 
vertical resolution is obviously much higher than when considering the profiles restitution at 
their sampling resolution. However informative they are, the products assessments obtained by 
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application of the averaging kernels must be handled with great care. In the example above 
one could easily misinterpret the precision characterised in the bottom layers, where the 
standard deviation drops close to zero (green arrow in Figure  2-3). It does not mean that the 
precision is infinite but only translates the fact that the retrieval was insensitive to that portion 
of the atmosphere as highlighted with the green arrow in Figure  2-2. Consequently the product 
schematically only contains prior information for these levels, hence  and: 
 
  Eq.  2.6 

where  is the reference profile used to assess the satellite product. 

 
With the understanding that a profile is a series of independent vertical pieces of information, 
one can also define it using the cumulative degrees of freedom (DoF) (Trent, 2015). The total 
number of DoF is calculated with the trace of the averaging kernel matrix. This can also be 
done sequentially in part, bottom up, until an integer number of DoF is reached. The layer 
defined this way can be used for validation or further applications. The concept is illustrated in 
Figure  2-4 for HIRS and IASI temperature (disks) and humidity (square) retrievals performed at 
University of Leicester using the same 1DVar processor (including a common background error 
covariance matrix). For IASI the dashed line represents a 1:1 relationship between degrees of 
freedom and height (e.g. 1 km resolution), the dotdash line is a 2:1 relationship (2 km 
resolution) while the dot-dot-dot dash line is a 3:1 relationship (3 km resolution). Meanwhile for 
HIRS, the dashed line represents a 3:1 relationship between degrees of freedom and height  

 
Figure  2-4: Mean cumulative degrees of freedom profiles from HIRS (a) and IASI (b) L2 retrievals 

performed at University of Leicester (from Trent, 2015) for June 2013. Total average DOFs for IASI 
are 4.74 for water vapour and 11.79 for temperature, compared to HIRS which are 1.57 and 4.42, 
respectively. 
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(e.g. 3 km resolution), the dotdash line is a 4:1 relationship (4 km resolution) while the dot-
dot-dotdash line is a 5:1 relationship (5 km resolution). From Figure  2-4 it is clearly visible that 
HIRS ceases to provide any water vapour information above 10 km.  
 
The use of the cumulative degrees of freedom define the vertical resolution of the retrieved 
profile over a series of slab layers is a new approach presented in Trent T., 2015, and are 
referred to as the partial column profiles. Retrieved (water vapour) profiles are interpolated 
into a series of partial columns defined by integer DOF values, using a pressure weighting 
function (h) which is defined as [Connor et al., 2008]: 
 
 

 Eq.  2.7 
 
where pi is the pressure at level i and psurf is the surface pressure. The transpose is then 
applied to the convolved/retrieved profile ( ) over the atmospheric region where the 
cumulative DOF = 1,2,3 . . . N: 
 
 

 
Eq.  2

    
where  is the partial column water vapour in layer i of the profile. Temperature profiles 
(PTMP) are treated in a similar way. However, instead of applying the pressure weighting 
 

 
Figure  2-5: (LHS) Stages in conversion to PH2O profiles. The convolved GRUAN profile (blue line, red line 

= IASI retrieval) is converted into partial columns using the calculated pressure weighting function 
(middle). The layer boundaries are defined by integer values of the cumulative DOF profile (red 
dashed lines, middle frame). (RHS) PH2O profiles are then defined on five discrete layers (blue = 
GRUAN, red= IASI). Six layers are possible however; these would be entirely made up of 
stratospheric emissions and would not contain a full piece of independent information. 

Function, the mean air temperature for the layer is used.  Each layer within the profiles is 
defined by the mean pressure for that layer. PH2O profiles are defined on five layers and PTMP 
on seven for comparisons with GRUAN. It should be noted that the layer pressure varies as it is 
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a function of the air mass to which the retrieval is sensitive. Stages of this process are shown 
in Figure  2-5. 
Another convenient and meaningful alternative for assessing satellite sounding products 
averages both the satellite and the reference profile(s) on to slab layers adapted to the 
expected vertical resolution of the satellite sounding mission. This is illustrated in Figure  2-6 
where EUMETSAT IASI L2 profiles (version 6.0) have been compared to correlative in situ 
measurements from radiosonde measurements. The profiles have then been intercompared at 
different vertical resolution: on the original vertical sampling of IASI L2 products (black), by 
averaging the profiles in the layers defined by the IASI L2 product levels (red) and in 2-km slab 
layers (green). Note that the biases in the lower troposphere observed for humidity with v6.0 
has been reduced and are close to 0 with the release v6.2, as assessed with radiosonde 
measurements.  
Where the retrieval operator implements the optimal estimation method (Rodgers, 2000), the 
state vector is iteratively adjusted around an a priori state vector to fit the measurements with 
calculated radiances using a radiative transfer model and this state vector. An optimal solution 
is searched that satisfies proximity to both the prior knowledge and the observed radiances, 
having defined the uncertainties on the prior and the observation components. The averaging 
kernels in this context write: 
 
  Eq.  2.9 
 

 
Figure  2-6: Vertical statistics of the differences between IASI-A and sonde relative humidity at different 

vertical resolutions: nearest grid level, IASI L2 products grid layers, 2-km slab layering [J. Roman in 
“IASI L2 v6 validation report” 2014] (see text for colour coding explanation). 
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where  is the radiative transfer Jacobians,  is the error covariance matrix associated with 
the observations (including measurements and forward modelling errors) and  is the error 
covariance matrix associated with the a priori geophysical state vector. 
Here again, the averaging kernels can numerically indicate higher number degrees of freedom 
than there are in reality if the uncertainties associated with the observations are 
underestimated (for instance by neglecting the forward model errors). Conversely, the 
information in the measurements can be underexploited if the uncertainties associated with the 
a priori are underestimated. It is hence essential when documenting a product and its 
assessment to clearly describe the assumptions made for these two parameters and provide 
that information together with the final product. 
Lastly, as discussed by (Rodgers, 2000) and unlike frequently stated, it is possible to derive 
averaging kernels from other retrieval methodologies than OEM. The feasibility in the context of 
a piece-wise linear regression method for IASI was presented in (Hultberg and August, 2016). 
Examples of averaging kernels computed for the EUMETSAT operational statistical retrieval 
method jointly exploiting microwave and infrared sounder measurements are provided in 
Figure  2-7. 
 

 
Figure  2-7: Averaging kernels for temperature (left) and water-vapour (right) computed for the 

EUMETSAT operational combined microwave and infrared statistical retrieval. 

In the light of these information content considerations and for climate applications, it is 
important to study further and characterise the time to detect atmospheric changes in humidity 
profiles with such satellite sounding products, taking into account their actual vertical 
resolution and sensitivity. 
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3 Data records 
It follows a general disussion of available satellite sensors, sources of uncertainties in the 

retrieval of information on water vapour, an overview of available data records and a general 
discussion of available ground-based and in-situ data records. Sections  3.1 and  3.3 are largely 
based on Schröder et al. (2017a). 

 

3.1 Overview on available satellite sensors 

J. Forsythe (Colorado State U.), A. Gambacorta (NOAA), R. Kursinski (SSE), M. Schröder 
(DWD) 

In this section we provide background information on the wide variety of sensors that 
measure atmospheric water vapour. Only sensors that have a greater than 10-year record and 
cover continental to global scale regions are discussed. These are the types of sensors used to 
create global climate data records of water vapour.  

Water vapour sensors are deployed on low-earth orbiting and geostationary satellites, and are 
available from several types of surface measurements. Polar-orbiting sensors give global 
coverage with one day-time (at a particular local time) and one night-time overpass (12 hours 
later). Geostationary satellites are placed at particular longitudes along the equator and provide 
useful data up to about 60° of latitude. Since the 1980’s upper tropospheric water vapour has 
been sensed from geostationary measurements around the 6.7 µm water vapour absorption 
band. Geostationary sensors allow high temporal sampling of water vapour, typically a few 
times per hour. Instruments classified as sounders carry several channels distributed about a 
water vapour absorption line to retrieve the vertical profile of water vapour. Instruments 
classified as imagers might also have channels clustered about an absorption line, but the 
primary purpose of an imager is to sense the surface or cloud tops.  Imagers are generally 
restricted to only retrieving TCWV. 

The term “profile” usually implies the water vapour amount (mixing ratio) on a given pressure 
level, such as those measured by a radiosonde. “Profile” can also refer to the retrieval of bulk 
layers in the atmosphere. Satellite sounding instruments respond to radiation from a great 
depth of the atmosphere as depicted by the instrument weighting function, so the retrieval of 
atmospheric layers is the natural unit. These layers might be interpolated to pressure levels to 
compare with, for instance, a radiosonde or a model, but users should remain aware of the 
broad vertical depth nominally sampled by satellite sounders. 

Rather than focus on a chronological listing of sensors used for water vapour climate data 
records, this section approaches the overview of sensors from the standpoint of where and 
what they sample, and the pros and cons of each sensor from a user perspective.  
Chronological listings are readily available, for instance in Kämpfer (2012; Figure 9.1). A recent 
overview on sensors and retrieval techniques is also provided by Wulfmeyer et al. (2015). The 
information provided here is a snapshot in 2015, but radiance records and sensor 
intercalibration continue to progress, and algorithm improvements can expand the yield and 
performance of remote retrievals of water vapour. This is not meant to be an exhaustive list, 
but serves to orient the climate user to the major sensors supporting the water vapour climate 
data record and their sampling biases. Sensors based on limb sounding techniques that focus 
on the upper atmosphere are not considered in this report. 
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3.1.1 Resources to track sensor availability 

There are a wide variety of water vapour sensors currently operating, and for climate 
research the sensors change and vary through time. Understanding which sensors were 
operating at any given time period is a major endeavour. The World Meteorological 
Organization has created an online tool which makes this task much more feasible. The 
Observing Systems Capability Analysis and Review Tool (OSCAR) is maintained at 
http://www.wmo-sat.info/oscar/. This tool allows the user to sort results by sensor type, 
agency, and atmospheric and surface variables. Time series charts of instrument function can 
be created. Launch and end of mission life dates are tabulated. Relevance results are 
generated, but should not be solely relied upon as relevance in the climate sense is a complex 
question and depends upon sampling limitations and period of performance as well as 
instrument capability. 

 

3.1.2 Satellite Sensors 

3.1.2.1 Passive Microwave Sensors 

Passive microwave sensors are typically classified as imagers (channelization focused 
towards observing the surface) and sounders with channels designed to profile either the 
temperature or water vapour profile in broad layers. Some instrument names indicate the 
principal mission of the sensor, e.g. the Special Sensor Microwave Imager (SSM/I) or the 
Advanced Microwave Sounding Unit (AMSU). Regardless of the classification of the sensor, both 
imagers and sounders allow water vapour retrievals in clear and cloudy skies, but not in the 
presence of strong scattering by hydrometeors like during heavy precipitation events. 

The passive microwave radiance record, both from imagers and sounders with either a conical 
or cross-track scan pattern and a few non-scanning, nadir-looking instruments such as the 
TOPEX Microwave radiometer (TMI) or the ESA’s MicroWave Radiometer (MWR), has exhibited 
good overlap and continuity since the early 1990’s to the present. The primary spectral bands 
represented in the climate record are radiances at 19, 22, 37, 50-60, 85-90, and 183 GHz. 
Many critical climate records are backed by these measurements such as mean tropospheric 
and stratospheric temperature, sea ice coverage, ocean winds, and precipitation. This record 
will continue with recent and future sensors such as AMSR-2 on GCOM-W, GMI on GPM, DMSP 
F19 and F20, ATMS on JPSS, SAPHIR on Megha-Tropiques and the MWI instrument on MetOp-
SG, which is planned to measure until ~2040. Intercalibration efforts among the sensors (e.g. 
Sapiano et al. 2013 and Fennig et al. 2015) yield to fundamental climate data records that can 
be used to remove time-dependent changes in the radiance record.  

 
a) Imagers 
 

1987 saw the launch of the first SSM/I instrument, a sensor that, while having no official 
climate mission, has had a profound impact on global water vapour records. The water vapour 
absorption line at 22 GHz is a key component of these TCWV retrievals, other window channels 
compensating for cloud and surface roughness effects. Widely used climate data records (e.g. 
RSS products, HOAPS, NVAP-M), begin in 1988, due to the ocean coverage afforded by the 
SSM/I and its successor the SSMIS. 

Conical scanning microwave imagers are typically configured at an earth incidence angle of 
about 53 degrees. They have the advantage of constant spatial resolution across the scan, and 
constant sensitivity to the atmosphere via the same geometric path length. Microwave surface 
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emissivity over land and ocean is a function of incidence angle, so in principal conical scanners 
eliminate this variable from atmospheric retrievals. Cross-track scanners have changing spatial 
resolution which is highest at near-nadir views and grows into larger fields-of-view at the outer 
edge of the scan. They have a minimal atmospheric path length at nadir. 

TCWV from passive microwave imagers has historically only been retrieved over the ice-free 
oceans, and it is commonly stated that passive microwave retrievals work over ocean only. This 
is due to complex and variable land surface emissivity that changes on short timescales due to 
surface wetness, vegetation state, and soil properties. There have been efforts to use passive 
MW for water vapour retrievals over land. The barrier to passive microwave retrievals over land 
is beginning to fall, at least for operational weather users, as evidenced for instance by the 
NOAA MIRS sounding system (Boukabara et al. 2011; Forsythe et al. 2015). This record 
requires further investigation for climate uses. Du et al. (2015) demonstrate an AMSR-2 
algorithm to retrieve TCWV over land. For the water vapour climate record, it is most correct to 
say that passive microwave TCWV has not yet been demonstrated over land, but there is some 
possibility of this advance in the coming years. 

 
b) Sounders 

 
Passive microwave sounders depend on the water vapour absorption line at 183.31 GHz 

to profile water vapour. Historically most water vapour and temperature sounding instruments 
have been cross-track scanning, and SSMIS is a newer exception. These microwave sounders 
are often collocated with a companion infrared sounder. Examples are the AIRS instrument 
onboard the NASA Aqua spacecraft, IASI onboard the Metop spacecraft, and the CrIS 
instrument on the Suomi-NPP spacecraft. The hyperspectral AIRS, IASI, and CrIS instruments 
are teamed with companion microwave temperature and moisture sounding instruments, 
AMSU-A/B or MHS and ATMS respectively. This provides some capability for sounding in cloudy 
and partly cloudy atmospheres, as the microwave instruments, while having less vertical 
resolution than the hyperspectral infrared sounders, help constrain the temperature and 
moisture profile retrieval (e.g. Li et al. 2000, Kahn et al. 2014). Intercalibration efforts for the 
183 GHz radiance record continue to move forward (e.g. John et al. 2012 and Chung et al. 
2013), but this record that dates back to the early 1990’s has not been fully explored for 
climate data records. 

3.1.2.2 Infrared Sensors 

a) Sounders 
 

Infrared sounding sensors constitute the longest satellite record of water vapour profiling 
and sounding instruments. A key distinction between infrared sensors for water vapour 
retrievals is between broadband (HIRS, GOES Sounder, MSG SEVIRI instruments) and 
hyperspectral (AIRS, IASI, CrIS) instruments. The broadband sensors constitute a longer time 
series (versions of the HIRS instrument span the time back to the early 1980’s), while the 
hyperspectral instruments allow retrievals with more vertical information and improved 
uncertainty. The hyperspectral climate record begins with AIRS in 2002, and is augmented by 
the IASI instrument onboard the Metop-A and –B spacecrafts launched in 2006 and 2012 
respectively. The CrIS instrument onboard the Suomi-NPP spacecraft launched in 2011 
continues the hyperspectral sounding record. A third IASI instrument is due for launch end of 
2018 onboard Metop-C, which will extend the IASI mission and the associated sounding 
products from 2006 to beyond 2023. 

Infrared-only retrievals of TCWV and water vapour profile are retrieved under clear sky 
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conditions only. The combination with passive microwave sounders improves the range of sky 
conditions in which retrievals are possible. UTH (also referred to as FTH) can be retrieved in 
clear skies and when cloud tops are close to the surface (e.g., Brogniez et al. 2006). 
Intercalibration of intersatellite differences within the HIRS record is still continuing (e.g. Shi et 
al., 2008). There are intersensor differences in the spatial placement of the 20 channels on 
HIRS, most impactful is the switch of channel 10 from 8.6 µm to 12.5 µm on the HIRS model 3 
and 4 sensors beginning with NOAA-15 in 1998.  

Yue et al. (2013) characterized the sampling biases of AIRS soundings in the presence of 
different cloud classes, and deep convection and nimbostratus have the largest impacts. These 
impacts and biases affect all infrared-based water vapour retrieval systems. While land surface 
emissivity is much more uniform and less time-varying in the infrared than at microwave 
wavelengths, infrared land surface emissivity does vary (Seemann et al. 2008) and can be 
problematic for infrared retrievals, especially over desert surfaces.  

 
b) Ultraviolet/Visible/Near-Infrared Imagers 

 
A daylight retrieval using two channels at 0.885 µm (window) and 0.9 µm (water vapour 

absorption) has been demonstrated from the MERIS instrument (Lindstrot et al. 2014). The 
retrieval is limited to the daylight portion of the swath, as differential solar reflectance is the 
signal for this retrieval. These types of retrievals have the benefit of high spatial resolution (~ 1 
km), but the TCWV retrieval is limited to clear skies to sense the entire column to Earth’s 
surface. The MERIS instrument was launched in 2002, while MODIS onboard the Terra 
spacecraft begins in 1999, and is complemented by the MODIS onboard the Aqua spacecraft 
which was launched in 2002. Both MODIS instruments continue to function in 2015, so further 
extension of the TCWV record from these sensors is feasible. Retrievals from MERIS and 
MODIS complement passive microwave TCWV retrievals because they perform best over land 
and have reduced quality over oceans.  

UV/VIS spectrometers such as the Global Ozone Monitoring Experiment (GOME and GOME-2) 
and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) 
allow for the retrieval of total column water vapour over land and ocean surfaces under 
daylight and clear sky conditions. The resolution is between 320 km x 40 km and 80 km x 40 
km, with cloud handling being a major challenge.  

Future European missions such as GMES Sentinel 3, Sentinel 4, Sentinel 5 precursor and 
Sentinel 5 will carry UV/VIS/NIR spectrometers, in particular OLCI (Ocean Land Colour 
Instrument on Sentinel 3), which will extend the total column water vapour record. 
 

3.1.2.3 Limb Sounding 

Limb sounding is the technique of sounding various layers of the atmosphere by 
observation along a tangent ray that does not intersect Earth’s surface. The extinction of a 
source of radiation, either the sun or in the case of GPS radio occultation (GPS-RO) a 
transmitting spacecraft is measured at various layers of the atmosphere. This technique has 
been especially important to study stratospheric water vapour. A separate WCRP effort called 
Stratosphere-troposphere Processes and their Role in Climate (SPARC; http://www.sparc-
climate.org/) is devoted to this topic while G-VAP focuses on tropospheric water vapour. 
Moisture profiles in the highest levels of the troposphere, centered on 215 hPa, have been 
derived and the satellite record begins in the earlyy1990s. The HALOE instrument on the UARS 
spacecraft, SAGE II and the MLS microwave sensor constitute the core of this record. GPS-RO 
is particularly relevant in the context of climate and is discussed below. Limb sounding using 
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the sun is limited by an inability to retrieve water vapour near the surface, and also by coarse 
horizontal resolution on a scale of one hundred kilometres along the ray.  

 

3.1.2.4 GPS Radio Occultation 

GNSS radio occultation (RO) measurements profile atmospheric refractivity with 
globally-distributed, all-weather sampling from which tropospheric water vapour is derived. The 
water vapour information is isolated by combining the GNSS RO refractivity profile with 
temperature information from NWP analyses interpolated to the time and location of the RO 
profile. GPS-RO missions began with the prototype GPS-MET mission from April 1995 – Feb. 
1997. Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) is flying 
onboard Metop-A and Metop-B since 2007 and 2012, respectively. The CHAMP mission flew 
from 2000 to 2009 and provided about 250 occultations per day. A significant increase in RO 
sampling density to 2,000 or more occultation profiles per day began with the launch of the 6-
satellite COSMIC mission in April 2006. The COSMIC satellites orbits were also spread in 
longitude to provide full sampling of the diurnal cycle. Occultation profiles from the GPS-RO 
receiver on CHAMP satellites only penetrate into the upper to middle troposphere, which has 
limited their utility for tropospheric water vapour. This is because it uses closed loop tracking of 
the GPS signals. The COSMIC and the GRAS GPS-RO receivers use an “open loop” tracking 
capability and a raw-sampling mode. These enabled a far higher percentage of the occultation 
profiles to extend to within 1 km of the surface, making them far more useful for characterizing 
tropospheric water vapour.  

From the GNSS RO receiver phase measurements during each occultation, the bending of the 
signal path due to its passage through the atmosphere is determined. The bending angle 
profile is then inverted to a profile of the index of refraction that caused the bending. The dual 
frequency GNSS signals are used to isolate and remove the effects of the ionosphere.  

The atmospheric index of refraction is due to the combined effects of the dry gas and the 
water vapour. The water vapour contribution to the measured refractivity is typically isolated 
using one of two approaches. The first is a variational technique used in NWP assimilation 
systems where estimates of the water vapour, temperature and pressure structures from the 
forecast and their associated error covariances are combined with the GPS occultation bending 
angle or refractivity profile and its error covariance to achieve a new best estimate, in a least 
squares sense (e.g. Healy and Eyre, 2010). The second approach, referred to as the “Direct” 
method, estimates the dry part of the refractivity from the analysis temperature that is then 
subtracted from the GPS-measured total refractivity to obtain the wet part of the refractivity. 
The latter is then scaled to obtain the water vapour. Both methods rely on the analysis 
temperatures that are a combination of observations and of the NWP model. The advantage of 
the Direct method is that it does not rely on estimates of water vapour from models, forecasts 
or climatologies and is therefore unaffected by biases in those estimates. 

GNSS RO has very high vertical resolution for a satellite system (about 200 m) and relatively 
coarse horizontal resolution of about 100 km (Kursinski et al., 1997, eqn. 13) because it is a 
limb sounder. The altitude range of GPS-RO individual profiles of water vapour extends from 
the surface to about the 240 K-temperature level in the troposphere with zonal means 
extending somewhat higher. As a result, at mid to high latitudes, GPS-RO water vapour profiles 
extend to higher altitudes in the summer hemisphere. At low latitudes, Kursinski and Gebhardt 
(2014) determined the 1-sigma uncertainty in specific humidity to be 0.14 g/kg at 350 mb and 
0.39 g/kg at 725 mb and estimated the magnitude of the bias to be no more than 0.03 g/kg. 

GPS-RO’s ability to routinely penetrate through clouds combined with its insensitivity to surface 
emissivity eliminates sampling biases that limit other satellite measurement systems. A caveat 
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with present GPS-RO derived water vapour is that in warm conditions typically found in the 
subtropics in particular, GPS-RO water vapour profiles in the boundary layer can be biased low 
when there is a sharp contrast in the water vapour concentrations between dry free 
tropospheric air and moist boundary layer air below. This contrast produces a very large 
vertical gradient of refractivity across the boundary layer top (trade wind inversion) that causes 
the radius of curvature of the occultation signal path to be smaller than the radius of the Earth, 
a condition called super-refraction (SR).  

When SR occurs, the standard inversion technique produces refractivity profiles that are biased 
low in the boundary layer (Xie et al., 2006, 2010). Xie et al (2006) developed an inversion 
method that accounts for SR and produces unbiased water vapour profiles in the boundary 
layer. Because it has been difficult to determine when SR is occurring in the COSMIC profiles, 
the Xie et al method has not yet widely been used. To overcome this challenge, the new GNSS 
RO receivers on COSMIC 2 have been designed with much higher signal to noise ratios to 
enable routine detection of SR such that the Xie et al. inversion method can then be used to 
produce unbiased boundary layer profiles. 

The number of GNSS occultations should increase substantially beginning in 2017 with the 
COSMIC 2 mission scheduled to launch 6 satellites in 2017 and possibly a second set sometime 
later.  Successors of GRAS will fly on EPS-SG with a sustained operation until ~2040. 
Commercial GNSS RO constellations have begun with SPIRE having launched several satellites 
already and GeoOptics and PlanetiQ announcing plans to do so as well.  NOAA has initiated a 
plan to assess the quality and utility of these data beginning in 2017.   

A new orbiting remote sensing system, called the Active Temperature, Ozone & Moisture 
Microwave Spectrometer (ATOMMS), is a cross between GPS-RO and the Microwave Limb 
Sounder. By actively probing water vapour, ozone and other absorption lines at cm and mm 
wavelengths in a satellite-to-satellite occultation geometry ATOMMS can simultaneously profile 
water vapour, temperature, pressure, and ozone as well as other important constituents 
independent from models and analyses. ATOMMS profiles of water vapour should extend from 
near the surface into the mesosphere with ~1% precision and still better accuracy, with 100 m 
vertical resolution.   

 

3.1.3 Sampling Biases 

A key aspect from a user perspective is the understanding of the sampling biases of each 
type of sensor. Not one sensor measures water vapour in all sky conditions, over all surfaces, 
and at a high temporal and spatial resolution. Water vapour climate data records from satellite 
typically either combine a time series of several models of the same or very similar instruments 
(e.g. Wentz and Schabel, 2000), or blend a variety of different sensors (e.g. Vonder Haar et al. 
2012, Lindstrot et al. 2014). Table  3-1 lists some major sensors used for water vapour climate 
data records and the conditions where their observations are typically used for climate 
research. Further discussions of associated uncertainties are provided in section  6.1. 

 

Table  3-1: Sampling capabilities of major instruments used for climate data records. 

 Clear Cloudy* 

Water 
Vapour 
Profile 
 

Land 
AIRS 
IASI 
GPS-RO 

Ocean 
AIRS 
IASI 
GPS-RO 

Land 
GPS-RO 
Radiosondes 

Ocean 
GPS-RO 
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GOES Sounder 
Radiosondes 

 
 

GOES Sounder 

TCWV GPS-Surface 
MSG SEVIRI 
MERIS 
MODIS 
Radiosondes 

 GPS-Surface 
Radiosondes 

SSM/I 
AMSR-E 
TMI 
TMR 
AMSU 
SSMIS 
 

*Cloudy is defined as optically thick overcast, not broken or very thin clouds. 
 

3.1.4 Summary of sensors for the water vapour clima te record 

In Table  3-2, a summary of the main sensors used for global water vapour climate data 
records is presented, along with their level of intercalibration. Intercalibration is a moving 
target and progress continues to be made via a variety of efforts, including the Global Space-
Based Inter-calibration System (GSICS - https://www.wmo.int/pages/prog/sat/GSICS/) that 
supports intercalibration needed for data assimilation and numerical weather prediction. The 
intercalibration level in Table  3-2 is ranked as: 

 High: Published literature and comparison to other sensors available 
 Medium: Some work has been done, but more remains 
 Low: Little or no intercalibration has been performed 
 

Table  3-2: Summary of main satellite instruments used for climate data records. Spatial resolution is 
typically given at nadir. 

Sensor Type Platform Spatial 
Number of 
channels 

Intercalibration 
Level 

(A)ATSR Visible, NIR 
and IR 
radiometer 

Polar  1 km 7 Medium-High 

AIRS Infrared 
Hyperspectral 
Sounder 

Polar 15 km 2378 High 

AMSR-E 
 

Microwave 
Imager 

Polar 12 km 12 High 

AMSU-B / 
MHS 

Microwave 
Sounder 

Polar 15 km  5 Medium 

GOME UV and visible 
spectrometer 

Polar  40 km x 320 
km  

3584 Medium 

GPS-RO 
 
 
 

Radio 
Occultation 
Limb Sounding 

Middle 
earth orbit 

~200 km 
along a ray 

2 High 
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HIRS Infrared 
Broadband 
Sounder 

Polar 20 km 20 Medium 

IASI Infrared 
Hyperspectral 
Sounder  

Polar 12 km  8461 High 

MERIS 
 

Visible and NIR 
spectrometer 

Polar 1 km 15 Medium-High 

MODIS 
 

Visible, NIR 
and IR 
spectro-
radiometer 

Polar  0.25 – 1 km 36 Medium 

MWR Microwave 
Imager 

Polar 20 km x 20 
km 

2 Medium 

SSM/I Microwave 
Imager 

Polar 40 km 7 High 

SSM/T-2 
 

Microwave 
Sounder 

Polar 50 km 5 Low 

TMI 
 

Microwave 
Imager 

Low 
inclination 
tropical 
orbit 

10 km 9 High 

TMR 
 

Microwave 
Imager 

Polar 11 km x 5 
km 

3 Medium 

 

3.1.5 Reanalyses 

Reanalysis systems are typically based on advanced operational atmospheric general 
circulation models and include data assimilation schemes. The data assimilation schemes differ 
among each other by the degree of complexity (i.e., 4D vs 3D), by the assimilation strategy 
(i.e., assimilation of geophysical parameters vs assimilation of radiances) and by data input. All 
major reanalyses assimilate a large diversity of data from observing system like radiosondes, 
ground-based GPS and GPS-RO, diverse satellites, buoys and ships and more. During operation 
period these systems were operated with a fixed version, while data input to the reanalysis 
system might have changed over the years. Reanalysis products are generated in offline mode 
and several reanalysis centres provide near real time services. The major purpose to provide a 
product which allows to analyse the weather and climate and how it changes over time. 
Reanalyses provide global coverage and cover the full troposphere and stratosphere. An 
advantage is the large diversity of gap-free geophysical parameters. More information can be 
found in the references given in Table  3-3 as well as at http://www.reanalyses.org and at 
http://s-rip.ees.hokudai.ac.jp/, the webpage of the SPARC reanalysis intercomparison project 
S-RIP. 
 

3.2 Potential sources of uncertainties 

A. Gambacorta (NOAA), H. Brogniez (U. Versailles/LATMOS) 
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The focus of this section is to provide a general description on the sources of errors in 
satellite-based retrievals of water vapour. Understanding these sources of uncertainty is central 
for a climate quality assessment of a water vapour retrieval product. Here the discussion of 
uncertainties is oriented at GRUAN practices. 
Following the GRUAN guidelines, the consistency between the retrieval and the truth (or a 
reference) is obtained by appropriately relating the computed retrieval bias to the combination 
of three inherent error sources: 
 
 Xret – Xtru < k [εt

2
 + εr

2
 + εcoll

2]1/2 Eq.  3.1 
 
where Xret is the actual water vapour retrieval profile, Xtru is the water vapour truth profile. The 
elements in the parenthesis are respectively the truth error estimate, εt; the retrieval error 
estimate εr; and the temporal and spatial mismatch between truth and retrieval profile, εcoll. 
The parameter k is a scaling parameter used to scale the sum of all contributing error 
estimates with respect to the truth error estimates. It has undergone different definitions with 
time.  
 

3.2.1 Sources contributing to the reference error e stimate εt 

GRUAN standards now request uncertainty estimates for all upper-air parameters on each 
individual measurement level. All sources of uncertainty in the truth ensemble should be 
integral part of the truth data record (Miloshevich et al., 2006; Miloshevich et al, 2009; Immler 
et al, 2010; Nash et al., 2010). The list below outlines the main sources of temperature and 
water vapour uncertainties. 
 (i) Temperature systematic errors: Some sources of errors are more significant than 
others, depending on the radiosonde type, and their uncertainty also varies. Overall four main 
sources have been identified, although not all of them are relevant for a given probe:  

• The solar radiative heating of the air in direct contact with the sensor polymer (normally 
corrected, correction uncertainty is provided). 

• Temperature spikes due to patches of warm air coming off the sensor housing and the 
balloon (also corrected for, correction uncertainty is provided). 

• Evaporative cooling of the wetted sensor after exiting a cloud (not corrected because 
too difficult to evaluate, but is flagged). 

• Sensor time lag, induced by the finite response time of the sensor to more or less sharp 
gradients (sometimes corrected, see Miloshevich et al., 2004, but overall negligible). 
This results in a smoothing of the profile. 
 
(ii) Humidity systematic errors: Three main sources of humidity error have been 

identified: 
• Daytime solar heating of the sensors, thoroughly documented for the Vaisala probes, 

which yields to the measured RH near the sensor to be lower than the ambient air. 
• Sensor time-lag at temperatures below about -40°C, more specifically important above 

and below cirrus layers at the tropopause (steep gradients of humidity). 
• Temperature-dependent calibration correction. 

 

3.2.2 Sources contributing to the retrieval error e stimate, εr 

Retrieval error estimates result from the summation of a smoothing and a measurement 
error. 
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 (i) Smoothing errors: Smoothing errors originate from the smoothing effect of the 
observing system (the combination of measurement and inversion) that operates the 
measurement on the atmospheric state. The smoothing operator is expressed by the averaging 
kernel function A (see section  2.5). The retrieval solution, as derived from a traditional optimal 
estimation approach, can be expressed as a weighted average of the truth profile and the a 
priori (Xap), the weights being defined by the averaging kernel. Specifically, we can write: 
 
 Xret = A*Xtru + (I-A)Xap Eq.  3.2 
   
As explained in Rodgers (2000), in an ideal case, the averaging kernel would be a delta 
function of pressure. Nonetheless, each channel is characterized by a distinctive single peaked 
but coarse averaging kernel function. The coarse feature provides a simple characterization of 
the relationship existing between the true state and the retrieval.  
Analysis of averaging kernels can explain important features of a retrieval algorithm, such as 
the vertical resolution and effective sensitivity of a retrieval profile and the precise contribution 
provided by the a-priori to retrieval solution. Therefore, averaging kernels should be an integral 
part of a profile data record. Thus also the uncertainties of the a priori information and of the 
averaging kernel impact to the retrieval uncertainty. 
 

(ii) Measurement errors: measurement errors originate from different sources. These 
are: 1) errors in the forward model relative to the real physics and errors in the parameters 
used in the forward model; 2) instrument noise and calibration errors; 3) spectrally correlated 
errors. Measurement errors can be confounded with real atmospheric signal and introduce an 
error in the final retrieval products. For this reason, all sources of error in the measurements 
should be evaluated as an integral part of a retrieval product assessment.  
 

3.2.3 Temporal and spatial mismatch error sources 

A number of studies have proven that temporal and spatial mismatching existing 
between the truth and the retrieval can introduce misleading results in a retrieval performance 
effort (Sun et al., 2013). This is particularly true for water vapour retrievals over land where 
surface emissivity has high variability in time and space. For instance, it has been shown that 
up to a 10% RMS increase can be observed per 100 km-mismatch between the location of the 
reference profile and the retrieval ensemble. Closely matched reference profiles are highly 
favourable but generally of limited availability. Even then the reference data may not be fully 
representative of the scene observed by the satellite. In section  6.3 more details and potential 
ways forward are discussed. Hence, particular attention needs to be paid in this assessment 
aimed at obtaining a consistent and uniformly collocated ensemble of reference profiles across 
all satellite data records. 
 
Additional sources of uncertainty are given in Kummerow et al. (2011), which is based on 
output from the first G-VAP workshop and from the work of the GEWEX Aerosol Assessment 
(http://www.meto.umd.edu/~zli/GAPA/gapa_main.htm). Structural uncertainties are further 
discussed in section 6.2. 
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3.3 Data inventory 

F. Fell (Informus GmbH), M. Schröder (DWD), I. Sommerfeld (DWD) 
 

A large variety of (global) long-term water vapour data records have been developed 
over the last decades and are freely available. Overview tables for data records from satellite 
and reanalyses (Table  3-3) and from operational processing systems (Table  3-4) are provided 
herein. These tables are based on the information available on the G-VAP website at 
http://gewex-vap.org/?page_id=13, itself updated based on Schröder et al. (2017a), where 
further technical and ancillary information is offered, including detailed data fact sheets (DFS) 
produced by the GVAP participants. Other information sources include the ECV inventory 
(http://ecv-inventory.com/ecv2/), the Climate Data Guide (https://climatedataguide.ucar.edu/), 
and the http://reanalyses.org/ website. A similar table on data records from ground-based and 
in-situ measurements can be found in section  3.4. Such inventories facilitate access to the 
information needed for a first order decision on the fitness-for-purpose of a particular data 
record.  

 

Table  3-3: Satellite and reanalysis data records. 

Technique Data record Parameters 
More 

Information 
Utilisation 

(A)ATSR AIRWAVE TCWV 

Casadio et 
al., 2016; 
Castelli et al., 
2015 

Section  5 

AATSR, 
HIRS, 
SSM/I, 
GNSS  

NVAP-M Climate TCWV, WV DFS 
Sections  4.1,  4.2 (TCWV),  4.3 

(TCWV, WV),  4.5,  5,  6.1 
(TCWV) 

AIRS, AMSU, 
HSB  

NASA 
TCWV, WV, 
T 

WEB 
Sections  6.2 (WV) and  6.4 

(WV) 
AIRS, 
AMSU-A, 
CPR, MODIS  

AIRSM_CPR_IND WV, T WEB - 

AMSR-E  REMSS TCWV 
WEB, 
Hilburn and 
Wentz, 2008 

 
Section  5 

AMSR-E  JAXA TCWV WEB Section  5 

AMSU-B  U Miami UTH 
Chung et al., 
2013 

Sections  4.1,  4.2,  4.5 

AMSU-B  LTU UTH WEB Sections  4.1 

ATOVS  CM SAF 
TCWV, WV, 
T 

DFS Section  5 (TCWV) 

COSMIC  ROM SAF WV, T WEB - 
COSMIC  UCAR WV, T WEB Sections  6.1,  6.4 (WV) 
GOME, 
SCIAMACHY, 
GOME2  

UBremen TCWV WEB - 

GOME, GlobVapour TCWV WEB  
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SCIAMACHY, 
GOME2  

Section  5 

GRAS  UCAR WV, T WEB - 

HIRS nnHIRS 
TCWV, WV, 
T 

WEB 
Sections  4.1 (TCWV, WV, 
T),  4.3 (TCWV, WV, T),  5 

(TCWV) 
HIRS  NOAA UTH DFS Sections  4.1,  4.2,  4.5 

HIRS  NOAA 
TCWV, WV, 
T 

Shi et al., 
2016 

Sections  4.4,  5 (TCWV),  6.4 
(WV) 

HIRS UWisconsin TCWV, WV 

Borbas et al., 
2005; 
Seemann et 
al., 2003, 
2008 

Sections  4.3 and  5 

MERIS  GlobVapour TCWV 
Lindstrot et 
al., 2012 

Section  5 

MODIS  MOD08, MYD08 TCWV, WV WEB Section  5 (TCWV) 
MVIRI, 
SEVIRI  

CM SAF UTH DFS Sections  4.1,  4.2,  4.5 

MWR  EMiR TCWV WEB Section  5 

OCO-2 CSU TCWV 
Nelson et al., 
2016 

- 

OMI NASA/Harvard TCWV 
WEB, 
Wang et al., 
2016  

 

Polder  U Lille TCWV WEB - 

Reanalysis  ERA-Interim 
TCWV, WV, 
T 

WEB, Dee et 
al., 2011 

Sections  4.1 (TCWV, WV, 
T),  4.2 (TCWV),  4.3 (TCWV, 
WV, T),  4.5 (TCWV, WV),  5 

(TCWV),  6.2 (WV) 

Reanalysis  ERA-20C 
TCWV, WV, 
T 

WEB, Poli et 
al., 2016 

Sections  4.1 (TCWV, WV, 
T),  4.3 (TCWV, WV, T),  5 

(TCWV) 

Reanalysis  
MERRA, 
MERRA2 

TCWV, WV, 
T 

WEB, 
Rienecker et 
al., 2011 

Sections  4.1 (TCWV, WV, 
T),  4.2 (TCWV),  4.3 (TCWV, 
WV, T),  4.5 (TCWV, WV),  5 

(TCWV),  6.2 (WV) 
Reanalysis  NCEP CFSR TCWV, WV, 

T 
WEB, Saha et 
al., 2010 

Sections  4.1 (TCWV, WV, 
T),  4.2 (TCWV),  4.3 (TCWV, 
WV, T),  4.5 (TCWV, WV),  5 

(TCWV),  6.2 (WV) 
Reanalysis  JRA55 TCWV, WV, 

T 
WEB, 
Kobayashi et 
al., 2015 

Sections  4.1 (TCWV, WV),  4.3 
(TCWV, WV),  4.5 (TCWV, 

WV),  5 (TCWV) 
SSM/I  HOAPS TCWV DFS Sections  4.1,  4.2,  4.3,  4.4,  4.5, 

and  5 
SSM/I  REMSS TCWV WEB, Hilburn 

et al., 2008 
Sections  4.1,  4.2,  4.3,  4.5,  5, 

and  6.1 
SSM/I  NVAP-M ocean TCWV WEB, Vonder 

Haar et al., 
Sections  4.1,  4.3,  5, and  6.1 
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2012 
SSM/I, 
MERIS  

GlobVapour TCWV DFS 
Section  5 

TES  NASA TCWV, WV, 
T 

WEB 
- 

TMI  REMSS TCWV WEB Section  5 
TOVS TOVS 

Path B 
TCWV, WV, 
T 

WEB, Scott et 
al., 1999 

- 

TOVS  
 

TOVS 
Path A 

TCWV, WV, 
T 

WEB 
- 

 

Table  3-4: Operational satellite data records. These products do not have a companion in the 
satellite/reanalysis list and the list is not complete. All URLs have been successfully tested on 
2016/11/10. 

Technique Data record 
Parameter

s 
More 

Information 
Utilisation 

ATOVS  NOAA 
TCWV, WV, 
T 

WEB 
- 

IASI/AMSU/MHS, 
CrIS/ATMS 

NUCAPS 
TCWV, WV, 
T 

WEB 
Sections  6.3,  6.4 

(WV) 

GRAS ROM SAF 
TCWV, WV, 
T 

WEB 
- 

IASI/AMSU/MHS EUMETSAT 
TCWV, WV, 
T 

DFS 
Sections  2.5 (WV, 

T),  6.3 (WV) 

OCO-2 CSU TCWV 
Nelson et al., 
2016 

- 

SAPHIR ICARE UTH, WV WEB - 
SSMIS, TMI, 
AMSU, MHS, and 
more 

MIRS WV, T 
WEB, Boukabara 
et al., 2011 

- 

 
In addition to the data records listed in Table  3-3 and Table  3-4, a number of data records 
exhibiting one or more of the following characteristics have been used in G-VAP: not derived 
from satellite measurements, not based on reanalysis, or not freely available. This concerns the 
following data records: 

• TCWV from EC Earth (Hazeleger et al., 2010) and MPI-ESM (Müller et al., 2012) in 
section  4.2. 

• WV and T from COSMIC (Kursinski and Gebhardt, 2014) and NCEP FNL in section  6.2. 
• TCWV from ICON model output in section  6.3. 
• WV from the ECMWF IFS analysis in section  6.4. 

 

3.4 Overview of reference observations 

M. Schröder (DWD), F. Fell (Informus GmbH), N. Scott (CNRS/LMD) 
 

In addition to the satellite and reanalysis based data records on atmospheric water 
vapour, a large variety of in-situ and ground-based measurements exists (see Table  3-5 for an 
overview). Again, this table is based on information available at http://gewex-
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vap.org/?page_id=13, where further technical and ancillary information is offered, including 
detailed DFS produced by the GVAP participants. 

 

Table  3-5: Ground-based and in situ data records. All URLs have been successfully tested on 
2016/11/10. 

Technique Data record Parameters 
More 

Information 
Utilisation 

FPH  NOAA WV WEB - 

FTIR 
MUSICA, 
NDACC 

WV 
WEB, 
Schneider et al., 
2012 

- 

Ground-based 
GNSS  

UCAR TCWV 
DFS, WEB, 
Wang et al., 2007 

Sections  3.4 and  6.1 

Lidar  NDACC WV 
WEB, Leblanc et 
al., 2012 

- 

Lidar  ARM TCWV, WV, T WEB - 
MWR  NDACC TCWV, WV WEB - 
MWR ARM TCWV, WV, T WEB_1, WEB_2,  

Cadeddu et al., 
2013 

- 

Radiosonde  GRUAN TCWV, WV, T 
WEB, Dirksen et 
al., 2014 

Sections  2.5,  6.4 

Radiosonde IGRA TCWV, WV, T WEB, Durre et al., 
2006 

- 

Radiosonde  HomoRS92 TCWV, WV, T Dai et al., 2011 Sections  3.4,  4.1 
Radiosonde ARSA  TCWV, WV, T WEB Sections  3.4,  4.4 

Sun photometer  AERONET TCWV 
WEB, Holben et 
al., 2001 

Section  3.4 

 
In addition to the data records listed in Table  3-5, additional data records have been used 
which are either not multi-station or not freely available: 

• TCWV from ground-based GPS at ARM sites in section  4.3 and WV from radiosondes at 
ARM site in section  2.5. 

• WV from the Characterised Radiosonde Measurements (CRM, Trent et al., 2016) and 
from AEROSE (Nalli et al., 2013) in section  6.4. 

 
Of particular interest to G-VAP are long-term (at least a decade) multi-station (at least a few 
tens of stations) ground-based and in-situ data records which ideally have been quality 
controlled, intercalibrated/homogenised and consistently reprocessed.  

Three such radiosonde records constitute a long-term time series of tropospheric water vapour 
(ARSA, homogenised IGRA, IGRA) from multiple stations. Particularly the water vapour data 
suffer from measurement biases among others due to changes of the moisture sensors, 
particularly between nations. Radiosonde water vapour quality is impaired at cold temperatures 
below -40° C. There have been several efforts to intercalibrate or homogenize the radiosonde 
record (e.g. Durre et al., 2008; Dai et al., 2011), and progress has been made, particularly for 
lower tropospheric moisture at temperatures not far below freezing. Radiosondes from the 
GRUAN network largely fulfil the quality requirements. As the GRUAN is still expanding such 
data is highly relevant for future climate analysis.  
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Long-term multi-station records are also available from ground-based GNSS or GPS stations 
which deliver all-weather, high-temporal (~30 minutes) resolution TCWV retrievals over land 
and at a few offshore platforms such as oil rigs. These sensors require a precise coincident 
surface pressure measurement to remove the hydrostatic (dry) delay portion of the signal in 
order to solve for the wet delay. Model surface pressure can be used for GPS signals in place of 
a collocated barometer. Ground-based GPS-derived TCWV is of high accuracy (RMS errors < 2 
mm), and these measurements are commonly used as ground truth to validate other TCWV 
retrievals such as from satellites (e.g., Lindstrot et al., 2012). 

Finally, long-term multi-station water vapour data is available from AERONET. In a recent paper 
(Perez-Ramirez et al., 2014) its quality was assessed through comparison to microwave 
radiometers, GPS and radiosondes at ARM sites. A dry bias of 5-9% is observed which depends 
on the reference used. 

In the following we briefly introduce a merged radiosonde archive which has been produced 
explicitly for G-VAP. The merged archive is composed of reformatted, partly flagged and 
collocated radiosonde data from the ARSA and HomoRS92 radiosonde archives. The merged 
data record covers the common period from 1 January 1979 to 31 December 2010. More 
details are available in Scott et al. (2015). 

The ARSA and HomoRS92 radiosonde are multi-station long-term radiosonde archives. Both 
pursue different strategies to improve raw radiosonde data, with ARSA focussing on 
radiometric consistency with IASI and HomoRS92 focussing on stability. Information on both 
radiosonde archives can be found in section  4.3 and references therein.  

The spatial collocation between the two data records is perfect due to the same origin of the 
data. HomoRS92 radiosonde ascents are rejected if they do not reach 300 hPa. This filtering is 
based on the fact that this specific criterion is a prerequisite for the water vapor profile in 
ARSA: it is thus obvious that none of the HomoRS92 reports which do not reach 300 hPa will 
find a companion in the ARSA database. Thus, we have, common to the two databases, 940 
stations and, for all these stations, more than 2,800,000 radiosondes reports. 

Values in HomoRS92 are generally given at standard pressure levels. 17 standard levels 
between surface and 1 hPa have been identified to be available throughout this archive. We 
have retained the surface as 18th level (see Table  3-6). Temperature and water vapour profiles 
of ARSA have been linearly interpolated to these 18 standard pressure levels. 

 

Table  3-6: Common pressure levels. 

Level 1: 1 hPa   Level 2: 5 hPa  Level 3: 10 hPa   Level 4: 20 hPa 

Level 5: 30 hPa   Level 6: 50 hPa Level 7: 70 hPa  Level 8: 100 hPa  

Level 9: 150 hPa Level 10: 200 hPa Level 11: 250 hPa  Level 12: 300 hPa  

Level 13: 400 hPa Level 14: 500 hPa  Level 15: 700 hPa Level 16: 850 hPa 

Level 17: 1000 hPa Level 18: SURFACE   

 

After quality control (see Scott et al., 2015 for details) and interpolation, ARSA, HomoRS92 and 
raw radiosonde data file are put together into a unique file. Figure  3-1 gives a representation of 
the number of collocated data as a function of the pressure level. 
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Figure  3-1: Number of collocated ARSA and HomoRS92 data as a function of the pressure level. 

 
As an exemplary result Figure  3-2 shows the mean difference between ARSA and HomoRS92 
for two layers (as defined in Scott et al., 2015). 
 
 

  

Figure  3-2: Map projection of the bias (ARSA-HomoRS92) on water vapor (full period). Units are in 
percent. Layer 850 hPA-Surface (left) and layer 300-100 hPa (right). 

 

The merged multi-station long-term radiosonde archive covers the period January 1979 
(beginning of ARSA) to December 2010 (end of HomoRS92) with 940 stations. Detailed 
conclusions and recommendations are given in Scott et al. (2015) and the merged archive is 
available at http://www.gewex-vap.org. Here we recall the data record specific 
recommendations. 
HomoRS92: 

• Continue this very important and very useful work. 
• Continue distributing the results of the homogenization: add the information of the 

period chosen as reference. 
• In the IGRA file, as it is distributed to users, make available the type of radiosonde used 

for each station. 
ARSA: 

• Improve the vertical description of the atmosphere in the “near surface” pressure grid 
by e.g. considering the significant and intermediate pressure levels available in the 
radiosonde reports. 
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• Increase the vertical resolution of the ARSA pressure grid at these levels of the upper 
troposphere and lower stratosphere transition. 

• As the ARSA database appears to be very well suited to improve on the high accuracy 
climate record from high resolution IR spectra begun with the IASI instrument, further 
examine a process of homogenization based on the remarkable radiometric stability of 
the MetOpA/IASI instrument – and later on of the MetOp series B, C, IASI-NG - and the 
accuracy of the 4A/OP model. 
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4 Analysis of gridded data records 

4.1 Inter-comparison 

4.1.1 TCWV 

M. Lockhoff (DWD), M. Schröder (DWD), A. Walther (U. Wisconsin) 
 

Within this section results are presented from the intercomparison of all long-term TCWV 
data records, i.e. those data records covering at minimum 20 years. The intercomparison 
analysis aimed at identifying times and areas where data records agree and where differences 
exist, as well as explaining where these differences stem from. 

 

4.1.1.1 Data 

Table  4-1 provides an overview of the data records used. These eleven long-term data 
records include five satellite-based and six reanalysis products. For more detailed information 
on the data records the reader is referred to section  3.3 and to the links therein. 

 

Table  4-1: Summary of the TCWV data records used within the intercomparison analysis. 

ID Technique Data record Provider 

NNHIRS HIRS NNHIRS NASA 
NVAP-M AATSR, HIRS, SSM/I, 

GNSS 
NVAP-M Climate CSU 

NVAPO SSM/I NVAP-Ocean CSU 
HOAPS SSM/I HOAPS 3.2 CM SAF 
REMSS SSM/I, SSMIS, AMSR-E, 

WindSat, AMSR2 
Version-7 Release-1 
TPW CDR 

REMSS 

ERAINT Reanalysis ERA-Interim ECMWF 
ERA20C Reanalysis ERA20C ECMWF 
MERRA Reanalysis MERRA NASA 
MERRA2 Reanalysis MERRA2 NASA 
JRA55 Reanalysis JRA-55 JMA 
CFSR Reanalysis NCEP CFSR NOAA/NCEP 

 
The above listed long-term TCWV data records have also been compared to data from a 
radiosonde archive. For this purpose, we used the HomoRS92 data record which is a multi-
station long term radiosonde archive based on IGRA (Durre et al., 2006). This data record 
consists of quality controlled radiosonde and pilot balloon observations at more than 1500 
globally distributed stations with varying temporal coverage. The archive has been further 
improved by additional quality control, data gap filling, and additional radiosonde data. The 
homogenisation method described in Dai et al. (2011) has been applied and the solar radiation 
dry bias for Vaisala RS92 radiosonde data from 63 stations has also been corrected (Wang et 
al. 2013). HomoRS92 covers the period January 1945 to December 2010 (see section  3.4). 
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4.1.1.2 Methodology 

The paragraphs on data preprocessing and common masks also apply to results 
presented later in sections  4.1.2,  4.3.1 and  4.3.2 as they built upon the same database. The 
following paragraphs are partly condensed from Schröder et al. (2016): 
• Data preprocessing: The analysis was carried out on the basis of monthly means. All data 

records except NVAP-M and NVAPO are available as monthly means. NVAP-M and NVAPO 
contain daily averages and the daily values within a month are arithmetically averaged 
using all valid observations to compute monthly means. Prior to further processing fill 
values, missing values and values that are outside the data record specific validity range 
were assigned a unique undefined value. In order to allow a straightforward inter-
comparison the analysis was carried out on a common grid and time period. The common 
time period covers the years 1988 to 2008. The common grid was defined as the minimum 
integer multiple applicable to most of the data record grids which leads to a grid resolution 
of 2°x2°. 
Note that this procedure impacts the data record’s internal variance and characteristics of 
extremes. In mountainous regions systematic differences might still occur due to 
differences in original spatial resolution. 

• Preprocessing of HomoRS92: Only those stations from the HomoRS92 data record were 
taken into account where monthly data series were available without gaps over the entire 
common time period, that is, from 1988 to 2008. Monthly means were calculated, if at least 
two profiles reaching 300 hPa were available per day on 20 days per month. These filtering 
criteria are fulfilled by 55 stations with the majority being located in China. Data from these 
stations were used for comparison. 

• Common masks: The land/sea mask is computed from the Global 30 Arc-Second Elevation 
(GTOPO30) of the United States Geological Survey (available at 
https://lta.cr.usgs.gov/GTOPO30). The sea-ice mask is based on the HOAPS sea-ice mask 
(Andersson et al., 2010). We applied a conservative land-sea / sea-ice mask, that is, the 
grid was classified as land/ice contaminated if at least one pixel within the grid box at any 
time during the common period was classified as land/ice covered.  

• Intercomparison: The following three methods were used to identify regions and times of 
agreement and disagreement: 

- Hovmöller diagrams,  
- Bias and standard deviation relative to ensemble means, 
- Regional time series. 

Hovmöller diagrams show zonal monthly anomaly time series with area averages being 
calculated as latitude-weighted averages, and anomalies as departures from climatological 
means per month. The Hovmöller diagrams were used to compare the spatio-temporal 
variability and changes among the data records. Moreover, they give a first impression 
regarding the homogeneity of the data records. Ensemble means and standard deviations 
were calculated for each individual grid box using all data records available. The standard 
deviation maps were used to identify regions where most of the data records agree or 
disagree. For regions with large differences between the data records, regional (anomaly) 
time series were plotted  to get a more detailed view on the different data records and thus 
possible hints for explaining the observed differences. Additionally, we extended this 
intercomparison through a comparison to data from HomoRS92. For the comparison to 
HomoRS92 TCWV values were extracted from the gridded data records for the grid box 
closest to the considered station. 
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4.1.1.3 Results 

Figure  4-1 shows Hovmöller diagrams with monthly zonal TCWV anomalies over ocean 
for all eleven long-term data records considered. The most prominent feature visible in all 
diagrams (with the exception of NNHIRS) is the pronounced positive anomaly in the tropics in 
1997/1998 which is related to the strong El Niño event. Several La Niña events can be 
observed as well such as the negative anomalies in the years 1998/1999/2000 (right after the 
1997/1998 El Niño) as well as in 1988/89 and 2007/2008. These negative anomalies are 
however much less pronounced than the positive anomaly related to the 1997/1998 El Niño. 
Beside these individual events all data records show changes in TCWV that differ in magnitude 
and sign depending on the data record and on the region. For ERA-Interim a slight negative 
trend in the early 90s is visible over all latitudes except for the polar region. Here TCWV values 
either tend to increase over the decades (northern hemisphere) or do not show any obvious 
tendency at all (southern hemisphere). For NNHIRS the negative trend is even more 
pronounced and includes also the southern polar region. Outside of the polar region, the trend 
is largest in the subtropics (30° to 45°N and S, respectively). The rather abrupt change in 1992 
hints at a homogeneity issue (breakpoint). This was further investigated by looking at regional 
time series in section  4.3. In contrast to ERA-Interim, the rest of the reanalysis data records 
with exception of JRA55 (that is ERA20C, JRA55, CFSR, MERRA and MERRA2) show positive 
trends over all latitudes. The same is also true for NVAP-M with the exception that also here 
the polar regions show a negative trend. The variability patterns of HOAPS, REMSS and NVAPO 
are very similar which is not surprising considering the fact that all of them heavily rely on 
SSM/I observations and can thus be expected to be similar. For all three data records TCWV 
also tends to slightly increase over time but the changes are much less pronounced than in the 
other data records. JRA55 is the only data record for which there is no clear trend, except for 
the northern polar region that show increasing TCWV values over time as do the other 
reanalysis data records. 
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Figure  4-1: Hovmöller diagrams for 21 years of monthly zonal TCWV anomalies [%] over ocean for all 

long-term data records (top to bottom): ERA-Interim, ERA20C, JRA55, CFSR (leftmost row), MERRA, 
MERRA2, NVAPM, NNHIRS (middle row), HOAPS, REMSS, NVAPO (rightmost row). 

Over land the temporal variability is much more pronounced and the patterns of variability vary 
more obviously between bands of latitude compared to the ocean areas, as can be see from 
Figure  4-2. The latter exemplarily shows Hovmöller diagrams for three of the eight data 
records with valid data over land areas, namely ERA-Interim, NVAP-M and NNHIRS. The rest of 
the reanalysis data records show variability patterns that are very similar to ERA-Interim and 
are therefore not shown in Figure  4-2. The variability patterns of the reanalysis data records 
differ however a lot from the ones based on data of the two satellite-based data records. In 
case of the latter the variably patterns are not only much stronger pronounced but also differ 
much more between the latitude bands and show clear trends and tentative breakpoints 
(inhomogeneities). Such tentative breakpoints are visible for NVAPM for example in 1992 and 
2002 over the northern midlatitudes (that is 30 to 45°N), in 1994 around 30°N and 30-45°S 
and in 1995 over the equator region. In case of NNHIRS, the dominant breakpoint feature over 
ocean around 1992 (see Figure  4-1) does not show up, with exception of the southern polar 
region. Instead NNHIRS TCWV anomalies show tentative breakpoints in 1996/1997 over the 
northern and southern subtropics as wells over the northern midlatitudes.  
In order to find out which regions exactly are affected by these rather large differences 
ensemble mean and standard deviations were calculated which are plotted in Figure  4-3. 
Regions with large standard deviations point at large differences between the data records. As 
expected from the Hovmöller diagrams the standard deviations are rather low over ocean with 
relative standard deviations generally below 15%, whereas over land regions are found 
reaching values larger than 25%, especially in the polar, desert and high mountain regions. 
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Figure  4-2: Hovmöller diagrams for 21 years of monthly zonal TCWV anomalies [%] over land for three 

exemplary long-term data records: ERA-Interim (left), NVAPM (middle) and NNHIRS (right). 

 

Figure  4-3: Ensemble mean (left), absolute (middle) and relative (right) standard deviation calculated 
based on all available data records. Please note that the number of available data records differs 
regionally (over land reduced to 8 instead of 11) as some are only available over (ice-free) ocean 
areas (HOAPS, REMSS, NVAPO) (updated from Schröder et al., 2016). 

Figure  4-4 shows the bias relative to the ensemble mean for all eleven data records considered 
and thereby makes it possible to identify the data records causing the regions of larger 
standard deviation visible in Figure  4-3. It can be seen for example that the larger standard 
deviations over the African continent and South America are mainly triggered by the large 
discrepancy between the NNHIRS and NVAPM data records. But also some reanalysis products 
(for example ERA20C and MERRA2) show large discrepancies over land, especially Africa. The 
NNHIRS map shows large biases over ocean in the stratus regions. The breakpoint features 
visible in the ocean-only Hovmöller plots over the subtropics (up to 45°N/S) most likely stems 
from homogeneity issues in these regions. 
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Figure  4-4: Bias relative to ensemble mean for all long-term data records. 

In order to get a better understanding of the differences between the data records and 
features observed in individual data records regional time series were calculated. Figure  4-5 
shows the intercomparison of all available time series for the Saharan region. All eleven TCWV 
time series (upper panel) show a pronounced seasonal cycle with a maximum in summer and 
minimum values in winter. For NVAPM and NNHIRS a change in the magnitude of this seasonal 
cycle can be observed which stick out even more in the time series of the deseasonalized 
anomalies shown in the lower panel. For NVAPM this change occurs in 1994, when the annual 
maximum value changes from 35 kg/m² to 25 kg/m². For NNHIRS the change is a bit less 
pronounced and takes place in 1996 (average magnitude value drops from approximately 20 
kg/m² to 13 kg/m²). While NVAP-M exhibits pronounced annual cycles in the anomaly time 
series prior to 1996 NNHIRS shows noticeable anomalies prior to 1998. 
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Figure  4-5: Time series of TCWV (top) and TCWV anomalies (bottom) over the Sahara as depicted by all 
long-term data records available over land. 

An exemplary comparison of TCWV differences relative to HomoRS92 is shown in Figure  4-6 for 
the site of Lindenberg, (Germany). All reanalysis data records (upper panel) show a small bias 
which is close to 0.5 kg/m2 after 1994. The consistency among the reanalysis data records is 
generally large, except for generally increased variances prior to 1994 and a relatively large 
anomaly in 1992. Both satellite-based data records (NVAPM and NNHIRS) exhibit larger 
variances and larger biases with an overall bias of approximately -3 and -5 kg/m2, respectively. 
The strong change in NVAPM anomalies over the Sahara between 1993 and 1995 are not 
evident here.  
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Figure  4-6: TCWV bias (in units of kg/m2) for ERA-Interim, MERRA, CFSR, and NVAP-M relative to 

HomoRS92 for the location of Lindenberg, Germany (top) and TCWV anomalies (bottom). Numbers 
behind the data record names indicate bias and RMS, respectively (updated from Schröder et al. 
2016). 

 

4.1.1.4 Conclusions 

The intercomparison of eleven long-term TCWV data records reveals distinct regions of 
large differences. Regions with most pronounced (relative) differences were found over land 
(rain forest, deserts, Andes, poles). Additionally, several artefacts and breakpoints were 
identified in the time series, which differ in magnitude and sign depending on data record. 
These breakpoints constitute an important source for the differences found and were further 
analysed using homogeneity tests (see section  4.3.1). 
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4.1.2 Water vapour and temperature profiles 

M. Lockhoff (DWD), M. Schröder (DWD) 
 

Within this section results are presented from the intercomparison of all data records 
providing vertical profiles of water vapour and temperature and covering at minimum 20 years. 
As for the TCWV intercomparison, the analysis aimed at identifying times and areas where data 
records agree and where differences exist, as well as explaining where these differences stem 
from. 

 

4.1.2.1 Data 

Table  4-2 provides an overview of the data records used. These data records include one 
satellite-based and six reanalysis products. For more detailed information on the data records 
the reader is referred to section  3.3 and links therein. 

 

Table  4-2: Summary of the data records providing water vapour and temperature profiles used within 
the intercomparison analysis. 

ID Technique Data record Provider 

NNHIRS HIRS NNHIRS NASA 
ERAINT Reanalysis ERA-Interim ECMWF 
ERA20C Reanalysis ERA20C ECMWF 
MERRA Reanalysis MERRA NASA 
MERRA2 Reanalysis MERRA2 NASA 
JRA55 Reanalysis JRA-55 JMA 
CFSR Reanalysis NCEP CFSR NOAA/NCEP 
 

4.1.2.2 Methodology 

Data preprocessing, common masks and intercomparison methods applied are the same 
as described in section  4.1.1.2. In addition, a common surface pressure mask was applied to all 
data records. The common surface pressure mask is computed on monthly basis from MERRA 
monthly mean surface pressure, interpolated to common grid. Data below surface pressure is 
set to the undefined value. In case such information is an integral part of the individual data 
records both masks have been applied. A common surface pressure mask has not been applied 
whenever profile data on original vertical grid are utilised. Here, the common period covers 22 
years (instead of 21 years) and ranges from 1988 to 2009. Data at four levels were considered 
in the intercomparison of spatial maps: 300 hPa, 500 hPa, 700 hPa, and 1000 hPa. 

 

4.1.2.3 Results 

Figure  4-7 shows ensemble mean as well as absolute and relative standard deviations for 
the four levels considered.  The relative standard deviation is depicted for two scenarios: based 
on all data records, that is including NNHIRS (third column) and based on the reanalyses only, 
that is without NNHIRS (rightmost column). The ensemble mean maps show the characteristic 
spatial pattern of specific humidity with largest values in the tropics that decrease towards the 
poles. Specific humidity values also rapidly decrease with altitude, over the tropical ocean for 
example from values around 17 g/kg at 1000 hPa to 0.5 g/kg at 300 hPa. The regions with the 
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largest standard deviations differ between the four levels. Generally, the relative differences 
between the data records increase with increasing height. At 1000 hPa where land coverage is 
reduced compared to the other levels, relative standard deviations stay generally well below 
15% (third column). At 700 hPa large relative differences between the data records can be 
found over the subtropical high pressure zones, especially over the Southern Atlantic and the 
Eastern Pacific. At 500 hPa, however, these same areas show lower differences compared to 
the surroundings. At the highest level, that is 300 hPa, differences exceeding 25% are found 
over large areas both over land and over ocean: for example, over Antarctica, the tropical land 
areas and the warm pool. When comparing the third and fourth column of Figure  4-7 it can be 
seen that several difference patterns outside of the tropics stem from NNHIRS. The difference 
among the reanalyses are most pronounced over tropical land areas with largest relative 
standard deviations found at 300 hPa (> 25%) as well as over Antarctica (15-20% at 300 hPa) 
and the tropical warm pool (15 % at 500 hPa and > 20% at 300 hPa). 

The maps can in principle not be directly compared to the TCWV results (that is Figure  4-3) as 
the latter are based on a larger number of data records. Compared to the TCWV 
intercomparison there are only seven data records left and among these there is only one 
satellite-based data record (NNHIRS). Still, results do not change considerable when calculating 
ensemble mean and standard deviations for TCWV based on the reduced set of data records 
(not shown here). The areas of large differences stay the same with exception of reduced 
standard deviation values over the African continent (which were mainly triggered by NVAPM) 
and over the Northern polar ocean areas (which was mainly triggered by SSMI-only data 
records). Some of the regions with large standard deviations identified in the TCWV 
intercomparison also pop up in the intercomparison of the profile data records: The Arctic and 
Antarctic, mountainous regions such as the Andes as well as the subtropical high pressure 
zones. Additionally, there are new regions with high standard deviations which were not visible 
in the TCWV maps, such as the Western African region, the region in the Northeastern part of 
Southern America and the ocean areas located within the latitude band between 0 and 20°S  in 
the Southern Pacific, Southern Atlantic and Indian Ocean (high pressure zones). However, a 
closer look at Figure  4-4 reveals that ERA-Interim and MERRA2 already showed larger 
(absolute) discrepancies from the ensemble mean in some of the regions. 

Figure  4-8 shows ensemble mean and absolute standard deviations based on all temperature 
data records. On the ensemble mean maps one can clearly distinguish east-west temperature 
bands at all levels reflecting the general decrease of insolation from the equator towards the 
poles. Moreover, the selected levels nicely show the decrease in temperature with increasing 
altitude: at the 300 hPa level temperatures are around 50-60 K lower compared to 1000 hPa. 
When looking at the ensemble standard deviation based on all data records, it can be seen 
that, as for WV, largest values are generally found at the uppermost level (300 hPa), except 
close to surface. At 300 hPa, the differences in terms of standard deviation units between the 
data records regionally range from 0.6 K (over Europe, North America and parts of the 
subtropical land and ocean areas) to 1.5 K in the polar regions of both hemispheres. The polar 
regions at 1000 hPa and 700 hPa exhibit standard deviations in the same order of magnitude 
as for 300 hPa, especially in the southern hemisphere. Compared to WV maps the feature of 
large differences between the data records over the tropics is not present in the temperature 
maps. Thus, the observed feature in WV maps can not be attributed to discrepancies in the 
temperature. The same holds for other pronounced difference features in the WV maps with 
exception of the polar region where both WV and temperature maps exhibit larger differences 
between the data records considered. At 1000 hPa, the increased standard deviation values 
over ocean between 20° and 40° of latitude in both hemispheres in the zones of the subtropics 
high pressure areas can be attributed to NNHIRS as they disappear when calculating the 
ensemble statistics solely based on the reanaylsis data records. The same behaviour was 
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already observed for WV. Other features stemming from NNHIRS include the large differences 
at the 700 hPa level found over high elevation areas such as the Andes, Rocky Mountains, 
Himalaya, Greenland etc. and the sharp edge at the equator visible in the 500 hPa map (middle 
column). The latter results from the bias correction which was applied to the input data record 
HIRS NOAA separately for each hemisphere without any smoothing across the equator. 

In order to further investigate the differences found in the standard deviation maps WV and 
temperature time series as well as anomalies were calculated for selected regions showing 
large differences. Figure  4-9 and Figure  4-10 exemplarily depict results for two regions, namely 
West Africa for 300 hPa (respective upper panels, a) and the Pacific stratus region for 700 hPa 
(respective lower panels, b). The regions were defined in Figure  4-38 and Figure  4-41.  

When inspecting the WV time series for the West Africa region (Figure  4-9 a) it can be 
observed that all data records show a pronounced seasonal cycle with a minimum in the boreal 
winter season and largest values during spring and summer with all data records mostly 
showing two local maxima located in April and October. Depending on the data record larges 
values are reached either during spring (MERRA, MERRA2) or autumn maximum (ERAINT, 
ERA20C, JRA55, CFSR, NNHIRS). The magnitude of the seasonal cycle differs considerably 
among the data records with MERRA and MERRA2 showing the largest magnitude with 0.4 
g/kg, followed by ERAINT, JRA55 and CFSR (0.3 g/kg). Lowest magnitudes are found for 
ERA20C and NNHIRS (0.2 g/kg). The latter also show lower values than the others throughout 
the year while MERRA and MERRA2 WV values are largest. The magnitude of the spread and 
therefore of the difference among the data records follows the seasonal cycle of WV with 
smallest (largest) differences in boreal winter (summer). The data records agree concerning 
the observed temporal change in this region (see also deseasonalized time series in the lower 
panel). None of the time series shows any increasing or decreasing trend. 

The time series of WV for the West Pacific stratus region (Figure  4-9 b) show a seasonal cycle 
(expect NNHIRS) with a maximum in austral summer and a minimum  in austral spring, which 
is for most of the data records more clearly depicted from 1998 onwards. Moreover, the spead 
among the data records is much larger before 1998 than afterwards. NNHIRS is the data 
record that shows least seasonal variability and is the only one not showing any increased WV 
values during the El Nino event in 1997/1998.  In contrast to the time series for the West Africa 
region the data records disagree in observed temporal changes in WV: whereas MERRA and 
NNHIRS depict a negative trend, ERA20C shows an increase in WV over time. For the other 
data records it is difficult to discern a distinct trend. 

The regional temperature time series (Figure  4-10) show the similar seasonal cycles as for WV. 
NNHIRS and ERA20C have again lowest values and NNHIRS shows least seasonal variability 
missing the El Nino feature visible in the other data records. For both regions all data records 
show a positive trend which differs in magnitude. NNHIRS and CFSR exhibit largest trends over 
West Africa. MERRA shows the strongest increase of WV values over time over the Pacific 
stratus regions where only NNHIRS stays rather constant. 
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Figure  4-7: Ensemble mean (first column), absolute (second column) and relative (two rightmost 
columns) standard deviation, calculated based on all available WV data records at four levels: 300 
hPa, 500 hPa, 700 hPa, 1000 hPa (top to bottom). The relative standard deviation is depicted for two 
different scenarios: based on all data records (including NNHIRS) and based on the reanalyses only 
(that is without NNHIRS). Please notice the differences in scale between the different layers. 



55 

 
Figure  4-8: Ensemble mean (left) and absolute standard deviation (middle and right) calculated based on 

all available temperature data records at four levels: 300 hPa, 500 hPa, 700 hPa, 1000 hPa (top to 
bottom). The absolute standard deviation is depicted for two scenarios: based on all data records 
(including NNHIRS) and based on the reanalyses only (that is without NNHIRS). 
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Figure  4-9: Time series of specific humidity and specific humidity anomalies over a) West Africa for 300 
hPa and b) over the Pacific stratus regions for 700 hPa. Regions are defined in Figure  4-41. In the 
legend “Nasa” refers to the NNHIRS data records.  

b) 

a) 
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Figure  4-10: Time series of temperature and temperature anomalies over a) West Africa for 300 hPa and 

b) over the Pacific stratus regions for 700 hPa. Regions are defined in Figure  4-41. In the legend 
“NASA” refers to the NNHIRS data records.  
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4.1.2.4 Conclusions 

The regions of large differences identified for WV and temperature data records are 
generally not identical with those found for TCWV. New regions include for example Western 
Africa, the Northeastern part of Southern America and subtropical high pressure zones located 
within the latitude band between 0° and 20°S in the Southern Pacific, Southern Atlantic and 
Indian Ocean. The regions of largest differences vary depending on the altitude: 1000 hPa 
(land), 700 hPa (WV: ocean regions, temperature land and ocean), 500 hPa (tropical and 
substropical ocean and land areas for WV and temperature respectively), 300 hPa (land). 
Regional anomaly time series reveal that, depending on the region, the differences can be 
attributed for example to a rather constant offset between the data records (e.g. for WV over 
West Africa) or to differences in the respective trends of the data records (e.g. for WV over 
Pacific stratus region). The latter might be caused again by the presence of inhomogeneities 
(breakpoints) in the WV and temperature data series. The homogeneities were therefore 
further analysed using homogeneity tests (see section  4.3.2). 

 

4.1.3 UTH 

Q. Yang (U. Washington), L. Shi (NOAA), M. Schröder (DWD) 
 

Water vapour is the most prominent greenhouse gas and about 60% of the natural 
greenhouse effect can be explained with water vapour opacity in the atmosphere (Kiehl and 
Trenberth, 1997). While upper tropospheric water vapour only account for a small fraction of 
the total water vapour mass, it accounts for a large part of the atmospheric greenhouse effect 
and is believed to be an important amplifier of climate change (Held and Soden, 2000). 
Changes in upper tropospheric water vapour in response to warming climate and its feedback 
on climate have been the subject of debate (IPCC, 2007). It is thus important to produce 
accurate, continuous observational records of upper tropospheric water vapour.  

Satellite data records from microwave measurements (polar orbiting satellites) and infrared 
measurements (polar orbiting and geostationary) are available for monitoring the UTH. 
However, there are differences among these instrument observations, including differences in 
radiative properties of the observing channels and differences in vertical and temporal 
sampling. In this study, we compare three available upper tropospheric water vapour 
measurements and try to address and reconcile the differences. 

 

4.1.3.1 Data and Method 

HIRS 
We use HIRS orbital water vapour channel brightness temperatures (version v03r00, after 

Shi and Bates, 2011) from 1978 to 2014 obtained from the National Center for Environmental 
Information (NCEI) Climate Data Record (CDR). This data record was inter-satellite calibrated 
to the NOAA-12 satellite and was limb-corrected.  

In this study, UTH was retrieved based on HIRS water vapour channel brightness temperatures 
following Soden and Bretherton (1996): 

  Eq. 1 

where Tb (K) is the instantaneous water vapour channel brightness temperature and P0 is the 
pressure (hPa) at the 240K-isotherm divided by 300 hPa. The parameters a = 31.5 and b = 
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0.115 K-1 are taken from Soden and Bretherton (1996). Tb with values lower than 226 K, are 
removed according to Gierens et al. (2004).  
 

AMSU/MHS 
AMSU-B and MHS on board NOAA and Metop satellites have a 183±1 GHz channel whose 

spectral characteristics are comparable to those of the 6.7 µm channel (Chung et al., 2011). 
Monthly mean UTH (version 2009) were obtained from Satellite Atmospheric Science Group 
(SASG) of Lulea University of Technology (http://www.sat.ltu.se/projects/uth-clim/). This data 
record was not intersatellite calibrated. Thus, we have included a new intersatellite-calibrated 
long-term AMSU/MHS Tb data record provided by University of Miami (Chung et al., 2013). The 
time series of UTH was then derived following the same retrieval method of SASG with 
parameters of a = 16.474 and b = 0.0702169 K-1 in Eq. 1 (Buehler and John, 2005). The SASG 
data is used in section  4.1 and the U. Miami data is used in section  4.2. 

Chung et al. (2013) also provides regression coefficients to convert the intersatellite-calibrated 
AMSU/MHS Tb data record into UTH. The difference between the applications of the Chung et 
al. (2013) and Buehler and John (2005) coefficients to the U. Miami intersatellite-calibrated Tb 
data leads to an average difference of approximately 29% in UTH. 

 

MVIRI/SEVIRI 
MVIRI radiances and cloud information is taken from ISCCP-DX while SEVIRI data is 

extracted from DWD archive. During preprocessing for the retrieval MVIRI and SEVIRI 
observations are spectrally and radiometrically calibrated to Meteosat-5 (Picon et al., 2003) and 
HIRS onboard NOAA-12 respectively (Breon et al., 2000 and Brogniez et al., 2006). The UTH is 
retrieved under clear sky and low cloud conditions (similar to Eq. 1, see Schröder et al., 2014 
for details). The monthly UTH was averaged from 3 hourly images within each month and 
version 1 product was obtained from the CM SAF 
(http://wui.cmsaf.eu/safira/action/viewProduktList?dId=5) with a spatial resolution of 0.625o 
for the period 1983 – 2009. The current data covers the region of 45°S – 45°N, 45° W – 45°E. 
In this study, the Meteosat UTH was re-gridded to have a spatial resolution of 2.5°x2.5°. More 
details can be found in Schröder et al. (2014). 

 

4.1.3.2 Results 

Geographical distributions 
Figure  4-11 shows the geographical distributions of mean UTH from HIRS Metop satellite, 

MHS Metop satellite and Meteosat averaged over December 2007 - February 2008. The SASG 
product from MHS observations is used in the comparison. The spatial resolution is 2.5°x2.5°. 
All three data records demonstrate notable geographic variations of UTH that are consistent 
with regions of deep convections. In particular, the UTH displays maxima over the western 
Pacific warm pool and monsoonal regions of central Africa and northern Brazil. Compared with 
MHS, UTH from HIRS is generally drier in the tropics except for the convective cloudy regions 
where HIRS has significantly wetter UTH (Figure  4-11, Figure  4-12 and Figure  4-14). The high 
UTH from HIRS is due to low values of the water vapour channel Tb. Whether these low Tb are 
cloud-contaminated is subject to future studies.  

We restricted the spatial coverage to 20°S – 20°N, 45° W – 45°E in the following comparisons, 
to fit to the Meteosat area. Averaged over the region of 20°S – 20°N, 45° W – 45°E, the UTH 
from MHS is about 22% and 26% higher than UTH retrieved from HIRS and Meteosat, 
respectively (Figure  4-14 (d and f)). UTH from HIRS is comparable to that from Meteosat 
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(Figure  4-13 and Figure  4-14(b)). Averaged over the region, HIRS UTH is about 4% higher 
than Meteosat (Figure  4-14 (e)). Relatively larger scatter is found in the scatterplot of HIRS-
Meteosat and HIRS-MHS compared with the scatterplot of MHS-Meteosat. One possible reason 
for the larger scatter is that HIRS is column-clear-sky while MHS observes under almost all 
skies and Meteosat is clear sky and above low level clouds. Therefore, Meteosat is smoother 
and exhibits larger correlation with MHS. John et al. (2011) assessed the clear sky bias by 
subsampling the UTH product from AMSU. They observe a bias between clear-sky and almost-
all-sky observations of 9 %RH for daily area weighted tropical averages which can be as large 
as 50% in convective regions. Also, Shi et al. (2013) analysed the difference between HIRS and 
AMSU-B Tb. They found a difference of about 7-10 K, depending on observed Tb. The 
microwave observations are warmer due to differences in emissivity and SRF, with AMSU-B 
peaking lower in the atmosphere. Other factors can be misclassified clouds and differences in 
absolute radiometric calibration. 

HIRS makes two measurements per day at a given point while the Meteosat UTH product has a 
3 hourly temporal resolution. We collocated HIRS Metop with Meteosat over 2007/12 -- 
2008/02 to get more insights into the difference between HIRS and Meteosat UTH. We also 
constrain the collocation points to locate within 20°S-20°N. In total, there are 17433 collocated 
points. The collocated tracks are shown in Figure  4-15. On average, HIRS UTH is about 21% 
wetter than Meteosat at the collocated points (Figure  4-16). As in Figure  4-14, a large scatter 
of the HIRS and Meteosat UTH is seen (Figure  4-16 (c)) which can be explained with 
differences in cloud sampling.  

Besides differences in SRF and absolute calibration different weighting functions were utilised 
during retrieval design. Thus, we used the RTTOV9.3 model (Matricardi et al., 2004) and the 
training profile data base described in Schröder et al. (2014) to compute the relative humidity 
Jacobians JRH for Meteosat5 and HIRS on NOAA-12. Using these JRH and the weighting 
function defined in Soden and Bretherton (1996) as averaging kernels for the profile data base 
differences in UTH and in the peak height of the averaging kernel as a function of spectral 
response function (HIRS on NOAA-12, Meteosat5) and weighting function (JRH and after Soden 
and Bretherton, 1996, SB96) were assessed. JRH was used during the Meteosat retrieval 
development (Brogniez et al., 2009; Schröder et al., 2014) while the HIRS retrieval relies on the 
work of Soden and Bretherton (1996). Figure  4-17 shows the PDF of the peak height of the 
weighting functions used during HIRS and Meteosat retrieval. The maxima of the PDFs are at 
the same bin. However, Meteosat PDF exhibits a more realistic wider spread. Figure  4-17 shows 
a scatter plot of UTH using the JRH, SB96 and the Meteosat5 SRF. The UTH computed using 
the SB96 weighting function introduces a 23.3% relative bias. We also computed this difference 
using the HIRS spectral response function as basis and found a statistically insignificant 
difference to the Meteosat case. Also, the difference between UTH as function of JRH and HIRS 
SRF and as function of JRH and Meteosat SRF is negligible (0.0% relative). The above 
difference of ~23% is consistent with the 21% relative difference at collocation points between 
HIRS and Meteosat. Therefore, the observed difference between HIRS and Meteosat can be 
largely explained by the different weighting functions used during retrieval design. Also, the 
uncertainty of a SB96 based retrieval exhibits a larger uncertainty relative to a JRH based 
retrieval scheme (Brogniez et al., 2009; Schröder et al., 2014). 

Note that the climatological difference between HIRS and Meteosat is 4%. Thus, sampling 
differences lead to a relative difference of about 19%. It seems that differences in temporal 
sampling and in particular in clear sky versus clear sky and low level cloud cases explain this 
difference (see also discussion in Brogniez et al., 2006). Differences in spatial sampling also 
contribute to the sampling bias (not shown). 
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Figure  4-11: Geographical distributions of mean UTH (%) from HIRS Metop, MHS Metop and Meteosat 
averaged over 2007/12 - 2008/02. The spatial resolution is 2.5° by 2.5°. 
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Figure  4-12: Differences in mean UTH between HIRS Metop and MHS Metop averaged over 2007/12 - 
2008/02. The spatial resolution is 2.5° by 2.5°. 

 

 

Figure  4-13: Differences in mean UTH between HIRS Metop and Meteosat (a) and between MHS-Metop 
and METEOSAT (b) averaged over 2007/12 - 2008/02. The spatial resolution is 2.5° by 2.5°. 
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Figure  4-14: Scatterplot of mean UTH averaged over 2007/12 - 2008/02 between HIRS Metop and MHS 
Metop (a), between HIRS Metop and Meteosat (b) and between MHS Metop and Meteosat (c) over 
the region of 20°S – 20°N, 45° W – 45°E. Every point represents the mean of a 2.5° by 2.5° grid 
box. Differences in UTH are plotted as histograms: HIRS vs. MHS (d), HIRS vs. Meteosat (e) and MHS 
vs. Meteosat (f).  
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Figure  4-15: Colocation tracks of Meteosat and HIRS Metop from 2007/12 to 2008/02. 
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Figure  4-16: Scatterplots (a & c) and histograms (b & d) of brightness temperature (a & b) and UTH (c & 
d) at the colocation points.  

 

Figure  4-17: (a) Relative humidity Jacobian for Meteosat 5 (black) computed using RTTOV and a set of 
~14,000 profiles and the temperature weighting function for HIRS (red) adapted from Soden and 
Bretherton (1996); (b) Scatterplot of the Meteosat UTH computed using relative humidity Jacobian 
vs. UTH computed using the temperature weighting function shown in (a). 

Time series of UTH 
Figure  4-18 shows the time series of monthly and yearly UTH from HIRS, AMSU and 

Meteosat. Note that the intersatellite-calibrated long-term AMSU/MHS Tb were provided by 
University of Miami (Chung et al., 2013), and the UTH was computed using the SASG retrieval 
parameters. Large spikes around 1987 and 1997 are found in the Meteosat time series: the 
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first one around 1987 is due to changes in the satellite and the second one around 1997 is 
likely caused by a change in the ISCCP DX calibration (Schröder et al., 2014). Therefore the 
availability of a Meteosat FCDR is considered to be beneficial for future releases of Meteosat 
UTH data record. Same as the results from section  4.1, the UTH from AMSU/MHS is higher 
than that from HIRS and Meteosat. From 2000 to 2009, there is a 6.5% difference in UTH 
between HIRS and Meteosat. This difference, larger than discussed earlier, is likely caused by 
the difference in the considered periods. 

Note the similarity of the time series shown in Figure  4-18 and Figure 3 of John et al. (2011). 
Thus, the difference between IR and MWS UTH products is likely dominated by sampling 
differences in cloudy atmosphere. 

 

 

Figure  4-18: Time series of monthly UTH averaged over 20°S-20°N, 45°W-45°S from HIRS (red), 
AMSU/MHS (blue) and MVIRI/SEVIRI (black). 

 

4.1.3.3 Conclusions 

We compare three upper tropospheric humidity products from HIRS, MHS and 
MVIRI/SEVIRI. UTH from MHS is about 22% and 26% higher on average than the UTH from 
HIRS and Meteosat, respectively. This can largely be explained by a clear sky sampling bias. 
Note that there is a systematic difference of about 29% between two different AMSU/MHS 
retrievals. The mean UTH from HIRS and Meteosat are comparable while collocated data 
exhibits a systematic difference caused by utilization of different Jacobians during the retrieval. 
In the long-term time series, abnormal spikes are found in the Meteosat UTH product, which 
will be investigated in more detail using an updated Meteosat Tb archive in the future. 
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4.2 Variability analysis 

4.2.1 TCWV 

R. Bennartz (Vanderbilt U.), F. Fell (Informus GmbH), M. Schröder (DWD), A. Walther (U. 
Wisconsin), U. Willen (SMHI) 
 

In total, eight TCWV climate time series comprising observational data, re-analyses as 
well as climate model results were analysed against a set of nine climate indices. The aims 
were to evaluate the different TCWV products against the climate indices and to provide 
information about commonalities and differences between the different data records. 

The following results are a shortened version of Bennartz et al. (2014), available at 
http://gewex-vap.org/wp-content/uploads/2016/11/20141113_VAKAS_FinalReport.pdf.  

 

4.2.1.1 Data 

Eight different data records have been used: CFSR, EC Earth, ERA-Interim, HOAPS, 
MERRA, MPI-ESM, NVAP-M, and RSS. These data records can be subdivided into satellite 
observation based data records (HOAPS, NVAP-M, RSS), reanalyses using data assimilation 
techniques (CFSR, ERA-Interim, MERRA), as well as climate model derived data records that 
have been obtained without data assimilation but with prescribed sea surface temperature 
fields (EC Earth, MPI-ESM). The satellite and reanalyses products have been described in 
section  3.3. A brief description of the climate models follows. 

EC Earth (ECE) 

The EC Earth (ECE) 1-degree TCWV data record has been obtained from atmosphere only 
global climate model simulations, using prescribed observed sea-surface temperatures and 
prescribed sea ice for the period 1979-2008. The ECE global climate model (Hazeleger et al 
2010) has been developed from the ECWMF model (http://ecearth.knmi.nl/). The atmospheric 
component is based on ECMWF's Integrated Forecasting System (IFS), cycle 31r1 with some 
additional implementation, including a new convection scheme and the new land surface 
scheme H-TESSEL. Small changes in the gravity wave drag and shortwave radiation 
parameterisations have also been applied to reproduce the observed climatology of the past 40 
years as closely as possible and to achieve a balanced radiation budget. 

For this study the model was run at T159 (125km) horizontal spectral resolution with 62 
vertical levels. 

MPI-ESM (ESM) 

The Earth System Model of the Max Planck Institute for Meteorology (MPI-ESM) couples 
atmosphere, ocean and land surface through the exchange of energy, momentum, water, and 
important trace gases such as carbon dioxide. It has been used for comparative model 
calculations in the context of CMIP5, which constitute the German contribution to the Fifth 
Assessment Report of the IPCC (Intergovernmental Panel on Climate Change). It is based on 
the components of ECHAM6 for the atmosphere and MPIOM for the ocean as well as JSBACH 
for the terrestrial biosphere and HAMOCC for the ocean´s biogeochemistry. The coupling of 
atmosphere and land on the one hand and ocean and biogeochemistry on the other hand is 
made possible by the separate coupling program OASIS3. Energy, momentum, water and CO2 
are exchanged with the help of this coupling. Further details and evaluation results can be 
found in Müller et al. (2012) and Pohlmann et al. (2013).  
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For this study, we used output from AMIP type simulations using observational based sea 
surface temperature (SST) and sea ice boundaries (Stevens et al., 2013) in low resolution at 
1.875°. 

 

4.2.1.2 Climate indices 

The above TCWV data records were evaluated against a variety of climate indices that 
are described in detail in Table  4-3 and plotted in Figure  4-19. The common time period for all 
data records (1988-2008) is highlighted in grey in Figure  4-19. 

 

Table  4-3: Climate Indices used in this study. 

Index Description Reference Source 

NINO34 El Nino Southern Oscillation 
Index 3.4. 
Average sea surface 
temperature anomaly in the 
region between 5°N and 5°S as 
well as 170°W and 120°W. 

Rasmusson and 
Carpenter (1982) 
Walker (1924) 

http://www.esrl.noaa.g
ov/psd/data/climateindi
ces/list/ 

PDO Pacific Decadal Oscillation. 
The PDO is defined as the 
leading principal component of 
North Pacific monthly sea 
surface temperature variability 
(pole ward of 20N for the 1900-
93 period). 

Mantua et al. (1997)  
Zhang et al. (1997) 

http://jisao.washington.
edu/pdo/ 

AO Arctic Oscillation. 
The daily AO index is 
constructed by projecting the 
daily (00Z) 1000mb height 
anomalies pole ward of 20°N 
onto the loading pattern of the 
AO. 

Thompson and 
Wallace (1998) 

http://www.cpc.ncep.no
aa.gov/products/precip/
CWlink/daily_ao_index/
ao.shtml  

NAO North Atlantic Oscillation. 
The principal component (PC)-
based indices of the NAO are the 
time series of the leading EOF of 
sea level pressure anomalies 
over the Atlantic sector, 20°-
80°N, 90°W-40°E. 

Barnston and Livezey 
(1987) 
Hurrell (1995) 
Rogers (1984) 
Walker (1924) 

https://climatedataguid
e.ucar.edu/climate-
data/hurrell-north-
atlantic-oscillation-nao-
index-pc-based 

AMM Atlantic Meridional Mode. 
The AMM spatial pattern is 
defined via applying Maximum 
Covariance Analysis (MCA) to 
the SST and the 10m wind field 
over the time period 1950-2005 
over the region 21°S to 32°N, 

Chiang and Vimont 
(2004) 

http://www.esrl.noaa.g
ov/psd/data/timeseries/
monthly/AMM/ 
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Index Description Reference Source 

and 74° W to 15°E). 

AMO Atlantic Multidecadal Oscillation. 
The AMO is based upon the 
average anomalies of SSTs in 
the North Atlantic basin, typically 
over 0°N to 80°N. 

Schlesinger and 
Ramankutty (1994) 

https://climatedataguid
e.ucar.edu/search/node
/AMO 

GHG Greenhouse gas forcing from 
NASA GISS  

Hansen et al. (2005) http://data.giss.nasa.go
v/modelforce/  

SSO2 Stratospheric SO2 forcing from 
NASA GISS 

Hansen et al. (2005) http://data.giss.nasa.go
v/modelforce/  

SOL Solar forcing from NASA GISS Hansen et al. (2005) http://data.giss.nasa.go
v/modelforce/  

 



69 

 
Figure  4-19: The panels on the left show time series of the different climate indices listed in Table  4-3. 

The grey-shaded area in the left panels indicates the 1988-2008 period for which satellite and other 
water vapour data are evaluated. The right panels show corresponding autocorrelation coefficients 
for lag times between zero and 12 months. 

 

4.2.1.3 Methods 

Data processing 
The analysis is carried out on a common grid and time period. The common grid is a 

regular longitude/latitude grid with a resolution of 1°×1° and centre location of the grid boxes 
between the full degree values, which leads to an array size of 360×180 pixels.  
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ECE, NVAP-M and RSS were already provided at 1° spatial resolution and thus didn’t need to be 
remapped. ERA-Interim was available at an array size of 360×181 pixels, which let us assume 
that latitude grid box midpoints were defined at full degree values. We decided to shift the 
entire array half degree south by deleting first array line to avoid additional extensive 
interpolation. 

The other four data records (ESM, HOAPS, CFSR and MERRA) were re-gridded from their native 
resolutions. The ESM data record has a spatial resolution of 1.875°×1.875° (192×96 pixels). 
HOAPS data are provided at a resolution of 0.5°×0.5° between 80°S and 80°N (720×320 
pixels). CFSR and MERRA data have resolutions of 0.5°×0.5° (720×361 pixels) and 2/3°×0.5° 
(540×361 pixels), respectively, with latitude grid box midpoints defined similarly to ERA-Interim 
starting at full values. These data record were gridded to the common 1°×1° grid by linear 
interpolation, with shifting the array 0.25° latitude towards South for CFSR and MERRA. 

The common period is defined by the period covered by all data records, which is the 1988-
2008 period. Data outside this period were also processed: hence ERA-Interim, ESM, CFSR, and 
MERRA data have been processed from 1979 onward.  

Finally, monthly mean temporal resolution was chosen. All considered data records were 
already available as monthly means, except for NVAP-M for which monthly means were 
calculated from daily values. 

 

Statistical significance of correlations 
The statistical significance is assessed through temporal autocorrelation between time 

series (Bartlett, 1935; Dawdy and Matalas, 1964). A temporal autocorrelation reduces the 
effective number of degrees of freedom in each data record. Assuming the autocorrelation 
processes to be characterized by red noise yields an effective time scale T0 of independent 
samples of:  

 
T0 =

1+ r1,x ⋅ r1,y

1− r1,x ⋅ r1,y

 
Eq. 2 

 

In our case, T0 is given in units of months and r1,x designates the lag-1 autocorrelation for data 
record x. More generally, rL,x is the lag-L autocorrelation for data record x with L being the time 
shift in months. The corresponding autocorrelation coefficients for data record y are denoted 
analogously.  

For an arbitrarily auto-correlated variable, the equivalent formula is:  

 
T0 = 1+ 2 1− L

N






rL ,x ⋅ rL,y
L=1

N

∑  
Eq. 3 

The independent sample size is then given as:  

 
Neff = N

T0

 
Eq. 4 

with N being the number of months in the time series (N=720 for the 60-years’ time series 

shown in Figure  4-19, N=252 for the satellite time series 1988-2008). 

A few issues to note in the analysis and discussion of correlation coefficients and their 
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significance: 

• All climate indices and water vapour fields were corrected for seasonal effects by 
subtracting from each monthly data point the long-term average over that month. We 
are thus interpreting monthly anomaly fields. 

• Two-sided t-tests are used, ie the sign of the correlation is assumed to be unknown. 
This yields the most stringent significance criteria although in some cases one could 
argue the correlation has to have a certain sign. 

• We restrict most of the discussion below to red noise (Eq. 2) but do also provide results 
for the actual autocorrelation functions (Eq. 3) in Appendix A. The differences between 
both cases are mostly marginal and do not affect our findings.  

• The lower the temporal autocorrelation of a particular variable, the lower the correlation 
coefficient can be between that variable and any other variable without losing statistical 
significance. This is because the effective number of observations Neff will remain high 
by virtue of the product of the lag-1 autocorrelations showing up in Eq. 2, respectively. 
Thus, if only one variable exhibits pure white noise, then N= Neff regardless of how 
highly auto-correlated the second variable is. 

• A statistically significant correlation coefficient does not necessarily imply causal or 
physical relation between two data records (“correlation does not imply causation”). 

•  

4.2.1.4 Results 

Statistical assessment of climate indices 
Prior to an analysis of data records, the different climate indices outlined in Table  4-3 

were statistically assessed with respect to the following questions: 

1. To what extent are the different climate indices independent of each other? 
2. All climate indices used herein go back at least until 1951. How similar is the period 

1988-2008 (for which we have water vapour observations) to the 60-years period 1951-
2010? 

We found that significant and stable correlations exist between the pair (NINA34, PDO) and the 
tuple (AO, NAO, AMM, AMO). AO and NAO show a very different behaviour from the rest of the 
indices, in that these two indices exhibit more of a random behaviour than the other indices, 
which are relatively highly temporally auto-correlated. GHG, SSO2, and SSOL exhibit a strongly 
auto-correlated behaviour. GHG resembles a linear trend thus having approximately zero 
degrees of freedom. SSOL is a cyclical function with frequency of the solar cycle (11 years)-1. 

Analysis of water vapour data records 
ENSO and TCWV are strongly correlated. This result is corroborated by Figure  4-20, 

where the first four temporal Eigenvectors of ERA-Interim are compared to NINO34 for the 
time period 1988 to 2008. One can see the excellent agreement between the first Eigenvector 
and the NINO34 time series.  
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Figure  4-20: First four temporal eigenvectors of the ERA-Interim TCWV (black curves). The red curve 
shows NINO34 values for comparison. All curves are normalized to zero mean and unit standard 
deviation for visualization. The variance explained by the first four eigenvectors is 12.7%, 6.1%, 
3.4%, and 3.1%, respectively. 

Figure  4-21 shows the empirical orthogonal functions (EOFs) associated with the Eigenvectors 
shown in Figure  4-20.  
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Figure  4-21: First four EOFs for ERA-Interim TCWV associated with the eigenvectors shown in 
Figure  4-20. EOFs are shown normalized by the square root of their respective eigenvalue (yielding 
units of kg/m2 for the EOFs). 

Table  4-4 shows the correlations between the NINO34 time series and the first Eigenvector of 
each of the TCWV data records. Results are shown for all surfaces and, separately, for ocean 
only. 

 

Table  4-4: Correlation of the first EOF of different TCWV data records with NINO34. The column labelled 
‘All’ shows correlations for the entire data records including ocean, land, and ice - if included in the 
data record. The column ‘Ocean’ shows the correlations for ocean data points that are ice-free over 
the entire period. 

Data record 
Correlation with NINO34 

All Ocean 

RSS 0.893 0.893 

HOAPS 0.895 0.895 

NVAP-M 0.752 0.864 

ERA-Interim 0.895 0.889 

MERRA 0.898 0.891 

CFSR 0.879 0.869 

ECE 0.899 0.908 

ESM 0.884 0.903 

 

It is noteworthy that all data records show very similar correlation coefficients to NINO34 
everywhere, except for NVAP-M, which shows systematically lower correlation coefficients with 
ENSO (NINO34) if land is included. This result will require further analysis and might be related 
to the particular retrieval algorithms used in NVAP-M for TCWV retrievals over land surfaces. An 
indication for this hypothesis is given in the lag-1 autocorrelation, which is unusually high over 
desert areas as well as Antarctica (see full report). The two climate models ECE and ESM show 
results very similar to the other data records. 

Figure  4-22 shows correlation results for ERA-Interim against all climate indices as an example. 
Areas exceeding the 95% significance level for red noise are highlighted with thick grey lines. 
The full report provides analogous information for all other TCWV data records for red as well 
as for white noise.  
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Figure  4-22: Correlation between various climate indices and ERA-Interim TCWV. Thick grey isolines 

show areas with correlations exceeding the 95% significance level for red noise. These occur only for 
NINO34, PDO, AO, and NAO. Thin grey lines show 95% confidence levels for white noise. The panel 
on the lower right shows the lag-1 autocorrelation of ERA-Interim. 

A merged view over all data records is shown in Figure  4-23 highlighting those areas where all 
resp. more than half of the data records show statistically significant correlations with the 
different climate indices. 
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Figure  4-23: These plots provide a summary of where the different TCWV data records significantly 
correlate with the various climate indices (assuming red noise, i.e. using Eq. 2 to calculate Neff). 
Regions where at least half of the data records show significant correlations with a given climate 
index are highlighted blue. Regions where all data records show significant correlations are 
highlighted red. 
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As expected from the above correlation analysis, the largest areas of coherent correlations 
include the tropical Pacific for NINO34 and the northern Pacific Ocean for PDO. AMM shows a 
larger area in the northern tropical and subtropical Atlantic with high correlations for all TCWV 
data records. AMO shows large areas of statistically significant correlations against all TCWV 
data records for that same area as well as for the northern Atlantic. Finally, all data records are 
significantly correlated with stratospheric SO2 loading for two tongues stretching out into the 
northern and southern Pacific as well as for the northern Atlantic. AO, NAO, GHG, and SOL 
show only very small areas with consistent correlations, if any. A detailed analysis of the 
correlation maps provided for ESM and ECE (see full report) shows them to be very similar to 
the other data records. 

Assessment of ECE and ESM versus other data records 
ECE and ESM operated in a ‘climate-mode’ in which only sea ice, sea surface 

temperatures, and external forcings are prescribed. With those lateral boundary conditions, the 
model is allowed to develop freely. In addition to these boundary conditions, the models used 
to generate the reanalysis data records (MERRA, CFSR, and ERAI) also assimilate atmospheric 
observations thereby providing an analysis of the actual state of the atmosphere at any given 
time. Similarly, the observational data records (RSS, HOAPS, and NVAP-M) provide estimates of 
the actual state of the atmosphere. Therefore, one can expect the reanalysis and observational 
data records to also represent the synoptic situation at any given time, while the two climate-
mode models cannot be expected to provide any information about the actual synoptic 
situation.  

Contrasting ESM and ECE against the other models might therefore help understand to what 
degree TCWV climatologies are affected by ‘weather’ as opposed to climatological boundary 
conditions such as external forcing and SST. Figure  4-22 provides the same information as 
Figure  4-21, but is restricted to observational and reanalysis data records, thus excluding ESM 
and ECE. Comparing Figure  4-24 to Figure  4-22, one can see that the inclusion of ECE and 
ESM reduces the areas of agreement between all data records (less red areas in Figure  4-23). 
This effect is particularly strong for AO and NAO, with which ESM and ECE show only very 
weak correlations (see also full report). This result is not surprising as AO and NAO are derived 
from surface pressure fields whereas e.g. PDO, NINO34, and AMM are derived from SST fields. 
Surface pressure is of course intimately connected to weather. Because the two climate-mode 
models are not capable of reproducing weather patterns, it appears unlikely they would 
correlate well with climate indices relying on surface pressure. In contrast, sea surface 
temperature fields are prescribed for all models. To the extent in which SST affects TCWV, ECE 
and ESM should thus react similar to the reanalysis data records. A similar effect can be seen 
for GHG and, to a lesser extent for SOL.  

While Figure  4-23 and Figure  4-24 indicate areas with statistically significant correlations for 
all data records, these are not separated by positive versus negative correlations. Comparing 
areas of positive and negative correlations (not shown), it becomes clear that for AMO, AMM, 
GHG and SSO2 agreements between the TCWV data records occur almost only for positive 
correlations. In contrast, ENSO, PDO, AO, and NAO show areas of positive and negative 
correlations. Thus, in a strongly positive ENSO certain regions get moister whereas others get 
drier agreeably between all data records. In contrast, in a strongly AMM state, all data records 
agree the tropical and subtropical northern Atlantic gets wetter, but except for a small area in 
the north-eastern Pacific, there is no agreement between models which areas get drier (if any). 
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Figure  4-24: Same as Figure  4-23 but excluding ESM and ECE. 
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Figure  4-25: The left panel shows correlation between climate indices and TCWV data records for 
regions where all data records show a significant positive correlation (red areas in Figure  4-21, see 
full report). The right panel shows the same for negative correlations (red areas in Figure  4-22, see 
full report). For the two correlations marked ‘N/A’ no data points exist because the two data records 
are only defined over land but all red areas for GHG in Figure  4-21 (see full report) are over land. 

Figure  4-23 shows the anomaly time series correlation between all indices and all TCWV data 
records for all areas where the data records agree on positive correlations (Figure  4-25, left 
panel) and negative correlations, respectively (Figure  4-25, right panel). In those areas, where 
all data records agree on a significant positive correlation with ENSO, MERRA and NVAP-M 
show the lowest correlation (0.73 and 0.79, respectively). ECE and ESM show significantly 
lower positive correlations with AO, NAO, and SOL compared to the other data records. For the 
negatively correlated areas a very similar picture arises with ESM and ECE less strongly 
correlated with AO and NAO. In addition also AMM and AMO and SSO2 show less strong 
negative correlations with ESM and ECE for the negatively correlated areas.  

In summary:  

• For the climate indices built on atmospheric parameters (AO, NAO), ECE and ESM show 
much weaker correlations than all other models. This is perhaps not surprising since the 
ESM and ECE are allowed to freely form their own ‘weather’.  

• For the climate indices built on SST (NINO34, PDO, AMM, AMO), the two climate-mode 
models perform very similar to the other models and data records especially in 
positively correlated areas.  

• For the forcing indices (SOL, GHG, and SSO2) ECE and ESM show slightly lower 
correlations than the other data records but results are not consistent. It is unclear 
what the origin of the reduced correlation is. ECE and ESM both include GHG, SSO2, 
and SOL forcing (Willén, pers. comm., Stevens et al., 2013).  

•  

4.2.1.5 Conclusions 

Eight TCWV data records were analysed and compared to nine climate indices. All data 
records are highly correlated with ENSO and show different levels of correlation with other 
climate indices. The two climate models ESM and ECE do not differ significantly from the other 
data records when SST-based climate indices are analysed. However, for climate indices based 
on atmospheric parameters, such as AO and NAO, and for weak external forcing, including 
SOL, GHG, and SSO2, the two climate models show weaker correlations. This result is perhaps 
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not surprising since all other data records either retrieve or assimilate water vapour information 
directly and therefore capture not only climate-variability but also weather-related short-term 
variations, which are not necessarily captured in the climate models.  

A large variability of water vapour data records is available and thus an ensemble of 
satellite based water vapour data records might be considered for e.g. model evaluation. In 
order to ease analysis and interpretation common features in the ensemble of data records can 
be identified as e.g. in Figure  4-24. Focusing the subsequent analysis on data from these 
regions has a large potential to increase confidence in associated results from e.g. model 
evaluation. 

 

4.2.2 UTH 

L. Shi (NOAA), C. J. Schreck III (NOAA, NCSU), M. Schröder (DWD), V. John (EUMETSAT), E.-
S. Chung (UM), and B. Soden (UM) 
 

This sub-section examines the variability of several UTH data records. Analyses are 
carried out to show the variability in a climate context. Several studies have shown that UTH 
measurements are closely related to large scale circulations and correlated with climate indices 
(Bates et al., 2001; Chung et al., 2016; Chung et al., 2014; Iacono et al., 2003; Shi and Bates, 
2011; Soden et al., 2005). Pairwise correlations are presented in this sub-section to show the 
variability of UTH in different climate regimes. 

 

4.2.2.1 Data 

Three inter-satellite calibrated data records are analysed, including HIRS, AMSU-B/MHS, 
and METEOSAT MVIRI/SEVIRI UTH. The HIRS UTH data are based on the HIRS Channel 12 
climate data record (CDR) version v03r00 (Shi and Bates, 2011) from the National Center for 
Environmental Information (NCEI). The AMSU-B/MHS (referred to as microwave (MW)) data 
record (Chung et al., 2013) is from the University of Miami. The METEOSAT UTH data record is 
MVIRI/SEVIRI version 1 product (Schröder et al., 2014) from the EUMETSAT Satellite 
Application Facility on Climate Monitoring (CM SAF). 

 

4.2.2.2 Methods 

Monthly means of each data record are computed for the time period of each of the data 
record. Anomalies are analyzed for the METEOSAT domain and selected regions. The one-point 
(pairwise) correlation maps between satellite UTH and several climate indices, including 
NINO3.4, PDO, and NAO are computed. The values of the indices are obtained from NOAA 
Earth System Research Laboratory at http://www.esrl.noaa.gov/psd/data/climateindices/list/).  
For the correlation analysis the two UTH data records that have more than twenty years of 
data are analysed, which include the HIRS and the METEOSAT UTH. It has been shown by 
Chung et al. (2016) that the variability patterns of the MW UTH data record are very similar to 
the HIRS UTH data record. 

 

4.2.2.3 Results 

Time series of anomalies for the three UTH data records over the METEOSAT domain 
(45°S-45°N, 45°W-45°E) are displayed in Figure  4-27. Though the values of MW UTH, as 
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shown in Fig. 9 of the UTH inter-comparison sub-section, are larger than the UTH derived from 
clear-sky HIRS and MVIRI/SEVIRI data, the anomalies of the three data records are closer to 
each other. All three data records show consistent seasonal variations, though the magnitudes 
of the variations are different. Good agreement of the anomalies is found between HIRS and 
MW UTH. The METEOSAT UTH exhibits larger amplitudes of anomalies from earlier satellites, 
but anomalies from recent satellites are more consistent with the other two data records. 

 

 
Figure  4-26: Time series of UTH anomalies for HIRS, AMSU-B/MHS (labelled as MW), and METEOSAT 

MVIRI/SEVIRI for 45°S-45°N, 45°W-45°E. 

To examine the temporal variability of UTH in relation to El Niño conditions, time series of UTH 
anomalies are computed over the central Pacific Niño 4 domain (5°S-5°N, 160°E-150°W), and 
the results are shown in the right panel of Figure  4-27. Another equatorial domain is chosen 
from the western Pacific to show the variability in the region representing the ascending branch 
of the Walker circulation, and the results are shown in the left panel of Figure  4-27. For this 
analysis, only the two UTH data records that have the coverage over the Pacific (HIRS and 
AMSU-B/MHS) are examined. During each of the major El Niño events (1982-83, 1997-98, and 
the beginning of the most recent one in 2015-16) large positive anomalies are found over the 
central Pacific region (right panel of Figure  4-27). In the same time large negative anomalies 
are found over the western Pacific region (left panel). These are consistent with the changes in 
the atmospheric circulation and with the sea surface temperature variations during the El Niño 
– Southern Oscillation (ENSO) conditions. 

Recently, a comparison of the HIRS and MW UTH data records was also presented by John et 
al. (2016). The annual average of UTH for 2015 showed large moist anomalies over the central 
and eastern tropical Pacific and dry anomalies over the Maritime Continent, which results from 
the strong El Niño of 2015. This signal is stronger in the microwave data record compared to 
HIRS, possibly because of the sampling differences. 
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Figure  4-27: Time series of UTH anomalies over a western Pacific domain (5°S-5°N, 100°E-150°E) (left 
panel) and over the central Pacific Niño 4 domain (5°S-5°N, 160°E-150°W) (right panel). 

Inter-comparison of UTH channel brightness temperatures from three different satellite 
sounders have been performed and discussed in Chung et al. (2016). Satellite observations 
included HIRS channel 12, AMSU-B/MHS 183.31±1GHz channel, and AIRS radiances convolved 
with the Spectral Response Function (SRF) of HIRS channel 12. Domain-averaged brightness 
temperature anomalies exhibit a highly correlated temporal evolution among the three products 
over their common period (2003–2014). The three products were also shown to exhibit similar 
patterns of interannual variability, which highlight the role of ENSO in modulating the 
distribution of water vapor on interannual time scales. On decadal time scales, the spatial 
patterns of trends are similar between all three products, but the amplitude of the regional 
trends is noticeably weaker in the HIRS measurements than in either the AMSU-B/MHS or AIRS 
data. This presumably reflects limitations due to the clear-sky sampling of HIRS, relative to the 
other products. However, when averaged over tropical or near-global spatial scales, the trends 
among all three products are statistically indistinguishable from each other. The overall 
consistency between all three products provides important verification of their credibility for 
documenting long-term changes in upper tropospheric water vapor. 

The one-point (pairwise) correlation maps between UTHs and several widely used climate 
indices, including the NINO3.4, PDO, and NAO are computed to examine the variability in a 
climate context. The selected climate indices cover different geographic regions from the 
tropics to the mid-latitudes, and their timescales range from months to multidecades. The 
mean distribution of water vapour in the upper troposphere is a result of large-scale 
circulations. The correlations can show how closely the UTH distribution relates to the 
atmospheric variables used in tracking the climate indices. The analysis also detects 
teleconnection patterns of UTH with climate indices in various regions of the world. 

Correlations between the time series of HIRS and METEOSAT UTH at each grid point and the 
time series of NINO3.4 SST anomaly are computed and displayed in Figure  4-28 and 
Figure  4-29, respectively. As the ENSO events are more active during boreal winter season, the 
correlation maps for December, January, and February (DJF) are shown. Though analyses for 
DJF are discussed in this section, Figure  4-33 of the consistency section illustrates that when 
an average is taken over a large area (zonal average or ocean domains), there can be 
correlation lags of two to four months between the UTH and the Niño 3.4 index. Figure  4-28 
shows that the highest correlation (~0.8) between HIRS UTH and Niño 3.4 anomalies is over 
the central equatorial Pacific. Large correlations of the opposite sign are found over the 
western Pacific near Indonesia and in the subtropics, one at 20–30°N and another at 20–30°S 
over the Pacific. These areas with negative correlations correspond to either weakened 
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ascending branches of the atmospheric circulations (western Pacific) or strengthened 
descending branches during El Niño. The increase in NINO3.4 SST likely facilitates the 
transportation of more moisture into the upper troposphere over the central and eastern 
equatorial Pacific, while the subsidence may dry the upper troposphere over both the northern 
and southern subtropical Pacific. The increase of SST in the eastern Pacific can affect regions 
outside of the tropics by altering prevailing wind patterns around the globe. The METEOSAT 
UTH pattern displayed in Figure  4-29 shows similar teleconnection features as those in Fig. 3a 
over the same domain. For the AMSU-B/MHS measurements, a recent study by E-S Chung et 
al. [2016] showed that - AMSU-B/MHS brightness temperatures are also consistent with HIRS 
measurements with respect to ENSO-related variations.  

 

Figure  4-28: Correlations between HIRS UTH and NINO3.4 index for DJF. Grids that are considered 
insignificant using a t test are stippled to deemphasize them and are separated by contour lines. The 
box in the center outlines the METEOSAT UTH domain shown in Figure  4-29. 
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Figure  4-29: Similar to Figure  4-28 except for correlations between METEOSAT UTH and Niño 3.4 index 
over the METEOSAT UTH domain. 

The correlations between UTH data records and the PDO index for DJF are shown in 
Figure  4-30 shows the correlation pattern between HIRS UTH and PDO index. There are 
relatively large positive correlations in mid-latitudes of the Pacific Ocean. Positive correlations 
are also found in the eastern–central equatorial Pacific. There is a negative correlation area in 
the eastern Pacific near 15-20°N, where water vapour is likely reduced by the subsidence 
during the positive phase of PDO and thus negative correlations with UTH is enhanced. The 
similarity in the locations of negative and positive areas between Correlations between the time 
series of HIRS and METEOSAT UTH at each grid point and the time series of NINO3.4 SST 
anomaly are computed and displayed in Figure  4-28 and Figure  4-29, respectively. As the 
ENSO events are more active during boreal winter season, the correlation maps for December, 
January, and February (DJF) are shown. Though analyses for DJF are discussed in this section, 
Figure  4-33 of the consistency section illustrates that when an average is taken over a large 
area (zonal average or ocean domains), there can be correlation lags of two to four months 
between the UTH and the Niño 3.4 index. Figure  4-28 shows that the highest correlation (~ 
0.8) between HIRS UTH and Niño 3.4 anomalies is over the central equatorial Pacific. Large 
correlations of the opposite sign are found over the western Pacific near Indonesia and in the 
subtropics, one at 20–30°N and another at 20–30°S over the Pacific. These areas with negative 
correlations correspond to either weakened ascending branches of the atmospheric circulations 
(western Pacific) or strengthened descending branches during El Niño. The increase in 
NINO3.4 SST likely facilitates the transportation of more moisture into the upper troposphere 
over the central and eastern equatorial Pacific, while the subsidence may dry the upper 
troposphere over both the northern and southern subtropical Pacific. The increase of SST in 
the eastern Pacific can affect regions outside of the tropics by altering prevailing wind patterns 
around the globe. The METEOSAT UTH pattern displayed in Figure  4-29 shows similar 
teleconnection features as those in Fig. 3a over the same domain. For the AMSU-B/MHS 
measurements, a recent study by E-S Chung et al. [2016] showed that - AMSU-B/MHS 
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brightness temperatures are also consistent with HIRS measurements with respect to ENSO-
related variations. 
 
Figure  4-28 and Figure  4-29 confirms the strong linkage between PDO and ENSO events. 
 
 

 
 

Figure  4-30: Same as Figure  4-28 for correlations between HIRS UTH and PDO index. 

 

 
 

Figure  4-31: Same as Figure  4-29 for correlations between METEOSAT UTH and PDO index. 

Figure  4-32 and Figure  4-33 displays the correlation maps between UTH data records and 
NAO for the boreal winter. The correlation patterns are in good agreement with the positive 
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phase of NAO. High negative correlations are found over the Mediterranean and Europe, while 
large positive correlations occur over Greenland. Another positive correlation around 15-20°N 
of the Atlantic is also prominent. During the positive phase when geopotential heights over the 
subtropical-mid-latitude Atlantic Ocean and western Europe increase, the strengthened 
atmospheric circulation may create a more favourable condition for transportation of water 
vapour into the tropical upper troposphere. 
 

 
 

Figure  4-32: Same as Figure  4-28 for correlations between HIRS UTH and NAO index. 

 

 
 

Figure  4-33: Same as Figure  4-29 for correlations between METEOSAT UTH and NAO index. 
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4.2.2.4 Conclusions 

The anomalies of HIRS and AMSU-B/MHS UTHs have good agreement in all the domains 
examined. Over the METEOSAT domain, the METEOSAT UTH exhibits larger amplitude of 
variations before 1998 compared to HIRS UTH. The variation amplitude of METEOSAT, HIRS 
and AMSU-B/MHS UTHs are similar after 1998. Over the equatorial Pacific, the variations of 
HIRS and AMSU-B/MHS UTHs over the central Pacific display large positive anomalies in major 
El Niño events and negative anomalies in major La Niña events. The opposite is true for the 
UTHs over the western Pacific. Both are consistent with the ENSO conditions. The correlation 
patterns with Niño 3.4, PDO, and NAO show that the UTH is able to capture major sources of 
climate variability. HIRS and METEOSAT UTH display similar patterns over the METEOSAT UTH 
domain. The correlation analysis shows the potential of using UTH to monitor long-term 
changes in large-scale atmospheric circulation and for locating teleconnections of regional 
systems with major global climate systems. 

 

4.3 Homogeneity and trend analysis 

4.3.1 TCWV 

M. Schröder (DWD), M. Lockhoff (DWD), J. Roman (U. Wisconsin), E. Borbas (U. Wisconsin) 
 

In this section the degree of homogeneity is assessed by applying an objective 
homogeneity test and trend estimation. Long-term satellite and reanalyses products are 
considered. To our knowledge a consistent characterisation of the quality and stability of TCWV 
data records considering all mature and freely available data records with at least a 20-year 
record has not been completed to date. The presented results are an update of key results 
shown in Schröder et al. (2016) where more details can be found. In this repot eleven long-
term data records are considered, in contrast to the six data records considered in Schröder et 
al. (2016). Section  4.3.1.4 discusses measurement requirements for trend detection and the 
importance of extremes in this context.  

 

4.3.1.1 Data 

The list of data records considered here include all satellite and reanalyses data records 
that cover at least the period 1988 – 2008 and is identical to the list of data records used for 
the intercomparison of TCWV (section  4.1.1). These records are: CFSR, ERA20C, ERA-Interim, 
HOAPS, JRA55, MERRA, MERRA2, nnHIRS, NVAP-M (Climate), NVAP-M (Ocean) and REMSS 
(see section  3.3 and links therein for more detailed information). 

We recall here (see Schröder et al., 2016) that all considered satellite and reanalysis products 
utilise SSM/I observations from F08, F10, F11, F13, F14 and F15, except the HIRS based data 
record. While the use of the data from these spacecrafts is a common denominator, the data 
are not identical.  There are differences in the sensor intercalibration, precipitation and sea ice 
masking, and in the retrieval algorithms/assimilation systems.  

Based on feedback from data record PIs the HIRS data records from NOAA and the University 
of Wisconsin are not considered in the analysis of long-term gridded data records. The main 
reason is the strong difference in spectral characteristics between HIRS on NOAA-14 and 
NOAA-15 which cannot be removed with available homogenisation or intercalibration schemes. 

Nevertheless, the TCWV anomalies of the HIRS data record from the University of Wisconsin 
(UWisc) have been analysed for a few large scale regions. Monthly averages on common grid 
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and period were computed using data from all available satellites except for data from NOAA-
15 for the months June/July 2001 and for data from NOAA-14. Significance tests have not been 
applied. The following anomalies have been observed: summer 1991 (global land) – correlates 
with Pinatubo eruption, May 1991 (tropical ocean) – change in observing system. The following 
breaks can be observed: November 1988 (small, ocean), September 1991 (ocean), March 2001 
(strong, all regions), October 2002 (ocean). All correlate with changes in the observing system 
or reduced sample size. 

In summary, TCWV amounts derived from HIRS/2 and HIRS/3 sensors differ.  No cause for the 
difference has been determined to date.  Hence the long term data record from HIRS has an 
unacceptable jump. 

 

4.3.1.2 Methodology 

As the database is identical to the one used for the intercomparison of TCWV data 
records, data processing and computation of common masks are the same as described in 
section  4.1.1.2. 
Additional methods used to estimate trends and homogeneity are briefly outlined here: 
 
• Trend estimation: The trend estimation largely follows the work of Weatherhead et al. 

(1998) and Mieruch et al. (2014). The linear trend model also fits the SST-based index for 
determining El Nino strength (available at http://coaps.fsu.edu/jma) and four frequencies to 
allow an asymmetric fitting of the annual cycle. The estimation of the uncertainty of the 
trend follows again Weatherhead et al. (1998) and considers the noise as computed from 
the anomaly and autocorrelation. The ratio of the trend and uncertainty estimates is 
subjected to a two sided t-test in order to compute the coverage probability. If the 
coverage probability exceeds 95%, the trend estimate is considered to be significantly 
different from a trend of 0 kg/m2/decade, that is, the significance level is 0.05. While the 
coverage probability is plotted as contour lines, spatial maps of the estimated uncertainty 
and extended uncertainty are available but not shown in this report. Trend estimation is 
applied as a tool to identify issues in the data records. Climate change is not discussed here 
and if so, it is recommended to not remove the El Nino variability because it can be subject 
to climate change. 
The following threshold is applied prior to trend estimation: >¾ of valid monthly values 
over considered period. 

• Regression: The regression of TCWV in percent and SST in Kelvin using the NOAA Optimal 
Interpolation SST v2 (Reynolds et al. 2002) is computed. Prior to the regression, the SST 
and TCWV anomaly time series are smoothed with a 12-month low-pass filter as in Mears 
et al. (2007). A series of assumptions need to be applied when relating changes in SST to 
changes in TCWV. These are described in, e.g., Mieruch et al. (2014). 

• Time-to-detect trends (TTD): Tiao et al. (1990), Weatherhead et al. (1998), Whiteman et 
al. (2011) and Roman et al. (2014) describe how TTD can be estimated. We apply the Eq. 3 
given in Weatherhead et al. (1998) which gives TTD at a significance level of 0.05 with 
probability 0.90. The standard deviation of the anomaly time series is assumed to include 
natural variability and retrieval uncertainty. Note that the natural variability and retrieval 
uncertainty might be estimated incorrectly, e.g., due to a lack of sampling or biases 
introduced by sampling. The expected trend is computed on basis of the OI SST and 
Clausius-Clapeyron. TTD is estimated over large regions even though the TTD can exhibit 
strong variations on small scales. 

• Homogeneity analysis: The Penalised Maximal F test (Wang 2008a, 2008b) is utilised to 
detect breakpoints because it can be applied to time series of (deseasonalized) anomalies 
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and of anomaly differences and because it does not require supervision. Here 
deseasonalised anomalies are analysed and breakpoints are considered if the associated 
level of significance is 0.05 or smaller. Then, the null hypothesis of a break free time series 
needs to be rejected. For each breakpoint detected the PMF test returns the step size which 
corresponds to the size of the shift in the model fitted to the time series at the breakpoint. 
We also calculate the step size relative to the variability, further called break size. The 
variability used to get the break size is calculated as the mean standard deviation based on 
6-months time segments before and after the detected breakpoint (i.e. in total 12 months). 
Homogeneity is assessed on basis of anomaly differences. As references HOAPS (over 
ocean) and ERA-Interim (over land) have been used. 

More details are given in Schröder et al. (2016). 
 

4.3.1.3 Results 

We first show results from the analysis of global maps of trend estimates and 
homogeneity tests using anomaly differences over global ice-free oceans for the ten/eleven 
data records and then focus on data from three different regions. 

Before such results are shown and intercompared the diversity of results available from trend 
estimation are shown. Using data from ERA-Interim as an example, Figure  4-34 shows the 
global distribution of the trend estimate, the associated uncertainty (both maps are also 
available in relative units), the absolute amplitude of the annual cycle and the strength of the 
El Nino. Here the latter two results are briefly discussed: Strongest annual cycles are mainly 
linked to monsoon systems and the El Nino has largest impact in the Pacific and a side 
maximum in East Africa and the western parts of the Indian Ocean. All data records exhibit 
similar spatial features. However, the mean absolute differences in amplitude and strength also 
exhibit the features shown here and reach maximum values of approximately 1.5 kg/m2 and 1 
kg/m2, respectively. 
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Figure  4-34. Average amplitude of the annual cycle (left) and El Nino (right) as estimated during trend 

analysis. Results are based on ERA-Interim. 

Global analysis 
Figure  4-35 shows global maps of TCWV trend estimates in kg/m² per year for ten long 

term data records. Overall the trend patterns are quite similar among the data records, in 
particular over the ocean. Obviously the dominating factor for significance is the magnitude of 
the trend, with lowest number of grids with significant trends over global ice-free oceans in 
ERA-Interim and MERRA2 and maximum number of significant trends in CFSR. 
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Figure  4-35. Trend estimates in TCWV in kg/m² per year for 10 different data records (left to right, top 
to bottom: CFSR, ERA20C, ERA-Interim, JRA55, MERRA, MERRA2, NVAP-M (Climate), HOAPS, NVAP-
M (Ocean), REMSS). Red contours indicate the 95% coverage probability. Data from HOAPS, NVAP-M 
(Ocean) and REMSS are defined over ice-free oceans (updated from Schröder et al., 2016). 

The three passive microwave only products, HOAPS, NVAP-M (Ocean) and REMSS, as well as 
ERA20C agree reasonably well in terms of trend magnitudes. The satellite data records records 
heavily rely on SSM/I observations and can thus be expected to be similar. The agreement 
among the SSM/I based data records and ERA20C is remarkable. Although the trend patterns 
are similar, the associated regional averages of the trends differ in magnitude. In contrast to 
the SSM/I based data records and ERA20C, the reanalysis data records show larger differences, 
with ERA-Interim (CFSR) showing smallest (largest) average trends (over ocean) among the 
reanalysis records and in general. When looking closer at Figure  4-35 the impression of a 
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general bias in trend estimates is actually dominated by contributions from the oceans, in 
particular in the tropics.  

The spatial trend map for nnHIRS is not shown because absolute maxima in trends are 
significantly larger and would require a change of the colour scale. Largest negative trends are 
observed over the sub-tropics. 

For each data record the trend has been estimated for the global ice-free ocean within 60° N/S. 
The trends have been sorted in ascending order and are plotted together with their uncertainty 
in Figure  4-35. The trend values exhibit large differences and range from -0.11 kg/m2/decade 
(ERA-Interim) to 1.21 kg/m2/decade (CFSR). Associated uncertainties are typically ≥ 0.06 
kg/m2/decade (REMSS) and ≤ 0.20 kg/m2/decade (NVAP-M). Following Mieruch et al. (2014) 
and ignoring the covariance between trend estimates the trends are often significantly 
different. Not included are results for nnHIRS (-1.5 ± 0.2 kg/m2). Results for the tropical ocean 
are similar, with the main difference that the absolute trend estimates are generally larger. 

Also, the regression coefficients have been computed and are displayed in Figure  4-36 in order 
to assess the physical soundness. They have been sorted in ascending order and the 
uncertainty estimate is plotted as well. The order is similar to the results for the trends, only a 
few data records have changed their position. It seems that except for HOAPS the regression 
values are outside the expected range of 6 %/K at 300 K and 7.5 %/K at 275 K, the 
uncertainty estimate of REMSS has overlap with the upper boundary. When using the global 
ice-free average SST the theoretical expected value is 6.2 %/K, which is significantly different 
from all estimates shown in Figure  4-36 and given in Table  4-5. The latter conclusion is still 
valid when the analysis is carried out for the tropical ocean (not shown). A series of 
assumptions and specific atmospheric conditions impact the regression (e.g., Mieruch et al., 
2014). E.g., the observed regression can be larger as expected due to the impact of e.g. 
advection and tropospheric amplification of surface warming (e.g., Santer et al. 2005). The 
conclusion from Schröder et al. (2016) is recalled: “...the analysis of regression is a supportive 
and valuable approach for the interpretation of trend estimates. Results from an analysis of 
regression alone need to be considered with caution due to the assumptions which enter the 
expectation.” 

Results from the trend analysis and from the analysis of the theoretical expectation are 
summarised in Table  4-5. In addition Table  4-5 also shows the TTD. TTD varies between 37 
years (NVAP-M Climate) and 17 years (JRA55 and REMSS). In general, the SSM/I based data 
records and MERRA2 as well as ERA20C exhibit smallest TTD (17-18 years). Differences in TTD 
depend here on differences in noise and autocorrelation. Mean absolute differences in 
autocorrelation (here the factor of Eq. 4 in Weatherhead et al. 1998 is considered) and the 
noise exhibit similar mean absolute differences among the data records. However, when 
comparing the noise and the autocorrelation of NVAP-M and CFSR to HOAPS then it seems that 
the maxima in TTD are caused by larger noise levels. 

Various trend and regression estimates have been published thus far (e.g., Wentz and Schabel, 
2000; Mears et al., 2007). In all cases the period and the region of interest is different and in 
the majority of cases the applied methodology is different as well. Thus, a comparison of 
results given in the literature is not directly possible. Also, note that the basic assumption 
behind the work of Weatherhead et al. (1998) is that the data needs to be autoregressive of 
order 1. This is not valid in presence of breakpoints.  
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Figure  4-36. Trend estimates in TCWV in kg/m² per year (top) and regression coefficient in %/K 

(bottom) for ten different data records. TCWV values have been averaged over the global ice-free 
ocean within ±60°N/S. The vertical bars show the estimated uncertainty of the trend and the 
regression. The dashed line in the top panel is at 0 kg/m2/year. The black dashed line in the bottom 
figure marks the typically expected range of regression values while the green dashed line marks the 
actual expectation based on the mean change in SST. 

It might be argued that for an analysis of climate change the El Nino signal should not be 
removed, among others, because El Nino might change with climate change itself. In our case, 
the time series are not long enough to assess changes in El Nino strength and at the end of the 
considered period a fairly strong La Nina occurred. Here the El Nino signal has been removed in 
order to reduce the noise level and by this increasing the degree of significance and to ease 
the identification of homogeneity issues. 

Due to the phase shift between maxima in El Nino strength and TCWV the El Nino signal can 
not be fully removed from the anomaly time series. In order to remove also this effect we 
assessed the phase shift as a function of ocean basin and on grid scale and found a strong 
variability of this phase shift as function of ocean basin (see Schröder et al. at 4th G-VAP 
workshop for some of the results and section  4.5.3, Figure  4-69). We have recomputed 
Figure  4-35 for CFSR and ERA-Interim (largest and smallest trends, respectively) by not fitting 
the El Nino index. The trends do not change significantly. However, the significance is largely 
reduced because the uncertainty of trend estimates increases. This would likely impact some of 
the conclusions on differences in trends. Due to the large differences we decided to not 
consider phase shifts in the trend estimation. 
Sherwood et al. (2010) provide a table of trend estimates which is based on literature values 
on data of various coverage and temporal length. Here, we confirm their conclusion that the 
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“precise climate dependence of water vapour” cannot yet be established “from observed 
trends” by using data records on common grid and common period.  
Note again that the above analysis is carried out to identify issues among the data records and 
not to assess climate change. 
 

Table  4-5: Trend, regression, and TTD for eleven TCWV data records. Values have been computed over 
the global ice-free ocean within ±60°N/S. *: rounded to full years. 

 
Trend 

kg/m2/decade 
Regression 

% / K 
TTD* 
years 

CFSR 1.21 ± 0.16 24.9 ± 0.5 33 

ERA-
Interim 

-0.11 ± 0.09 2.9 ± 0.5 22 

ERA20C 0.37 ± 0.06 10.0 ± 0.2 18 

HOAPS 0.25 ± 0.07 7.2 ± 0.3 18 

JRA55 0.03 ± 0.06 2.6 ± 0.4 17 

MERRA 0.75 ± 0.09 15.8 ± 0.3 22 

MERRA2 0.04 ± 0.06 4.4 ± 0.3 17 

nnHIRS -1.51 ± 0.17 14.2 ± 1.3 35 

NVAP-M 
Climate 

0.68 ± 0.20 8.4 ± 0.7 37 

NVAP-M 
Ocean 

0.52 ± 0.07 10.1 ± 0.3 18 

REMSS 0.34 ± 0.06 7.6 ± 0.3 17 

 
Here it is briefly recalled that TCWV amounts derived from HIRS/2 and HIRS/3 sensors differ 
and hence the associated long term data record has an unacceptable breakpoint.  However the 
average of the year to year changes for a given month (e.g. January), a season (e.g. DJF, JJA), 
or a full year determined within each sensor record (but not from one sensor to the next) for 
all the sensors provide another look into the long term (35 years) changes detected in global 
distribution of TCWV. Figure  4-37 shows corresponding results for the UWisc data record. This 
approach to assess long-term changes offers a potentially valuable way also for other data 
records affected by breakpoints. 
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Figure  4-37. Global distribution of the average year to year TCWV changes (in kg/m2) determined at 
night for 1980 to 2014 for each sensor (but not from one sensor to the next), plotted in 0.5° bins 
offering a look into the long term (35 years) changes detected in global distribution of TCWV.  60°N 
to 60°S average year to year change is -0.11 kg/m2, 30°N to 30°S is -0.22 kg/m2. Basis is the UWisc 
data record. 

The large differences in trends bring up the question of how these can be explained. In order 
to study this in more detail anomaly differences for the global ice-free ocean are analysed 
using the PMF test. The results are summarized in Table  4-6. Only statistically significant 
breakpoints are given. The largest (smallest) step sizes are found for NVAP-M and CFSR 
(REMSS and ERA-Interim). ERA-Interim exhibits the largest number of breakpoints, in total six. 
This can partly be explained by the small variance, even minimal variance among the data 
records in the early 2000s, and its impact on significance estimation (not shown). Obviously 
the breakpoints largely explain the observed differences in trends, in particular the negative 
step size for ERA-Interim in December 1991 and the positive step size for CFSR in October 
1998.  

We also analysed the temporal occurrence of changes in the observing system and changes of 
the input to assimilation schemes with the observed breakpoints (see Table  4-6). The results 
for MERRA, CFSR, ERA-Interim, NVAP-M, HOAPS, and REMSS are taken from Schröder et al. 
(2016). They also provided a detailed discussion. Here we focused the discussion on results for 
ERA20C, MERRA2, JRA55, nnHIRS, and NVAP-M Ocean. In general, almost all breakpoints 
coincide (within a time window of half a year) with changes in the observing system or 
changes in the input to assimilation schemes. These changes may therefore explain the 
presence of the breaks in the data series. For ERA20C the homogeneity test only detects one 
breakpoint which occurs in July 2006. This breakpoint is also detected in the time series of 
ERAINT, JRA55 and REMSS, but not for the others (CFSR, MERRA, MERRA2, NVAPM and 
NNHIRS). As no satellite information is assimilated in the ERA20C this break point might stem 
from the HOAPS data record which served as reference for calculating the anomaly difference. 
In this case however the breakpoint should appear in all time series. The noise level of the 
anomaly differences of all records not mentioned in Table  4-6 obscures the presence of 
potential breakpoints in July 2006 (not shown). However, the breakpoint in July 2006 coincides 
with the activation of a radar calibration beacon on F-15. HOAPS does not use SSM/I data from 
F-15 after July 2006, while REMSS includes beacon-corrected data from F-15 after July 2006 
(Schröder et al., 2016). The comparison of breakpoints detected for MERRA and MERRA2 
reveals that the large breakpoint found in the MERRA data series, attributed to the begin of 
assimilation of NOAA15 data (AMSU-A and AMSU-B) in July 1998, is not present in MERRA2. 
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Instead three other breakpoints are detected, namely in March 1991, June 1997 and October 
2007 which coincide with the end of assimilation of NOAA10 data in September 1991 together 
with the start of assimilation of NOAA12 in August 1991, the start of assimilation of F14 data in 
May 1997 and the start of assimilation of Metop-A AMSU-A and HIRS data in May 2007 
respectively.  

For JRA-55 breakpoints are found in April 1995 as well as in August 2005, July 2006 and June 
2007. The visual inspection of the anomaly difference series further revealed that some 
seeming breaks are not detected due to the fitted negative trend. For NNHIRS several breaks 
are detected that can be explained with changes in the availability of HIRS data from NOAA 
satellites: end of 1988 and 1991 as well as in February 1997 and May 1998 coinciding with 
changes due to the availability of NOAA11, NOAA12 and NOAA15 data. One break that cannot 
be explained by any satellite change occurs in February 1993 (see Schröder et al., 2016 for 
further discussions). 

 

Table  4-6. Dates of observed breakpoints, break size and coincident changes in the observing system or 
changes of the input to the assimilation schemes based on the analysis of anomaly differences 
relative to HOAPS for the global ice-free ocean. In case launch dates are provided they match 
consideration in the assimilation schemes within ±3 months. Results for CFSR, ERA-Interim, MERRA, 
NVAP-M, and REMSS are taken from Schröder et al. (2016). The information on the various events is 
partly taken from figures published in the literature. 

Date 
yyyy-
mm 

Break 
size 

kg /m2 

Data record Event 

1988-11 -0.54 NNHIRS Launch NOAA11 on 1988-09-24 
1991-01 -1.05 NVAP-M Launch F10 in 1990-12 
1991-03 -0.47 MERRA2 End of assimilation of NOAA10 in September 1991 and 

start of  assimilation of NOAA12 in August1991 
1991-11 1.92 NVAP-M Launch F11:in December 1991, 

Stop date for F08 in 1991-12 
1991-12  -0.62 

-0.65 
ERA-Interim 
NNHIRS 

See 1991-11 
Launch NOAA-12 on 1991-05-14 

1993-02 -0.57 NNHIRS See text 
1993-04 0.11 REMSS See text 
1994-12 -0.19 

0.88 
ERA-Interim 
NVAP-M 

Start of assimilation of  NOAA14 beginning of 1995,  
approximate stop of assimilation of NOAA11 data (see 
Dee et al., 2011) 

1995-04 0.25 JRA-55 Launch F13 1995-03-24 
1997-02 -1.02 NNHIRS See text  
1997-04 -0.26 ERA-Interim Approx. change from assimilation of data from 

NOAA12 to NOAA11 (see Dee et al., 2011) 
1997-06 -0.22 MERRA2 Start of assimilation of  F14 data in May 1997 

(McCarty et al., 2016) 
1998-05 0.41 NNHIRS Launch NOAA15 on 1998-05-13 
1998-10 1.31 CFSR Begin of assimilation of NOAA15 data in 1998-10 

(Chelliah et al., 2011); approx. end of assimilation of 
NOAA11 and NOAA14 data; change from assimilating 
GOES09 to GOES19 data (Saha et al., 2010) 

1998-11 0.47 MERRA Begin of assimilation of NOAA15 in July 1998 (AMSU-
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B) data (Rienecker et al., 2011) 
2000-05 -0.10 ERA-Interim Approx. start of assimilation of F15 data and end of 

NOAA11 and NOAA15 data (Dee et al., 2011) 
2005-08 0.27 JRA-55 Launch NOAA18 on 2005-05-20 
2006-07 0.24 

 
 
 

0.23 
     0.28 

ERA-Interim 
 
 
 
ERA20C 
JRA-55 

Close to end of assimilation of F15 data, close to 
change from GOES10 to GOES11, start of Meteosat 5 
and 8, approx. end of assimilation of NOAA14 data 
(see Dee et al., 2011) 
See text 
See ERA-Interim and start of assimilation of GNSS-RO 
refractivities (July 2006) 

 0.18 REMSS See text 
2007-06 0.19 JRA-55 Stop assimilation of NOAA14 on 2007-05-23 and see 

2007-09 
2007-09 0.13 ERA-Interim Approx. end of assimilation of NOAA16 AMSU-B data 

(see Dee et al., 2011) 
2007-10 0.27 MERRA2 Start assimilation of Metop-A AMSU-A and HIRS data 

in May 2007 
 
Again, it seems that the breakpoints can be explained with changes in the observing system.  
 
Regional analysis 

The mean absolute difference in trend estimates and the number of valid observations 
are shown in Figure  4-38. It shows results separately for the eleven data records and a 
subsample of ten data records, in this case without nnHIRS. First, results based on 10 data 
records are discussed (bottom row). In general, the differences are small in high latitudes and 
over the ocean and larger over land and in the ITZC. Occasionally, a few grid values stick out. 
This can be explained with the small absolute number of cases in combination with minima in 
the number of valid observations. Most striking are the pronounced maxima over the following 
land areas: Central Africa, Sahara/Arabian Peninsula, and (Central) South America. These three 
distinct regions of maxima largely overlap in Figure  4-3 and Figure  4-35. Note these maxima 
occur in regions where ground-based and in-situ observations are hardly available. The need of 
reference observations in tropical rain forest land areas was communicated to GRUAN 
(Bodecker et al., 2014). When looking at the top row these three regions are still the most 
distinct regions. In addition, large parts of the tropical and subtropical ocean exhibit a relatively 
large mean absolute difference. The mean absolute relative trend difference shows the largest 
differences over deserts and the poles, in particular the Antarctic and Greenland (not shown). 
Also distinct but less pronounced are again South America and Central Africa. 
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Figure  4-38. Mean absolute difference of trend estimates using the eleven data records (top left panel) 
and ten data records (i.e., without nnHIRS, bottom left panel). The right panels show the number of 
data records. Areas marked in black/red rectangles exhibit distinct differences (Central Africa, Sahara, 
South America) and /or have further been analysed in more detail (updated from Schröder et al., 
2016, top left panel updated from Loew et al., 2017). 

In order to identify explanations for the observed maxima, regional anomaly differences for the 
areas with the most pronounced differences have been analysed in more detail by applying a 
homogeneity test: Central Africa, Sahara, and South America which are marked by black/red 
boxes in Figure  4-38. Results are available for all eight data records providing data over land 
but the discussion focuses on the remaining data records which were not assessed in Schröder 
et al. (2016) (i.e., ERA20C, JRA55, MERRA2, nnHIRS, not shown). Again, the breakpoints differ 
between the data records and also for each data record depending on the region. JRA55 shows 
one breakpoint for the region of Central Africa in October 1997 and one over the Sahara in May 
2006. JRA55 shares these breakpoints with MERRA2 for Central Africa and with MERRA and 
CFSR for the Sahara. These breaks coincide with approximate change from assimilation of data 
from NOAA12 to NOAA11 and start of assimilation of NOAA18. For NNHIRS breakpoints are 
detected in all three regions, which are most likely related to changes in the utilisation of 
NOAA11 and NOAA12 data and to the launch of NOAA15. For ERA-20C no breakpoints are 
detected which is also related to the large variability in the anomaly difference series which 
obscures tentative breakpoints visible by eye. 
As above the breakpoints can be explained with changes in the osberving system or 
assimilation system. 
Note that the anomalies have been computed by deseasonalising the TCWV time series. This is 
different from Schröder et al. (2016) where the anomalies were generated in the context of the 
trend analysis, i.e., the model fitted to the data, including the El Nino fit, was removed from 
the TCWV time series. Although the anomaly and anomaly differences of both approaches look 
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very similar (not shown), a small change in the noise level leads to differences in the detection 
of breakpoints. 
 

4.3.1.4 Measurement requirements for TCWV trend det ection 

In the previous section it was demonstrated that the majority of long-term satellite and 
reanalyses data records suffer from inhomogeneity issues. An additional aspect is that besides 
stability aspects also requirements on measurement accuracy exist such that trends in water 
vapour and more specifically trends in the extremes can be detected. 

As greenhouse gas emissions continue to rise, the climate continues to change, altering wind 
and precipitation patterns and leading to more extreme weather events (IPCC 2014). Global 
Climate Models (GCMs) provide a way to analyze projected changes in the climate for 
mitigation decisions. However, the climate is a complex system to emulate leading to high 
uncertainty in GCMs. Therefore, it is essential to detect predicted TCWV trends with 
observations on decadal time scales (Wielicki et al. 2013; Ohring and Gruber 1982; Ohring et 
al. 2005, Tian et al. 2013). Measurement error can severely affect the ability of any sensor to 
detect a trend in TCWV through instrument noise and algorithm assumptions. Theoretically, the 
time to detect (TTD) a trend depends on natural variability and measurement error. By 
including a range of measurement errors in the predicted climate trends we can estimate the 
effect of measurement error on the TTD a TCWV trend (Wielicki et al. 2013; Leroy et al. 2008; 
Weatherhead et al. 1998; Whiteman et al. 2011; Roman et al. 2012). 

GCM 100-year mean TCWV trends range between 0.055 mm/year and 0.072 mm/year, with 
largest trends occurring near the equator. Global TCWV TTDs degrade quickly with 
measurement error; errors higher than 3% result in TTDs above 15 years. Zonal scales require 
more than 20 years of observations to detect the 100-year TCWV trend with a 5% 
measurement error. Estimating TCWV trends at regional scales offers a chance to measure 
statistically significant trends within 10 years with up to a 5% measurement. Furthermore, 
breaking down the TCWV trends by season can decrease the TTD in some locations, however, 
some regions with large variability increase the TTD (here after Roman et al. 2014).  

Extreme TCWV is a necessary requirement for heavy precipitation and extreme flash flooding 
events. The potential consequences of extreme TCWV are more severe; it is imperative that 
our current and future observing system can detect shifts in extreme TCWV within a reasonable 
number of years. Extreme TCWV (99th percentile) events are expected to increase by a factor 
of 9 globally by the end of the century. At regional scales, the factor ranges from 5 to 95 
depending on the location and season, which has the potential to increase the frequency and 
intensity of storms, hurricanes, monsoons and Atmospheric Rivers (ARs). The trend in extreme 
TCWV was 3% per decade, requiring 10 (20) years of TCWV observations with a measurement 
error less than 3% (5%) (Roman et al., 2015). 

In order to exemplary assess the uncertainty of existing observational data record for the 
extreme percentile the uncertainty of the NASA AIRS version 6 and the EUMETSAT IASI version 
6 data records have been analysed using ground-based GPS data from the ARM SGB and TWP 
site. Roman et al. (2016) shows the uncertainty for AIRS and IASI as a function of PWV (there 
figures 4 and 5). The fractional error is a function of PWV. The fractional error and thus also 
the time-to-detect for the extremes is significantly larger than in the 25th-75th percentile range 
and the error for such cases is mostly larger than 5%. 

These results triggered further analysis in order to explain the uncertainty features and to 
potentially improve the IASI products. It could be shown that an improved handling of surface 
emissivities reduces the large bias at extreme values.    
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4.3.1.5 Conclusions 

Trends were estimated for long-term TCWV data records. Observed differences in trend 
estiamtes have been analysed by applying homogeneity tests on global ice-free ocean and 
regional scales. The results are summarized as follows: 
• On a global ice-free ocean scale the trend estimates among exhibit large differences and 

are frequently significantly different. 
• Except for HOAPS and REMSS all data records exhibit regression values outside the 

theoretically expected range. This is an indication of issues in long-term stability. 
• Regions with distinct differences in standard deviation from the ensemble mean largely 

coincide with the mean absolute difference of the trend estimates. The most pronounced 
regions are Central Africa, Sahara, and South America. In particular, an in-depth analysis of 
the quality of water vapour data records over South America is needed in order to 
understand the dipole structure of trend patterns and the different sign of the trends 
(Schröder et al., 2016). 

• The differences in trend estimates in these regions and on global ice-free ocean scale were 
found to be caused by breakpoints or series of breakpoints. In most cases these 
breakpoints coincide temporally with changes in the observing system. 

• The time, sign, and step size of breakpoints are typically a function of region and data 
record. In particular, the breakpoint characteristics are different between time series from 
the regional and the global ice-free ocean scale. The imprint of changes in the observing 
systems is a function of region. 

• The majority of these breakpoints are not evident when comparisons to the HomoRS92 
data record were carried out. One reason is that areas with distinct differences in trend 
estimates are not covered with stations. 

• Errors higher than 3% result in TTDs above 15 years. Advanced water vapour products 
from AIRS and IASI exhibit errors in the extreme bin which exceed 5%. 

Data record users and assessments would benefit from a list of input data, which enters the 
final product together with main technical specifications such as start and stop dates and 
number of observations per instrument and month. 
Our results generally confirm the conclusions in Rienecker et al. (2011) that the differentiation 
between the impacts from changes of the observing system and climate variations “pose 
perhaps the greatest challenge for the next generation of reanalyses”. Here this conclusion is 
extended from reanalyses to state-of-the-art satellite-based data records. 
We emphasise the regional aspect of the impact of changes of the observing system and its 
relevance for the emerging need of regional climate analysis. It is important to verify the 
stability of a data record on global and all regional scales. The latter is a challenge due to 
missing reference observations with sufficient global and temporal coverage that at the same 
time are not affected by changes in the observing system (condensed and slightly adapted 
from Schröder et al. 2016). 
 

4.3.2 Water vapour and temperature profiles 

M. Schröder (DWD), M. Lockhoff (DWD) 
 

In this section the degree of homogeneity of water vapour and temperature data records 
is assessed by applying trend estimation, homogeneity tests and intercomparing profiles at 
certain regions. All long-term satellite and reanalyses products are considered, except UWHIRS. 
To our knowledge a consistent characterisation of the quality and stability of water vapour and 
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temperature profile data records considering all mature and freely available data records with 
at least a 20-year record has not been completed to date.  
 

4.3.2.1 Data 

The list of data records considered here include satellite and reanalyses data records that 
cover at least the period 1988-2009. These records are: CFSR, ERA20C, ERA-Interim, HIRS 
NOAA, JRA55, MERRA, MERRA2, nnHIRS, and NVAP-M Climate (see  3.2 and links therein for 
more detailed information). Here specific humidity in g/kg is considered and only NVAP-M 
Climate contains layer integrated water vapour in units of kg/m2. 

 

4.3.2.2 Methodology 

Data preprocessing, common masks and intercomparison methods applied are the same 
as described in section  4.1.2.2. Also, the trend estimation and the homogeneity testing applied 
here were already introduced in section  4.3.1.2. 
Whenever spatial maps are considered the focus is on the 300, 500, 700 and 1000 hPa levels 
while profile intercomparisons are typically carried out at product vertical resolution. 
 

4.3.2.3 Results 

In accordance with the previous section on TCWV the analyses of the profile data records 
start with an inter-comparison of trend estimates, first as vertical profiles of specific humidity 
and temperature for averages over large spatial regions and second as spatial maps at 300, 
500, 700 and 1000 hPa. On basis of the spatial maps and in combination with results from 
intercomparison of specific humidity distinct regions are identified and further analysed 
through homogeneity testing and intercomparison of regionally averaged profiles. Homogeneity 
tests for temperature are not carried out. 

 

 
Figure  4-39: Trend in specific humidity as a function of pressure: left – tropics, middle – mid-latitudes of 

the northern hemisphere, right – mid-latitudes of the southern hemisphere. Asterix marks trend 
estimates which are significantly different from 0 %/year. For MERRA the uncertainty estimate for the 
trend is also included. 
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Vertical profiles of trend estimates are shown in Figure  4-39. Note that the results for NVAP-M 
are based on layer integrals and not on specific humidity at a certain level. ERA20C, ERA-
Interim, JRA55 and MERRA2 exhibit smallest trends in the middle to lower troposphere in all 
three cases. Noticeable is that the divergence in trend estimates is larger in the southern than 
in the northern hemisphere. In the lower troposphere MERRA and CFSR have similar trends 
and exhibit a side maximum at approximately 800 hPa. Both pairs exhibit significantly 
(considering the MERRA trend uncertainty) different trends with the CFSR/MERRA trends being 
larger. In the upper troposphere the overall disagreement is largest. This is particularly true in 
the tropics where the divergence starts already at approximately 600 hPa.  
Vertical profiles of trend estimates have also been analysed by Dessler and Davis (2010). Our 
results are different in detail, also because of differences in temporal coverage, but overall 
qualitative conclusions are similar. For an analysis of the regression between changes in water 
vapour and SST we refer to Dessler and Davis (2010). 
 

 
Figure  4-40: Trend in specific humidity as a function of pressure: left – tropics, middle – mid-latitudes of 

the northern hemisphere, right – mid-latitudes of the southern hemisphere. Asterix marks trend 
estimates which are significantly different from 0 %/year. For MERRA the uncertainty estimate for the 
trend is also included. 

Similar to Figure  4-39 Figure  4-40 shows the trend estimates of temperature profiles from six 
data records (NVAP-M Climate does not contain temperature). Generally the trends are positive 
at all levels and regions and slightly increase in the free troposphere with maximum trends 
around 400 hPa. The latter is also true for the diversity among the data records. Noticeable is 
that the diversity is smallest over the northern hemisphere. However, several data records 
exhibit largest positive trends at near surface layers among the three considered regions over 
the northern hemisphere. Results for nnHIRS generally differ from reanalyses results. The 
observed features are different from results for specific humidity. Obviously changes in 
temperature are not the only driver for changes in humidity and dynamical and other physical 
processes and changes thereof play a role in this context. 
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Figure  4-41: Mean absolute difference of trend estimates using the seven data records: 300, 500, 700 

and 1000 hPa clockwise starting top left. Areas marked with rectangles exhibit distinct differences. 
Grey areas mark elevated terrain which exceeds the considered pressure level. 

Figure  4-41 and Figure  4-42 show the mean absolute and relative difference in trend estimates 
at 300, 500, 700, and 1000 hPa. Regions of maximum differences are stratus (off the coasts of 
South America and South Africa), Central Africa, Arabian Sea, off the coast of Brazil and South 
America. Regions of maximum difference are different from the maxima in TCWV, except for 
maxima at the poles and over Central Africa (verify Figure  4-38 and related discussions). Also 
the strong land/sea contrast vanishes if not reverses here, with a tendency of maxima in trend 
differences occurring over the ocean, again except for Central Africa. The analysis is largely 
based on reanalysis data records. Over ocean ground-truth is hardly available and the 
assimilation is dominated by satellite data. This might explain to some extend the tendency of 
larger differences over ocean than over land. Finally, regions of maximum standard deviation 
and of maxima in trend differences generally do not coincide, except for stratus regions off the 
coast of South Africa (verify Figure  4-7). This is an indication that in the profile case the 
differences in trend estimates and maxima in standard deviation might not be caused by 
breakpoints alone. Occasionally, a few grid values of the spatial maps at 700 and 1000 hPa 
stick out because minima in the number of valid observations occur at the border of elevated 
terrain.  
The differences in trend estimates were also computed for all data records except nnHIRS. The 
overall results are similar, except for an overall smaller difference in subtropical areas. 
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Figure  4-42: As Figure  4-41 but in relative units. 

Figure  4-43 shows the mean absolute difference in temperature trends among the data records 
CFSR, ERA20C, ERA-Interim, JRA55, MERRA, and MERRA2. Thus, it is purely based on 
reanalyses. The strongest maximum is observed over the poles: over Antarctica at all levels 
and at the North pole at 300 and 1000 hPa. Other but less pronounced features are over the 
northern hemisphere extratropics (1000 hPa), over the stratus and subtropical dry regions 
(over ocean, 700 hPa) and over central Africa (500, 700 hPa). The majority of these features 
are also evident at 300 hPa. Here the region of trend minima is also interesting: it largely 
correlates with areas of large radiosonde densities in northern extratropical land areas. These 
features are similar to results found for specific humidity, except that features over the ice 
covered regions are stronger, a small regional maximum appears over north-west Africa at 700 
hPa and the features at 300 hPa have more structure, in particular over the southern 
extratropical ocean. 
In case results for nnHIRS are added, the structure visible in Figure  4-43 vanishes and nnHIRS 
based features dominate the structure (not shown). Then, regional maxima occur over the 
Sahara, the Arabian Peninsula and the ocean deserts over the Pacific at 300 and 700 hPa as 
well as over the storm tracks over the Southern Ocean at 500 and 1000 hPa. 
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Figure  4-43: As Figure  4-41 but for temperature in units of K/100/year. 

In order to further analyse the difference in specific humidity among the different data records 
regionally averaged profiles have been analysed for all regions marked in Figure  4-40. 
Exemplary results for specific humidity and the regions West Africa for DJF and the stratus off 
the west coast of South America for JJA are shown in Figure  4-44. The boreal summer at West 
Africa is associated with strong convective activity. The associated dynamics seem to lead to 
large differences (up to almost ±40%) in the free troposphere and in particular in the upper 
troposphere. Interestingly, below 800 hPa and except at surface all data records are drier than 
ERA-Interim. Also, ERA20C is at most levels the driest data record and MERRA2 the wettest.  
Over the stratus region of the southern Pacific the precise position of the cloud top of the 
stratus, see in particular the absolute profiles, and the water vapour content above cloud top, 
see in particular the relative profiles, are represented differently among the different data 
records leading to differences of more than 30%. For the stratus off the coast of South Africa 
similar results are found (not shown). The difference in water vapour content above stratus 
cloud top is an indication of differences in mixing and dehydration of the boundary layer with 
implications on cloud cover, albedo and the Earth’s energy budget (Sherwood et al., 2014). 
Similar to Figure  4-44 Figure  4-46 shows profiles of temperature anomalies relative to ERA-
Interim. The overall features are less obvious, though the larger divergence in the upper 
troposphere over West Africa and local maxima at cloud top over the stratus region of the 
South Pacific are visible. 
The intercomparison of profile data records over the ocean, in particular over stratus regions, 
would benefit from comparisons to GPS RO observations. Such an analysis might benefit from 
the large potential of temporal stability, the high vertical resolution and the calibration-free 
nature of GPS RO measurements. However, the profiles from GPS RO are hampered by 
ambiguity of humidity and temperature, often  addressed by using reanalysis as a prior 
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information, the occasionally small number of collocations and are biased in presence of strong 
horizontal gradients such as over stratus regions. Future missions have the potential to 
combine the high potential for long-term stability and the calibration free nature of GPS RO 
measurements with improved profiling capabilities to overcome ambiguity (e.g., Kursinski et al., 
2016a). The implementation of such improvements are required in near future in particular in 
order to start assembling the associated climate data record as it requires decades to reach 
relevance in that application area. 
 

 

 
Figure  4-44: Inter-comparison of average profiles of specific humidity over western Africa (top) and the 

Pacific stratus region (bottom) in absolute (left) and relative units (right) for JJA. ERA-Interim was 
used for normalisation. Dashed horizontal lines mark the pressure levels 300, 500, 700, and 1000 
hPa. 
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Figure  4-45: Inter-comparison of the difference of average profiles of temperature over western Africa 

(left) and the Pacific stratus region (right). ERA-Interim was used as reference. Dashed horizontal 
lines mark the pressure levels 300, 500, 700, and 1000 hPa. 

As for TCWV the homogeneity analysis has been applied to data from all regions defined in 
Figure  4-39. Here results for West Africa (Figure  4-46) and the stratus off the coast of South 
America (Figure  4-47) are shown. The results for West Africa are based on anomaly difference 
for the 300 hPa level. All data series show similar temporal behaviour, that is, a slightly 
decreasing anomaly difference relative to ERA-Interim. This confirms the impression gained by 
visual inspection of the WV and WV anomaly time series in section  4.1.2 where rather large 
offsets were found between the data records. Breakpoints are only detected for NNHIRS in 
February 1995 and September 1998 which coincide with the launch of the NOAA14 and 
NOAA15 satellites. For the stratus region off the coast of South America, also referred to as 
Pacific stratus region in the following, the situation looks different. For all anomaly difference 
series at least one breakpoint was detected. All of them (except for ERA20C) coincide with 
changes in the observing system or changes in the input of the assimilation scheme (see 
Table  4-7) and are therefore mostly likely caused by these. The breaks lead to enhanced 
trends, especially for MERRA and NNHIRS. This explains the regional feature of large difference 
in trends between the data records visible in Figure  4-41 and Figure  4-42. As ERA20C does not 
include any satellite observations, the breakpoint must be either related to the (non-satellite) 
input data used within ERA20C or stem from a change in the input data of ERA-Interim. The 
latter is unlikely because such a break must be present in all anomaly differences then. 
Similar figures as Figure  4-46 and Figure  4-47 have been generated for temperature as well 
(not shown). Again, several breakpoints were detected. The times of breakpoint occurrence are 
in all cases different between specific humidity and temperature. Even when looking at the 
anomaly time series by eye a match is not visible in the majority of cases. Only ERA20C and 
JRA55 do not exhibit breakpoints over western Africa in both parameter spaces: While 
temperature and specific humidity anomaly differences from ERA20C show small slopes with 
opposite sign the temperature anomaly difference from JRA55 decreases fairly strongly while 
the specific humidity anomaly difference from JRA55 hardly exhibits a slope. 
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Figure  4-46: PMF test applied to anomaly differences (specific humidity) relative to ERA-Interim for 
regional averages over western Africa for the 300 hPa pressure level Top: ERA20C and MERRA. 
Middle: CFSR and MERRA2. Bottom: JRA55 and NNHIRS. Shown are anomaly differences in black and 
the PMF fit in red. The times when statistically significant breakpoints (“Shifts” in the legend) occur 
are also given. 
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Figure  4-47: Same as Figure  4-46 but for the Pacific stratus region and the 700 hPa pressure level. 
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Table  4-7: Dates of observed breakpoints and coincident changes in the observing system or changes of 
the input to the assimilation schemes based on the analysis of anomaly differences relative to ERAINT 
for the regions western Africa (300 hPa) and stratus Pacific (700 hPa).  

Date 
yyyy-mm 

Region Break size 
g/kg 

Data record Event 

1988-10 stratus 
Pacific 

-0.76 NNHIRS Launch NOAA11 on 1988-09-24 

1991-08 stratus 
Pacific 

0.53 JRA-55 Launch NOAA12 on 1991-05-14 

1991-12 stratus 
Pacific 

0.26 MERRA2 Start assimilation of NOAA12 in 
August 1991 and end of assimilation 
of NOAA10 in September 1991 
(McCarty et al., 2016) 

1995-02 western 
Africa 

-0.03 NNHIRS Launch of NOAA14 in 1994-12 

1998-06 stratus 
Pacific 

0.41 JRA-55 Launch of NOAA15 on 1998-05-13 

1998-09 western 
Africa 

0.05 NNHIRS Launch of NOAA15 on 1998-05-13 

2001-03 stratus 
Pacific 

-0.55 MERRA Start assimilation of  NOAA16 in 
March 2001 (Rienecker et al., 2011) 

2001-04 stratus 
Pacific 

-0.67 CFSR Start assimilation of NOAA16 in March 
2001 (Saha et al., 2010) 

2003-08 stratus 
Pacific 

-0.50 ERA20C See text 

 

4.3.2.4 Conclusions 

The quality of water vapour and temperature profiles from long-term data records has 
been analysed by applying and comparing trend estimates, regional intercomparison and 
homogeneity tests. The following is concluded: 
 
• Profiles of trend estimates, based on regional averages over the tropics and the northern 

and southern hemisphere, are typically significantly different. Differences are smallest near 
the surface. 

• Maxima in trend differences generally occur over the ocean, except for Central Africa. 
• Distinct areas: stratus, Central Africa, southern edge of ITCZ over ocean. 
• Regions of maximum standard deviation and of maxima in trend differences generally do 

not coincide, except for stratus regions off the coast of South Africa. 
• Regions associated to both types of maxima are different from the maxima related to 

TCWV, except for maxima at the poles and over Central Africa. 
 
The intercomparison of profile data records over the ocean, in particular over stratus regions, 
would benefit from comparisons to GPS RO observations. Future missions have the potential to 
combine the high potential for long-term stability and the calibration free nature of GPS RO 
measurements with improved profiling capabilities to overcome ambiguity (e.g., Kursinski et al., 
2016a). The implementation of such improvements are required in near future in particular in 
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order to start assembling the associated climate data record as it requires decades to reach 
relevance in that application area. 
 

4.4 Stability discussion 

T. Trent (NCEO, U. Leicester), L. Shi (NOAA) and M. Schröder (DWD) 
 

This report summarises the results of the multi-decadal stability assessment of the High-
resolution Infrared Radiation Sounder (HIRS) artificial neural network (ANN) total column water 
vapour (TCWV) data, created by the National Oceanic and Atmospheric Administration (NOAA). 
More specifically this work presents a preliminary assessment of the water vapour record from 
the High-resolution Infrared Radiation Sounder (HIRS) series of instruments which now spans 
over 30 years. For this study a subset has been selected based on a first round assessment 
(v2014) which was dominated by break points due changes in observing system within the 
time series. The time period selection also covers the Hamburg Ocean Atmosphere Parameters 
and Fluxes from Satellite Data (HOAPS) Special Sensor Microwave Imager (SSM/I) record for 
later comparative studies using Simultaneous Nadir Overpasses (SNO’s). 

 

4.4.1 Data 

Summarised in Table  4-8 is an overview of the 2 datasets used in this study. The 
following section provides a fuller description of these records. 
 

Table  4-8: Overview of all data records used. 

Data record Version Data Provider  Temporal Coverage 

HIRS_ANN v2015 NOAA January 1995 – December 2013 

ARSA v2.7 ARA/ABC(t)/LMD January 1979 – January 2017 

 

 
Figure  4-48: Periods covered by different HIRS platforms used to construct the TCWV time series. 
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4.4.1.1 The Analyzed Radiosonde Archive 

The Analyzed Radio Soundings Archive (ARSA) database is global database of radiosonde 
soundings that have been processed with surface and other auxiliary observations to create a 
complete description of the atmospheric state. To make records compatible with the 
Automatized Atmospheric Absorption Atlas (4A) radiative transfer model (Scott & Chédin, 
1981). Radiosonde and surface station reports are taken from the ECWMF archive and passed 
through quality control test. Temperature, water vapour and ozone profiles that remain are 
interpolated onto the 4A model nominal 43-level pressure grid (sea level pressure-0.0026hPa). 
Outputs from ERA Interim and ACE/Scisat level2 products are used to complete these profiles 
above set threshold altitudes in the radiosonde profiles. Radiosonde uncertainties are usually 
within 10% when considering relative humidity (RH). Conversion to other units retains this 
magnitude, and can rise to around 20% absolute (e.g. g/kg, ppm). Integrating to column 
amounts can reduce the uncertainty to a few mm, however characterised information is need 
to make this assessment (Trent, 2015).  
Soundings from version 2.7 of this radiosonde data base are used for the stability assessment 
of NOAA water vapor record in this study. 
 

4.4.1.2 The High-Resolution Infrared Sounder and th e ANN retrievals 

The High-Resolution Infrared Sounder (HIRS) is a line scanning radiometer that measures 
top-of-atmosphere (TOA) radiances from 0.69 µm (1 channel), 3.7 - 4.6 µm (7 channels) and 
6.5 – 15 µm (12 channels), over 56 discrete steps. First launched aboard the TRIOS-N platform 
in 1978, HIRS has currently been in continuous operational service for over 35 years 
(Figure  4-48). Therefore, the observational record from HIRS is extremely valuable for climate 
applications and hence the subject of this study. The HIRS TCWV record being examined is 
computed from HIRS specific humidity profile retrievals produced at NOAA (v2015). The 
retrieval algorithm utilizes clear-sky HIRS temperature and humidity sounding channel 
brightness temperatures in the longwave spectrum, channels 2-12, to derive temperature and 
humidity at the surface and at standard pressure levels. These channels have been inter-
calibrated using SNOs. These channel brightness temperatures of different satellites have been 
inter-calibrated to Metop-A, which is designated as a base satellite. The SNOs between the 
different HIRS instruments are found in the high latitude regions (±70°- 80°) once every 8-9 
days, with the observed biases are unique to the specific HIRS channel. The retrievals are at 
HIRS pixel resolution (17.7 km - HIRS/2/3 and 10 km - HIRS/4 at nadir), with global coverage 
over both land and water surfaces (Shi et al., 2016). 
The HIRS artificial neural network (ANN) processor has been built using a sample of 
atmospheric profiles and surface variables (1st and 15th of every month, 1992-1993) from the 
Chevallier (2001) collection. Divided in to seven groups based on TCWV amounts, the clear sky 
profiles are used as inputs to RTTOV (Saunders et al., 1999) to simulate HIRS brightness 
temperatures (BTs). These BTs are then used as the input for the training dataset. 
Backpropagation neural networks, like those used by Chevallier et al. (1998) and Shi (2001) are 
used in developing the HIRS retrieval scheme. A three-layer network, with one input layer, one 
hidden layer, and one output layer, was chosen based on its performance when compared to 
four-layer and five-layer networks. The algorithm uses a hyperbolic tangent function to 
propagate to the hidden layer and a logistic transfer function to propagate to the output layers.  
To account for changes in atmospheric CO2, BT simulations are done with concentrations of 330 
and 390 ppmv. For unchanged temperature profiles, the simulations show decreases in 
channels 3-7 with the largest decrease in channel 6 (0.1, 0.9, 1.1, 1.2 and 0.7 K). Channels 1 
and 2 show an increase of 0.5 and 0.3 K respectively, and no change in channels 8-12 
(window, ozone and water vapour channels). Therefore, CO2 concentration is used as an input 
along with the HIRS BT values.  
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Figure  4-49: HIRS humidity RMSE values relative to monthly climatology calculated from ERA Interim 
monthly mean specific humidity fields. Panels a, c and e are relative January RMSE values for 1000, 
700 and 500 hPa respectively. The panels b, d and f are the calculated relative RMSE values for June 
at the same altitudes. 

Output from the retrieval includes: atmospheric temperature (ten pressure levels from 1000 
hPa to 50 hPa) specific humidity (seven levels from 1000 hPa to 300 hPa), surface skin 
temperature, temperature at 2 m and 2 m specific humidity. The specific humidity profiles are 
used to calculate TCWV, which is not included in the original HIRS product. This is discussed 
further in section  4.4.2.2.2.  
 



113 

 
 

Figure  4-50: Average water vapour (a) and temperature (b) averaging kernels for June 2013 from 1DVar 
retrievals over SHADOZ radiosonde sites (left and centre frames). Examination of the cumulative 
degrees of freedom (c) shows how HIRS extracts 1 piece of information at around 7.5 km (red 
dashed lines). Above 12 km (blue dashed lines) no additional inform on water vapour structure is 
coming from HIRS (taken from Trent, 2015, see also section  2.5). 

4.4.1.3 Results from Evaluation 

Atmospheric profiles that have not been used in the training of the ANN processor are 
used to determine the accuracy of the retrieved profiles from HIRS. These profiles are 
considered ‘truth’ and the RMSEs of temperature and specific humidity at all the levels are 
derived from the difference between the original ECMWF profile and the new ANN profile. For 
temperature, the RMSEs are 1.0 K for surface skin temperature, 2.2 K for 2 m temperature, 2.7 
K for temperature at 1000 hPa, 1.3-1.5 K in the mid troposphere, and 2.0-2.6 K around the 
tropopause and in the lower stratosphere. For specific humidity, the RMSE is 1.9 g/kg at 2 m 
and 2.0 g/kg at 1000 hPa. It steadily decreases to 1.1 g/kg at 700 hPa and less than 0.4 g/kg 
above 500 hPa. To put this into context Figure  4-49 shows the RMSE values for 1000, 700 and 
500 hPa normalised by a climatology calculated from ERA Interim. These climatologies use the 
monthly mean (of daily mean) specific humidity data from 1979-2017, for January and June, 
which have been gridded at 3°x3°. From these plots the reported accuracy highlights 3 key 
regions where HIRS ANN water vapor will potentially perform poorly. Over Antarctica the RMSE 
is persistently above 90% at all pressure levels. This is also seen in the Artic during northern 
hemisphere winter with the region extending in to the northern mid-latitudes. During the 
northern hemisphere summer the RMSE reduces to between 60%-90% above 60°N. Areas of 
low annual cloud amount (see, e.g., https://isccp.giss.nasa.gov/products/browsed2.html) also 
show RMSE values exceed 100% of the climatological average. ‘Dusty’ regions which impact 
the thermal infrared (Popp and de Leeuw, 2016) also see RMSE relative values of 90% and 
greater. Areas on the plots over grid cells that will have high variance surface altitudes e.g. the 
Andes also show large RMSE values. However, this would only be an issue if HIRS ANN 
processor misidentified the surface pressure and retrieved specific humidity at 1000 hPa when 
the surface pressure was lower e.g. 950 hPa. This study is restricted to analysis between the 
latitudes ±60°, therefore the poorer performance predicted at the poles will not be examined. 
With issues related to cloud, HIRS BTs are cloud screened using AVHRR and a cloud quality flag 
issued to each retrieval. However, at this time aerosol is not exclusively handled or flagged 
within the HIRS L2 ANN product. 
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These maps provide a guide rather than an explicit description of operational performance. If 
anything they highlight the lack of robustness in a global RMSE estimate and a possible 
deficiency in how extremes have been captured in the ANN training dataset. Comparison to 
other IR sounder retrievals is not easy as the majority of water vapor records do not report 
uncertainty estimates. However, for sounders that do such IASI or AIRS they report retrieval 
errors. IASI retrieval error extremes can be around 30-40% (Trent, 2015) while AIRS can reach 
and exceed 50% (Olsen et al., 2013). With the ERA5 reanalysis (the ECMWF replacement to 
ERA Interim) a 10 member ensemble estimate is used to produce an estimate of uncertainty 
(ECMWF spring newsletter 2016, https://tinyurl.com/ybg8tzfe). However, this is a new feature 
within reanalysis records at this time. 
 

4.4.1.4 Water Vapor Information Content of HIRS 

At this point it should be noted that HIRS does not actually retrieve profiles. While the 
ANN processor produces a profile the vertical sensitivity to HIRS to the troposphere only allows 
for total column amounts water vapor (TCWV) to be retrieved. Figure  4-50 shows the mean 
averaging kernels calculated from 1 month of HIRS 1DVar retrievals (Trent, 2015) over 
SHADOZ tropical radiosonde sites. The averaging kernel shows the sensitivity of the retrieval to 
the different levels within the atmosphere. A measure of the information content, the total 
degrees of freedom (DOF) is the sum of the diagonal elements of the averaging kernel. 
Figure  4-50 3a show that for HIRS the average DOF for tropical regions (where information 
content will be at its maximum) is 1.64. By examining the cumulative degrees of freedom 
(CDOF) we can see the vertical sensitivity of the information content (Figure  4-50 c). This 
figure shows how the first piece of information (CDOF = 1) HIRS can resolve is at around 7.5 
km (red dashed lines). The total information content terminates around 12 km (blue dashed 
lines) where there is no information coming from HIRS within the retrieval and is 100% a 
priori. Compared to the modern counterparts of HIRS, IASI and AIRS have average DOFs of 5.5 
and 4.2 respectively. Therefore, the ANN profiles should be integrated and used as total 
column water vapour observations instead. A full account of the dataset is discussed in Shi et 
al. (2016). 

 

4.4.2 Methods 

4.4.2.1 Collocation of HIRS with ARSA  

For this study profile measurements from ARSA are considered to be collocated with a 
HIRS observation if they meet the following criteria: 

• Fall within ±3 hours of the HIRS observation. 
• Lie within a 100 km radius of radiosonde launch site in the case of ARSA. 
• The HIRS cloud flag is equal to 0 or 1 (0 = probability of cloud < 10%, 1= probability of           
   cloud > 10% & < 85%). 

Radial distance (d) is calculated using the spherical law of cosines using a constant value of 
6371 km for the Earth’s radius. For collocations with ARSA all HIRS IFOV that meet these 
criteria are used as there is no information on the balloon flight. This approach attempts to 
increase the signal to noise for differences calculated for each ARSA sounding. 
Unless otherwise specified all analysis in this study uses collocated HIRS L2 ANN version 2015 
(v2015) and ARSA radiosonde humidity profiles. 
 



115 

4.4.2.2 Conversion of ARSA Atmospheric Soundings fo r Comparisons with HIRS 

Atmospheric temperature and humidity values measured by radiosondes differ from those 
observed by satellites. While both provide indirect observations (e.g. capacitance which varies 
as a function of humidity or observed TOA radiances at 6.3 µm), radiosonde measurements are 
collected on the order of hours opposed the fraction of a second a satellite instrument uses to 
make an observation. For retrieval schemes that use an optimal estimation (or 1DVar) 
approach, averaging kernels would be used to smooth the radiosonde profiles to perform ‘like-
for-like’ comparisons (Rodgers & Connor, 2003). However, as a neural network scheme has 
been used to infer profiles temperature and humidity from the HIRS observations averaging 
kernels are not produced and therefore cannot be employed. 
 

 

Figure  4-51: Example images of monthly median CIMSS emissivity used for forward model calculation. 
Clear seasonal differences can be seen between January and June. 

 

Figure  4-52: Conversion of original ARSA temperature and humidity profiles to ARSA_ANN profiles (green 
and red respectively). The collocated HIRS profiles are over plotted in blue. 

In order perform ‘like-for-like’ comparisons between HIRS and ARSA soundings a two-step 
procedure is used; first HIRS equivalent brightness temperatures (BT_equiv) were calculated 
using RTTOV (v11) from the ARSA soundings. Secondly, the BT_equiv are passed through the 
same ANN as the HIRS BT creating the same output found in the HIRS L2 product 
(section  4.4.1.2). 
 

4.4.2.2.1 Consideration of Emissivity in ARSA conve rsions 
To increase the description of surface characteristics for RTTOV forward model 

simulations a emissivity climatology has been created from the Cooperative Institute for 
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Meteorological Satellite Studies (CIMSS) global IR land surface emissivity record (Seemann et 
al., 2008). Monthly median climatological maps have been calculated at 0.25° x 0.25° 
(Figure  4-51) for this study, a reduced resolution from the native product (0.01°x0.01°). Each 
sounding is calculated with a season median emissivity spectra (10 points) and used in the 
RTTOV calculation of BT_equiv.   

 

4.4.2.2.2 ARSA ANN 
Next the new BT_equiv are processed through the neural network processor providing 

new ‘smoothed’ profiles (ARSA_ANN) of atmospheric temperature (K) and humidity (g/kg) for 
comparisons with HIRS_ANN output. This process is illustrated by Figure  4-52. The collocated 
ARSA_ANN and HIRS_ANN profiles then form the dataset used in all analysis for this study. The 
HIRS and ARSA_ANN humidity profiles are converted to TCWV by: 

 

 

 

Eq.  4.5 

 

where g is acceleration under gravity (9.806 m/s), q is specific humidity which is integrated 
between the surface (surf) and TOA pressure.  
 

4.4.2.2.3 Weighted Mean Estimate of HIRS TCWV Biase s 
The HIRS TCWV time series is made up from a number of different instruments 

(Figure  4-48), all with different local overpass times, most with orbits that drift over the life 
time of the platform. This could create issues as the spatial sampling against the ARSA network 
can change, possibly resulting in unrepresentative statistics in some areas. This in turn would 
then become a source of uncertainty in any analysis performed. To counteract this effect a 
weighted mean bias is calculated instead. First the difference between HIRS and the reference 
(∆H2O) is calculated for each collocated pair over the whole time series: 

 
 

 

Eq.  4.6 

 
Next weights for each instrument are calculated every month from the climatological ∆H2O PDF 
distribution between ± 200%, on a latitude grid between ±60° at a resolution of 1% x 1°. The 
assumption here is that values at these extremes are outliers, while outside this range they are 
meaningless. Finally monthly biases (µbias) are then calculated using a weighted mean 
approach: 
 

 
 

 
Eq.  4.7 

 

where wn,ij is the assigned weight indexed from the 2D PDF (i = TCWV difference, j = latitude) 
for comparison n in a subset of N comparisons. 
 

4.4.3 Results 

In this section all results are presented. It is split into 3 sections, first we show some 
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direct profile comparisons, secondly we discuss why use ARSA_ANN TCWV rather than just 
integrating the original radiosonde profiles and finally the results from the stability assessment. 
The first 2 results help support and justify the approach used in this study. 
 

 
Figure  4-53: Comparison of HIRS ANN with ARSA ANN specific humidity profiles for NOAA 14, 15, 16, 17 

(N14, N15, N16, N17 respectively) and Metop-A (M02). All biases are relative to ARSA. 

4.4.3.1  HIRS vs. ARSA_ANN Humidity Profiles 

This first result is to highlight issues when considering any climate analysis within profile 
space. Collocated HIRS and ARSA_ANN profiles are first used to calculated HIRS biases 
(Eq.  4.6) for 3 broad regions; (i) southern hemisphere mid-latitudes (-60° to -20°), (ii) tropics 
(-20° to 20°), and (iii) northern hemisphere mid-latitudes (20° to 60°). Values greater than 0 
are considered ‘wet’ biased relative to ARSA, while negative values will be dry biased. Next the 
RSME is also calculated at each pressure level, for each region: 

 
 

 

Eq.  4.8 
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where ∆H2O is the mean HIRS bias at pressure level p, ∆H2O p,i  is the ith HIRS bias at level p and 
n is the number of data points. Figure  4-53 presents results from this direct comparison of 
HIRS specific humidity profiles to the ARSA_ANN profiles. Results are calculated for each 
platform N14, N15, N16, N17 and M02 which correspond to Figures 9a-9e respectively. 
These results show that the ANN processer overestimates the mid/lower troposphere (500 hPa 
– surf) and underestimates in the mid/upper troposphere (500 – 300 hPa). These results are 
consistent across all platforms; all show that the driest bias is seen at 400 hPa while the largest 
wet bias occurs at 700 hPa. This is likely to be the retrieval compensating, dehydrating the 
upper troposphere to balance the water column. In fact this will not be the only reason, due to 
relaxed collocation criteria there will be additional contribution to the bias as the 
representativeness of the common air mass observed radiosonde and satellite will degrade. 
Comparisons within northern hemisphere mid-latitudes show this where biases below 400 hPa 
are lower than the other two regions as the radiosonde network is denser. The higher volume 
of collocations reduces bias although the RMSE increases as the variability also increases.  
The RMSE profiles show a greater amount of variability between the different platforms. For 
example, the 1000 hPa level shows values between 15%-40% across the 3 latitudinal regions. 
The spread is greater with the older platforms (e.g. NOAA 14) and improves in the newer 
platforms. All see large RMSE values between 600-500 hPa, for the NOAA series these values 
are above 80% while for Metop-A (M02) this is lower closer to 70%. Again the higher sampling 
in the northern hemisphere produces reduced estimates for RMSE above 600 hPa, while below 
this altitude they are comparable or larger than the other 2 regions. 
 

 
Figure  4-54: Comparison of ARSA TCWV measurements. Plot shows the relationship between TCWV that 

has been calculated from the ANN profiles relative to the original profile.  

4.4.3.2 ARSA TCWV 

The effect of using the ARSA ANN profiles over the original profiles is now demonstrated. 
If the HIRS profiles came from an optimal estimation or 1DVar scheme then averaging kernels 
would be used to smooth the atmospheric profiles for a ‘like-for-like’ comparison. The goal of 
the ARSA ANN is to smooth the profile in a similar manner, however we have seen that in 
profile space the retrieval is really more sensitive to the whole column. Therefore, by 
comparing both the original radiosonde TCWV and the ARSA ANN TCWV we get a better 
comparison of the retrieval performance.   
Figure  4-54 shows a comparison of TCWV calculated from the new ARSA ANN and the original 
ARSA specific humidity profiles (ARSA TOA). What is most noticeable is the ‘S’ shape within the 
scatter between the ARSA ANN and the ARSA TOA. This non-linearity seen in Figure  4-54 for 
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‘dry’ (TCWV < 10 kg/m2) and ‘wet’ (TCWV > 40 kg/m2) atmospheres can be explained by how 
the ANN algorithm reacts in profile space to the total column sensitivity (Figure  4-53). In drier 
atmospheres the lower troposphere wet bias reduces and the mid-upper troposphere dry 
biases increases. In wet atmospheres the ANN algorithm increases the wet bias in the lower 
troposphere with slight reductions of dry bias in the mid-upper troposphere. One issue is that 
while the TOA BTs calculated from the ARSA temperature and humidity profiles extends up to 
0.0026 hPa the highest ANN profile level in 300 hPa.  Therefore the ANN algorithm may benefit 
from additional pressure levels that help represent: 

• The tropopause - which will act as a boundary condition for HIRS tropospheric water 
vapor. 

• The top-of-atmosphere – which would essentially be climatology. 
• The stratosphere – help in defining tropopause. 

These could also be common levels with the temperature retrieval which is not be assessed at 
this time.  
For this reason the ARSA TOA profile has not been truncated for the comparison and therefore 
contains all pressure levels within the original radiosonde profile. The result shows the non-
linear response of the ANN processor; in general below 40 kg/m2 (ARSA TOA) the ARSA ANN is 
between 0.5 to 0.66 the value to the total column, while above 40 kg/m2 there is a more 
exponential increase relative to ARSA TOA. In higher column amounts the retrieval use more 
information from the upper troposphere which begins to bring the relationship back to nearly 
80% of the total column amount relative to ARSA TOA. 
A secondary example of how the reference TCWV is treated can be examined by looking at 
global time series of ∆H2O (Eq.  4.6) where both ANN and TOA are used. Figure  4-55 shows the 
2 time series of the HIRS TCWV biases relative to ARSA ANN (red) and TOA (blue).  
 

 
Figure  4-55: Example of 2 time series using TCWV calculated from original radiosonde profiles (TOA 

TCWV) and those generated from the ANN processor (ANN TCWV). Red and blue dashed lines show 
the linear fits applied to each data set. The almost lack of a trend in the TOA TCWV (blue dashed 
line) is because the relative difference in TCWV space due to the missing atmospheric levels in the 
ANN HIRS profile dwarfs other signal in the time series. Like the comparisons to the ARSA ANN TCWV 
(red), the ARSA TOA TCWV (blue) comparisons do show the fingerprints of volcanic eruptions. 
However, the relative change between the two is greater in the ARSA ANN TCWV comparisons. 

The brightness temperatures used in the generation of the ARSA ANN TCWV assume clear-sky 
conditions for the forward model calculations. During the collocation of both ARSA ANN and 
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TOA TCWV the HIRS cloud flag is applied to remove cloud contamination. Therefore, any 
undetected cloud/aerosol within the HIRS retrievals as the observed brightness temperatures 
will be supressed under the higher IR opacity. To this end the results of HIRS TCWV relative to 
the ARSA ANN TCWV clearly show the impact of large scale intercontinental transport of 
volcanic ash from large eruptions of the last 20 years. The ash and sulphate aerosol present in 
the HIRS observations will be missing in the calculated BTs which create ~20% to 40% 
difference in reported HIRS biases. In comparison, HIRS biases relative to the ARSA TOA 
appear to exhibit an almost constant dry bias. In comparison to the ANN processor the TOA 
TCWV will be 20% to 50% higher (without accounting any bias), therefore any changes 
manifest as smaller relative differences. The larger eruptions are present in this time series 
though the magnitude of change is only ~10%. This example really highlights how climate 
signals are suppressed in these types of comparisons where the signal-to-noise reduces. This 
has its importance in the stability analysis as the impacts of climatic effects need to be 
understood within the data record. The ANN approach provides a more ‘honest’ view of the 
time series through the philosophy of trying to compare like-for-like. This time series of HIRS 
global biases has a decreasing growth rate in wet bias relative to ARSA. It should be noted that 
the growth rate is not analogous to a trend in this case at this time. In the absence of long 
term in situ fiducial measurements it is difficult to quantify fully the uncertainty the further 
back we go in to the satellite records. Unlike its predecessors, HIRS on-board Metop-A is in a 
stable orbit which isn’t drifting. Coupled with the improvements both the HIRS/4 sensor and 
recent radiosonde models results in less variability within the time series. This manifests as a 
seemingly decreasing trend, which is in fact a retrospective increase in growth rate relative to 
the stability of HIRS in respect to the reference data set ARSA. This also assumes that the 
ARSA record is 100% stable over the same time period. Further differences could be explained 
if access to the measurement uncertainties were possible. Through projects like FIDUCEO and 
GAIA-CLIM this may be possible in the future. 

4.4.3.3 Stability Results 

Results from the previous section set the ground work for justifying the approach taken 
in this study. A key issue that needs to be addressed is the impact of outliers in the mean 
global distribution e.g. volcanic eruptions. Therefore, in this study global monthly weighted 
mean differences have been calculated using Eq.  4.7 from the collocated HIRS and ARSA ANN 
TCWV measurements between January 1995 and December 2013. The results (see Figure 12) 
look similar to the red time series in Figure  4-55 with higher variability prior to 2003, followed 
by a decreasing trend in wet bias. However, the magnitudes of these biases are larger. Prior to 
2002 biases are ~ 65%, after which they drop to ~40% (2007) and ~30% by 2013. It is 
important to note that these trends are not intended as measures of climate variability rather 
than the stability performance over the period covered by the data record. The stability of this 
time series is assessed by looking for break points within the time series. This is done by first 
decomposing the time series. Figure  4-56 shows the time series (Yt) broken into its trend (Tt), 
seasonal (St) and residual components (et): 

 
  Eq.  4.9 

 
The trend component (or growth rate) is then used in the assessment of the TCWV stability, 
while the seasonal and residual components contain all the noise of the stability record. 
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Figure  4-56: The observed stability over time of HIRS TCWV relative to ARSA radiosondes: time series of 
(fractional) HIRS-ARSA TCWV (top), the decomposed trend, seasonal and residual components, 
respectively. The trend component is used to assess the long term stability of the HIRS biases. 

A first visual examination of the trend component (second from top panel Figure  4-56) show 3 
distinct periods, (i) 1995-1998, (ii) 1998-2000 and (iii) 2000-2013. To look closer at the detail 
the stability trend time series under goes a process called segmentation. The Tt time series is 
transformed into a piecewise linear representation using a top down algorithm that considers 
every possible partitioning of Tt and tests their approximation error against a prescribed 
threshold. In this study the robust standard error of Tt is used: 
 

 
 

Eq.  4.10 

 
where SETt is the standard error, σ is the median absolute deviation of Tt and n is the number 
of data points. This yields a value of 0.83% 1/yr which is higher than the required stability for a 
water vapor CDR of 0.3%/decade (WMO GCOS, 2011). This is a recursive process that 
continues to split the sub-sequences until all segment approximation errors are below the 
threshold (Keogh et al., 2001). This process reveals that there are 6 break points (7 segments) 
within the time series (Figure  4-57).  
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Figure  4-57: Break point analysis of the trend component of the HIRS-ARSA ANN TCWV time series. 

Looking at the gradients of each segment there is a clear increase in instability between the 
end and beginning of the time series. The majority of these breaks coincide with the 
introduction of a new instrument; the break between the black and gold lines occur during the 
introduction of Metop-A (M02), the gold and pink line break is at the same time the NOAA 17 
(N17) data is introduced, the break between the pink and turquoise line represents where N16 
data starts and similarly the break between the green and red segments occur with the 
introduction of N15. The other 2 breaks (blue to green, red to turquoise) could be the result of 
the overlap periods which occur during periods of higher climate variability (El Nino/La Nina) 
where the homogenisation of HIRS radiances during this period still require further 
development. A second influencing factor for the blue to green break point is that the elevated 
stratospheric aerosol optical thickness (AOT) from the Pinatubo eruption return to background 
levels around 1998 (https://data.giss.nasa.gov/modelforce/strataer/). This would mean that 
homogenisation prior to this period would have the influence of volcanic aerosol which could 
explain the 20% change from 1995 to 1998. 
These preliminary results show that the stability of the HIRS record at best is still an order of 
magnitude away from the desired performance for climate studies. In addition, these are 
current global estimates which have a weighting towards the (western) northern hemisphere 
where the majority of radiosondes are located. Therefore, future work would need to include:  

1. Closer look at the overlap periods of the individual HIRS platforms through SNOs, 
2. The development of an aerosol detection algorithm, 
3. Further investigation into regional stability of the record, 
4. Increased characterisation of all uncertainties.    

 

4.4.4 Conclusions 

In this study the stability of the NOAA v2015 HIRS ANN TCWV record has been assessed 
through collocated overpasses with ARSA radiosonde soundings between January 1995 and 
December 2013. A new novel approach has been implemented that accounts for the 
instrument smoothing of the ANN processor which would normally be dealt with by averaging 
kernels from optimal estimation techniques (e.g. 1DVar). Results are also presented that 
demonstrate the lack of sensitivity of HIRS to the profile shape and the responses of the ANN 
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processor to changes in TCWV amount. This study also highlights the need for the 
development of aerosol detection for HIRS BTs before being sent to the ANN processor. It has 
been demonstrated that the TCWV record has sensitivity to large volcanic eruptions. 
Collocations have been collected using broad criteria (±3 hrs and within 100 km), however the 
use of weighted means reduces the impact of outliers by using the probability of their 
occurrence from climatological PDFs. The time series generated has then be decomposed to 
extract the trend component which was assessed for segmentation. The analysis shows that 
the current time series contains 6 breaks, most of which coincide with the introduction of new 
HIRS platforms.  
The remaining 2 break points seem to be less obvious. The current hypostasis of this study 
suggests that during earlier periods of overlap (between different platforms) occur during large 
scale climate variability (e.g. El Nino/La Nina or changes in stratospheric AOT). This suggests 
that there were inter-satellite biases that were not accounted for in the homogenisation of the 
L1b radiances. Additionally, the weighted mean approach used for these periods has lower 
sampling within the PDFs used to estimate the weights for the differences. 
While the current stability performance of the HIRS TCWV record does not meet the 
requirements for a water vapor climate data record it does show promise. The main issues 
revolve around the lack of metrological preparation of the data which is not uncommon in this 
field. Work being conducted within the FIDUCEO project could contribute to the understanding 
of L1b records. Proper treatment of uncertainties and the development of complete retrieval 
error characteristics will allow for better selection of collocations and demonstrate the true 
stability of this record. Therefore future development of this record will yield useful insights into 
the long term satellite water vapor record when put into context with other long term records. 
This is especially true over land where we have fewer global observations.  
Future work to extend this study would focus on 3 areas: 

1. Overlap periods of HIRS platforms through SNOs/double differencing. This will allow for 
the issues surrounding the breaks to be identified.  

2. Regional analysis. This will test the representativeness of the global estimate.  
3. SNO’s with SSM/I. This will present comparison to another TCWV record with a greater 

number of collocations relative to the radiosonde sites. One issue of this approach will 
include the fact that most SNO (±5 minutes) collocation will occur at high latitudes 
though some time periods will have ‘warmer’ mid-latitude/tropical collocations 
(Figure  4-58). However this will result in a lower collocation uncertainty between the 2 
TCWV measurements. 

 

 

Figure  4-58: Example of monthly SNO matches between HIRS and SSMI platforms. 
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4.5.1 Data 

Detailed data description of each data record can be found in the inter-comparison sub-
sections of the report. Please refer to these sub-sections for data versions and sources. The 
TCWV data records consist of both satellite and model analyses, including HOAPS, ERA-Interim, 
MERRA, CFSR, NVAP-M, REMSS. The WV profile data records include ERA-Interim, JRA55, 
MERRA, CFSR, NVAP-M. For the UTH products, only inter-calibrated data records with all-
longitude coverage are considered. The data include the inter-satellite calibrated HIRS data 
record and the inter-satellite calibrated microwave (MW) data record from the University of 
Miami. 

 

4.5.2 Methods 

Time series of the three data products are inter-compared. The monthly means of each 
data record are computed for the selected common period of 1988-2008. Anomalies for this 
time period are calculated for both land and ocean surfaces. The time series, Hovmoller 
diagrams, and lag correlation analysis discussed below are based on these monthly mean 
values and anomalies of each data record. The units are “kg/m2” for TCWV, “%” for UTH and 
“g/kg” for WV at standard pressure levels. 

 

4.5.3 Results 

Time series for the common period are displayed in Figure  4-59 (TCWV), Figure  4-60: 
Time series of UTH for 20°S-20°N. (UTH), Figure  4-61, and Figure  4-62 (WV at standard 
pressure levels) for the same zonal region. These include both monthly mean values of the 
variables (labelled as “totals”) and anomalies. For the tropics (20°S-20°N), over both land and 
ocean surfaces, all of the TCWV, UTH and WV data records exhibit strong seasonal variation. 
During this common period there is a major El Niño event in 1997-98. Significant changes 
during the 1997-98 El Niño event in the time series are found in all of these data records. 
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Figure  4-59: Time series of TCWV for 20°S-20°N. 

 

 
Figure  4-60: Time series of UTH for 20°S-20°N. 
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Figure  4-61: Time series of WV monthly mean values at 300, 500, 700 and 1000 hPa pressure levels for 
20°S-20°N. 
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Figure  4-62: Time series of WV monthly anomaly values at 300, 500, 700 and 1000 hPa pressure levels 
for 20°S-20°N. 

Comparing the UTH to the TCWV and WV time series, it is interesting to note that the phase of 
the UTH time series is mostly opposite to the other two products, especially during the major El 
Niño event. The contrast is a result of different physics in the products. During a major El Niño, 
the increase in TCWV and WV comprise of water vapour increase in the eastern Pacific and 
several other regions through tele-connection. However, the UTH field is more closely related 
to changes in both the ascending and descending branches of the large-scale circulation. Using 
the Pacific region as an example, though the changes in the general circulation during El Niño 
events can bring higher UTH to the central-eastern Pacific, it also brings decreased UTH in 
other tropical regions where the strength of the ascending branch of the general circulations 
decrease. The magnitude of changes in the regions of decreased UTH can be larger than that 
where UTH increases. When an area average of UTH over the large tropical zonal belt (20°S-
20°N) is taken, it numerically results in negative anomalies. During less major El Nino events in 
the analysed common period, i.e., 1991-92, 1994-95, 2002-03, and 2006-07, negative 
anomalies in the zonal mean of UTH and positive anomalies in zonal mean of TCWV and WV 
are also observed. However, the anomaly variations in UTH are mostly sharper and narrower 
temporally. 

The UTH and WV anomaly time series in Figure  4-60 and Figure  4-62 also reveal significant 
impact from Pinatubo eruption. Corresponding to the major eruption in June 1991, the UTH 
anomaly and NVAP-M anomalies at 700 and 1000 hPa have sharp increases over the ocean 
surfaces. Such sharp increases, though, may not necessarily represent a sharp increase in the 
atmospheric water vapour. The HIRS sensor can be sensitive to atmospheric aerosols from 
volcanic eruptions, such as dust and ash. Notable increases of anomalies in TCWV (shown in 
sub-section  4.1.1) and in model WV fields for all levels over both tropical land and ocean 
surfaces are shown after the June 1991 Pinatubo eruption. 

To further illustrate the regional variability of UTH, Figure  4-63 shows the time series of UTH 
over the equatorial western and eastern Pacific for 10°S-10°N. When the analysis is restricted 
to the eastern Pacific, the phase of UTH is more consistent with that of TCWV and WV during 
the major El Niño event (right panel of Figure  4-63). However, the opposite phase is evident in 
the time series over the equatorial western Pacific (left panel of Figure  4-63). When the 
analysis is further confined to the Niño 4 region in central Pacific (Figure  4-64), the phase of 
the UTH time series is shown highly consistent with TCWV and WV time series not only during 
the major El Niño event, but also through most of the time series. 
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Figure  4-63: Time series of UTH monthly anomaly values for 10°S-10°N for equatorial western (left 

panel) and eastern Pacific (right panel). 

 
Figure  4-64: Time series of UTH monthly anomaly values for Niño 4 region. 

Hovmoller diagrams displaying anomalies of the data records for the common period along 
latitudes are depicted in Figure  4-65 to Figure  4-67. Figure  4-65 shows TCWV data records 
from reanalysis models and satellite measurements, Figure  4-66 shows the two UTH data 
records, and Figure  4-67 shows the WV data records at 300 hPa as an example to illustrate the 
patterns around the 97-98 El Niño in the WV data records. One distinct feature is observed in 
all Hovmoller diagrams (TCWV diagrams are shown in sub-section  4.1.1), that during the peak 
of the 1997-98 El Niño there is a decrease of water vapour around 10°N latitude zone, 
accompanied by a zone of increased water vapour near the equator. However, the areas and 
durations of the increase of water vapour in the TCWV and WV diagrams are much larger than 
that in the HIRS UTH diagram, and the intensity of the increase in TCWV and WV near the 
equator is higher than the intensity of the decrease near 10°N. The combined effect is a 
positive increase in TCWV and WV as seen in the 20°S-20°N time series, and the larger area 
and larger intensity of the water vapour decrease in the UTH field result in the opposite phase 
in the 20°S-20°N time series. 
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Figure  4-65: Hovmoller diagrams of TCWV monthly anomalies from reanalysis models and satellite 

measurements along latitudes for the common period. 

 

 
Figure  4-66: Hovmoller diagrams of HIRS and microwave UTH averaged monthly anomalies along 

latitudes for the common period. 
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Figure  4-67: Hovmoller diagrams of averaged monthly anomalies along latitudes at 300 hPa for the 

common period. 

Patterns of variability of simulated brightness temperatures corresponding to the upper 
tropospheric water vapour channel from reanalysis data records and climate models were 
compared with the HIRS measurements in a study by Chung et al. (2016). The study found 
that reanalysis-produced data records exhibit spatial and temporal patterns of interannual 
variability consistent with satellite observations. However, spatial patterns of reanalysis-
produced trends are distinctly different from HIRS observations. In particular, reanalysis data 
records fail to capture the observed feature that the climatologically dry regions of the 
subtropics have become more humid. The reanalysis data records also show substantial 
discrepancies in trends among them. 

To examine the consistency and difference of correlations with the Niño index among different 
products, Figure  4-68 - Figure  4-69 Compare the lag correlations with the Nino3.4 index 
between two satellite records of different products that have long-term time series, i.e., the 
SSM/I record (HOAPS) from the TCWV data records and HIRS record from the UTH data 
records. For latitudes 60°S-60°N, there is a high correlation in the HOAPS data record with the 
Niño3.4 index for all-oceans, but because there are cancelling effects over the large span of 
latitudes in UTH, the resulting value of UTH correlation is small for all-oceans. Over the Pacific, 
the HOAPS correlation does not have a lag from the Niño3.4 index. However, for UTH, there is 
a negative lag in approximately three months. For latitudes 20°S-20°N, with the reduction of 
cancelling effects outside of tropics, the correlation of UTH over the Pacific increases. When the 
latitudes are reduced to 10°S-10°N (Figure  4-70), with the zonal belt being more focused on 
the ENSO region, the Pacific UTH correlation changes sign to having a positive correlation with 
the Niño3.4 index. The dramatic change illustrates the role of many opposing factors playing in 
the UTH field, and UTH is a more localized variable compared to TCWV. 
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Figure  4-68: Lag correlation of HOAPS with the Niño3.4 index for 60°S-60°N (left panel) and 20°S-20°N 

(right panel). 

 

   
Figure  4-69: Lag correlation of HIRS UTH with the Niño3.4 index for 60°S-60°N (left panel) and 20°S-

20°N (right panel). 
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Figure  4-70: Lag correlation of HIRS UTH with the Niño3.4 index for 10°S-10°N. 

 

4.5.4 Conclusions 

The consistency of three water vapour products is examined, including TCWV, UTH, and 
WV. Over the examination period all three products exhibit significant variations in relation to El 
Niño conditions. However the phases of the variations can be in opposite or in lagged modes. 
Among these products, the variation of UTH is more spatially related to the atmospheric 
circulation conditions, and the change is numerically more significant over the area of drying 
than that of moistening. During a major El Niño event, the TCWV and WV increase significantly 
over large areas of the tropics, while the corresponding decreases of TCWV and WV in other 
parts of the tropics usually occur with smaller magnitudes within a smaller latitude span. In the 
meantime the UTH variation pattern is very different. During a major El Niño, decreases of UTH 
are observed over large areas of the tropics corresponding to changes in the general 
circulation, while the increases of UTH are found mainly over the confined areas over 
equatorial central-eastern equatorial Pacific. This results in opposite phases between UTH and 
the other two products in their time series when a tropical zonal average is taken. However, 
when only the equatorial central-eastern Pacific region is considered for UTH, the temporal 
variation phase of UTH is consistent with those of zonal mean TCWV and WV products. The 
differences in the dependencies of the atmospheric general circulations among the products 
also result in significantly different lag correlation patterns between UTH and TCWV. 
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5 Intercomparison of data records from full archive  
M. Lockhoff (DWD), M. Schröder (DWD), K. Graw (DWD) 

Within this section intercomparison the results presented here are based on the full 
archive of short and long-term data records. Similar to the long-term analysis, the aim was to 
identify areas where data records agree and where differences exist, as well as explaining 
where these differences stem from. Large parts of this section are based on Schröder et al. 
(2017a). 

 

5.1 Data 

Table  5-1 provides an overview of the short-term data records considered. The archive 
includes in total 22 data records (six reanalysis and 16 satellite-based products). For more 
detailed information on the data records the reader is referred to section  3.3 and to the links 
therein.  
 

Table  5-1: Summary of all short-term data records used. 

ID Technique Data record Provider 

HOAPS SSM/I HOAPS 3.2 CM SAF 
REMSS SSM/I, SSMIS, 

AMSR-E, WindSat, 
AMSR2 

Version-7 Release-1 
TPW CDR 

REMSS 

NVAPO SSM/I NVAP-Ocean CSU 
AMSREj AMSR-E AMSR-E Version 7.0 JAXA 
AMSREr AMSR-E AMSR-E Version 7.0 REMSS 
TMI TMI TMI Version 7.1 REMSS 
EMIR MWR EMIR-MWR 

Version1.0 
ESA 

ATOVS ATOVS ATOVS Edition1 CMSAF 
SSMIMERIS SSM/I,MERIS GlobVapour GlobVapour 
NVAPM AATSR, HIRS, SSM/I, 

GNSS 
NVAP-M Climate CSU 

UWHIRS HIRS UW/SSEC HIRS UWisc/SSEC 
NNHIRS HIRS NNHIRS NASA 
MERIS MERIS GlobVapour GlobVapour 
AIRWAVE (A)ATSR AIRWAVE ESA 
GOMESCIA GOME, SCIAMACHY, 

GOME2 
GOME/SCIA/GOME2 GlobVapour 

MODIS MODIS-AQUA MODIS Collection 6 NASA 
ERAINT Reanalysis ERA-Interim ECMWF 
ERA20C Reanalysis ERA20C ECMWF 
MERRA Reanalysis MERRA NASA 
MERRA2  Reanalysis MERRA2 NASA 
JRA55 Reanalysis JRA-55 JMA 
CFSR Reanalysis NCEP CFSR NOAA/NCEP 
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5.2 Method 

Data preprocessing, common masks and intercomparison methods applied are in 
principle the same as described for the intercomparison of long-term data records in 
section  4.1.1.2. The analysis was carried out on the basis of monthly means, so that for all 
data records provided at higher than monthly resolution, monthly means had to be computed. 
Furthermore, a common grid and time period were defined. The common grid is again a 
regular latitude longitude grid with 2° resolution. The common time period covers the years 
2003 to 2008. The intercomparison methods included:  

- Bias and standard deviations relative to the ensemble means, 

- Weather type analysis (maps and time series). 

 

5.3 Results 

Figure  5-1 shows the ensemble mean and respective absolute and relative standard 
deviations based on the 22 data records. As not all data records provide global coverage the 
available number of data records differs regionally. Standard deviations are again generally 
lowest over ocean areas with relative standard deviations typically below 15 %, whereas over 
land regional values typically stay above 25%. Largest differences and therefore largest 
standard deviation values are found in the polar and high mountain regions (larger than 25%). 
The spatial patterns are very similar to the ones found for the long-term data records (see 
Figure  4-3). 

  

 
Figure  5-1: Ensemble mean (left), absolute (middle) and relative (right) standard deviation calculated 

based on all available data records. Note that the number of available data records differs regionally 
(taken from Schröder et al., 2017a). 

Figure  5-2 depicts ensemble means and respective standard deviations for the three different 
weather types defined above. The all-sky weather type includes six data records, of which all 
are reanalysis products (ERAINT, ERA20C, CFSR, MERRA, MERRA2 and JRA55). The differences 
among them are generally low, with absolute (relative) standard deviations values staying well 
below 3 kg/m² (15%). Largest differences are found over land areas. The cloudy-sky category 
includes mainly satellite-based products based on passive microwave radiometers with retrieval 
schemes limited to ocean areas: HOAPS, REMSS, NVAPO, EMIR, NVAPM, AMSREr, AMSREj, 
SSMIMERIS, TMI and ATOVS. The data records agree generally well except for the polar 
(ocean) regions were standard deviations values larger than 25% are found. The clear-sky 
category includes data records based on measurement from ultraviolet/visible/near-infrared 
imagers that cannot see through clouds and are therefore limited to clear-sky condition: 
GOMESCIA, MODIS, UWHIRS, NNHIRS, MERIS, SSMIMERIS, and AIRWAVE. Whereas the latter 
is only available over ocean, the two MERIS-based products are restricted to land areas. 
GOMESCIA, MODIS, UWHIRS and NNHIRS have global coverage. Results are presented 
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separately for all data records with global coverage (third row in Figure  5-2) and all with 
coverage over land areas (fourth row in Figure  5-2). The results reveal large differences 
between the clear-sky data records both over land and ocean. Large differences are again 
found over the polar region both over land and ocean. Additionally the area of the ITCZ and 
both desert and mountainous regions are affected by large difference between these data 
records. 
 

 
 

Figure  5-2: TCWV ensemble means (left), absolute (middle) and relative (right) standard deviations for 
different weather types (from top to bottom): all-sky, cloudy-sky, clear-sky (global) and clear-sky 
over land (taken from Schröder et al., 2017a). 
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Figure  5-3: TCWV bias relative to the ensemble mean for all 22 ensemble members (adapted from 
Schröder et al., 2017a). 

In order to investigate in more detail which data records cause the different areas with 
increased standard deviation values the bias relative to the ensemble mean was calculated for 
each of the 22 data records. The corresponding maps are shown in Figure  5-3. All IR-based 
retrievals (NNHIRS, UWHIRS, AIRWAVE, MODIS) exhibit large positive biases over subtropical 
high pressure zones. GOMESCIA also exhibits a bias feature in this area but shows negative 
bias, thus lower values than the other IR-based retrievals. Over land IR-based behaviour 
differs, NNHIRS reports much less TCWV than the ensemble mean whereas both MODIS and 
NVAP-M show a large positive bias, especially over the tropical Africa. That’s also where the 
reanalysis data records differ (as already seen in the intercomparison of the long-term data 
records). ERA20C and JRA55 show lower values compared to the other reanalyses. Over the 
ocean areas biases are generally low for all microwave based and reanaylsis products except 
JRA-55, ERA20C, NVAP-O and NVAP-M which show relatively large negative (reanalyses) and 
positive (NVAP-M, NVAP-O) biases in the tropics. 
 
Figure  5-4 shows time series of TCWV and TCWV anomalies for the tropical ocean with the 
data records grouped according to the different weather types. They served to investigate the 
consistency of the temporal variability and check for inhomogeneities in the data records as 
possible source for differences found between the data records and to assess the presence of 
systematic differences among the weather types. The reanalysis (all-sky) data show good 
agreement over time over the tropical ocean area with a spread of around 2 kg/m² among the 
different data records. This is not too surprising as the spatial maps already showed the good 
agreement among the reanalyses over ocean. For the two other weather types, however, we 
found areas of larger differences. Accordingly, a large spread among the data records in the 
order of 5 kg/m² and 6 kg/m² for the cloudy-sky and clear-sky weather types was found, 
respectively. Concerning the cloud-sky data records the spread is mainly due to NVAP-O and 
NVAP-M which both show larger values than the others which actually agree within 2 kg/m². 
Despite the offset between the data records the anomalies agree well between the cloud-sky 
data records. Only the EMIR anomalies exhibits individual months with larger differences 
(round 1 kg/m²) in 2005 and 2006 with respect to the other anomaly time series. For the clear-
sky data records an offset between the individual records and differences with respect to the 
seasonal cycle (maxima shifted) and its magnitude were found. GOMESCIA and MODIS show 
the largest seasonal cycle. Best agreement is found between GOMESCIA, AIRWAVE and 
UWHIRS (within 2 kg/m²) from 2007 onwards, which is due to a decrease in TCWV for 
GOMESCIA and an increase in TCWV for UWHIRS happening round that time. This change 
coincides with the launch of MetOp-A end of 2006 with both GOME-2 and an HIRS instrument 
onboard.  
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Figure  5-4: Time series (01/2003 – 12/2008) of TCWV and TCWV anomalies for the tropics (±20°N/S) 

over ocean for the weather type scenarios all-sky (left), cloudy-sky (middle) and clear-sky (right) 
(adapted from Schröder et al., 2017a). 

 

5.4 Conclusions 

The intercomparison of the full archive including 22 data records revealed similar regions 
of differences as for long-term data records. These are: land regions above all desert, polar 
and mountain regions. In order to analyse the effect of weather type depending sampling three 
different weather types were defined: all-sky, cloudy-sky and clear sky. The stratification 
according to weather type revealed noticeable differences between the different weather types. 
In more detail: 

o All-sky data records (reanalyses) are found to be generally agree well and show 
largest differences (around 10%) over land regions (e.g. Africa). 

o Cloudy-sky (PMW-based) data records, also agree well with standard deviation 
values well below 10 % over most parts of the ocean. Largest differences are found 
in the polar region with standard deviation values exceeding 25 %. 

o Clear-sky (UV/VIS/IR-based) exhibit larger differences among the data records, 
especially over the: tropical ocean, mountains, deserts as well as snow and ice 
covered regions. GOMESCIA and UWHIRS were also found to have temporal 
inhomogeneities stemming from changes in the observing system. The comparison 
of regional time series also revealed inhomogeneities in some of the data records. 

Generally, it is unclear whether these differences found are caused by the weather type or the 
type of data record (e.g., reanalysis vs microwave). Also note that the interal variance of a 
weather type is fairly large relative to the differences among the weather types. 
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6 Analysis of instantaneous data 

6.1 Sampling 

S.-P. Ho (UCAR), J. Forsythe (Colorado State U.), M. Schröder (DWD), H. Höschen (DWD) 

6.1.1 Introduction 

As stated in Section  3.1, because water vapour products focus on the use of one 
particular instrument or instrument type, the quality of water vapour data from different 
satellite sensors (i.e., visible, infrared, and microwave sensors) may either unavailable or vary 
under different atmospheric conditions. For example, only daytime samples are available for 
water vapour products derived from visible sensors. Only clear sky water vapour data are 
available for visible and infrared (IR) instruments. Because extreme rain and high wind surface 
may significantly affect (absorb or scatter) microwave measurements, the microwave TCWV is 
either not available under heavy precipitation conditions (Schlüssel and Emery, 1990; Wentz, 
1997; Elsaesser and Kummerow, 2008; John et al., 2011) or is affected by increased 
uncertainties (Wentz and Spencer, 1998). Such conditions typically occur within tropical 
cyclones or under thick clouds. Rodell et al., (2015) stated that for AMSR-E ocean-only TCWV, 
sampling biases are small except for heavy precipitation which represents 2 – 5% of all scenes.  

In this section, satellite water vapour sampling biases under clear sky and all sky 
(section  6.1.1), biases induced by different gap filling approaches (section  6.1.2), biases due to 
diurnal sampling (section  6.1.3), biases due to time-varying sensor availability (section  6.1.4), 
and biases under precipitating conditions (section  6.1.5) are summarised. Some of the results 
have been summarised in Schröder et al. (2017a).  

 

6.1.2 TCWV and UTH bias between clear sky and cloud y sky 

While observations in the visible, near infrared, and IR sensors can be used to derive 
reliable water vapour retrievals only under clear sky conditions, microwave and GPS RO 
measurements can be used to derive water vapour products under both clear- and cloudy-sky 
conditions. Here we briefly summarize results based on the available literatures that describe 
the so called clear sky bias which is defined as a systematic difference between clear sky TCWV 
and cloudy sky TCWV. 

Sohn and Bennartz (2008) analysed the clear sky bias using LWP and TCWV data derived from 
AMSR-E. Those AMSR-E samples with LWP less than threshold values (30 g/m2) are defined as 
clear sky samples. The cloud sky TCWV values are computed from the TCWV differences 
between all available samples and clear sky samples. Figure 1 in Sohn and Bennartz (2008) 
shows the spatial distribution of the clear sky biases over the global ocean where the clear sky 
TCWV values are usually smaller than the cloudy sky values over most of the global oceans. 
Maximum values are found where thick clouds are prevalent. Clouds typically form if the air is 
saturated and thus are more humid than surrounding air where no clouds are present and the 
air is not saturated. In stratocumulus regions, e.g., off the coast of South America, the bias can 
have an opposite sign. In such cases, dry inversion is often observed above stratocumulus 
clouds. In a zonal mean sense, the clear sky bias is around 2 kg/m2, except for the mid-
latitudes during the summer, in which a difference of up to 7 kg/m2 is observed. 
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Mieruch et al. (2011) compared the GOME TCWV product (Noel et al. 2004) with TCWV 
collected from HOAPS version 3.1 (Schröder et al., 2013). They start with a theoretical 
consideration of bias that contribute to the potentially observed, these include: clear sky bias, 
retrieval bias, diurnal sampling bias, differences in spatial resolution and differences arising 
from specific details of the GOME retrieval. A similar dry bias pattern as that shown in Sohn 
and Bennartz (2008) was observed. However, the overall biases are larger with maximum 
values in the ITCZ, reaching values of up to 10 kg/m2. The dominant contribution to this bias is 
originated from the application of an air mass corrections factor.  
A similar dry bias was also observed in UTH (John et al. 2011). Clear sky was defined using 
HIRS based UTH data. This mask was applied to UTH from AMSU-B and the difference between 
the sampled clear sky and the full sample of AMSU-B UTH was derived. They observed a 
difference of -9 %RH using daily values averaged over the tropics and the dry bias can be as 
low as -30 %RH (or -50%) in convective regions. This may be in part because air above 
convectively active areas is more humid. They concluded that the trends in clear sky and clear 
sky/cloudy sky UTH data are statistically significantly different. 
 

6.1.3 Biases induced by gap filling approaches  

While clear sky water vapour vapour products can be derived from visible, NIR and IR 
observations, the cloudy samples derived from these instruments are usually flagged as 
undefined. All sky TCWV can be derived from microwave observations. As mentioned above, 
measurements from microwave radiometers may be scattered or absorbed by precipitation so 
the microwave TCWV under precipitation may contain a larger uncertainty. To construct climate 
data records (monthly mean climatology) with adequate temporal coverage, homogeneity, and 
accuracy, various methods were proposed to reasonably filling the temporal and/or spatial data 
gap. Different gap filling approaches may introduce different water vapour biases.   

Schröder et al. (2013) proposed a kriging approach to fill the data gap. Figure 2 in Schröder et 
al. (2013) shows the difference between the climatology based on the kriging method and the 
product without gap filling. The emerging pattern coincides with precipitation patterns. In such 
regions maximum values of 1.5 kg/m2 are found, relative maxima are around 4%. The kriging 
routine fills the gaps using information from surrounding pixels, that is, from cloudy skies. 
Thus, the PDF is filled at the wet end and the average value increases. In presence of strong 
convective events, which is usually triggered by low level convergence, we speculate that the 
cloudy sky product is biased lower relative to a true all sky product.  

Courcoux and Schröder (2015) actually compared the PDF of original and krigged TCWV data, 
in this case using ATOVS data. They confirm that the PDF is filled at the wet end (see their 
figure 4). Here the bias based on global data for a single summer month is 0.9 kg/m2. 

Further analysis is needed to confirm the sign and the strength of this bias. 
  

6.1.4 TCWV biases due to diurnal sampling  

In this section the potential uncertainty arising from the diurnal cycle of TCWV is 
described. The analysis is based on a 2-hourly TCWV data record measured by the ground-
based Global Navigation Satellite System (GNSS) obtained from the National Center for 
Atmospheric Research (NCAR) (Wang et al. 2007). The GNSS data record version 721.1 
includes data from 1995 to 2011. In total, 997 stations are specified. 

 
The data record has been analyzed to identify the 5 year period with the maximum number of 
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stations having a data density of at least 75% of all possibly available data. The period from 
2004 to 2008 was identified with 179 stations. The ground-based TCWV data are binned 
according to local time and with 2-hour bins. Then, averages between any bin and the 
corresponding bin 12 hours later are computed, e.g., for 0 and 12 local time (local time pair). 
This way the sampling of polar orbiting satellites is simulated. Again, a threshold of 75% is 
applied such that if all hours are fulfilling this requirement, the climatology is calculated as the 
mean of the measurements of the years 2004-2008. During preprocessing a few distinct 
features in the NCAR GNSS data have been identified and the information was provided to data 
records PIs. 

Figure  6-1 shows a spatial map of the amplitude of the diurnal cycle. It depicts a larger 
variability of the amplitude over tropics than mid-latitudes. Larger amplitudes are observed at 
coastal stations and smaller amplitudes are over ocean.  

Figure  6-2 shows the difference between local time dependent climatologies (left) as well as 
local time pair dependent climatologies (right) and the full climatology. Obviously the difference 
is a function of satellite equator crossing time, with absolute maxima at 2-4, 14-16 and 8-10, 
20-22 local time pairs. To reduce the difference two satellites with 6 hour difference in equator 
crossing time are recommended (not shown). 

However, the bias in Figure  6-2 is typically small with values hardly exceeding 0.1 mm or 0.5%. 
Even when looking at differences on station basis biases are smaller than 10% (not shown).  

More results and detailed discussions can be found in Höschen and Schröder (2016), available 
at http://www.gewex-vap.org/. 

Diedrich et al. (2016) also describes the diurnal cycle of TCWV and assesses the impact of 
sampling according to a single, specific orbit on climatological averages of TCWV. The results 
are in large agreement with results presented here. 

 

 
Figure  6-1: Climatological amplitude of the diurnal cycle in TCWV. Analysis is based on NCAR GNSS 2-

hourly data during the period form 2004 to2008. 
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Figure  6-2: Diurnal cycle of the absolute (top) and relative (bottom) bias (left) and the diurnal cycle of 

the bias for combined overflight times (right). The bias is estimated as the difference between local 
time bin / local time bin pairs and the climatology using data from all local times. Here only stations 
from the northern hemisphere have been considered. 

 

6.1.5 Time-varying sensor availability 

With time-varying sensor availability, the number of water vapour samples used to 
generate monthly mean climatology vary which may lead to sampling biases. Figure  6-3 
illustrates the challenge of creating a consistent multi-decadal climate data record from 
disparate satellite sensors. The timeline of sensors used in the NVAP-M TCWV climate product 
(Vonder Haar et al. 2012) are shown. Similar diagrams can be created for reanalysis products 
such as ERA or MERRA. In NVAP-M, the SSM/I sensors only have TCWV retrievals over ocean, 
the HIRS retrievals are restricted to clear sky only and radiosondes are only located on land. A 
key science question is to what extent the changing availability through time of these sampling-
biased sensors affects results such as trend studies. 
 



144 

 
Figure  6-3: Timeline of sensors used in the NVAP-M global water vapor data record, climate product, 

from 1988 - 2009, along with their sampling limitations. 

One way to quantify the sampling biases to generated several versions of a climate data record 
or reanalysis with a variety of sampling conditions. This allows the variability and sensitivity of 
the sought geophysical value to be examined. For example, the NVAP-M ocean product consists 
only of TCWV retrievals from the SSM/I sensor, using the inter-calibrated radiances of Sapiano 
et al. (2013) with TCWV retrieved as in Elsaesser and Kummerow (2008).  As seen in 
Figure  6-3, the number of SSM/I sensors varies from one in the late 1980’s and early 1990’s to 
between two and three for most of the record and then back to one beginning in mid-2008 
through 2009. 

The variability of the ocean TCWV trends for 1988-2009 is shown in Vonder Haar et al. (2015). 
The trend in TCWV using the daily fields from the archive, which use the maximum number of 
SSM/I instruments per day, is shown in Figure  6-4(a). The same trend result but with only 
randomly selecting one SSM/I instrument to use for each day is shown in Figure  6-4 (b). This 
mimics having only one instrument available throughout the entire time period of 1988 – 2009. 
The results are nearly identical, with a global trend value of +0.53 mm/decade from the 
archived data, and +0.51 mm/decade from the randomly selected data.  The trend maps look 
very similar, the most notable difference is in the regions of greatest trend in the tropical West 
Pacific. The archived product has slightly higher values, this is likely due to a greater likelihood 
of a successful retrieval happening with multiple sensors in regions of heavy precipitation, while 
the one satellite per day approach is more likely to have a missing value due to precipitation. 
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Figure  6-4: Trend (mm/decade) for the NVAP-M ocean data record as (a) archived using a varying 
number of SSM/I sensors and (b) by limiting the data input to only one random SSM/I sensor per 
day. 

 

6.1.6 Biases under precipitating conditions  

The Global Positioning System (GPS) Radio Occultation (RO) is an active remote sensing 
technique, which is complementary with the passive microwave and infrared sounders and 
microwave imagers. Because GPS RO data are not sensitive to clouds and precipitation, GPS 
RO derived water vapour products are very useful to identify the possible TCWV biases 
retrieved from measurements of passive microwave sounders and imagers under different 
meteorology (i.e., clear, cloudy, non-precipitation/cloudy and precipitation/cloudy) conditions. 
Launched in June 2006, COSMIC (Constellation Observing System for Meteorology, Ionosphere, 
and Climate) GPS RO data are available for studing atmospheric temperature and refractivity 
trends in the lower stratosphere (Ho et al., 2009a, b, and 2012). Extra studies have also 
demonstrated the usefulness to use high resolution GPS RO data to quantify modes of 
variability above, within, and below clouds (Biondi et al., 2012, 2013; Teng et al., 2013; 
Scherllin-Pirscher et al., 2012; Zeng et al., 2012; Mears et al., 2014). Comparison of COSMIC 
derived TCWV with those derived from ground-based GPS (i.e., International Global Navigation 
Satellite Systems–IGS, Wang et al., 2007) show that the mean global difference between IGS 
and COSMIC TCWV is about -0.2 mm with a standard deviation of 2.7 mm (Ho et al., 2010). 
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Figure  6-5:  Scattering plots for the COSMIC and RSS Version 7.0 F16 SSM/I pairs under a) clear, b) 
cloudy, c) cloudy but non-precipitation, and d) precipitation conditions. COSMIC data with penetration 
height lower than 0.1 km are included. The water vapour profile below the penetration height is 
interpolated assuming the relative humidity is equal to 80% where the temperature distribution is 
interpolated from the temperature of penetration height and surface skin temperature.  

Figure  6-5 a-d depict the scattering plots for COSMIC-F16 SSM/I pairs within one hour and 50 
km under clear, cloudy (including non-precipitation and precipitation pixels) from June 2006 to 
Dec. 2013 over oceans (Ho et al., 2016). F16 TCWV daily data in 1440 × 720 grid are 
downloaded from RSS V7.0 SSM/I ocean products (http://www.remss.com/missions/ssmi). 
SSM/I TCWV samples for those LWP equal or less than zero are used as clear samples. 
Under clear condition where SSM/I shall provide high quality TCWV products, the mean TCWV 
biases between SSM/I and COSMIC (SSM/I – COSMIC) is equal to 0.023 mm with a standard 
deviation of 1.53 mm. This demonstrates the feasibility of using SSM/I samples for those with 
LWP less than zero as clear samples. Those  
F16 pixels with LWP larger than zero are classified as cloudy pixels (Figure  6-5b). Those cloudy 
pixels with rain rate equal or less than zero are defined as cloudy with no precipitation pixels 
(Figure  6-5c) and those cloudy with rain rate larger than zero are defined as cloudy with 
precipitation pixels. Figure  6-5b shows that there are obvious positive TCWV biases mainly 
resulted from SSM/I retrieval biases (~0.80 mm) under cloudy conditions. Using Figure  6-5d 
depicts that the large SSM/I TCWV biases are mainly from the pixels under precipitation (mean 
bias is equal to 2.3 mm) although precipitation pixels are of about less than 6% of the total 
SSM/I –COSMIC pairs. 
 

6.2 PDF analysis 

R. Kursinski (SSE)  

6.2.1 Introduction 

A fundamental goal in climate research is to measure and understand the water vapour 
distribution and how it varies across the various spatiotemporal scales of interest across the 
globe and ultimately how it is controlled so that it can be better modelled and forecast with 
small uncertainty. Water vapour varies on spatial scales from microscopic to global and 
temporal scales down to seconds. It must be measured both precisely and accurately, in clear 
and cloudy conditions, over land and water, creating an, as yet unfulfilled, challenge to 
characterize it fully.   

For climate, water vapour is often characterized in terms of low order statistical moments such 
as monthly means or standard deviations. This approach provides little indication of the 
behaviour of moisture extremes which, in many applications, are of primary interest. For 
instance, the behaviour of humidity near saturation is critical for understanding clouds and 
precipitation, two very difficult to model variables that are critical to climate. The extreme dry 
end is also important for radiative cooling of the planet and as a diagnostic of mixing processes 
in the atmosphere. Furthermore, there are many ways of getting the mean right while getting 
the distribution wrong, which limits the utility of the moisture mean as a figure of merit in 
evaluating climate model veracity. It is also important to note that moisture analyses rely on 
models to vertically distribute the coarse vertical constraints provided by satellite radiance 
measurements. 
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Because of these issues, we focus here on progress in measuring the Probability Density 
Function (PDF) of the vertically resolved moisture distribution and its utility in evaluating 
models and analyses.   

 

6.2.2 Data 

The focus here is on PDFs of specific humidity derived from GNSS radio occultations (RO) 
measurements which are briefly described in Section  3.4 of this report. GNSS RO refractivity 
profiles provide a unique combination of high precision, accuracy, ~200 meter vertical 
resolution (with corresponding 100 km horizontal resolution) and insensitivity to clouds and 
surface emissivity to provide all-weather, global coverage from orbit.  Individual profiles of GPS-
RO derived moisture extend to approximately the 240 K temperature level in the troposphere. 
Zonal means extend still higher (e.g., Kursinski and Hajj, 2001). Its 200 m vertical resolution, in 
both clear and cloudy conditions over land and water with the global perspective from orbit are 
certainly unique for characterizing and understanding water vapour.  

The GPS-RO data record with the largest sampling density to date comes from the 6 satellite 
COSMIC mission which has provided approximately 10 years of data since its launch in April 
2006. As noted in Section  3.4, two methods, referred to as Variational and Direct retrievals, are 
typically used to extract water vapour information from GPS-RO refractivity profiles. From a 
climate perspective, the problem with the Variational moisture retrievals is that they include 
background moisture estimates from numerical weather prediction (NWP) models that likely 
contain biases. Therefore, our focus here is on the Direct water vapour retrievals which do not 
make use of background NWP moisture estimates. 

GNSS RO is effectively a molecule counter and is therefore sensitive to the amount of water 
vapour present, rather than the relative humidity. As a result, the water vapour profiles derived 
from these refractivity profiles extend to higher altitudes in warm, wet conditions. The specific 
humidity PDFs generated thus far and discussed below contain all of the quality controlled GPS 
RO profiles measured between 30°S and 30°N over the 2007 annual cycle that extend down to 
at least 2.5 km altitude. The focus has been low latitudes where moisture concentrations are 
generally highest and temperature variations are relatively small, conditions that allow one 
upper altitude bound to be used throughout the annual cycle.  The vertical interval extends 
from 2.5 km to approximately 9 km altitude. While the GPS-RO profiles from the COSMIC 
mission can extend much closer to the surface than 2.5 km altitude, profiling down into the 
boundary layer has thus far been avoided in these PDFs because super-refraction occurs in a 
fraction of GPS-RO profiles that biases the refractivity low in the boundary layer (Xie et al.  
2006). As discussed in Section  3.1.2.4, it does appear that the super-refraction problem will be 
solvable in the near future with better RO instruments.   

Kursinski and Gebhardt (2014) (KG14 hereafter) assembled histograms of the low latitude 
(30°S-30°N), free tropospheric specific humidity from the Direct water vapour retrievals 
derived from COSMIC refractivity profiles produced at the JPL GPS-RO processing facility.  
Through an error deconvolution method described in the next section, KG14 determined the 1 
sigma uncertainties of the Direct specific humidity shown in Table  6-1. They also estimated 
that the magnitude of the bias is less than 0.03 g/kg, based on the low end roll-off of the 
specific humidity PDF at 346 hPa. 

 

Table  6-1: Uncertainties of GPS-RO Direct retrieval specific humidity in the low latitude free troposphere 
(from Kursinski and Gebhardt, 2014). 
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Pressure 
level  

(mb) 

1 sigma specific 
humidity uncertainty 

(g/kg) 

Fraction of 
full range 

(%) 

Magnitude of 
specific humidity 

bias (g/kg) 

346 0.14 7 < 0.03 

547 0.25 3.5 

725 0.39 3 

 

The 346 and 547 hPa levels were chosen for comparison with the Dessler and Minschwaner 
(2007) PDF results. The 725 hPa level was selected to characterize the free tropospheric air 
just above the boundary layer where there may be diagnostic signatures of exchange between 
the free troposphere and boundary layer that are important to climate. The results in Table  6-1 
are based on approximately 110,000 profiles used to form the annual PDFs. The impact of 
these random errors on the specific humidity PDFs are then removed via the PDF error 
deconvolution method described in the next section.  

 

6.2.3 Methods 

We now briefly describe the method developed by KG14 to deconvolve errors from PDFs 
assembled from GPS Direct specific humidity profiles that are well suited for climate. The Direct 
method of retrieving water vapour from GPS-RO profiles of refractivity effectively subtracts an 
estimate of the dry refractivity (derived from analysis or reanalysis temperatures) from the 
total refractivity measured by GPS-RO to determine the wet refractivity and then the water 
vapour. This simple approach does not require that the water vapour be positive and can 
therefore produce negative water vapour estimates, which are, of course, unphysical. When a 
histogram or PDF of Direct method water vapour profiles is constructed, it can therefore 
include a tail of unphysical, negative values that can only be the result of noise. This tail can be 
used to estimate and remove the noise contribution to the PDF.  

KG14 noted that the specific humidity PDF derived via the GPS-RO Direct method is actually 
the convolution of two PDFs: the true moisture PDF and the PDF of the noise. Based on this 
realization, they developed an iterative, least squares, forward convolution method that 
estimates both the noise PDF and the true moisture PDF required to produce the measured 
PDF, thereby yielding a PDF much closer to the true specific humidity PDF, as well as the noise 
PDF. One assumption required to make this approach work is that the error PDF is symmetric, 
because only the lower half of the error PDF is visible via the tail of negative specific humidity 
in the measured PDF. KG14 note that the error PDF is likely very close to symmetric such that 
this does not appear to be a serious limitation. 

KG14 characterized the uncertainty of the deconvolved PDFs, in particular the dependence on 
the resolution of the PDF and the number of profiles used in constructing the PDF. Because 
histograms are estimating a much larger number of variables (equal to the number of bins) 
than low order statistics like a single mean or variance, construction of histograms requires 
many more samples to average down the sampling noise and achieve a desired level of 
precision. Furthermore, to avoid jagged results from the deconvolution, the measured 
histogram to be deconvolved must be smooth which requires that the histogram be formed 
from a large numbers of profiles. The deconvolved PDFs produced by KG14 consisted of 
approximately 110,000 profiles from a full year’s worth of COSMIC occultation profiles in the 
30°S to 30°N interval.   
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KG14 found that the width of the histogram bins must be at least one third of the 1 sigma 
width of the noise PDF to avoid ambiguity in the deconvolution process. KG14 also used 
smoothing constraints to control the deconvolution’s tendency to over-fit the noise and produce 
jagged and unphysical (but numerically optimum) solutions. They also noted that the error 
deconvolution is less important at lower altitudes because the 1 sigma uncertainty of the 
profiles is a smaller fraction of the full range of moisture values at lower altitudes in the free 
troposphere (see Table  6-1). 

 

6.2.4 Results 

Figure  6-6 shows several estimates of the specific humidity PDF at 547 hPa and 725 hPa 
for 30°S to 30°N for 2007 from different measurements and analyses from Kursinski et al. 
(2016b). The thick red solid line is the PDF of the GPS-RO Direct retrieval results after error 
deconvolution. While there is general agreement on the PDF shapes, there are clearly 
significant differences between these estimates that are important to understanding the actual 
moisture PDF and how it is controlled. 

 

 

a. 547 hPa 
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Figure  6-6: Comparison of specific humidity PDFs from several sources for 30°S-30°N for 2007 at two 

pressure levels: 547 hPa (top panel) and 725 hPa (bottom panel). 

It is important to consider the unique features of the GPS deconvolved PDF. The GPS 
deconvolved PDF is assembled from GPS Direct water vapour retrievals which make the least 
use of models and climatologies of any satellite based estimates. The GPS-RO data provides 
global coverage with the least biased sampling because of its insensitivity to clouds and surface 
emissivity. It provides vertical resolution at least a factor of 10 better than other satellite 
measurements, an important feature given the short scale height of water vapour. The number 
of GPS-RO profiles from the COSMIC mission is sufficiently large to form accurate and precise 
PDFs and the contribution of random errors to the GPS Direct PDF has been carefully estimated 
and removed (KG14). KG14 also estimated the bias in the GPS specific humidity to be less than 
0.03 g/kg. This collection of features implies that the deconvolved GPS Direct PDF is likely the 
most true-to-life of the present low latitude, free troposphere PDF estimates.   

In Figure  6-6a, the deconvolved GPS PDF at 547 hPa reveals a well-defined peak near 0.1 g/kg 
and a generally flat distribution between about 1.5 and 5.5 g/kg, which tails off at still higher 
values up to a maximum near 7 g/kg. In Figure  6-6 b, the deconvolved GPS PDF at 725 hPa, is 
flatter with smaller peaks near 0.125 g/kg and 8.5 g/kg.  There is a general tendency of the 
analyses to underestimate the percentage of extremely dry and wet air and overestimate the 
percentages of air in the central portion of the PDFs. 

To further quantify the differences between PDFs that are evident in Figure  6-6, Kursinski et al. 
(2016b) introduced a statistical measure called the total absolute value of the probability 
differences between two PDFs, referred to as TAPD. The TAPD is defined as  

b. 725 hPa 
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Eq. 6.1 

 
where i is the bin number in the histogram, N is the number of bins in the histograms and 
PDF1(i) and PDF2(i) are the values of the ith bin of histograms 1 and 2 respectively.  A small 
TAPD between two histograms indicates close agreement between the two. The maximum 
value that the TAPD can have is 2 or 200%. When a PDF is compared with the deconvolved 
GPS PDF as the reference, the resulting TAPD is written as TAPDG. Table  6-2 below shows the 
TAPDG results for the different analyses examined by Kursinski et al. (2016b). 
 

Table  6-2: Comparison results of low latitude, specific humidity PDFs for the 2007 annual cycle from 
various analyses and reanalyses with the deconvolved GPS PDFs, in terms of TAPDG (from Kursinski 
et al., 2016b). The high resolution analyses and reanalyses are marked black, the low resolution 
analyses blue and the AIRS Version 5 & 5 products green. 

  
Level 

(mb) 
MERRA 

ECMWF 

Hi-Res 

GPS 

1Dvar 
ERA-I 

ECMWF 

Lo-Res 

NCEP 

FNL 

AIRS 

v6 

AIRS 

v5 

TAPDG 

346 9.6% 18.8% 29.2% 23.1% 48.1% 43.0% 24.6% 24.2% 

547 12.6% 25.0% 24.5% 30.6% 55.1% 56.9% 45.6% 34.7% 

725 20.5% 15.3% 16.9% 18.9% 30.1% 46.7% 31.2% 44.8% 

avg 14.2% 19.7% 23.5% 24.2% 44.4% 48.9% 33.8% 34.6% 

 

Based on these results, Kursinski et al. (2016b) commented on each of the specific humidity 
PDF estimates in Table  6-2 that we summarized here. 

Note that averaging kernels have not been applied here (see sections  2.5 and  3.2 for a brief 
discussion of associated uncertainties and information content). 

UCAR GPS 1DVar: Figure  6-6 contains two GPS RO based moisture estimates, the deconvolved 
GPS and the UCAR GPS 1DVar moisture retrievals which are derived from the COSMIC GPS RO 
profiles in combination with background estimates of the ERA Interim reanalysis temperature, 
water vapour and pressure.  Despite the use of the GPS RO data, the UCAR 1DVar PDFs differ 
significantly from the GPS deconvolved PDFs at the three pressure levels examined by Kursinski 
et al. (2016b) and are in fact more similar to the ERA Interim PDFs. This indicates that 
weighting in the UCAR 1DVar process is weighted too heavily to the background ERA Interim 
moisture. This also provides an example of the non-uniqueness of variational retrievals because 
they depend on the relative weighting given to the observations and to the background. The 
weighting in turn depends on the particular error covariances used. Each NWP center typically 
develops and uses its own covariance matrices which have been chosen to minimize their 
particular system’s forecast errors. This non-uniqueness raises concerns about how well suited 
variational retrievals are for estimating the climate state. 

MERRA Reanalyses: At both 346 and 547 mb, the NASA MERRA reanalysis PDFs are closest to 
the GPS deconvolved PDFs, with the lowest TAPDG scores in Table  6-2. This is particularly 
impressive given that MERRA does not assimilate GPS-RO data. The independence of the two 
data records lends further credence to their similar results. On the wet end, the MERRA 
reanalysis is the only analysis whose PDFs at both 346 and 547 hPa exhibit a higher percentage 
of very high humidity air than the deconvolved GPS PDFs do. However, as Kursinski et al. note, 
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the MERRA means are a bit high which may indicate that these higher than GPS deconvolved 
percentages at the extreme high end of the distribution are overestimated. At 725 hPa, the 
MERRA PDF is less realistic, with percentages of moist air between 5 and 9 g/kg that are 
substantially too high and percentages of very dry air that are substantially too low, again, in 
comparison with the GPS deconvolved PDF. These errors suggest that there is too much 
exchange in the MERRA reanalyses between the boundary layer and the free troposphere. 

ECMWF high resolution analyses: The PDFs of the ECMWF high resolution operational analyses 
are similar to those of GPS deconvolved, coming in second to MERRA in Table  6-2, but they do 
underestimate the percentages of both the driest and the wettest air.  At 725 hPa, the Hi-Res 
ECMWF PDF is the most similar to the deconvolved GPS PDF (see Table  6-2) but slightly 
underestimates the fraction of the wettest air and misses the relative maximum at the extreme 
dry end of the distribution, as do all of the estimates other than the deconvolved GPS.  

ERA Interim: The ERA Interim PDFs are quite similar to and slightly worse than the PDFs from 
the full resolution ECMWF analyses. This is not surprising because the ERA Interim analysis 
system is essentially the ECMWF operational NWP system as of the end of 2006 except that it 
is run at lower horizontal and vertical resolutions which are factors of approximately 3 and 1.4 
times lower respectively than the full resolution ECMWF analyses in 2007.  Thus, at least in 
2007, ERA Interim reanalyses are not too much worse than the full resolution ECMWF 
operational analyses which are useful news for researchers using these reanalyses. This does 
raise the question of how much better the full resolution operational analyses have become 
since the 2007 analyses examined here. 

ECMWF low resolution analyses: This freely available, low resolution product is produced by 
ECMWF by interpolating the high resolution analyses to lower vertical and horizontal 
resolutions.  Interpolation is an averaging process that reduces extremes as is readily apparent 
in Figure  6-6 in the compression of the moisture distribution and reduction of the percentages 
of wet and dry extremes in the ECMWF low resolution PDFs in comparison to the ECMWF high 
resolution analysis PDFs. As a result, interpreting the shape of the low resolution analysis PDF 
would lead one to deduce that atmospheric diffusion and mixing are stronger than what occurs 
in reality. Thus, researchers must use low resolution analysis products with care and not overly 
interpret their apparent behaviour.  

NCEP FNL analyses:  Of the analysis PDFs examined by Kursinski et al. (2016b), the PDFs from 
the NCEP FNL analyses generally differ more from the GPS Direct PDFs than any other 
estimate, with too little air with extremely high and low moisture concentrations, and too much 
air with medium humidity amounts.  Given that these results are for 2007, it would be 
interesting to examine more recent NCEP analyses at their full resolution to assess their 
present level of realism. 

AIRS Level 3 products: PDFs from both Versions 5 and 6 of the AIRS Level 3 products are 
shown in Figure  6-6. At 346 mb, the two versions are about the same. At 547 mb, Version 5 is 
closer to the deconvolved GPS and at 725 mb, Version 6 is closer.  However, both versions 
significantly underestimate the percentages of extremely wet and dry air, which causes their 
TAPDG scores to be relatively high. At 725 mb, Version 6 is better than Version 5 due primarily 
to Version 6’s significantly better representation of the wet end of the moisture distribution. 
The improvement in the Version 6 retrievals across the wet portion of the distribution at 725 
mb is apparently due to a first guess based on a neural network trained by recent ECMWF.  
However, the Version 6 PDF at 547 mb also exhibits a peak near 4 g/kg and rapid falloff at 
higher specific humidities that none of the other analyses exhibit which produces a particularly 
poor TAPDG score there.  Both versions underestimate the percentage of dry air at 725 mb 
which is likely due to the coarse, ~2 km vertical resolution of the IR averaging kernels which 
smear out the sharp vertical transition between the moist boundary layer and drier overlying 
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free troposphere, limiting the ability to detect the presence of extremely dry free tropospheric 
air just above the boundary layer.   

 

6.2.5 Conclusions 

Value of GPS RO Direct retrievals + deconvolution: GNSS RO provides a unique 
combination of globally distributed, 200 m vertical resolution, high precision and accuracy, all-
weather profiling of free tropospheric water vapour up to about the 240 K level in the 
troposphere. A good understanding of the uncertainties in the GPS-RO Direct retrieval water 
vapour results has been developed that suggests that GPS-RO is the least biased water vapour 
data record in the free troposphere up to the altitudes to which it can profile moisture. 

PDFs: PDFs provide a far more stringent quantification of the moisture distribution than do low 
order statistical moments like the mean and variance. The number of occultation profiles from 
the 9 year COSMIC mission is sufficient that PDFs can be formed from GPS-RO results. A 
deconvolution method has been developed to estimate and remove random errors from GPS 
Direct PDFs which has been used to construct annual histograms for 30°S-30°N in the free 
troposphere. Detailed examination of the uncertainties indicates the resulting histograms are 
quite accurate. Also worthy of note is the fact that the deconvolution of the GPS Direct PDF is 
less important at lower altitudes where the width of the error PDF is a smaller fraction of the 
full range of the specific humidity PDF at lower altitudes in the free troposphere. 

Overall Comparison Summary: Figure  6-7 shows a summary of the range of TAPDG values from 
Kursinski et al. (2016b) at the three pressure levels they examined, 346, 547 and 725 mb, 
representing the lower, middle and upper free troposphere.  TAPDG ranges for several classes 
of PDF estimates are shown. The high resolution analyses which are the MERRA and ERA 
Interim reanalyses, the full resolution ECWMF analyses and the UCAR 1DVar GPS results score 
the best overall. The low resolution analyses are the low resolution ECMWF and the NCEP FNL 
operational analyses which score rather poorly. The AIRS Versions 5 and 6 are shown and score 
in the middle. The climate models examined are divided between CMIP5 and CMIP3 models 
and show a rather wide range of scores. The simple advection-saturation model of Dessler and 
Minschwaner (2007) is also shown and labelled as “Adv-sat” at the 346 and 547 mb levels. 
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Figure  6-7: Range of specific humidity PDF differences relative to the deconvolved GPS specific humidity 
PDFs in terms of TAPDG for several PDF estimates. All PDFs are for the annual cycle covering 30S-
30N at three pressure levels, 346, 547 and 725 mb.   

Figure  6-7 shows that the PDFs from the best of the high resolution analyses are the closest to 
the deconvolved GPS PDFs. The next closest class of estimates are the CMIP5 climate models, 
the best of which are better than the AIRS Version 5 and 6 Level 3 products at all three levels. 
The range of the CMIP3 models overlaps with the poorer performing CMIP5 models. The two 
low resolution analyses score poorly and fall within the CMIP3 model range. 

Kursinski et al. (2016b) also compared PDFs from the simple model of Dessler and 
Minschwaner (2007) which advects mid and upper troposphere air around and removes any 
supersaturated moisture created via temperature fluctuations along the way.  Kursinski et al. 
found this model to be unique in that it is the only model that substantially overestimates the 
percentages of both the extremely dry and the extremely wet air in comparison to the 
deconvolved GPS PDFs. Kursinski et al. noted that these overestimates are likely the result of 
no mixing and too much convective detrainment respectively. Still, at 346 mb, advection-
saturation model actually outscores all of the CMIP3 models in terms of the TAPDG. However, at 
547 mb, it is indeed the most unrealistic of all of the estimates considered by Kursinski et al. 

Also shown in Figure  6-7 is a point labelled ∆ENSO at each of the three pressure levels. Each 
point represents the difference, in terms of TAPD, between deconvolved GPS specific humidity 
PDFs for two consecutive 12 month periods, August 2006 to July 2007 in the El Niño phase, 
and August 2007 to July 2008 in the La Niña phase. These ∆ENSO points thus indicate the 
difference in the PDFs associated with the ENSO cycle which is the largest signal of interannual 
climate variability. Kursinski et al. therefore suggest that a performance metric that would be 
make it likely that the representation of the low latitude hydrological cycle in an analysis or 
climate model is sufficiently accurate for climate would be that the moisture PDFs of the 
analysis or model agree with the PDFs of the deconvolved GPS to within a small fraction of the 
PDF variations observed over the ENSO cycle. 
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In this regard, Figure  6-7 shows that, as of 2007, the differences between even the best of the 
high resolution analyses and the deconvolved GPS PDFs are larger than the changes associated 
with ENSO’s large year to year variations as captured by the deconvolved GPS PDFs which 
indicates there is substantial need for improvement among the analyses and even more so for 
the climate models. 

Importance of resolution:  Comparison of PDFs from the ECMWF high resolution and low 
resolution analyses shows that interpolation to lower resolution significantly distorts and 
compresses the PDF. Thus, any moisture analysis-based research on the hydrological cycle 
should use the highest resolution analysis products available (which are still not correct but 
definitely better than lower resolution products). 

While model and analysis resolution are clearly important, the similarity of the ECMWF full 
resolution analyses and the ERA-Interim reanalyses, despite the lower resolution of the ERA-
Interim reanalyses (by factors of 1.4 (vertical) and 3 (horizontal) relative to the full resolution 
ECMWF analyses) indicates that the model’s dynamics, physics and parameterizations are very 
important as well. 

Utility of Versions 5 and 6 of the AIRS Level 3 products: Based on the results summary in 
Figure  6-7, the AIRS Versions 5 & 6 are less realistic than the high resolution analyses and 
reanalyses and the best of the climate models.  This raises questions about their utility for 
evaluating model realism and providing guidance to model developers.   

Constraints on Processes: Observations are critical for providing constraints on the important 
processes operating in the atmosphere that modelers need to guide them in order to improve 
the realism and predictive skill of their models. The consistent underestimate of percentage of 
extremely dry air by the analyses (see Figure  6-6) and even more so in the climate models 
(Kursinski et al., 2016b) suggests there is too much mixing in the models. This further suggests 
that the positive water vapor feedback in models is overestimated.   

Accurate representation of clouds and precipitation is very challenging for models. The PDF 
comparisons reveal that all of the climate models and all but one reanalyses underestimate the 
percentage of extremely wet air. Since this is a requirement for realistic clouds and 
precipitation, the information provided by these PDFs will hopefully help provide some guidance 
to modelers in this area. 

An important issue in climate is the exchange of moisture between the boundary layer and 
overlying free troposphere which is tied closely to cloud albedo, a critically important feedback 
with a large uncertainty. Based on comparing climate models with the MERRA and ERA Interim 
reanalyses, Sherwood et al. (2014) concluded that the models with more exchange between 
the boundary layer and free troposphere are more realistic and therefore, the rise in surface 
temperatures due to anthropogenic climate change will be in the upper half of the range of 
climate model predictions. 

However, the PDF comparisons with the deconvolved GPS results at 725 mb suggest that the 
CMIP5 models are overestimating that exchange of moisture and therefore the Sherwood et al. 
conclusion may be incorrect. 

Structural uncertainty: The specific humidity PDF figures and tabular TAPD results shown 
above reveal a substantial spread across the PDFs from the various high resolution analyses 
and reanalyses and AIRS Version 5 and 6 products.  This spread exists even though each of 
these estimates has used or assimilated the enormous volume of globally distributed radiance 
observations from satellites, including the AIRS hyperspectral IR radiances.   

This spread can therefore be interpreted as the structural uncertainty of vertically resolved 
specific humidity derived using satellite radiances, model analyses and reanalyses.  Structural 
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uncertainty represents the spread in the estimates of a particular geophysical variable (in this 
case, vertically resolved specific humidity PDFs) that have been derived from common 
observational data (Thorne et al., 2005). The spread arises from different choices in processing 
and methodological approaches and uncertainties associated with the retrieval or reanalysis 
system. 

Figure  6-8 shows the spread in specific humidity PDFs which indicates the structural 
uncertainty of the specific humidity PDF at each of the 3 pressure levels. The PDFs in the 
figure are those from the ECMWF high resolution analyses, the MERRA and ERA Interim 
reanalyses, the UCAR GPS 1DVar results, and the AIRS Version5 and 6 results.  Also included in 
each figure panel is the GPS deconvolved PDF.   

The two black dotted lines in each panel of Figure  6-8 are the minimum and maximum values 
that together define the envelope of uncertainty of this set of estimates.  The red dashed line 
in each panel represents the fractional uncertainty defined as the maximum minus the 
minimum values for each bin in the PDFs, normalized by the deconvolved GPS PDF.  The 
fractional uncertainties are generally smaller in the central portions of the specific humidity 
PDFs, but these uncertainties are still not small. At 346 and 547 mb, the structural uncertainty 
across the tail of extreme wet values in the PDFs can be well over 100%. At 725 mb, the 
uncertainty at the extreme wet end is approximately 80%. At the extreme dry end of the PDFs, 
the fractional uncertainty is also large, ranging from 60% at both 346 and 547 mb to 100% at 
725 mb. Generally, these differences are likely related to different choices made during the 
processing and in particular to uncertainties of the inversion and/or reanalysis system. The 
100% uncertainty at the dry end of the 725 mb PDF likely reflects the inability of the vertical 
resolution of IR radiances, model analyses and reanalyses to resolve the vertically sharp 
transition between the boundary layer and very dry, overlying free troposphere. Also, the 
vertical resolutions of reanalyses and IR retrievals are not infinite and will generally lead to 
smoothed profiles, thus containing smaller extremes (see also section  2.5).   

It is noted that accurate vertically resolved moisture PDFs are needed to reveal detailed 
behavior of the hydrological and energy cycles and have the potential to distinguish between 
the validity of different model representations of the hydrological cycle and reduce present  
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Figure  6-8: Structural uncertainty for specific humidity at 346, 547 and 725 mb. Solid blue lines are the 

PDFs also shown in Figure  6-6. The dashed blue line marks the upper and lower limit of the PDF and 
the red dashed-dotted line shows the relative spread within each bin of the PDF. 

uncertainties about the combination of processes that are actually at work in Earth’s weather-
climate system.  Also note that it is worthwhile to reexamine this structural uncertainty issue 
using more recent, vertically resolved humidity PDF estimates that make use of the four 
hyperspectral IR sounders presently in orbit, namely AIRS, IASI on METOP-A and B and CrIS, in 
order to determine whether the information from those four instruments significantly reduces 
the structure uncertainty.      

 

6.2.6 The Future  

The results that have been presented in this section represent an initial set of 
comparisons and conclusions based on vertically resolved specific humidity PDFs. There is 
much more to be done here and we listed a few ideas.   

Comparisons with more recent analyses: The PDF comparisons summarized here are for the 
analyses as of 2007. Clearly it would be useful to extend these moisture PDF comparisons to 
more recent and presumably better high resolution analyses.  It would also be interesting to do 
comparisons of a given analysis both before and after a major change to the analysis system to 
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determine how its moisture PDF performance changes. 

Relative humidity: While the PDF deconvolution method has been applied only to specific 
humidity, an analogous PDF deconvolution method is being developed for relative humidity that 
will be useful particularly for better understanding behavior and issues associated with high 
relative humidity conditions particularly given the unique capabilities of GPS RO to routinely 
peer into and vertically resolve these regions across the globe.  

Smaller temporal and spatial domains: KG14 showed that accurate deconvolved 
histograms can be created from as few as 10,000 profiles which enable PDFs to be created for 
smaller spatiotemporal domains in order to resolve and separate behaviour over the seasons 
and regions of rising and sinking air at low latitudes. Furthermore, the number of GNSS RO 
occultations should increase dramatically over the next few years, beginning with a factor of 5 
increase in low latitude sampling with the 6 satellite COSMIC-2 equatorial GNSS RO mission 
scheduled to launch in 2017. Several companies have announced plans to launch satellite 
constellation generating GNSS RO data as well. If that data is of sufficient quality, it will enable 
PDFs to be generated for still smaller spatiotemporal domains in the future. More research is 
needed to decide what additional products to make standard on regional scales and seasonal 
and shorter temporal scales. Doing so and regularly producing these standard products will 
require funding which has been in limited supply for this work. 

Boundary layer: While the results generated thus far have been restricted to the free 
troposphere because of a negative bias in warm wet boundary layers associated with super-
refraction (see Section 3.1.2.4), it appears that this present limitation may be overcome with 
the better GNSS RO receivers on COSMIC-2 that promise the ability to profile the low latitude 
boundary layer beginning in late 2016. 

Increase the GNSS RO Impact: Another point is related to the impact of GPS RO on NWP 
moisture analyses. Development of methods to assimilate GPS-RO data into global NWP 
systems began at least 15 years ago (e.g., Healy and Eyre, 2000) and GPS-RO data is now 
being routinely assimilated into many global NWP analyses. Harnisch et al. (2013) simulated 
the impact of large numbers of GNSS occultations up to 128,000 per day and predicted that 
GNSS RO will have a large impact on the moisture analyses when the numbers of occultations 
become much larger than they are at present. Thus, we anticipate that as the number of GNSS 
occultation increases, the moisture analyses from NWP systems will capture that information 
and become more accurate and useful for climate. 

ATOMMS occultations near water vapor absorption lines:   While GPS RO has a number 
of unique features, it has limited ability to profile water vapor in the winter hemisphere and 
uppermost troposphere and above, and requires using analyzed temperatures to isolate the 
water vapor.  As described briefly in Section 3.1.2.4, a major advance in the global observing 
capability and understanding would be enabled via satellite to satellite occultations near the 22 
and 183 GHz water vapor absorption lines. Such a system, called ATOMMS, will extend the 
features of GPS RO by profiling water vapor and temperature simultaneously (avoiding the 
dependence on models or analyses), with 100 m vertical resolution, and will likely achieve 
~1% water vapor precision and accuracy with a dynamic range from lower troposphere into 
the mesosphere, in clear and cloudy air.  As noted in Kursinski et al. (2016a) and the 
references therein, mountaintop measurements have demonstrated ATOMMS ability to 
measure water vapor to better than 1% in optical depths up to 17 (7 orders of magnitude 
attenuation) and the sampling densities needed for weather and climate can be achieved by 
implementing this system on a constellation of very small satellites. 
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6.3 Collocation 

X. Calbet (AEMET), H. Brogniez (U. Versailles/LATMOS), S. Crewell (U. Cologne), S. Eikenberg 
(U. Cologne), J. Kinzel (DWD), M. Schröder (DWD), B. Sun (NOAA/NESDIS/STAR & IMSG), S. 
Steinke (U. Cologne), T. Trent (U. Leicester) 
 

Space-borne instruments are ideal for monitoring climate variables thanks to their ability 
to provide a global and continuous coverage of these data records. They have, however, 
limited accuracy, low vertical resolution and relatively high footprint sizes. The reason for this is 
that the instruments on board of satellites are mostly based on passive remote sensing. This 
implies that what is directly measured are emitted radiances, from which the climate variables 
are indirectly inferred, having as a consequence lower accuracy and resolution, which is not 
always what is necessary for climate applications as stated in GCOS-154 or Wulfmeyer et al. 
(2015). 

On the other hand, ground based instruments can provide high vertical and horizontal spatial 
resolution and accuracy. One of such examples are radiosondes (e.g Miloshevich et al. 2006). 
Another kind of ground-based instruments are the remote sensing ones that also provide a 
high temporal sampling (e.g. Wulfmeyer et al. 2015). However, one of their main drawbacks is 
the limitation in the number of sites that prevents them from having a global coverage. They 
also require frequent maintenance that can limit the temporal coverage. 

The synergy between both, space-borne and ground based measurements, would be ideal to 
measure such an important parameter for climate like water vapor concentration in the 
atmosphere. While space-borne instruments provide global coverage, ground based 
measurements provide the anchoring point of these measurements by means of validating and 
calibrating the space sensors. Ground based instruments would also provide added value to the 
water vapour measurements such as their high resolution and accuracy, which is currently not 
available from satellites. 

The synergistic approach is not as straightforward as it may seem at first sight. The main 
reason for this is that although both systems might be observing the same region of the 
atmosphere, they are actually not measuring exactly the same air parcel. Satellite footprint 
sizes are provided in Table  3-2 and range from 0.25 km x 0.25 km to 40 km x 320 km, while 
the horizontal scale of ground based remote sensing instruments is of the order of a few 
meters and radiosondes provide an almost point-like observation. Vertical scales are also very 
different, ranging from a few kilometers for the vertical resolution of satellite based passive 
remote sensing instruments to a few meters or centimeters for some ground-based ones. On 
the temporal scales, satellites usually provide a near instantaneous measurement of a complete 
column of the atmosphere while ground-based instruments measurements take from a few 
minutes (e.g. LIDARs at the lower troposphere) to over one or even several hours (e.g. 
radiosondes or LIDARS at the high troposphere). These huge differences in the air parcels, 
when measuring the same region of the atmosphere by satellite and ground based 
instruments, form what is known as the collocation problem. The net effect is that there will 
always be a mismatch between the measurements made by a satellite instrument and by a 
ground based one when observing the same region of the atmosphere at similar times. The 
key element here is that although both measurements are made in different ways they should 
be consistent or compatible. Two measurements from different instruments are consistent, if 
the measurement differences statistically lie within the combined uncertainty of the 
measurements and the collocation uncertainty (see also section  3.2). 
 
For the case of water vapour, the collocation uncertainty between two atmospheric 
measurements can be quite large, even when both measurements are performed relatively 
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closely in space and time. The main reason for this is the high variability of water vapour in the 
atmosphere. Within the atmosphere, humidity varies significantly (5 orders of magnitude 
between the surface and the lower stratosphere) both in time and space. This makes extremely 
difficult to have consistency between two different measurements because they are usually 
measuring neighbouring, but not identical, parcels of the air. To quantitatively estimate the 
typical time and spatial scales of humidity in the atmosphere within a given accuracy, a 
magnitude of this accuracy for climate purposes is needed. According to GCOS-154 an accuracy 
of 2% for total column water vapor, of 5% for upper tropospheric humidity and 5% for 
complete humidity profiles are needed to obtain a measurement that is currently useful for 
climate purposes. By comparing successive radiosonde measurements at the Lindenberg 
observatory, Pougatchev et al. (2009) have shown that to obtain consistency within the above 
mentioned accuracies between two humidity measurements they need to be closer than 
approximately 30 minutes in time and 25 km in space. As for the integrated water vapour, 
Vogelmann et al. (2015) show a similar variability scale on the Zugspitze mountain (2962 m 
a.s.l., Germany) using FTIRS and DIAL instruments of 2% in a temporal scale of 40 min. A 
much tighter spatial scale of 6 km is defined and decreases to 2 km during the summer due to 
local convection. Steinke et al. (2015), measuring with MWR and using the ICON model, show 
similarly tight variability scales for integrated water vapor of about 2% in spatial scales of 2 km 
and temporal scales of 10 min. Carbajal-Henken et al. (2015) also show, using MERIS data, 
that water vapour can form structures, very similar to cloud streets, such as rolls of 6 km x 4 
km. All these results are pointing to the fact that the general spatial aspect of water vapour in 
the atmosphere is very much analogous to clouds: with the possibility of having very uniform 
fields, patches, atmospheric rivers and even rolls. A graphical evidence of this can be seen in 
Figure  6-9, where the columnar water vapour is shown from the ICON high-resolution regional 
NWP model. It also shows that a key component in the collocation is the time and space 
difference between ground-based and satellite measurements, which will be denoted as 
collocation window. A large collocation window implies a bigger collocation uncertainty and vice 
versa. 
 

 
Figure  6-9: ICON model output for column water vapour by Daniel Klocke and Cathy Hohenegger (DWD, 

Clouds and Convection Hans Ertel Research Group) and Matthias Brueck and Bjorn Stevens (MPI-M, 
HD(CP)2 project, http://www.hdcp2.eu). 
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There are currently three approaches into solving the collocation problem:  
i) The first one of them is to choose a collocation window small enough such that the 

collocation uncertainty is verified, by the measurements themselves, to be negligible.  
ii) The second approach is to use a collocation window that is considered appropriate 

and take into account, when analysing the results, that the collocation uncertainty is not 
negligible. 

iii) The third one consists in estimating the collocation uncertainty in some way, either 
individually for each pair of measurements or statistically for a big collection of data. These 
options will be explored in the following paragraphs. 
 
i) An example of small collocation windows where the collocation uncertainty ends up being 
negligible is shown in Calbet et al. (2011). In this work, radiosonde data was compared to 
IASI. They were dedicated radiosondes launched for the EPS/Metop campaign. They have an 
ideal spatial collocation being the launching site (Sodankylä) within the IASI footprint. Dual-
sonde launches were carried out: launching one radiosonde one hour and, a second one, five 
minutes before satellite overpass time. The first radiosonde had a Cryogenic Frost point 
Hygrometer (CFH) and a RS92 sensor as payload, while the second one only carried an RS92. 
The CFH measurements provide humidity measurements with an extremely high accuracy 
(between 0.5 and 5% in relative humidity in the troposphere). The dual-sonde launches were 
critical to have a perfect time match, since the radiosonde profiles were interpolated in time 
following Tobin et al. (2006). This interpolated sonde profile was fed as input to a Radiative 
Transfer Model (RTM), in this case LBLRTM, to generate calculated radiances. These were then 
compared to IASI measurements. It was shown that both radiances coincide well within the 
overall IASI instrument uncertainty. Moreover, the standard deviation of the radiance 
difference for all cases lies on top of the overall IASI instrument uncertainty (Figure  6-10). All 
these results imply that the collocation uncertainty is negligible. This is the ideal case when 
validating satellite water vapour retrievals (Calbet, 2015). Another interesting technique is to 
reduce the spatial variability within the satellite footprint by appropriate temporal averaging of 
pencil-beam ground measurements as it was done for example in Greuell et al. (2009) for 
liquid water path. 
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Figure  6-10: Average (top) and standard deviation (bottom) of the observed minus calculated radiance 

difference for IASI over Sodänkyla (black) as compared to the overall IASI instrument uncertainty 
(red dotted line). 

ii) Examples of use of collocation windows that are deemed appropriate for the application at 
hand are frequent in the literature. One of such endeavours is the NOAA Products Validation 
System (NPROVS), where a huge sample of radiosonde data is collected to compare them with 
satellite retrievals (Reale et al. 2012; Nalli et al. 2013, see also  6.4). This technique has the 
advantage of using a huge sample, covering much of the surface of the Earth and big enough 
to obtain meaningful statistics. One technique used frequently is to obtain what is known as 
the Site Atmospheric State Best Estimate (SASBE) pioneered by Tobin et al. (2006). Another 
example of SASBE is presented by Ebell et al. (2013) where they have combined ground based 
microwave radiometer data with IASI and AMSU/MHS satellite instruments measurements. 
 
iii) It is only recently when it is becoming clear that more attention needs to be devoted to the 
determination of collocation uncertainties when comparing measurements. A paper that 
examines the impact of space and time collocation windows on the comparison statistics has 
been published by Sun et al. (2010). An updated similar approach is shown recently by Sun et 
al. (2017), where NUCAPS IASI IR plus microwave retrievals are compared to radiosondes. The 
RH RMS error increases with the increase in the time mismatch from surface throughout the 
upper troposphere, and the error-most sensitivity altitude occurs around 550-380 hPa where 
the RMS increases by 1.0%/hr. This analysis justifies the importance of radiosonde launch 
being synchronized with satellite overpass in the context of satellite data calibration/validation. 
Another useful example is the recently developed multiple-triple-collocation method (Kinzel et 
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al., 2016). Measurements from buoys, ships and at least two satellites are used in conjunction 
to estimate the satellite retrieval, the reference and the collocation uncertainty. This new 
approach has been applied to near surface specific humidity data. The observed collocation 
uncertainties range from 0.5 g/kg to 0.8 g/kg and depend on season and large-scale region. 
Another promising technique for the future is to use high-resolution regional NWP models to 
estimate the collocation uncertainty. This technique has been demonstrated by Steinke et al. 
(2015), showing that high-resolution regional NWP are needed and that current operational 
NWP models are not useful for this. Figure  6-11 shows the similarities between the high-
resolution regional NWP model, ICON and MWR measurements for IWV. Another useful way to 
estimate the collocation uncertainties is to use all measurements that go into a SASBE except 
for one. The difference between this one profile and the SASBE will provide an estimation of 
the collocation uncertainty. Results of this kind of study are shown in Figure  6-11. Finally, 
Calbet et al. (2016) show that IASI and GRUAN are consistent in water vapour in the high 
troposphere/low stratosphere. Again, by comparing radiances calculated from GRUAN plus 
LBLRTM with the ones measured by IASI. The collocation uncertainty is not negligible in these 
cases and an upper and lower bound should be given. This field is currently open and there are 
several initiatives under way, one of which is the GAIA-CLIM project (EU H2020 project, 
http://www.gaia-clim.eu), which will better quantify the impacts of inevitable measurement 
mismatches between satellite observations and the non-satellite measurements. 
 

 
Figure  6-11: Correlation coefficients (left) and standard deviations (right) of IWV from ICON grid points 

(simulation for 5 May 2013) as a function of temporal and spatial distance. The circles represent the 
correlation coefficients and standard deviations from two MWRs positioned 3.3 km apart (Steinke et 
al., 2014). 
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Figure  6-12: RMS deviation for temperature and water vapour from a SASBE profile for IASI derived 

from Calbet et al. (2011) with: 1. Radiosonde launched five minutes before IASI overpass time (solid 
blue line plus dots), 2. Radiosonde launched one hour before IASI overpass time (red dashed line), 3. 
ECMWF analyses data interpolated to the time-space coordinates of the IASI observation (black line). 

6.4 Inter-comparison 

A. Reale (NOAA), T. Trent (U. Leicester), B. Sun (NOAA), M. Schröder (DWD), T. August 
(EUMETSAT), A. Gambacorta (NOAA) 
 

6.4.1 Introduction 

Two approaches are discussed which address different strategies for assessing the 
performance of satellite product systems using validation data records comprised of collocated 
radiosonde (RAOB) and satellite data and their potential utility in climate studies focused on 
atmospheric water vapour. The first strategy (Trent et al., 2016) utilizes adjustments of the 
RAOB targets to characterize them in the context of satellite sensor measurements and 
provides a very high level of collocation screening to select a subset best suited to characterize 
the satellite product performance. The second strategy (Reale et al., 2012) provides no 
adjustments to characterize the RAOB in a given satellite sensor context and provided minimal 
quality control other than to assure the integrity of the collocation. In both strategies only the 
satellite products that pass the provider appended quality flags are considered and in both 
cases reference RAOB observation with associated uncertainty estimates are considered. Both 
groups use provide results based on GRUAN RAOBS with Trent et al. (2016) also using RAOB 
from UKMO archive for which they append uncertainty estimates consistent with Immler et al. 
(2010). Both assessments focus on AIRS v6 products with Reale et al. (2016) also including 
recent HIRS products (Shi et al. 2016) and available products from S-NPP satellites. Capability 
to extend to other products and reference target data record is available and pending for the 
final report. 

 

6.4.2 Results – A new approach to evaluate water va pour profiles 

Presented here are mainly the conclusions of Trent et al. (in preparation) which have 
been adapted and slightly extended with exemplary results.  

In Trent et al. (in preparation), water vapour profiles from AIRS (V6) level 2 (L2) support 
product are assessed at characterised global RS92 radiosonde sites with a mind towards their 
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use for future climate studies. The provision of averaging kernels with AIRS products and other 
retrieval statistical outputs in the L2 support product has allowed us to access the performance 
of AIRS water vapour retrievals in a mathematically and physically sound way not yet 
demonstrated in other studies (exemplary applications and results for temperature can be 
found in Boylan et al., 2015). We define characterised radiosonde records as those that have 
some adjustment applied that result in vertical smoothing consistent with sensor sensitivity. 
The radiosonde records have been convolved using averaging kernels for like-for-like 
comparisons to collocated AIRS water vaper observations.  
 
We use two independent records, the first is a specifically augmented subset of operational 
soundings taken from the United Kingdom Meteorological Office (UKMO) global archive 
available from the Centre for Environmental Data Archival (CEDA, http://www.ceda.ac.uk/), 
named Characterised Radiosonde Measurements (CRM), while the second is taken from the 
GCOS Reference Upper-Air Network (GRUAN) data record. Uncertainties are taken from Level 2 
support files (AIRS), GRUAN data files and were computed after Miloshevich et al. (2004, 2006 
and 2009) (CRM). Figure 6-14 shows a comparison of the relative humidity uncertainty PDFs 
for GRUAN and CRM at 4 common sites. All collocations with AIRS are collected between 
January 2007 and December 2012 for both GRUAN and CRM. 

 
 

Figure  6-13: Distribution of RH uncertainties from GRUAN and CRM at 4 common sites for levels closest 
to the AIRS L2 layers between 100-1000 hPa. Above 200 hPa interpolation of lower resolution 
radiosondes on to the higher resolution vertical grid used for the corrections (Miloshevich et al., 2004, 
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2006 and 2009) accounts the offset seen between the uncertainty PDFs. At levels above 300 hPa 
CRM begins to miss the higher values seen in the GRUAN uncertainties.  

In addition to the AIRS data, 'sub-pixel' cloud fraction from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) on-board Aqua in collocated within the AIRS Field of Regard (FoR). 
The MODIS cloud fraction is used as an independent cloud mask (threshold = 80%), which in 
addtion to quaility flags is used to screen out AIRS scenes. Next AIRS is collocated at target 
(CRM & GRUAN) radiosonde sites for all-sky conditons using broad spatial and temporal criteria 
(100 km, +/- 3 hrs respectively). All collocations collected within this window are then used for 
analysis as the CRM soundings do not have information on where the balloon has drifted unlike 
GRUAN. Therefore this approach attemps to minimise collocation uncertainty by averaging over 
large numbers of collocations. The same approach is also used for GRUAN soundings for 
consistency. The final filter applied to the data before further processing is based on the 
consistency testing form Immler et al. (2010). As uncertainites for both water vapour 
observations are known, the consistency 'k' is also a function of the collocation uncertainty (σ).  
If it assumed that that σ is equal to the sensivity threshold of AIRS to absolute concentration of 
H2O (~20 ppmv, Fetzer et al. 2008), then the minimum k(sigma) will therefore be 41. This 
threshold is then used to remove outlying values, as such when averaged over time the mean 
k(σ) values reduce to below 2 in most places. 

Table  6-3: Global median differences (2007-2012) between AIRS version 6 water vapour retrievals 
compared to CRM (global) and GRUAN radiosonde measurements (adapted from Trent et al., in 
preparation). Results are also split into land and ocean scenes. 

δq δq δq δq δq δq

150-200 hPa -9.91 ± 3.43 -9.91 ± 3.43 -9.74 ± 3.42 19.89 ± 3.41 19.89 ± 3.41 19.13 ± 3.41

200-250 hPa -5.27 ± 3.51 -5.27 ± 3.51 -5.43 ± 3.5 9.87 ± 4.11 9.87 ± 4.11 9.87 ± 4.11

250-300 hPa -3.28 ± 3.56 -3.28 ± 3.56 -3.44 ± 3.54 13.48 ± 7.96 13.48 ± 7.96 14.38 ± 8.12

300-400 hPa -3.94 ± 3.54 -3.94 ± 3.54 -4.03 ± 3.52 -2.69 ± 5.19 -2.69 ± 5.19 -1.73 ± 5.37

400-500 hPa -0.74 ± 3.96 -0.74 ± 3.96 -0.97 ± 3.94 -6.86 ± 18.41 -6.86 ± 18.41 -6.87 ± 24.5

500-600 hPa 2.77 ± 5.41 2.77 ± 5.41 2.41 ± 5.3 -8.19 ± 3.7 -8.19 ± 3.7 -8.47 ± 3.68

600-700 hPa 6.39 ± 13.77 6.39 ± 13.77 6.07 ± 13.21 -0.03 ± 3.75 -0.03 ± 3.75 -0.27 ± 3.75

700-850 hPa 0.75 ± 13.04 0.75 ± 13.04 0.69 ± 12.51 -1.26 ± 3.28 -1.26 ± 3.28 -1.34 ± 3.27

850-925 hPa -4.67 ± 2.97 -4.67 ± 2.97 -4.63 ± 2.93 -3.07 ± 4.18 -3.07 ± 4.18 -3.06 ± 5.1

925-1000 hPa -4.63 ± 2.22 -4.63 ± 2.22 -4.57 ± 2.21 -3.43 ± 5.34 -3.43 ± 5.34 -3.3 ± 6.09

CRM (all sites) GRUAN

Altitude All Land Ocean

Uδq Uδq Uδq Uδq Uδq Uδq 

All Land Ocean

 
 

 

From global comparisons with CRM, median biases show that AIRS is in general meeting its 
scientific goal of humidity retrieval bias below 10% (table 6-2). AIRS is dry biased in the lower 
and upper tropospheric regions where there is less vertical sensitivity. Wet biases in the mid 
troposphere are dominated by the regions in the mid-latitudes.  In the lower tropospheric 
layers, AIRS biases relative to GRUAN and CRM are in close agreement.  In the mid 
troposphere AIRS is still dry biased to GRUAN, however collocations to GRUAN sites does not 
have the same global representation as CRM and in fact is more representative of (northern) 
high latitudes. In the UTLS, AIRS is very strongly wet biased relative to GRUAN. Here the 
largest wet biases are seen reaching 19.89 ±3.41% ppmv between 150 to 200 hPa. These 
biases are on the order of 1-40 ppmv (depending on latitude) due to water vapor gradients in 
this atmospheric layer. One reason for these large wet biases could be due to these layers in 
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the AIRS water vapor profile have sensivity to the drier lower stratosphere. This could have the 
impact of dehydrating the hydropause and in turn the retrieval tries to compensate by adding 
moisture to the profile. In contrast the result from comparisons to CRM shows the strongest 
dry biases. However, there is meridional sampling from CRM of the tropospause which will 
account for these observed differences. 

The approach of using fiducial or characterised measurments allows for an uncertainty to be 
placed on these biases. In general these are below 4% ppmv (4000 ppmv to 0.4 ppmv) with 
only a few exceptions. Against CRM these are seen between 600 to 850 hPa where they rise to 
around 13% ppmv, while for GRUAN this is observed between 400 to 500 hPa (18.41% ppmv). 
In both cases this can be equal to values of the magnitude 102 ppmv. Results in table 6-2 have 
also been split between land and ocean scenes. These are identified from the AIRS FoR itself 
and not the radisonde site. All bias results appear to be robust for land and ocean/sea scenes 
for both GRUAN and CRM comparisons. The large bias uncertainty seen against GRUAN for the 
400 - 500 hPa layer does grow signicficantly over ocean to 24.5% ppmv, however this inflation 
will most likely be due to the lower sampling of this criteria.  

 

 
Figure  6-14: AIRS V6 biases with respect to CRM as a function of latitude (a & c) and their associated 

uncertainties (b & d). The magenta dashed line is the mean tropopause height calculated from 10 
years of AIRS L3 data. Panels a & b are calculated using a threshold of 50% on AIRS retrievals 
whereas for c & d this has been reduced to 25% (adapted from Trent et al., in preparation). Grey 
regions represent areas where there is no collocated data or it has been removed due to quality 
flagging and filtering.  

Figure  6-14a shows the AIRS V6 median biases as a function latitudinal and altitude (hPa) 
relative to CRM for collocations from January 2007 to December 2012. Biases are binned into 
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10° intervals between 90°S and 90°N for the AIRS L2 profile layers. The uncertainty associated 
with each binned bias is shown in Figure  6-14b. Latitudinal analysis of AIRS differences shows 
dry biases in the international tropical convergence (ITCZ) ranging between 5-30%. The 
pattern of this dry bias matches other studies who report large dry biases in regions of deep 
convection (Tian et al. 2013; Hearty et al. 2014; Wong et al. 2015; Courcoux and Schröder 
2015). A wet bias towards descending air is observed as well, within Hadley cell regions this 
can exceed 20% ppmv. Also in these regions the uncertainty is also highest, otherwise it tends 
to be in line with results shown in Table  6-3 (below 4% ppmv).  

A key issue for these comparisons is the magnitude of retrieval uncertainty allowed by the L2 
product. A threshold of 50% is extreme, though the majority of these uncertainty values are 
below 50%. This threshold value infact is more representative of the tail end of the uncertainty 
distribution. The application of a tighter limit allows for the impact of retrieval uncertainty to be 
assessed on the results. Figure  6-14c and Figure  6-14d are the same results though this time 
the retrieval threshold is set to 25%. This shows an increase in the magnitude of the wet bias 
seen in Hadley cell regions, and a decrease in dry biases observed in areas of deep convection. 
Uncertainties, while their distribution is similar also reduce with all values falling below 4% 
ppmv. 

 

Figure  6-15: PDFs of the AIRS clear sky biases as a function of clustered GlobCover biome type 
(http://due.esrin.esa.int/page_globcover.php) and height. Collocated AIRS and CRM are only used 
where the MODIS cloud fraction is less than 1%. See Trent et al. (in preparation) for a definition of 
biome types which have been clustered here as follows: croplands = 1, 2, 3, 4; forest = 5, 6, 7, 8, 9, 
10; mosaic = 11, 12; grasslands = 13, 14, 15; flooded = 16, 17, 18; bare_surf = 19, 20, 21, 22, 23, 
24, 25; fresh_water = 26 (this is fresh water and coastline) and ocean = 0 (adapted from Trent et al., 
in preparation). 

The ambiguity between surface temperature, surface emissivity and signal from near surface 
atmospheric layers in IR observations in areas of highly uncertain and/or variable surface 
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characteristics is challenging if near surface temperature and humidity are retrieved. E.g., the 
results from Courcoux and Schröder (2016) suggest maximum biases between ATOVS and 
AIRS over tropical land surfaces are linked to areas of rain forest. Thus, the need for accurate 
surface characterisation for the IR based water vapour CDR was analysed.  

Figure  6-15 characterises the AIRS clear-sky bias relative to CRM for different surface/biome 
types. In the surface layer, areas prone to regular flooding tend to be wetter biased compared 
to fresh water/coastal and ocean cases while vegetated and bare surefaces show similar 
performace. In the next surface layer (850-925 hPa) bare surfaces show slight modal wet 
biases in contradiction to the other biome types that are consistent with the global dry bias 
(Table  6-3). This is further exaggerated in the third lowest tropospheric layer where the modal 
bare surface clear-sky bias is closer to 10% wet biased. Here there is also a sepration of other 
biome types. Flooded and fresh water surfaces are stil dry biased while mosaic and ocean 
surfaces are close to 0% while grassland, forest and croplands are wet biased by around 5% 
ppmv. 

Strong changes in surface emissivity on short time scales are very difficult to capture by 
microwave retrievals, used here for first guess retrieval. Also, the perceived colder surface 
could affect the retrieved atmospheric temperature. In any respect these results point to a 
need for accurate surface characterisation (emissivity and skin temperature) for all observed 
wavelengths in order to overcome the ambiguity in IR based near surface retrievals. This is 
particularly relevant for remote areas such as tropical rain forests in which the current ground-
based and in-situ networks hardly provide reference data, further supporting the 
recommendation to GRUAN on the network enhancement (Bodecker et al. 2014, see also 
section 6). Besides a potential enhancement of reference networks this gap should be filled 
with satellite data of improved quality.  

Among others, the emerging AIRS climate data record provides specific humidity in the upper 
troposphere and thus data which is of utmost relevance to analyse the water vapour feedback. 
Analysis of AIRS biases as a function of latitude using CRM reveals sensitivity to large motion of 
water vapour, especially in the ITCZ. In this region AIRS is dry biased by over 20% ppmv to the 
ascending air mass at the equator and wet biased to the descending air mass around the 
Hadley cells (Trent et al., in preparation). Understanding these biases over climate time scales 
is vital for studies into water vapour feedback. In particular the largest contribution to the 
water vapour feedback stems from the tropical free troposphere, and the outgoing longwave 
radiation is highly sensitive to changes at the dry end of the humidity distribution as e.g. in 
regions of descending air masses around the Hadley cells.  

An important pre-requisite for such an effort is the availability of high quality reference data 
with uncertainty information. Here we have reprocessed global radiosonde data for the period 
January 2007 – December 2012 and demonstrated feasibility for a reprocessing of RS92 
radiosonde archives. We also demonstrate the benefits of characterised measurements from 
newtorks like GRUAN over the operational records, through the bias uncertainty estimates. A 
stable and bias corrected multi-station radiosonde archive is of high value for the validation of 
satellite-based water vapour products. Therefore, reducing these uncertainties is key for the 
assessment of any climate record; with the production of a stable, characterised, global, 
retroactive radiosonde archive a real challenge. Further development and reprocessing of 
radiosonde data is needed to allow for satellite records spanning from the present back to the 
late 1970s to be exploited for climate analysis. 

The value of systematic differences can be enhanced if the total difference can be broken down 
into individual components. In the characterisation of the RS92 archive we also compare the 
vertical distribution of CRM uncertainty with those from GRUAN. One apparent difference is the 
inability of CRM to fully capture the random uncertainty component which could allow for 
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collocated profiles that should be excluded during the consistency test. A large variety of such 
structural uncertainties can contribute to the total bias (see Kummerow et al. 2011 for a brief 
discussion). Here we discuss structural uncertainties associated with subpixel variability, clear 
sky sampling and cloud fraction as well as surface characteristics.  

The AIRS water vapour data is an example of data which is based on the combination of 
hyperspectral and microwave observations. Similar retrievals exist for IASI and CrIS, though 
they have not been reprocessed consistently until now. With EUMETSAT EPS-SG at least the 
IASI observations will be sustained until beyond 2030. Thus, we may speak of a high potential 
for climate monitoring using hyperspectral data in a forward looking sense. 

 

6.4.3 Results - Inter-comparisons using NPROVS+ 

The NOAA Products Validation System (NPROVS) (Reale et al. 2012) was established at 
NOAA NESDIS Center for Satellite Applications and Research (STAR) in 2008 to provide a 
centralized capability for compiling collocations of conventional radiosonde, numerical weather 
prediction (NWP) analysis and atmospheric temperature and water vapour sounding profiles 
derived from different satellites (i.e., NOAA, EUMETSAT, NASA-EOS)), sensors suites (HIRS, 
IASI, AIRS) and associated derived product suites. The primary objective of NPROVS is to 
support NOAA Joint Polar Satellite System (JPSS) calibration/validation (cal/val) programs for 
atmospheric soundings from the Suomi National Polar-orbiting Partnership (S-NPP). The 
capability to routinely inter-compare satellite sounding products against radiosonde and NWP 
products using NPROVS collocation data records has been highly useful for assessing sounding 
performance over a variety of seasonal and regional weather conditions and targeting problem 
areas for algorithm improvement. However, challenges are present for NPROVS to conduct 
robust assessment of satellite products in terms of absolute accuracy given the accuracy issues 
in conventional RAOBs (see Sun et al. 2010, and 2013). Thus, in 2013 the NPROVS was 
expanded to create collocations with available reference radiosonde observations from the 
GCOS Reference Upper Air Network (GRUAN, Seidel et al. 2009) which include traceable 
observations and uncertainty estimates (Immler et al. 2010), referred to as NPROVS+. These 
were later augmented by sets of NOAA Joint Polar Satellite System (JPSS) funded dedicated 
radiosonde synchronized with S-NPP overpass and launched at United States Department of 
Energy (DOE) Atmospheric Radiation Measurement (ARM) sites (Tobin et al. 2006) and also in 
conjunction with selected data intensive research programs targeting the tropical oceans.  

The assessments reported in this section are based on global collocations of GRUAN radiosonde 
and satellite water vapour profiles compiled by NPROVS+ for the time period January 2013 
through November 2014 shown in Figure  6-17. This corresponds to the available period of 
record for the HIRS based water vapour mixing ratio (MR, g/kg) profiles from MetOp-A from 
the National Centers for Environmental Information (NCEI) (Shi et al. 2016) that were specially 
integrated into NPROVS+ for this report. Other moisture profiles assessed are the NOAA 
Unique Combined Atmospheric Processing System (NUCAPS) from Metop-A (Gambacorta et al. 
2012), the AIRS version 5 (v5) from Aqua-EOS (Susskind et al. 2011) and the ECMWF Analysis.  
The satellite profiles used are constrained to the subsets of acceptable infrared (IR) based 
profiles as designated by the respective providers. Since the HIRS profiles are at the lowest 
vertical density, namely 7-levels from 1000 to 300 hPa, all profiles are interpolated (log-linear) 
to these levels for comparison.    

The advantage of using GRUAN data is that the radiosonde observations are calibrated through 
an unbroken traceability chain to SI or community standards with the uncertainty interval in 
each step in the chain fully characterized, meaning the resulting estimates can be used with 
high confidence that the true measurement is within the uncertainty (Immler et al. 2010). A 
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current disadvantage is that the global distribution of GRUAN sites providing radiosonde data is 
limited. Furthermore, there are relatively few synchronized GRUAN radiosonde and respective 
satellites observations although guidance to account for mismatch error is available (Sun et al. 
2010). Subsets of JPSS funded GRUAN processed radiosondes synchronized with S-NPP (mid-
afternoon orbit) are available which offers targeted observations for AIRS comparisons.    

This leads to the question of what spatial and temporal windows to use for the results of this 
section. NPROVS (or NPROVS+) compiles the single, closest collocation for a given satellite 
within +/- 6 hr and 150 km.  This nominally insures at least one collocation from any given 
satellite for a given radiosonde, optimizes the global distribution and also facilitates studies on 
the impact of mismatch on performance (also see section  6.3).  

Figure  6-16 summarizes a preliminary analysis on the impact of the mismatch window on a 
global assessment and was done using collocated GRUAN radiosonde and the HIRS, MetOp-A, 
MR profiles from the sites shown in Figure 6-16. The HIRS NCEI profiles include cloudiness 
designations which denote mostly clear (probability of cloud less than 10%), partly cloudy 
(probability of clouds from 10% to 75%) and cloudy (probability of cloud greater 75%) scenes; 
only clear and partly cloudy designations were included.   
 
The top set of plots in figure Figure  6-16 show RMS differences for HIRS-minus-GRUAN in 
units of MR fractional difference (%) defined as  
 
 

 Eq.  6.2 

 
The left-side plots are for collocations within +/- 3 hour and the right-side plots are for 
collocations outside of +/- 3 hours. As can be seen, the RMS differences show about a 10% 
reduction in RMS differences for the samples within 3 hours mainly between 700 and 400 hPa.  
At 500 hPa, multiplying the respective RMS and mean MR (along the inside x-axis) yields an 
RMS reduction from 0.367 to 0.295 g/kg using samples within +/- 3 hr samples compared to 
outside +/- 3 hr.  

The lower plots of Figure  6-16 show results for the same samples but using “k” profiles based 
on the GRUAN uncertainty as described below.   

The GRUAN consistency equation expanded from Immler et al. (2010) is  

 
 Eq.  6.3 

where m1 and m2 denote the comparative measurements from different platforms, for 
example, satellite derived vs GRUAN radiosonde MR profiles, and u1 and u2 are the respective 
uncertainty estimates. Sigma (  denotes additional uncertainty due to  uncertainties arising 
from representativeness.  

GRUAN reports moisture uncertainty in terms of relative humidity (RH).  Since satellite sensors 
directly measure water vapour molecules or mixing ratio, RH uncertainty is converted MR 
uncertainty by 

  Eq.  6.4 
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where Saturation (MR) is the saturation MR at the given temperature and pressure. The impact 
of respective uncertainty in temperature (and pressure) is not included as it is relatively small. 
For example, at 300 K and 1013 hPa, and assuming typical uncertainty values of 0.2 K, 0.5 hPa 
and 3% RH, the MR uncertainty is estimated as 0.67 +/- 0.01 (or +/- 1.5%) g/kg.   

Since  and u1 are unknown, they are initially set to zero in Eq.  6.3 resulting in a so-called 
worst case “k” profile estimate, different from Immler et al. (2010), for each satellite and 
GRUAN MR profile pair 

 

 
Eq.  6.5 

Assuming the requirement for statistical agreement with the GRUAN reference radiosonde, 
namely “k=2” from Immler et al. (2010), Eqs. 6-2 and 6-4 can be combined as  

 

 Eq.  6.6 

This provides an estimate of the quantity (2 + u12) expected for statistical agreement with the 
GRUAN reference radiosonde. A so-called worst case or upper estimate for the satellite derived 
MR uncertainty, u1, is provided by    

 

 Eq.  6.7 

As can be seen, the “k” plots in the lower panels of Figure  6-16 show higher values upward of 
700 hPa for collocations within +/- 3 hour (left) compared to the corresponding RMS 
differences (top panels) which show about a 10% reduction. The “k” plots also include the 
mean u2 values at each level from the GRUAN profiles which can be input into equation 6-6 to 
estimate the satellite profile MR uncertainty required for statistical consistency (k=2) with 
GRUAN. At 500 hPa, this yields an estimated uncertainty increase from 0.249 to 0.264 g/kg 
using samples within +/- 3 hr compared to outside of +/- 3 hr.  
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Figure  6-16: Top panels show RMS vertical statistics for HIRS-minus-RAOB MR ( % ) based on collocated 
GRUAN radiosonde and combined clear and partly cloudy HIRS profiles within +/- 3 hrs (left) and 
outside +/- 3 hrs  (right); the GRUAN mean MR (g/kg) is shown along inside left axes and sample 
size along right axes. Bottom panels show corresponding mean “k” vertical profiles (Eq. 6.4) with the 
mean GRUAN MR uncertainty, u2, shown along inside left axes and the heavy black line denoting 
“k”=2. 

Given the mixed RMS versus estimated uncertainty results from Figure  6-16 based on the time 
window used, it was decided to include all collocations within +/- 6 hrs and 150 km for this 
report. This retains the most robust global distribution and the increased sample size boosts 
the statistical confidence, consistent with the global context of the results presented in this 
section.      
 
The remaining results in this section are segregated for the two regions shown in Figure  6-17, 
namely, tropical sea (left) and non-tropical land (right). Note that the tropical sea set includes 
JPSS funded synchronized radiosondes from the two AEROSE (Nalli et al. 2013) field campaigns 
in 2013 (red) in the tropical Atlantic; these comprise about 10 percent of the total sample.  
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Figure  6-17: Tropical sea (left) and non-tropical land (right) sites used for the assessment. 

Figure  6-18 and Figure  6-19 compare collocations of GRUAN radiosondes and the NCEI HIRS 
based profiles from MetOp-A segregated by the cloudiness probability for tropical sea and non-
tropical land scenes, respectively.  Results show a tendency of lower “k” values for the ocean 
versus land scenes. Profiles with higher clear probability also tend toward lower “k” values 
which appears more pronounced for non-tropical land compared to tropical sea.  Overall, the 
“k” values tend to increase with height.     

 

Figure  6-18: Mean “k” vertical profiles using equation 6-4 based on collocated GRUAN radiosonde and 
HIRS MR (g/kg) profiles for mostly clear (left ), partly cloudy (middle) and cloudy (right) probability 
scenes over tropical ocean with mean GRUAN MR uncertainty, u2, listed along inside left and sample 
size along the right axes; black line denotes “k”=2. 
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Figure  6-19: Same as Figure  6-18 but for non-tropical land cases. 

Figure  6-20 assesses 2-way collocations of GRUAN radiosondes with HIRS (green) and NOAA 
operational IASI soundings from MetOp-A (blue) for the tropical, ocean (left) and non-tropical, 
land regions. The HIRS include only the clear and partly cloudy scenes with the NOAA IASI 
restricted to successful IR retrievals which passed quality control (which include cloud-cleared 
scenes). The upper panels show mean “k” profiles which indicate slightly lower “k” values for 
IASI vs HIRS, to be expected given the advances of the IASI versus the HIRS sensor. The HIRS 
results are overall consistent with those shown in Figure  6-18 and Figure  6-19.  

Once again, the mean “k” profiles exhibit larger values over land and increase with height. This 
is further analyzed through the middle and lower panels of Figure  6-20 which show the 
corresponding RMS (middle) and mean and standard deviation (bottom) differences for MR 
with the mean GRUAN MR (g/kg) shown along the inside left axis.  As can be seen, the mean 
GRUAN MR for tropics is on average about twice as large as over land, as is the GRUAN 
uncertainty. An overall tendency for “k” to vary inversely proportional to the MR values is 
evident.   

It is also seen that in the tropics near the surface the “k” profiles approach a value of 2. Any 
“k” value less than 2(2)1/2 has to be considered suspicious since it would imply that the (σ2 + 
u12) term is less than (u2)2 and zero at “k” equal 2 or less. This is further supported by 
multiplying the fractional RMS and mean GRUAN MR (middle panels) for the tropics (left) 
versus non-tropics (right) which yields larger MR values for tropical, sea, yet the associated “k” 
values are smaller. This hints that the GRUAN uncertainty values may be over-estimated for 
high end MR values.   
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Figure  6-20: Upper panels show mean “k” profiles for collocated GRUAN radiosonde and Metop-A MR 

profiles for clear and partly cloudy HIRS (green) and NOAA operational IASI which passed QC (blue) 
over tropical sea (left) and non-tropical land (right). The middle panels show RMS and the bottom 
panels the mean (solid) and standard deviation (dashed) of SAT-minus-RAOB MR (%) corresponding 
to the top panels but with mean GRUAN MR (g/kg) listed along inside left axes. 

Figure  6-21 assesses 3-way collocations of GRUAN radiosonde with clear and partly cloudy 
HIRS (green), NASA processed (v5, reference) AIRS (EOS-Aqua) which passed quality control 
(purple) and the ECMWF analysis (orange) MR profiles. The HIRS and the AIRS are in different 
sun-synchronous orbits making their direct comparison more difficult.  

The mean “k” profiles for HIRS in Figure  6-20 versus Figure  6-21 (and Figure  6-18 and 
Figure  6-19) are overall consistent as are the mean “k” values for AIRS versus IASI 
(Figure  6-20). Such consistency across the different samples promotes confidence in these 
respective assessments. A relatively large difference is seen between the satellites and ECMWF 
analysis with the ECMWF showing smaller “k” values. This is expected since the ECMWF 
analysis assimilates radiosonde observations that are similar although not identical to the 
GRUAN radiosondes used in this study. Differences between the satellites and ECMWF also tend 
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to systematically decrease aloft.   

It is also seen that ECMWF mean “k” values of less than of 2(2)1/2 occur from roughly 400 to 
850 hPa with values less than 2.0 below 850 hPa for tropical, sea. Mean “k” values of these 
magnitudes indicate little to no uncertainty contributed from the σ or u1 terms (Eq.  6.6) which 
is unrealistic. This again supports the hypothesis that the GRUAN uncertainties may be over-
estimated for the high end MR values typical of the lower tropical troposphere. 

 

 
Figure  6-21: Mean “k” vertical profile using equation (3) for collocated GRUAN radiosonde, HIRS from  

Metop-A (green), Aqua AIRS v.5 which passed QC (purple) and the ECMWF Analysis  (orange) over 
tropical sea (left) and non-tropical land (right) with GRUAN mean MR uncertainty along inside left and 
sample size along right axes; black line denotes “k”=2. 

Table  6-4 summarize the key parameters directly derived from Figure  6-18 through 20 for 
tropical, sea and non-tropical, land regions, respectively. The parameters listed are the mean 
values for: 

1) u1, the calculated MR uncertainty (Eq. 6.6), 
2) m2, the GRUAN MR, 

3) u2, the GRUAN MR uncertainty (Eq.  6.4), 

4) “k” (Eq.  6.5). 
 

Table  6-4: Each element (box) includes four sets of mean values for: Satellite (and ECMWF) MR 
uncertainties using (6), GRUAN MR (g/kg), GRUAN MR uncertainty and “k” value for the satellites, 
sampling combinations and levels for tropical, sea.(top) and non-tropical land (bottom). 

Tropical, Sea HIRS IASI / HIRS AIRS / HIRS / ECMWF 

300 hPa 0.061 
0.175 
0.014 
9.0 

0.051 / 0.061 
0.172 
0.013 

8.1 / 9.6 

0.025 / 0.052 / 0.028 
0.166 
0.013 

4.4 / 8.3 / 4.8 
500 hpa 0.229 0.184 / 0.231 0.183 / 0.202 / 0.092 
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1.87 
0.115 
4.5 

1.68 
0.113 

3.8 / 4.5 

1.59 
0.107 

3.9 / 4.3 / 2.6 
700 hpa 0.592 

5.51 
0.272 
4.8 

0.459 / 0.558 
5.52 
0.268 

4.0 / 4.6 

0.462 / 0.533 / 0.163 
5.63 
0.273 

3.9 / 4.4 / 2.3 
1000 hPa --- 

16.6 
0.651 
1.9 

--- / 0.490 
12.9 
0.537 

1.6 / 2.7 

0.201 / --- / --- 
16.0 
0.626 

2.1 / 1.7 / 1.0 
 
Non-Tropical, Land HIRS IASI / HIRS AIRS / HIRS / ECMWF 

300 hPa 0.031 
0.060 
0.005 
12.9 

0.035 / 0.034 
0.083 
0.006 

11.8 / 11.6 

0.032 / 0.039 / 0.028 
0.077 
0.007 

9.3 / 11.0 / 8.2 
500 hpa 0.229 

0.62 
0.040 
11.6 

0.170 / 0.222 
0.822 
0.055 

6.4 / 8.4 

0.161 / 0.228/ 0.104 
0.848 
0.056 

6.2 /8.3 / 4.2 
700 hpa 0.541 

2.16 
0.112 
9.8 

0.471 / 0.652 
2.85 
0.151 

6.5 / 8.8 

0.473 / 0.653 / 0.232 
2.94 
0.153 

6.5 /8.7 / 3.6 
1000 hPa 0.601 

4.87 
0.174 
7.2 

0.498 / 0.668 
5.84 
0.230 

4.8 / 6.2 

0.521 / 0.691 /0.092 
6.33 
0.206 

5.4 /7.0 /2.2 
 
As seen from Table  6-4, expected satellite MR uncertainties, u1, for non-tropical land scenes 
ranged from 0.691 g/kg at 1000 hPa to 0.031 at 300 hPa and for tropical sea from 0.592 at 
700 hPa to 0.025 at 300 hPa. Over land, the u1 values for all satellites decrease with height, 
whereas over tropical sea smaller u1 values are observed near the surface with peak values at 
700 hPa and then steady decrease aloft. The tropical GRUAN uncertainties (u2) near the 
surface appear much larger than the natural variation of the satellite versus GRUAN 
observations resulting in “k” values of two (2) or less and relatively small uncertainties; study is 
needed. The u1 values for a given satellite and sample are overall consistent but do show 
differences (evident in “k” profile differences) indicating that sampling can be important. For 
example, relatively large differences between AIRS and IASI (and HIRS) u1 values occurred at 
300 hPa for tropical sea with values of 0.025, 0.051 (and 0.061), respectively; the 
corresponding GRUAN uncertainty (u2) was 0.013.  Similarly, for non-tropical, land, satellite u1 
values at 700 hPa ranged from 0.471 to 0.653 (and 0.541); the corresponding u2 values 
ranged from 0.151 for samples containing AIRS or IASI to 0.112 for samples only containing 
HIRS.  

As expected, uncertainty (u1) values for IASI and AIRS tended to be slightly lower than for the 
HIRS. Similarly, the ECMWF analysis uncertainties were generally smaller than for the satellites, 
as expected given the fact that a sizeable portion of radiosonde information is present in the 
ECMWF analysis.  However, these differences tended to decrease with height.   

Table  6-4 show an overall positive relationship between the mean GRUAN MR and u2 (or 
inverse relationship between GRUAN MR and “k” (or u1)). This along with tropical mean “k” 
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values approaching 2 or less suggests that the GRUAN uncertainties may be overestimated at 
the high end of the MR range. 

In summary, the above results demonstrate how the sets of collocated observations can be 
used to estimate satellite (and ECMWF) profile uncertainties traceable to the GRUAN 
radiosondes. In addition, these observations can provide a mechanism for feedback to GRUAN.  
 

6.4.4 Summary  

Results are presented using NPROVS+ which routinely collocates GRUAN radiosondes 
with multiple satellite product suites; GRUAN radiosondes include traceable uncertainty 
estimates. These collocations are used to calculate mean “k” profiles leading to uncertainty 
estimates for the satellite based MR (g/kg) profiles. These are provided for IR based retrievals 
from HIRS and IASI onboard MetOp-A and AIRS onboard Aqua-EOS. The period of record is an 
approximately 2 years from January 2013 to November 2014 (so any inference on long-term 
performance and climate scale is minimal). The “k” profiles are a measure of the natural 
variability of the satellite-minus-radiosonde variations scaled by the GRUAN uncertainty.  
Results were compiled at 7 pressure levels from 1000 hPa to 300 hPa as defined for the HIRS 
NCEI product suite from MetOp-A, requiring interpolation of the higher vertical density GRUAN 
radiosonde, other satellites and ECMWF analysis compared in this section.   

We summarize: 

• HIRS show slightly higher MR uncertainties than for AIRS and IASI which are overall similar 
• Satellite product uncertainty values over non-tropical land range from 0.668 g/kg at 1000 

hPa to 0.031 g/kg at 300 hPa; associated GRUAN uncertainty estimates range from 0.174 
to 0.005 g/kg. 

• Satellite product uncertainty values over tropical sea for satellites range from 0.592 g/kg at 
700 hPa to 0.025g/kg at 300 hPa; associated GRUAN uncertainty estimates range from 
0.273 to 0.014 g/kg. 

• ECMWF uncertainties were generally lower than for satellites (as expected) but differences 
decreased with height 

Possible overestimations of GRUAN uncertainties (u2) for high-end MR values may be evident. 

The results presented in this section indicate that MR profiles for the 3 suites of satellite 
products performed better over tropical sea versus non-tropical land for probable clear vs 
cloudy scenes.   

Overall performance of the hyper-spectral products from IASI onboard MetOp-A and AIRS 
Aqua-EOS appeared slightly better (lower uncertainty) than those from HIRS consistent with 
sensor advancements. In general, u1 values were positively correlated to the mean MR value 
for the sample, level. A possible misleading factor in this interpretation is that the GRUAN 
uncertainties at the high end of the observed MR range may be overestimated. Similarly, 
performance appears to decrease with height particularly above 400 hPa. This is more likely 
due to decreased satellite sensitivity at low end of MR values (less than 0.100 g/kg).   

Overall, the satellite products provide consistent and reliable global representation of 
atmospheric water vapour water.  
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7 Conclusions  
The executive summary (section  1) contains major conclusions and recommendations 

and an overview of available output is given in section  2.1. Here we provide short answers to 
the G-VAP science and technical questions (see section  2.3): 

• Q1a-c): How large are the differences in observed temporal changes in long-term satellite 
data records of water vapour on global and regional scales? 

Are the observed temporal changes and anomalies, on global and regional scale, in line 
with theoretical expectations? 

Are the differences in observed temporal changes within uncertainty limits? 

Trends in TCWV are typically significantly different among long-term data records over the 
(tropical) ocean, exhibit a fairly large spread and are typically outside theoretical 
expectation. The main exceptions are differences between data records based on SSM/I 
only and ERA-20C. Also distinct regions of maxima in absolute differences among trend 
estimates are evident over tropical South America, Central Africa and Sahara 
(section  4.3.1). 

Profiles of trend estimates, based on regional averages over the tropics and the northern 
and southern hemispheres, are to a large extent significantly different. Differences are 
smallest near the surface and the spread is larger over the southern than over the northern 
hemisphere. Trend estimates of specific humidity profiles exhibit maximum differences at 
planetary boundary layer and in upper troposphere (section  4.3.2). 

Differences in UTH trends have not been assessed. 

• Q1d: What is the degree of homogeneity (breakpoints) and stability of each long-term 
satellite data record? 

Homogeneity testing revealed breakpoints or a series of breakpoints for the majority of the 
long-term data records (TCWV, profiles). Such breakpoints are typically caused by changes 
in the observing system and have a complex regional imprint (sections  4.3.1 and  4.3.2). 
Thus, the analysis of stability was only assessed in detail for a single data record 
(section  4.4). 

• Q1e: How can we enhance value and usability of the satellite data records (e.g., through 
analysis of consistency in climate related features such as position and strength of dry 
zones, regional annual cycles, and El Nino response)? 

The value and usability of satellite data records can be enhanced by including uncertainty 
estimates, averaging kernels and additional information such as the number of valid data 
points and start and end dates per input stream. This is partly full-filled at present already. 
A new approach to use an ensemble of satellite water vapour products for climate model 
evaluation has been introduced as well (section  4.2.1). 

For several data records an increased level of stability is needed to allow for a reliable 
analysis of climate change (section  4.3). 

• Q2: What is the degree of consistency among the products, e.g., can we observe 
systematic differences between, e.g., TCWV from MERIS or SSM/I and TCWV integrated 
from sounders such as HIRS or ATOVS? 

During El Nino events UTH and TCWV/profiles are in opposite phase when looking at 
tropical averages. While absolute humidity largely responds to the change in SST UTH is 
affected by dynamics, in particular by the drying associated with weakened ascending 
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branches (section  4.5). 

The data records were binned into three classes: clear sky (e.g., vis or IR based), cloudy 
sky (e.g., microwave based) and all sky (e.g., reanalysis) and these results were 
intercompared. The expectation was to observe biases among the different bins due to the 
clear sky bias and an anticipated bias between cloudy sky and rainy sky. On average the 
clear sky data records exhibits smaller TCWV values. However, the bin internal variability is 
larger than the differences between the bins (section  5). 

The degree of consistency between temperature, absolute humidity and relative humidity 
products from satellite observations has not been assessed. This is an important aspect and 
should be assessed in future analysis. 

• Q3a: Do the satellite data records exhibit areas of distinct quality and how can the distinct 
differences and limitations be explained? 

Regions of maximum differences are: tropical land, deserts, mountainous regions and poles 
(TCWV, section  4.1.1), West and Central Africa, stratus regions, southern edge of ITCZ over 
Pacific and northern part of South America, the poles (water vapour and temperature 
profiles, section  4.1.2) and the central south Pacific (temperature, section  4.3.2). TCWV 
differences can largely be explained by breakpoints. Also profile time series exhibit 
breakpoints (section  4.3.1). However the presence of breakpoints alone can not entirely 
explain the observed differences. Additionally the vertical dimension adds to the observed 
difference among the various data records. Resolution issues, differences in vertical 
moisture transport in stratus regions, cloud detection and differences in convective physics 
also contribute to the differences observed above stratus and in convectively active regions 
(section  4.3.2). 

• Q3b: What is the quality of long-term satellite WV products in the lowermost part of the 
atmosphere and in the upper troposphere? 

The quality, here in terms of relative bias and relative RMS, decreases with increasing 
altitude. The decrease is most pronounced in the upper troposphere above 400-300 hPa. 
E.g., relative bias and RMS values are around -10 to 0% and around 25%, respectively at 
near surface layers and above 50% in the upper troposphere (non-tropical land case, IASI 
NOAA and HIRS NOAA, section  6.4). 

When looking at the standard deviation among all long term data records largest 
differences are observed over the stratus regions in the lower troposphere and over the 
wider ITCZ and the Antarctic in the upper troposphere. In both cases the relative standard 
deviation exceeds 25%. In particular in the upper troposphere the associated areal 
coverage is relatively large (section  4.1.2). 

• Q3c: What is the quality of long-term satellite TCWV and WV products over ocean where 
ground-based and in-situ observations are rarely available? 

TCWV data records exhibit smallest differences over the ocean, in particular the SSM/I-
based data records and ERA-20C. Profile data records exhibit large differences over the 
ocean, in particular over stratus regions. Reasons can be an under/overestimation of water 
vapour transport from PBL to the free troposphere (reanalyses), the lack of vertical 
resolution, inconsistent breakpoints between the data records and differences in sampling 
of the clear sky bias (sections  4.1.1 and  4.1.2). 

The evaluation of profile data records over tropical ocean and non-tropical land exhibited 
larger quality in satellite profile data retrieved over tropical ocean. A potential reason is the 
larger ambiguity in satellite observations over land than over ocean (section  6.4).  
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• Q4: What are the differences in quality between satellite products and products from 
reanalysis and are the observed differences significant? 

With the exception of ERA-20C the reanalyses TCWV data records exhibit smallest and 
largest trend estimates which are all significantly different from the satellite based trend 
estimates and from theoretical expectation. This is caused by breakpoints which typically 
differ in strength and time among the data records (section  4.3.1).   

The weather type analysis utilised data records from the full archive and included an 
intercomparison of TCWV from all sky, clear sky and cloudy as well as clear sky data 
records. The all sky case exclusively contains reanalyses data records. This bin exhibits the 
smallest internal spread (section  5). 

A comparison of satellite and reanalysis products and data from GRUAN radiosondes 
revealed better quality at near surface layers for the reanalysis products. This difference in 
quality decreases with increasing height. Reanalysis assimilates radiosonde observations 
which are a main source of information at near surface layers and in the vicinity of the 
stations. GRUAN data is not directly assimilated. However, data from standard WMO 
radiosondes launched at GRUAN sites are assimilated. Thus, a sound statement on the 
differences in quality can not be made (section  6.4). 

The level of significance has not been assessed. 

• Q5: How easily can the satellite data records be downloaded, read and understood? 

The accessibility of the various data records is typically straightforward. Problematic can be 
the rather high frequency of updates and the provision of beta data. Occasionally the grid 
definition is unclear and we recommend to explicitly define the grid in the attributes of the 
data file and a user manual even if defaults apply. The provision of reading software is 
supportive for assessments. Often the documentation is too extensive so that essential 
information is difficult to find. Short user manuals per parameter are needed with a focus 
on technical specifications, format description and utilisation. 

and finally the following additional conclusions: 

Though the assessment could be finalised in reasonable time limits future assessments should 
be designed such that they can be completed in even shorter time, mainly to avoid the 
availability of multiple versions of data records in the course of the assessment. In advance the 
definition of a clear set of tasks which seem feasible to be covered within 1-3 years is needed. 
The goal should be the submission of a peer-reviewed article. 

G-VAP carried out annual workshops with a strong focus on science questions. Discussions 
have not been stopped which was beneficial for the participants and the overall output. Also, 
the high quality of presentations and the lively discussions at the workshops were essential 
elements of G-VAP. The workshops also triggered cooperations outside G-VAP and further 
analysis by data record PIs and other scientists and this is considered as a success of this 
assessment as well.  

Fortunately, the group will continue to cooperate at least in the framework of workshops 
beyond the publication of this report as decided upon at the 5th G-VAP workshop in 2015. 
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10  Appendix 

10.1 Brief description of data records 

In order to gather detailed information for G-VAP and the general user community G-VAP 
participants provided data fact sheets which are accessible via the links in Table  3-3, Table  3-4 
and Table  3-5. Among others, the DFS contains a brief description of the data record’s content. 
This abstract is given in the following if the data record was used in G-VAP: 

AIRWAVE 

Name AdvancedAdvanced Infrared WaterWater Vapour Estimator 
Version Version 1 Acronym AIRWAVE 
Owner ESA Contact stefano.casadio@esa.int 
Main parameter(s) TCWV [kg/m²] Main instrum.(s) ATSR-1, ATSR-2, AATSR 
Surface domain Ocean   
E-W extent 180° E to 180° W E-W resolution L2: 1 km and 0.25°; L3: 1° 
N-S extent 70° S to 90° N N-S resolution L2: 1 km and 0.25°; L3: 1° 
Temporal extent 11/1991 to 03/2013 Temporal resol. L3: weekly 
AbstractAbstract TheThe Advanced Infrared Water Vapour Estimator (AIRWAVE) retrieval scheme 

works above the cloud-free ocean by combining advanced radiative transfer 
models and a sea surface spectral emissivity database. The simultaneous use of 
ATSR’s forward and nadir measurements minimises the impact of the limited 
knowledge about the sea surface temperature and the atmospheric radiation on 
the quality of the retrieved TCWV. Exploiting only the TIR channels of the 
instrument, the algorithm enables the estimation of TCWV for both day and night 
observations and the full exploitation of the ATSR instrument series, spanning from 
1991 to 2012. The AIRWAVE processor is integrated in the ESA GRID environment 
for the bulk processing of the three ATSR missions. 

− Overpass time: 9am and 9pm (satellite equator crossing time). 
− TCWV units: kg/m2. 

Spatial resolution of 1×1 km2 and 0.25°×0.25° at Level 2, 1°×1° at Level 3. 

AMSU-B/MHS Intercalibrated microwave brightness temperatures 

Name Intercalibrated microwave brightness temperatures 
Version ./. Acronym ./. 
Owner University of Miami Contact bsoden@rsmas.miami.edu 
Main parameter(s) Brightness temperature [K] Main 

instrum.(s) 
AMSU-B, MHS 

Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution 1.5° 
N-S extent 60° S to 60° N N-S resolution 1.5° 
Temporal extent 01/1999 to 12/2014 Temporal resol. Monthly 
Abstract The 183-GHz water vapor absorption band measurements from the Advanced 

Microwave Sounding Unit B (AMSU-B) and Microwave Humidity Sounder (MHS) on 
board polar-orbiting satellites were processed to produce a bias-corrected, inter-
satellite calibrated microwave brightness temperature data set suitable for long-
term climate monitoring. The data set generation involves radiative transfer 
simulations to adjust for biases arising from satellite orbital drift and difference in 
local observation time between satellites.    

− Grid resolution: 1.5°×1.5°. 
− Contained fields: inter-satellite calibrated 183.31±1 GHz channel monthly 

mean brightness temperatures [K]. 
− Time span: January 1999 - December 2014. 
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ATOVS 

Name  CM SAF Advanced TIROS Operational Vertical Sounder data record 
Version V001 Acronym ATOVS 
Owner CM SAF Contact marc.schroeder@dwd.de 
Main parameter(s) TCWV [kg/m²], specific 

humidity [kg/kg], 
temperature [K] 

Main instrum.(s) ATOVS 

Surface domain Land and ocean   
E-W extent 179.53° E to 179.53° W E-W resolution 90 km 
N-S extent 79.35° S to 79.35° N N-S resolution 90 km 
Temporal extent 01/1999 to 12/2011 Temporal resol. Daily, monthly 
Abstract The CM SAF ATOVS data set offers 13 years (1999 - 2011) of satellite-derived 

global water vapour and temperature products. Different parameters are 
generated simultaneously: total column water vapour [kg/m2], mean temperature 
[K] and vertically integrated water vapour [kg/m2] in 5 layers, specific humidity 
[g/kg] and temperature [K] at 6 levels. Also available are the number of valid 
observations and an uncertainty estimate.  
The data set was derived from ATOVS on-board NOAA-15 to -19 and MetOp-A. 
ATOVS is composed of three instruments: HIRS, AMSU-B/MHS and AMSU-A. After 
application of a kriging routine, the products are available as daily and monthly 
means on a cylindrical equal area projection at a resolution of 90 km × 90 km. Grid 
information is given for centre position. Layers are [hPa]: 200-300, 300-500, 500-
700, 700-850, 850-surface. Levels are [hPa]: 200, 300, 500, 700, 850, 1000. After 
external review, the data has been published and is accessible via wui.cmsaf.eu. 
Validation report, algorithm theoretical basis document and product user manual 
can be downloaded from www.cmsaf.eu/docs. 

EMiR 

Name Total column water vapour from the Microwave Radiometer (MWR) instruments 
Version Version 1.0 Acronym EMiR 
Owner DWD, CLS, INF Contact bennartz@me.com 
Main parameter(s) TCWV [kg/m²] Main instrum.(s) MWR 
Surface domain Ice-free ocean   
E-W extent 180° E to 180° W E-W resolution L2: 20 km, L3: 2° and 3° 
N-S extent 90° S to 90° N N-S resolution L2: 20 km, L3: 2° and 3° 
Temporal extent 11/1992 to 03/2012 Temporal resol. L3: monthly 
Abstract The Microwave Radiometer (MWR) flown onboard ERS-1/2, and Envisat has 

provided a time series of global microwave observations over a period of nearly 21 
years between 1991 and 2012.  
The EMiR dataset builds on the MWR time series by applying a one-dimensional 
variational approach (1D-VAR) to provide information on total column water 
vapour (TCWV) and wet tropospheric correction (WTC) in clear and cloudy sky 
conditions. Significant efforts were invested to ensure a good intercalibration of the 
MWR instruments. The comparison of EMiR TCWV product with TCWV derived 
from Global Navigation Satellite System (GNSS) observations indicates its good 
accuracy (bias: +0.63 K) and high temporal stability (trend: +0.68 K/decade). 
The EMiR dataset covers the entire global ice-free ocean from 11/1992 to 03/2012. 
It is available for individual orbits (Level-2) at a spatial resolution of typically 20 km 
as well in a gridded form (Level-3) for monthly mean values at 2°×2° and 3°×3° 
spatial resolution. EMiR data record and supporting information can be obtained 
free of charge from DOI 10.5676/DWD_EMIR/V001. 
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EUMETSAT IASI L2 products 

Name  EUMETSAT IASI L2 products 
Version v6 Acronym ./. 
Owner EUMETSAT Contact thomas.august@eumetsat.int 
Main parameter(s) Specific humidity [kg/kg], 

Temperature [K] 
Main instrum.(s) IASI, AMSU-B, MHS 

Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution IASI footprint sampling 
N-S extent 90° S to 90° N N-S resolution IASI footprint sampling 
Temporal extent 05/2007 to ongoing Temporal resol. continuous 
Abstract Operational IASI L2 products from EUMETSAT, including temperature [K] and 

humidity [kg/kg] profiles retrieved on a fixed pressure grid (typically 101 levels, 
described in the product) for each footprint. For cloud-free IFOVs, the atmospheric 
sounding results from an optimal estimation method using IASI measurements and 
the retrievals are provided together with their associated averaging kernels. The 
products also provide all-sky statistical retrievals and associated quality indicators 
using collocated micro-wave (AMSU/MHS) and infrared (IASI) measurements. The 
products are distributed in near-real time and are also accessible from the on-line 
archive. More details on www.eumetsat.int. 

NVAP-M 

Name  NASA Water Vapor Project - MEaSUREs 
Version V 0.0 Acronym NVAP-M 
Owner NASA Contact thomas.vonderhaar@colostate.edu 
Main parameter(s) TCWV [kg/m2] Main instrum.(s) AATSR, HIRS, SSM/I, GNSS 
Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution 0.5° and 1.0° 
N-S extent 90° S to 90° N N-S resolution 0.5° and 1.0° 
Temporal extent 01/1988 to 12/2009 Temporal resol. 6 h, daily  
Abstract The NASA MEaSUREs (Making Earth System Data Records for Use in Research 

Environments) program began in 2008 and has the goal of creating stable, 
community accepted Earth System Data Records (ESDRs) for a variety of 
geophysical time series. The NASA Water Vapor Project (NVAP) - MEaSUREs data 
set version 0.0 was released in April 2013 and completely replaces the heritage 
NVAP data set created in the 1990's. It was created from polar orbiter satellite data 
along with radiosondes and surface-based Global Positioning System 
measurements. It contains three data types oriented towards different users: 
“Climate” strives for maximum temporal consistency. “Weather” strives for 
maximum spatial and temporal coverage and “Ocean” is a microwave-only record 
over the ocean. 

− Grid resolution: 1° (ocean and climate) or 0.5° (weather data). 
− Contained relevant fields: Total and layered precipitable water vapour. 
− Layers [hPa]: Total column, 1000-700, 700-500, 500-300, <300. 
− Time resolution: Climate and Ocean: 1× per day. Weather: 4× per day. 
− Time period: 1988-2009. 

FTH METEOSAT 

Name  Free tropospheric humidity from METEOSAT 
Version Edition 1 Acronym FTH METEOSAT 
Owner CM SAF Contact marc.schroeder@dwd.de 
Main parameter(s) Relative humidity [%] Main instrum.(s) MVIRI, SEVIRI 
Surface domain Land and ocean   
E-W extent 45° E to 45° W E-W resolution 0.625° 
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N-S extent 45° S to 45° N N-S resolution 0.625° 
Temporal extent 07/1983 to 12/2009 Temporal resol. 3 h 
Abstract The CM SAF Free Tropospheric Humidity (FTH) data set from METEOSAT 2-5 and 

METEOSAT 7-9 provides the mean relative humidity over a deep layer of the 
troposphere within ±45° longitude and ±45° latitude. The retrieval was developed 
at Centre National de la Recherche Scientifique (CNRS) and - after transfer to CM 
SAF - the time series was jointly extended by CM SAF and CNRS into the SEVIRI 
era. The product is defined under clear sky and low level cloud conditions and is 
available at 3-hourly temporal resolution as well as monthly averages on a regular 
latitude/longitude grid with a spatial resolution of 0.625°×0.625°. The temporal 
coverage of the data sets ranges from July 1983 to December 2009. The 
METEOSAT 6 period, i.e. from March 1997 to May 1998, is not covered. The FTH 
layer vertical position and thickness depends on atmospheric condition, in 
particular water vapour content in the free troposphere. The clear sky radiance is 
provided as auxiliary information layer and is owned by CNRS (up to 2005) and CM 
SAF (afterwards). 

GlobVapour MERIS TCWV 

Name  GlobVapour MERIS TCWV 
Version ./. Acronym ./. 
Owner ESA, FUB Contact rene.preusker@wew.fu-berlin.de 
Main parameter(s) TCWV [kg/m²] Main instrum.(s) MERIS 
Surface domain Land   
E-W extent 180° E to 180° W E-W resolution 0.05° 
N-S extent 80° S to 80° N N-S resolution 0.05° 
Temporal extent 01/2003 to 12/2012 Temporal resol. 3 h 
Abstract The total column water vapour (TCWV) data record was derived on a global grid at 

a spatial resolution of 0.05° over the coastal ocean, open ocean areas with 
occurring sun glint, and cloud free land surfaces. It is provided through NetCDF 
files that are fully compliant with the Climate Forecast (CF) convention. The water 
vapour of the atmosphere is vertically integrated from the surface to 200 hPa, and 
given in units of kg/m². Uncertainties are provided as well. MERIS data stem from 
ESA's 3rd reprocessing of the MERIS L1 archive. The TCWV retrieval is applied to 
swath-based, normalized radiances in MERIS bands at 865 nm, 885 nm, and 900 
nm, while the cloud screening procedure utilises the full set of MERIS radiances 
between 400 and 900 nm. 

GlobVapour SSM/I+MERIS 

Name  GlobVapour SSM/I+MERIS 
Version E (final version) Acronym SSM/I+MERIS 
Owner DWD, FUB, ESA Contact marc.schroeder@dwd.de 
Main parameter(s) TCWV [kg/m²] Main instrum.(s) MERIS, SSM/I 
Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution 0.05°or 0.5° 
N-S extent 90° S to 90° N N-S resolution 0.05° or 0.5° 
Temporal extent 01/2003 to 12/2008 Temporal resol. Daily, monthly 
Abstract The combined SSM/I+MERIS total column water vapour (TCWV) data product was 

derived on a global grid over ocean and cloud free land, with a spatial resolution of 
0.5° over the ice-free ocean (SSM/I) and 0.05° over land and coastal ocean 
(MERIS) and stored in NetCDF files compliant to the Climate Forecast (CF) 
convention. Ocean areas with sun glint, where SSM/I observations are not 
available, are blended with gridded MERIS data. To ease utilisation, the 
SSM/I+MERIS product is distributed on a 0.5°×0.5° grid, with the MERIS product 
being averaged to match the lower spatial resolution. Upon request, the product 
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can also be provided in 0.05°×0.05° spatial resolution by oversampling the SSM/I 
product. The product is available as a daily composite or as monthly mean. The 
water vapour of the atmosphere is vertically integrated from surface to 200 hPa, 
and given in units of kg/m². SSM/I and MERIS data streams are processed 
independently and combined afterwards, leaving the individual TCWV values and 
their uncertainties unchanged. The final product utilises SSM/I data on-board the 
Defense Meteorological Satellite Program (DMSP) satellites F13 and F14 for the 
period 2003 to 2008. MERIS data stem from ESA's 3rd reprocessing of the MERIS 
L1 archive. 

HIRS clear-sky channel 12 brightness temperature 

Name  Inter-satellite calibrated HIRS clear-sky channel 12 brightness temperature 
Version v03r00 Acronym HIRS clear-sky channel #12 

BT 
Owner NOAA NCEI Contact lei.shi@noaa.gov 
Main parameter(s) Brightness temperature [K] Main instrum.(s) HIRS 
Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution 2.5° 
N-S extent 90° S to 90° N N-S resolution 2.5° 
Temporal extent 01/1979 to 12/2014 Temporal resol. Monthly 
Abstract The HIRS clear-sky channel 12 brightness temperature dataset includes 

observations from TIROS-N, NOAA-6 to -17, and Metop-A. Cloudy pixels are 
removed from the measurements. Limb effects are corrected. Inter-satellite 
calibration is performed using NOAA-12 as the reference satellite. Multi-satellite 
averages are calculated when observations overlap. The dataset has a global 
coverage with a grid resolution of 2.5°×2.5°, and it is available as monthly 
averages. Data and documentation, including terms of use, algorithm description, 
maturity matrix, and more can be accessed via 
https://www.ncdc.noaa.gov/cdr/fundamental/hirs-ch12-brightness-temperature. 

HIRS moisture from U Wisconsin/SSEC 

Name UW/SSEC HIRS moisture data record 
Version V02R04 Acronym SSEC HIRS TPW 
Owner UW/SSEC Contact eva.borbas@ssec.wisc.edu 
Main parameter(s) TCWV [kg/m²] Main instrum.(s) HIRS 
Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution 0.5° 
N-S extent 90° S to 90° N N-S resolution 0.5° 
Temporal extent 07/1980 to 11/2015 Temporal resol. 6 h 
Abstract The UW HIRS moisture record retrieves total column precipitable water vapor 

TPW, also referred to as TCWV by GVAP, as well as integrated high (UTH), mid, 
and low layer tropospheric humidity. It is a statistical regression (Seemann et al 
2003 and 2008) developed from an atmospheric profile database (SeeBor, Borbas 
et al, 2005) that consists of geographically and seasonally distributed radiosonde, 
ozonesonde, and ECMWF reanalysis data. TPW/TCWV and UTH are determined for 
clear sky radiances measured by HIRS (at 20 km and later 10 km resolution) over 
land and ocean both day and night. The AVHRR based PATMOS-x cloud mask is 
used to characterize HIRS sub-pixel cloud cover. 
The HIRS TPW/TCWV and UTH products are binned into a global map of 0.5° lat-
lon boxes, for 4 time periods daily (night before and after midnight and day before 
and after noon), compiled into monthly amounts (for the operational months of 
each satellite), and inspected for trends over a 35-year period (1980-2015). 
The UW HIRS moisture package can be found at 
ftp://ftp.ssec.wisc.edu/pub/ICI/HIRS_TPW_GVAP_delivery_v2.5. 
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HIRS temperature and humidity profiles from NCEI 

Name NCEI HIRS temperature and humidity profiles 
Version Version 2014 Acronym ./. 
Owner NOAA NCEI Contact lei.shi@noaa.gov 
Main parameter(s) Specific humidity [kg/kg], 

Temperature [K] 
Main instrum.(s) HIRS 

Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution HIRS pixel resolution 
N-S extent 90° S to 90° N N-S resolution HIRS pixel resolution 
Temporal extent 12/1979 to 12/2014 Temporal resol. Continuous 
Abstract Temperature and specific humidity profiles derived from HIRS clear-sky pixel-

resolution data. The data are in ASCII.  
For each line of specific humidity (q), the order of the data is: flag, time (seconds 
from 00:00 UTC of the day indicated on the filename), latitude, longitude, surface 
pressure [Pa], q at 2m, q at 1000, 850, 700, 600, 500, 400, and 300 hPa.  
For each line of temperature [K], the order of data is: flag, time (seconds from 
00:00 UTC of the day indicated on the filename), latitude, longitude, surface 
pressure [Pa], T_skin, T at 2m, T at 1000, 850, 700, 600, 500, 400, 300, 200, 100, 
50 hPa. 
Missing data are set to 999.000. 
The meaning of the flag is as follows: 

− 0: Probability of cloud occurrence is less than 10% (clear sky likely). 
− 1: Probability of cloud occurrence is between 10% and ~85%. 
− 2: Likely cloudy. 
− 3: No matching AVHRR observations available to check cloudiness. 

Note: only data with flags 0 and 1 should be used. Data with flags 2 and 3 have 
higher possibility of cloud contamination. They are included for further research 
purposes. 

HOAPS 

Name  Hamburg Ocean and Atmosphere Parameters and Fluxes from Satellite data 
Version V3.2 Acronym HOAPS 
Owner CM SAF, MPI-M, UHH Contact marc.schroeder@dwd.de 
Main parameter(s) TCWV [kg/m2] Main instrum.(s) SSM/I 
Surface domain Ice-free ocean   
E-W extent 179.75° E to 179.75° W E-W resolution 0.5° 
N-S extent 79.75° S to 79.75° N N-S resolution 0.5° 
Temporal extent 07/1987 to 12/2008 Temporal resol. 6 h, monthly 
Abstract The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data 

(HOAPS) set is a completely satellite based climatology of total column water 
vapour [kg/m2], near surface specific humidity [g/kg], wind speed, precipitation, 
evaporation, latent heat flux and freshwater budget (evaporation minus 
precipitation) over the global ice-free oceans. All variables are derived from SSM/I 
passive microwave radiometers, except for the sea surface temperature (SST), 
which is taken from AVHRR measurements. The data set generation involves multi-
satellite averages, inter-sensor calibration, and an efficient sea ice detection 
procedure. All HOAPS products have global coverage, i.e., within ±180° longitude 
and ±80° latitude and are only defined over the ice-free ocean surface. The 
products are available as monthly averages and 6-hourly composites on a regular 
latitude/longitude grid with a spatial resolution of 0.5°×0.5°. Grid information is 
given for cell centre position. After external review, the data have been published 
and are accessible via wui.cmsaf.eu. Validation report, ATBD, and product user 
manual can downloaded from www.cmsaf.eu/docs. 
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JRA-55 

Name Japanese 55-year Reanalysis 
Version ./. Acronym JRA-55 
Owner JMA Contact jra@met.kishou.go.jp 
Main parameter(s) TCWV [kg/m²] plus many 

other parameters 
Main instrum.(s) Reanalysis assimilating a large 

variety of space-based and 
ground-based observations 

Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution 0.5625° 
N-S extent 90° S to 90° N N-S resolution 0.5625° 
Temporal extent 01/1958 to ongoing Temporal resol. 6 h 
Abstract Products from the Japanese 55-year Reanalysis (JRA-55). JRA-55 has been 

produced with JMA's data assimilation system as of December 2009. The output is 
encoded in Gridded binary (GRIB) Edition 1 format. Check out 
http://jra.kishou.go.jp/JRA-55/index_en.html for details. 

− Grid: TL319 quasi-regular Gaussian latitude/longitude grid (approximately 
55-km resolution) and 1.25-degree latitude/longitude grid. 

− Vertical coordinates: 60-level hybrid coordinates (up to 0.1 hPa) and 
isobaric coordinates (1000, 975, 950, 925, 900, 875, 850, 825, 800, 775, 
750, 700, 650, 600, 550, 500, 450, 400, 350, 300, 250, 225, 200, 175, 
150, 125, 100, 70, 50, 30, 20, 10, 7, 5, 3, 2 and 1 hPa) 

− Reanalysis period: from 1958 onward 
− Analysis interval: 6 hours 

MERRA 

Name  Modern-Era Retrospective analysis for Research and Applications 
Version ./. Acronym MERRA 
Owner NASA GMAO Contact Michael.Bosilovich@nasa.gov 
Main parameter(s) TCWV [kg/m²] plus many 

other parameters 
Main instrum.(s) Reanalysis assimilating a large 

variety of space-based and 
ground-based observations 

Surface domain Land and ocean   
E-W extent 180° E to 180° W E-W resolution 2/3° 
N-S extent 90° S to 90° N N-S resolution 0.5° 
Temporal extent 01/1979 to 12/2015 Temporal resol. Continuous 
Abstract MERRA is a three-dimensional global reanalysis of the period 1979 through 2015. 

More than 300 variables are available at varying frequencies and resolutions. The 
spatial resolution of the system is nominally 1/2 degree, with 42 pressure levels 
(72 terrain following levels) from the surface through the stratosphere. For details 
on the data files and their structure, see the file specification document at: 
http://gmao.gsfc.nasa.gov/research/merra/file_specifications.php. 

NUCAPS – IASI 

Name  NOAA Unique Combined Atmospheric Processing System - IASI 
Version ./. Acronym NUCAPS-IASI 
Owner NOAA JPSS Contact antonia.gambacorta@noaa.gov 
Main parameter(s) Specific humidity [kg/kg], 

precipitable water 
[kg/m²], temperature [K] 

Main instrum.(s) AMSU-B, IASI, MHS 

Surface domain Ocean   
E-W extent 180° E to 180° W E-W resolution 45 km 
N-S extent 90° S to 90° N N-S resolution 45 km 
Temporal extent 10/2007 to ongoing Temporal resol. Continuous 
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Abstract − Polar sounding data from the MetOp constellations. 
− Spatial resolution: clusters of four fields of view. 
− Contained fields: temperature [K], water vapour [mol/cm², g/kg], cloud 

top pressure [mb], cloud top temperature [K], skin temperature [K], air 
temperature [K], cloud cleared radiances [mW/m²/cm-1]. 

REMSS TRMM TMI v7.1 

Name  Remote Sensing Systems TRMM TMI Environmental Suite 
Version v7.1 Acronym REMSS TRMM TMI v7.1 
Owner REMSS Contact support@remss.com 
Main parameter(s) TCWV [kg/m²], 

precipitable water 
[kg/m²], temperature [K] 

Main instrum.(s) TMI 

Surface domain Ocean   
E-W extent 180° E to 180° W E-W resolution 0.25 ° 
N-S extent 40° S to 40° N N-S resolution 0.25 ° 
Temporal extent 12/1997 to 12/2014 Temporal resol. Daily 
Abstract TMI data products are available for the period from just after launch, December 7, 

1997 to December 31, 2014. We obtained TMI brightness temperature data files 
(TDRs) from NASA Goddard and reverse engineered the data back to raw 
radiometer counts. Using a consistent processing scheme and a robust radiative 
transfer model, we intercalibrated the TMI data with the other microwave 
radiometers, obtained brightness temperatures, and then produced our ocean 
measurement products for distribution. The current version of the RSS radiative 
transfer model and radiometer processing code is called Version-7 (V7). This 
carefully applied intercalibration yields consistent products from all microwave 
radiometer data processed at RSS. 

− Grid resolution: 0.25°×0.25°. 
− Contained fields: sea surface temperature (SST), 10 m surface wind speed 

using low frequency channels (WSPD_LF), 10 m surface wind speed using 
medium frequency channels (WSPD_MF), columnar water vapor (VAPOR), 
cloud liquid water (CLOUD), and rain rate (RAIN). 

 

10.2  List of acronyms 
 
Acronym Full text 
1DVar 1 Dimensional Variation data assimilation 
ACE Atmospheric Chemistry Experiment 
AIRS  Atmospheric Infrared Sounder 
AMSU Advanced Microwave Sounding Unit 
ANN Artificial Neural Network 
AOT Atmospheric Optical Thickness 
ARSA Analyzed RadioSoundings Archive 
ATMS Advanced Technology Microwave Sounder 
ATOMMS Active Temperature, Ozone & Moisture Microwave Spectrometer 
ATOVS Advanced TIROS Operational Vertical Sounder 
ATSR Along Track Scanning Radiometer 
AVHRR Advanced very-high-resolution radiometer 
CDRs Climate Data Records  
CGMS Coordination Group for Meteorological Satellites  
CIMSS Cooperative Institute for Meteorological Satellite Studies 
CM SAF Satellite Application Facility on Climate Monitoring 
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COSMIC Constellation Observing System for Meteorology, Ionosphere, and Climate 
CO2 Carbon Dioxide 
CrIS Cross-track Infrared Sounder (CrIS) 
DFS data fact sheet 
DoFS degrees of freedom for signal 
ECMWF European Centre for Medium-Range Weather Forecasts 
ECVs Essential Climate Variables  
ENSO El Nino/Southern Oscillation 
ERA Interim ECMWF Reanalysis 
FCDR Fundamental Climate Data Record 
FIDUCEO Fidelity and uncertainty in climate data records from Earth Observations 
FTH Free tropospheric Humidity 
GAIA-CLIM Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring 
GCOS Global Climate Observing System 
GDAP GEWEX Data and Assessments Panel 
GEWEX Global Energy and Water Exchanges (a WCRP core project) 
GNSS Global Navigation Satellite System 
GOES Geostationary Operational Environmental Satellite 
GOME Global Ozone Monitoring Experiment 
GPS-RO Global Positioning System Radio Occultation 
GRAS Global Navigation Satellite System Receiver Atmospheric Sounding 
GRP  GEWEX Radiation Panel 
GRUAN GCOS Reference Upper-Air Network 
G-VAP GEWEX Water Vapor Assessment 
HIRS High Resolution Infrared Radiation Sounder 
HOAPS Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data 
IASI Infrared Atmospheric Sounder Interferometer 
IFS Integrated Forecasting System 
IFOV Instantaneous Field of View 
IPCC Intergovernmental Panel on Climate Change 
IR Infrared 
ISCCP International Satellite Cloud Climatology Project 
L1 Level 1 
L2 Level 2 
M02 Metop-A Satellite 
MHS Microwave Humidity Sounder 
MERIS Medium Resolution Imaging Spectrometer Instrument 
MODIS Moderate Resolution Imaging Spectroradiometer 
MVIRI Meteosat Visible and Infrared Radiation Imager 
MWR MicroWave Radiometer 
N12 NOAA-12 Satellite 
N14 NOAA-14 Satellite 
N15 NOAA-15 Satellite 
N16 NOAA-16 Satellite 
N17 NOAA-17 Satellite 
NCEI National Centers for Environmental Information 
NOA North Atlantic Oscillation 
NOAA National Oceanic and Atmospheric Administration 
NPROVS+ NOAA Products Validation System 
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NUCPS NOAA Unique Combined Atmospheric Processing System 
NWP Numerical Weather Prediction 
OLCI Ocean Land Colour Instrument on Sentinel 3 
OSCAR Observing Systems Capability Analysis and Review Tool  
PDF Portable Document Format 
RH Relative Humidity 
RMS Root mean square 
RS92 Radiosonde Type 
RTM Radiative Transfer Model 
RTTOV Radiative Transfer for TOVS Forward Model 
SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 
SEVIRI Spinning Enhanced Visible and Infrared Imager 
SHADOZ Southern Hemisphere ADditional OZonesondes 
SSM/I Special Sensor Microwave / Imager 
SNO Simultaneous Nadir Overpass 
TCWV Total Column Water Vapour 
SSM/I Special Sensor Microwave Imager 
SSMIS Special Sensor Microwave Imager Sounder 
TCWV Total Column Water Vapour 
TIROS Television and Infrared Observatory Spacecraft 
TMI TRMM Microwave Imager 
TMR TOPEX Microwave Radiometer 
TOA Top-Of-Atmosphere 
TOVS TIROS Operational Vertical Sounder 
TPW ARM Total Precipitable Water Vapour  
TTD time-to-detect 
UoL University Of Leicester 
UTH Total Column Water Vapour 
WMO World Meteorological Organisation 
WCRP World Climate Research Programme 
 



 

 

  



  

 

 
 
 
 
 
 
 


