148 research outputs found

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Scanpath modeling and classification with Hidden Markov Models

    Get PDF
    How people look at visual information reveals fundamental information about them; their interests and their states of mind. Previous studies showed that scanpath, i.e., the sequence of eye movements made by an observer exploring a visual stimulus, can be used to infer observer-related (e.g., task at hand) and stimuli-related (e.g., image semantic category) information. However, eye movements are complex signals and many of these studies rely on limited gaze descriptors and bespoke datasets. Here, we provide a turnkey method for scanpath modeling and classification. This method relies on variational hidden Markov models (HMMs) and discriminant analysis (DA). HMMs encapsulate the dynamic and individualistic dimensions of gaze behavior, allowing DA to capture systematic patterns diagnostic of a given class of observers and/or stimuli. We test our approach on two very different datasets. Firstly, we use fixations recorded while viewing 800 static natural scene images, and infer an observer-related characteristic: the task at hand. We achieve an average of 55.9% correct classification rate (chance = 33%). We show that correct classification rates positively correlate with the number of salient regions present in the stimuli. Secondly, we use eye positions recorded while viewing 15 conversational videos, and infer a stimulus-related characteristic: the presence or absence of original soundtrack. We achieve an average 81.2% correct classification rate (chance = 50%). HMMs allow to integrate bottom-up, top-down, and oculomotor influences into a single model of gaze behavior. This synergistic approach between behavior and machine learning will open new avenues for simple quantification of gazing behavior. We release SMAC with HMM, a Matlab toolbox freely available to the community under an open-source license agreement.published_or_final_versio

    Multimedia Decision Fusion

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Estudio de métodos de construcción de ensembles de clasificadores y aplicaciones

    Get PDF
    La inteligencia artificial se dedica a la creación de sistemas informáticos con un comportamiento inteligente. Dentro de este área el aprendizaje computacional estudia la creación de sistemas que aprenden por sí mismos. Un tipo de aprendizaje computacional es el aprendizaje supervisado, en el cual, se le proporcionan al sistema tanto las entradas como la salida esperada y el sistema aprende a partir de estos datos. Un sistema de este tipo se denomina clasificador. En ocasiones ocurre, que en el conjunto de ejemplos que utiliza el sistema para aprender, el número de ejemplos de un tipo es mucho mayor que el número de ejemplos de otro tipo. Cuando esto ocurre se habla de conjuntos desequilibrados. La combinación de varios clasificadores es lo que se denomina "ensemble", y a menudo ofrece mejores resultados que cualquiera de los miembros que lo forman. Una de las claves para el buen funcionamiento de los ensembles es la diversidad. Esta tesis, se centra en el desarrollo de nuevos algoritmos de construcción de ensembles, centrados en técnicas de incremento de la diversidad y en los problemas desequilibrados. Adicionalmente, se aplican estas técnicas a la solución de varias problemas industriales.Ministerio de Economía y Competitividad, proyecto TIN-2011-2404

    Automatic Landmarking for Non-cooperative 3D Face Recognition

    Get PDF
    This thesis describes a new framework for 3D surface landmarking and evaluates its performance for feature localisation on human faces. This framework has two main parts that can be designed and optimised independently. The first one is a keypoint detection system that returns positions of interest for a given mesh surface by using a learnt dictionary of local shapes. The second one is a labelling system, using model fitting approaches that establish a one-to-one correspondence between the set of unlabelled input points and a learnt representation of the class of object to detect. Our keypoint detection system returns local maxima over score maps that are generated from an arbitrarily large set of local shape descriptors. The distributions of these descriptors (scalars or histograms) are learnt for known landmark positions on a training dataset in order to generate a model. The similarity between the input descriptor value for a given vertex and a model shape is used as a descriptor-related score. Our labelling system can make use of both hypergraph matching techniques and rigid registration techniques to reduce the ambiguity attached to unlabelled input keypoints for which a list of model landmark candidates have been seeded. The soft matching techniques use multi-attributed hyperedges to reduce ambiguity, while the registration techniques use scale-adapted rigid transformation computed from 3 or more points in order to obtain one-to-one correspondences. Our final system achieves better or comparable (depending on the metric) results than the state-of-the-art while being more generic. It does not require pre-processing such as cropping, spike removal and hole filling and is more robust to occlusion of salient local regions, such as those near the nose tip and inner eye corners. It is also fully pose invariant and can be used with kinds of objects other than faces, provided that labelled training data is available

    Failure Detection for Laser-based SLAM in Urban and Peri-Urban Environments

    Get PDF
    International audienceSimultaneous Localization And Mapping (SLAM) is considered as one of the key solutions for making mobile robots truly autonomous. Based mainly on perceptive information, the SLAM concept is assumed to solve localization and provide a map of the surrounding environment simultaneously. In this paper, we study SLAM limitations and we propose an approach to detect a priori potential failure scenarios for 2D laser-based SLAM methods. Our approach makes use of raw sensor data, which makes it independent of the underlying SLAM implementation, to extract a relevant descriptors vector. This descriptors vector is then used together with a decision-making algorithm to detect failure scenarios. Our approach is evaluated using different decision algorithms through three realistic experiments
    corecore