
Fast Face Detection Using AdaBoost

Julien Meynet

16th July 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147917764?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

Neuf mois après mon arrivée ici, tout se termine: le projet et les examens en
même temps. Une année passe très vite, on a à peine le temps d’apprécier à
leur juste valeur les bienfaits de la vie à l’EPFL et en dehors.

Je tiens à remercier tout particulièrement Jean-Philippe pour son sou-
tient et sa bonne humeur quotidienne et bien sur Vlad sans qui je me serai
parfois vite découragé et grâce à qui j’ai pu travailler avec motivation et
enthousiasme.

Ensuite je ne veux oublier personne au LTS, toutes ces cultures mélangées
qui font un joli cocktail tous les jours. Ceux qui sont déjà partis mais que
personne n’a oublié : Irene, Naara, Alvaro, François, Issa, Luca, Marc, Yin
et les rescapés qui pourront encore profiter du labo quelques temps: May,
Vannessa, Ale, Chris, David, Emilio.

Quelques mots à toutes les autres personnes que j’ai pu côtoyer en suisse
sans qui mon adaptation ici aurait été difficile et tout ceux que j’ai laissé à
Grenoble et qui m’ont beaucoup manqués.

Enfin, je souhaite dire merci à toute ma famille, soutient permanent et
beaucoup plus que ça. Mes parents, Sonia et Jérôme, les grands parents et
bien d’autres.

1

Abstract

In this report, a face detection method is presented. Face detection is a diffi-
cult task in image analysis which has each day more and more applications.
The existing methods for face detection can be divided into image based
methods and feature based methods. We have developed an intermediate
system, using a boosting algorithm to train a classifier which is capable of
processing images rapidly while having high detection rates. The main idea
in the building of the detector is a learning algorithm based on boosting:
AdaBoost. AdaBoost is an aggressive learning algorithm which produces a
strong classifier by choosing visual features in a family of simple classifiers
and combining them linearly. The family of simple classifiers contains simple
rectangular wavelets which are reminiscent of the Haar basis. Their sim-
plicity and a new image representation called Integral Image allow a very
quick computing of these Haar-like features. Then a structure in cascade is
introduced in order to reject quickly the easy to classify background regions
and focus on the harder to classify windows . For this, classifiers with an
increasingly complexity are combined sequentially. This improves both, the
detection speed and the detection efficiency. The detection of faces in in-
put images is proceeded using a scanning window at different scales which
permits to detect faces of every size without re-sampling the original image.
On the other hand, the structure of the final classifier allows a real-time
implementation of the detector.

Some results on real world examples are presented. Our detector yields
good detection rates with frontal faces and the method can be easily adapted
to other object detection tasks by changing the contents of the training
dataset.

2

Contents

1 Introduction 10
1.1 General idea . 10
1.2 The chosen approach . 11
1.3 Overview of the report . 11

2 Overview of Face Detection 12
2.1 Introduction . 12

2.1.1 A brief history . 12
2.1.2 Face detection difficulties 13
2.1.3 Definition of some general notions needed to under-

stand face detection problem 16
2.2 Image-Based Detection . 16

2.2.1 Introduction . 16
2.2.2 Eigenfaces . 17

2.2.2.1 Definition . 17
2.2.2.2 Principal Components Analysis 17

2.2.3 Fisher’s Linear Discriminant 18
2.2.4 Other methods in Eigen-space 20
2.2.5 Neural Network, SVM, HMM, Winnow 20

2.2.5.1 Neural Network 20
2.2.5.2 Support Vector Machine 22
2.2.5.3 Hidden Markov Model 22
2.2.5.4 Sparse Network of Winnows (SNoW) 22

2.3 Geometrical-Based Detection 23
2.3.1 Introduction . 23
2.3.2 Top-down methods . 23
2.3.3 Bottom-up methods 24

2.4 Evaluation difficulties . 25

3

3 Fast Face Detection Using AdaBoost 27
3.1 Introduction . 27

3.1.1 Choice of the method 27
3.1.2 Context of the frontal face detection 27
3.1.3 Why Boosting and Haar features? 28
3.1.4 Overview of the detection 28

3.2 Features and Integral Image 30
3.2.1 Overview of the existing face models. 30

3.2.1.1 A pixel-based method 30
3.2.2 Haar-like features . 32

3.2.2.1 Rectangular Haar Features 32
3.2.2.2 Discussion . 36

3.2.3 Integral Image . 36
3.3 Learning with AdaBoost . 39

3.3.1 Introduction . 39
3.3.2 The weak classifiers . 41

3.3.2.1 From features to weak classifiers 41
3.3.2.2 The optimal threshold 42

3.3.3 AdaBoost . 43
3.3.3.1 Introduction 43
3.3.3.2 AdaBoost step by step 47
3.3.3.3 Leverage of the weak learners 49
3.3.3.4 Convergence of the Training Error to Zero . 50
3.3.3.5 Generalization Error Bounds 53
3.3.3.6 A few comments 54
3.3.3.7 Adaptation to face detection 55

3.3.4 discussion . 57
3.4 Classification in Cascade . 57

3.4.1 Why is it so efficient? 58
3.4.2 Building more consistent classifiers 59
3.4.3 Training a cascade of classifiers 60

3.5 Scanning . 62

4 Experiments and Results 65
4.1 Datasets . 65
4.2 Learning results . 67

4.2.1 Weakness of the weak classifiers 67
4.3 Test results . 68

4.3.1 Mono-stage classifier 68
4.3.2 Results . 70

4.4 The multiple detections . 71

4

4.5 The Cascade classifier . 72
4.5.1 Training the cascade 72

4.5.1.1 Choice of the parameters 72
4.5.1.2 Discussion . 74

4.5.2 Results of the cascade 75
4.5.2.1 Experiments on a Real-World test Set 75
4.5.2.2 Experiments on a Video sequence 80

4.6 Speed of the detector . 80

5 Conclusions and Future Work 82
5.1 Conclusion . 82
5.2 Future Work . 83

A Annexes 85
A.1 Scanning implementation . 85

A.1.1 Rescaling the window 85
A.2 AdaBoost implementation . 86
A.3 Examples . 87

5

List of Figures

2.1 Typical faces extracted from the CMU Database [23]. We can
notice the great variability of the non-rigid object “Face”. . . 14

2.2 Examples of faces in a complex background. These images are
taken from the CMU Database [23]. 15

2.3 A comparison of principal component analysis (PCA) and
Fisher’s linear discriminant (FDL) for a two class problem
where data for each class lies a linear subspace. (taken from
[24]). 19

2.4 Neural Network-based face detection proposed by [11] 21

3.1 Points on a “boosted face” align with most descriptive features
on the average face. “Boosted face” was obtained by sampling
from the learned boosted threshold model. 31

3.2 Example rectangle features shown relative to the enclosing de-
tection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the
grey rectangles. Two-rectangle features are shown in (A) and
(B). Figure (C) shows a three-rectangle feature, and (D) a
four-rectangle feature. 33

3.3 Feature prototypes of simple Haar-like . Black areas have
negative and white areas positive weights. 33

3.4 Upright rectangle in a window. 34
3.5 Feature prototypes of simple Haar-like and center-surround

features, in line and rotated by 45 degrees. Black areas have
negative and white areas positive weights. 35

3.6 Quadruple density 2D Haar basis. 35
3.7 The Integral Image representation. The Integral image value

at the point (x,y) is the sum of all the pixels above and to the
left of (x,y). 36

6

3.8 Figure 2: The sum of the pixels within rectangle D can be
computed with four array references. The value of the integral
image at location 1 is the of the pixels in rectangle A. The value
at location 2 is A+B, at location 3 is A+C, and at location
A+B+C+D. The sum within D can be computed as 4+1-(2+3). 37

3.9 Basic scheme of AdaBoost. 39
3.10 Examples distribution for a single feature for the face class

and its Gaussian approximation. 42
3.11 The optimal Threshold is the one that minimize the number

of positive and negative misclassified examples. 43
3.12 Illustration of AdaBoost on a 2D toy data set: The color indi-

cates the label and the diameter is proportional to the weight
of the examples in the first, second third, 5th, 10th and 100th
iteration. The dashed lines show the decision boundaries of
the single classifiers (up to the 5th iteration). The solid line
shows the decision line of the combined classifier. In the last
two plots the decision line of Bagging is plotted for a comparison. 46

3.13 Two simple examples: positive examples are x, negative o
and weak classifiers are linear separators. On the left is the
naive asymmetric result. The first feature selected is labeled 1.
Subsequent features attempt to balance positive and negative
errors. Notice that no linear combination of the 4 weak clas-
sifiers can achieve a low false positive and low false negative
rate. On the right is the asymmetric boosting result. After
learning 4 weak classifier the positives are well modeled and
most of the negative are rejected. 57

3.14 Schematic description of cascade detection. A series of clas-
sifiers is applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very lit-
tle processing. Subsequent layers eliminate additional nega-
tives but require additional computation. After several stages
of processing, the number of sub-windows have been reduced
radically. The examples classified as positive by the last stage
are definitively considered as positive. 59

4.1 Classification errors of the selected features. The first selected
feature classify well the examples in 13% of the cases while
the 500th features only 42.5%. 68

4.2 Training and Testing errors for a model trained on 3.000 faces
and 30.000 non faces. 69

4.3 Examples of CMU images tested with a mono-stage classifier. 70

7

4.4 Integration of the multiple detections. (a) multiple detections:
17 positive windows. (b) after arbitrating: 6 windows. 71

4.5 Example of bad multiple detection integration. The black
bounding box contains two faces. 72

4.6 Number of features per stage. 74
4.7 Evolution of the false positive rate during the cascade of 14

stages. 75
4.8 Results of the detector using a cascade of 14 classifiers. Good

Detections . 77
4.9 Results of the detector using a cascade of 14 classifiers. Ex-

ample of good detections with some false alarms. 78
4.10 Results of the detector using a cascade of 14 classifiers. Exam-

ple of poor detections. Some faces are missed and false alarms
are detected. 79

4.11 One image of the video sequence used to test the detector. . . 80

A.1 Examples of the CMU Database. 88
A.2 Examples of the CMU Database. 89

8

List of Tables

3.2 Number of features in a 15× 20 window for each prototype. . 34

4.1 Training Results. Number of negative examples in the train
set and the corresponding number of features used. 73

9

Chapter 1

Introduction

In this report, a face detection approach is presented. Face detection is
an essential application of visual object detection and it is one of the main
components of face analysis and understanding with face localization and face
recognition. It becomes a more and more complete domain used in a large
number of applications, among which we find security, new communication
interfaces, biometrics and many others.

The goal of face detection is to detect human faces in still images or
videos, in different situations.

In the past several years, lots of methods have been developed with dif-
ferent goals and for different contexts. We will make a global overview of
the main of them and then focus on a detector which processes images very
quickly while achieving high detection rates. This detection is based on a
boosting algorithm called AdaBoost and the response of simple Haar-based
features used by Viola and Jones[1].The motivation for using Viola’s face
detection framework is to gain experience with boosting and to explore is-
sues and obstacles concerning the application of machine learning to object
detection.

1.1 General idea

Automatic face detection is a complex problem which consists in detecting
one or many faces in an image or video sequence. The difficulty resides in
the fact that faces are non rigid objects. Face appearance may vary between
two different persons but also between two photographs of the same person,
depending on the lightning conditions, the emotional state of the subject
and pose. That is why so many methods have been developed during last
years. Each method is developed in a particular context and we can cluster

10

these numerous methods into two main approaches: image based methods
and feature-based methods. The first one use classifiers trained statically
with a given example set. Then the classifier is scanned through the whole
image. The other approach consists in detecting particular face features as
eyes, nose etc...

1.2 The chosen approach

We have chosen to work in a common context. The goal of this project is
to detect very quickly low resolution faces in cluttered background. This
situation can be found in many applications as surveillance of public places.
The method used is both image based and feature based. It is image based
in the sense that it uses a learning algorithm to train the classifier with some
well chosen train positive and negative examples. It is also feature based
because the features chosen by the learning algorithm are for lots of them
directly related to the particular features of faces (eyes positions, contrast
of the nose bridge). The boosting techniques improve the performances of
base classifiers by re-weighting the training examples. The learning using
Boosting is the main contribution of this face detection.

On the other hand, the simple classifiers used for the boosting are simples
Haar-like features which permits a fast computation while good detection
rates.

1.3 Overview of the report

In the next chapter, an overview of the main existing approaches is given.
We first define precisely what the face detection task is and then detail the
image based and feature based methods. Chapter 3 explains the developed
algorithm. The main theory of Boosting is given as well as the use of the
Haar-like masks, a new image representation and an implementation in cas-
cade. Finally the last chapter will focus on the experiments and results of
our face detector.

Some implementation issues and detection examples are given in the An-
nexes.

11

Chapter 2

Overview of Face Detection

2.1 Introduction

In the following we will present different aspects of the face processing domain
while reviewing the main existing methods.

First of all, we need to define what face detection is, why it is an inter-
esting objective and how it can be approached with various methods.

We can define the face detection problem as a computer vision task which
consists in detecting one or several human faces in an image. It is one of the
first and the most important steps of Face analysis. Usually, the methods for
face recognition or expression recognition assume that the human faces have
been extracted from the images, but while the human visual system permit
us to find instantaneously faces in our purview indifferently of the external
conditions, doing the same automatically with a computer is a quite difficult
task.

2.1.1 A brief history

Along face detection, many other parts of Face analysis present useful ap-
plications and the number of these applications is increasing considerably
nowadays with the evolution of the automatic systems in the life of every
one of us. Face Recognition, Face localization, Face Tracking, Facial expres-
sion recognition are the main of these research domains.

• Face recognition consists in identifying the people present in images,
in other words, we want to assign one name to one detected face. It is
used in security systems for example.

• Face localization is the problem of finding precisely the position of one
face, whose presence is already known in a single image.

12

• Face tracking has for goal to follow a detected face in a sequence of
images in a real world context in most of the cases.

• Facial expression recognition will try to estimate the affective state of
detected people (happiness sadness etc...).

It is clear that the first step for all these problems is to find faces in images.
For that various approaches have been developed and that is what will be
detailed in this section.

The first face detection systems have been developed during the 1970’s
but the computation limitations restricted the approaches to anthropomet-
ric techniques which could be efficient in only few applications as passport
photograph identification for instance. It is only since the beginning of th
1990’s that more elaborated techniques have been built with the progress in
video coding and the necessity of face recognition. In the past years, lots of
different techniques have been developed, in such a proportion that today we
can count not less than 150 different methods.

2.1.2 Face detection difficulties

If automatic face detection has not been developed before, it is because it is
particularly hard to build robust classifiers which are able to detect faces in
different image situations and face conditions even if it seems really easy to
do this with our human visual system. In fact, the object “face” is hard to
define because of its large variability, depending on the identity of the person,
the lightning conditions, the psychological context of the person etc...

The main challenge for detecting faces is to find a classifier which can
discriminate faces from all other possible images. The first problem is to find
a model which can englobe all the possible states of faces. Let’s define the
main variable points of the faces:

• The face global attributes. We can extract some common attributes
from every face. A face is globally an object which can be estimated
by a kind of ellipse but there are thin faces, rounder faces... The skin
color can also be really different from one person to one another.

• The pose of the face. The position of the person in front of the camera
which has been used to acquire the image can totally change the view
of the face: the frontal view, the profile view and all the intermediate
positions, upside down...

13

• The facial expression. Face appearance depends highly on the affective
state of the people. The face features of a smiling face can be far
from those of an indifferent temperament or a sad one. Faces are non-
rigid objects and that will limit considerably the number of detection
methods.

• Presence of added objects. Face detection included objects that we can
usually find on a face: glasses which change one of the main charac-
teristics of the faces: the darkness of the eyes. Natural facial features
such as mustache beards or hair which can occult one part of the face.

• Image Condition. The face appearance vary a lot in function of the
lightning conditions, the type of illumination and intensity and the
characteristics of the acquisition system need to be taken in account.

The next figure shows some typical face examples extracted from the CMU
test dataset [23].

Figure 2.1: Typical faces extracted from the CMU Database [23]. We can
notice the great variability of the non-rigid object “Face”.

The background composition is one of the main factors for explaining the
difficulties of face detection. even if it is quite easy to build systems which
can detect faces on uniform backgrounds, most of the applications need to
detect faces in any background condition, meaning that the background can

14

be textured and with a great variability. So our two class classification task
is to assign an image to the face class or the Non faces class. Given a set of
examples, we can extract some properties of faces for representing the face
class but it is impossible to find properties which can represent all the non
face class. Some images with complex background are presented in the figure
2.2.

Figure 2.2: Examples of faces in a complex background. These images are
taken from the CMU Database [23].

In this context, various approaches have been taken to detect faces in
images. But as the face detection task is quite complex, each method is
build in a precise context and we will now review the main existing methods.
The next sections detail the two main face detection approaches:

• Image-Based methods which are built given a set of examples and
uses a sliding window to perform the detection.

• Geometrical-Based methods which take in account geometric par-
ticularity of face structures.

15

2.1.3 Definition of some general notions needed to un-
derstand face detection problem

First of all, we have to define some basic criteria that will determine the
performances of the detectors. The first notion that we need to introduce is
the detection rate. The detection rate d is the percentage of faces in the image
that have been correctly detected by the detector. In lots of applications, it
is the rate that we want to maximize. On the other hand, we have to define
the false rates. The false negative fn rate is the opposite of the detection
rate in the sense that it is the rate of faces that have been forgotten by the
detector: fn = 1 − d. The false positive rate is the second essential rate
considered in face detection: let fp be the rate of non faces windows that
are classified as faces by the detector. Due to the large number of windows
evaluated in an usual image, this false positive rate is usually 10−5or 10−6

but this low value is not really significant.
Once this definitions are given, it is easy to understand that the objective

of the face detection is to maximize the detection rate d while minimizing the
false positive rate fp. However, as in lots of applications in the real life, it is
hard to have both low false positive rate and high detection rate, and that
is why we have to look for a trade off between the two parameters. All the
methods described in the following sections will try with different approaches
to find the better compromise between false positive rate and detection rate.
Finally, we will see that it is hard to compare the methods because of the
problem of detection evaluations and of the different contexts. How can we
measure the goodness of a detector?

2.2 Image-Based Detection

2.2.1 Introduction

The Image-Based methods have been doubtless the more used until today.
We qualify them of “Image-Based” because they are built using example
images in opposition to some “template-methods” which need an a-priori
knowledge about faces. In order to extract the features from some training
examples, we will need to follow a statistical learning approach or other
machine learning algorithms. The principle is to learn a face and a non-
face distribution, given a set of positive and negative examples. For this, we
will naturally be placed in a probabilistic context : An image or any input
data is considered as an random variable x and the two classes face and
Non face are characterized by their conditional density functions: p(x|face)

16

and p(x|non − face) (see [22]). It is obvious that these density functions
are unknown and one of the main goals is to approximate them in order to
discriminate faces and non faces. Then there are several methods to find
discriminant functions with permit to classify a given example in the face
class or the non face class. In this probabilistic approach, many different
methods exist, among which Eigenfaces, Fisher’s Linear Discriminant and
Neural network or support vector machines etc...

The main difficulty in this approach is that the example dimension, i.e.
the dimension of x is often high so an important step will be to reduce
this example space in order to find a discriminant function which separates
positive and negative examples.

2.2.2 Eigenfaces

2.2.2.1 Definition

The first Image-Based method that we will describe in this section is called
Eigenfaces. The principle of face detection using Eigenfaces is to extract these
features from a set of images by Principal Components Analysis (PCA) and
estimate if the extracted Eigenfaces correspond to typical face pattern. In
fact all input images can be represented by a weighted vector of Eigenfaces
in the eigen space and the challenge is to determine if this linear combination
is closer to one class or to the other. A global overview of face recognition
using Eigenfaces can be found in [25] .

2.2.2.2 Principal Components Analysis

The first step for this Eigenfaces classification is to extract the Eigenfaces
from the original images. For this, the Principal Components Analysis (PCA)
is used. PCA which is also known as the Karhunen-Loeve method reduces
the input space dimensionality by applying a linear projection that maximize
the scatter of all projected samples. This subsection presents the main steps
of such an analysis.

Let {x1, x2, ..., xN} be a set of N images which are values from a n-
dimensional feature space. The orthonormal matrix W define a linear trans-
formation from the n-dimensional space to a m-dimensional feature space
where m < n (dimensionality reduction). Noticing that W ∈ Rn×m the new
feature vectors yk ∈ Rm are defined by the linear transformation:

yk = W T xk, k = 1, 2, ..., N. (2.1)

Then the total scatter matrix ST is defined as

17

ST =
N∑

k=1

(xk − µ)(xk − µ)T (2.2)

where µ is the mean of all the examples : µ =
∑N

k=1
xk

N
.

By applying the linear transformation, the new scatter matrix in the m-
dimensional subspace is given by W T SW. The PCA theory shows that the
optimal linear projection Wopt is the one which minimizes the determinant
of the projected scatter matrix (for the samples {y1, y2, ..., yN}), i.e.

W T
opt = arg max

w
|W T ST W | = [w1, w2, ..., wm]. (2.3)

The set {wi|i = 1, ..., m} are the n-dimensional eigenvectors of ST , corre-
sponding to the {λi|i = 1,, m} eigenvalues ordered decreasingly.

This projection in the feature space using W T
opt permits to decompose the

distance between an example and the face space into two components: the
distance in feature space DIFS (projection on the m dimensional space) and
the distance from feature space DFFS. For more details about PCA, see
[26], [27] and [28].

One serious point is that the main variance cause in an object class is
the lightning variations as shown in [29] . The optimal linear transformation
Wopt given by PCA has the drawback to focus on components representing
the illumination changes. One of the correction methods is to let out the first
principal Eigenfaces considering that they contain almost all the variations
due to lightning.

2.2.3 Fisher’s Linear Discriminant

Even if the Eigenfaces method seems to be quite efficient on non noisy images,
one of the drawbacks is that it does not minimize the intra-class variance.
A good classifier is a classifier in which the model of each class has a small
variance while a large variance between different classes. Fisher’s Linear
Discriminant (FLD) is one method to find the optimal projection. The pro-
jection determined by z = W T

FLDx minimize the quantity SBC

SWC
, which is the

ratio between the between class variance SBC and the within class SWC , see
[24]. If we consider the general case of a c-class problem, then we can define
the between class covariance matrix by :

SBC =
c∑

i=1

Ni(µi − µ)(µi − µ)T (2.4)

and the within class covariance matrix by :

18

SWC =
c∑

i=1

∑

xk∈Xi

(xk − µi)(xk − µi)
T (2.5)

where µ is the mean of all the samples, µi is the mean of the class Xi and
Ni the number of samples in the class Xi.

The optimal projection is obtained if we choose the projection matrix
W T

FLD as follow:

W T
FLD = arg maxω

|W T SBCW |
|W T SWCW | = [w1, w2, ..., wm], (2.6)

where {wi|i = 1, ..., m}is the set of generalized eigenvectors of SBC and SW ,
which are associated to the eigenvalues {λi|i = 1, ..., m}.

In [24] is it shown that the upper bound for the projection space dimension
is c−1where c is the number of classes. In our binary class case, the projected
space is a line.

An example in the next figure shows the comparison between the two
methods: PCA and FLD.

Figure 2.3: A comparison of principal component analysis (PCA) and
Fisher’s linear discriminant (FDL) for a two class problem where data for
each class lies a linear subspace. (taken from [24]).

19

2.2.4 Other methods in Eigen-space

Others methods which use dimensionality reduction in the image space have
been developed. One of the most efficient is the distribution based model
developed by Sung and Poggio (see [4]). The method consists in modeling
both the distribution of face patterns and non face patterns. The face dis-
tribution is modeled using 6 face pattern prototypes clustered by a modified
version of the k-means clustering algorithm. This algorithm computes the
6 centroids and covariance matrix of the 6 multi-dimensional Gaussian. In
order to decrease the number of misclassified examples, 6 other Gaussian
clusters representing the non face class are built using some critical non face
pattern which are face-like patterns in the sense that their prototypes are
close to the face models. These face-like non faces are chosen using a Boot-
strap method which mean collecting the false positive patterns detected on
a large set of images. Given these 12 clusters, a candidate window pattern
has to be classified as face or non face. For this, each the distance between
the tested pattern and the 12 clusters centroids are computed using 2 met-
rics. The first component is normalized Mahalanobis distance between the
tested pattern’s projection and the cluster centroid in a subspace spanned by
the cluster’s 75 largest eigenvectors. The second is the Euclidean distance
between the test pattern and its projection in the subspace. So the entire
set of 12 distance measurements is a vector of 24 values. Then a multi-layer
perceptron (MLP) is used to separate the positive and negative examples.
This approach is quite powerful but the limit is that the choice of all the
parameters is not clear : what is the optimal number of clusters, how many
examples do we have to use to train the classifier?

One other interesting method is a Bayesian based model.

2.2.5 Neural Network, SVM, HMM, Winnow

Other machine learning tools can be used to train good classifiers. Among
these learning approaches, we can find neural network oriented systems and
support vector ones. These are the more popular tools in machine learning
and the most common used nowadays. The next two subsections expose
them and make an overview of the different existing systems using them.

2.2.5.1 Neural Network

One of the best face detection system in term of false positive rate and
detection rate is a Neural Network-Based face detection developed by Rowley
[11]. It uses a retinally connected neural network which decides if a scanned

20

windows is a face or not. The face detection system can be divided in two
main steps :

• A neural network-based filter.

The input of this first stage is a pre-processed square image (20x20
pixels in [11]) and the output of the neural network is an real value
between -1 and +1. The preprocessing and neural network steps are
presented in the next figure.

Figure 2.4: Neural Network-based face detection proposed by [11]

The original image is decomposed in a pyramid of images (by simple
sub-sampling) in order to detect faces larger than the basic detector
size. The Receptive fields and Hidden units are shown in figure. There
are three types of hidden units to represent local features that represent
well faces. This first stage yields good detection rates (if the training
set is particularly well chosen) but it remains still an insufficient false
positive rate.

• Arbitration and merging overlapping detections.

In order to improve this high false positive rate, two neural networks
are trained with various initializations (in term of non face training
set, weight initialization and order presentation). These two networks
are built by the methods of the first step.

Even if the two networks have individually bad false positive rates,
the false alarms may differ from one network to the other. Hence, an
integration of the result using a simple arbitration strategy improve
significantly the detection results. The most common of these strategy
is called ANDing. A window if definitively classified as face only if the
two neural networks have detected it.

This method using neural networks have good results in term of false positive
rate and detection rate, but one limitation is that the quality of the detection

21

depends highly on the coherence of the training sets and on the tuning of the
neural networks which has lots of parameters.

2.2.5.2 Support Vector Machine

Support Vector Machine is a learning technique introduced by Vapnik [19]. It
seems to be efficient when the data sets become larger than few thousands.
It the case of face detection if we want to describe precisely all the faces
(because of the variability of faces.) The principle is to find the decision
surfaces by solving a linearly constrained quadratic programming problem.

The hyperplan decision is the one that maximize the margin between the
face and the non faces classes. One of the simple margin that can be used is
the distance between the closest points of the two classes. The points that
are kept in the hyperplan are not numerous. They are called supper vectors
but they are the most important because they define the boundary between
the two classes. Osuna and al. have developed such a face detection system
using Support Vector Machine in [49].

2.2.5.3 Hidden Markov Model

These Hidden Markov Models have been used by Samaria and Young (see
[41] and [42]) for face localization and recognition. The principle is to divide
a face pattern into several regions such as forehead, eyes, nose, mouth and
chin. A face pattern is then recognize if these features are recognize in an
appropriate order. In other words, a face pattern is a sequence of observation
vectors where each vector is a strip of pixels. A image is scanned in a precise
order and an observation is taken by block of pixels. The boundaries between
strips of pixels are represented by probabilistic transitions between states and
the image data within a region is modeled by a multivariate Gaussian distri-
bution. The output states correspond to the class to which the observation
belong. Other methods using HMM have been developed by Rajagopolan
[44], and Sung [43].

2.2.5.4 Sparse Network of Winnows (SNoW)

SNoW is a sparse network of linear functions that uses the Winnow update
rule defined in [45]. We define two linear units called target nodes: one as
representation for the face pattern and another one for the non-face pattern.
Given a set of relations that may be of interest in the input image, each
input image is mapped into a set of features which are present in it. This
representation is given to the SNoW procedure and propagates to the target
nodes. Let At = {i1, ..., im} be the set of features that are present in an

22

example and are linked to the target node t. Then the linear unit is active
if and only if

∑
i∈At

wt
i > θt, where wt

i is the weight on the edge connecting
the i − th feature to the target node t and θt is its threshold. The Winnow
update consists in a threshold θt at the target t, two update parameters: a
promotion parameter α > 1 and a demotion parameter 0 < β < 1.

2.3 Geometrical-Based Detection

2.3.1 Introduction

The previous statistical methods are based on a learning to obtain a face
model from one positive and one negative data set. They are not directly
correlated to the particular geometrical features of a typical face. Some
other methods are in such a point of view. They are called Geometrical-
based or Feature-based. Many approaches have been taken is this large area
of feature-based detection and we can distinguish:

• the top-down approach : One model is computed for one scale. This
was used by Yang and Huang [30], and Lanitis [31] .

• the bottom-up approach : The faces are searched in an image by
the presence of facial features. See Leung [32] and Sumi [33].

The main advantage of this geometric approach is that the face detection is
not restricted to frontal faces. In fact the main face features (eyes nose, skin
color etc...) are present independently of the pose and the lighting conditions.

2.3.2 Top-down methods

This category includes all the methods that used a multi scale approach. The
great majority of them use the skin color to find faces in images. The existing
system use several segmentation algorithms to extract faces from the images.
The more classical ones are region growing, Gibbs Random Field Filtering
and more...

The skin color is maybe one of the features the first noticed by the human
visual system. Many methods use different color spaces. The main advantage
of this approach is that the face detection is very fast. However, there is one
important issue: lots of problems appears if the background contains faces
of the skin color.

Yang and Ahuja [36] have build their system in this sense. Although
the human skin color seems to change from one example to one other, the

23

effective variation is more luminance than the color itself. The distribution is
modeled by a Gaussian distribution. All the pixel are tested and we attribute
them the skin color if their corresponding probability is greater than a given
threshold. Finally, a region is declared as face if more than 70 percents of its
pixels have the skin color.

Another method proposed by Saber and Tekalp [47] uses Gibbs Random
Field filtering as segmentation algorithm.After the segmentation, each region
is approximated by an ellipse. the distance between the ellipse and the
region shape is computed using the Hausdorff distance measure. If this last
measure is greater than a predefined threshold, the region is rejected. Then
a procedure of finding the facial features is applied.

Wei and Sethi uses a quite different approach in [?, ?]. They use a
partitioning of the human skin region to detect faces. The binary image
of the segmented skin is obtained by performing skin color classification at
each pixel location. The a morphological closing is performed followed by an
opening to remove small regions. Then the remaining regions are another
time approximated by ellipses.

2.3.3 Bottom-up methods

The principle is to find invariant features of faces. By invariant, we mean
invariant by scaling, poses, lighting conditions and other variations. The
common and natural features that are usually extracted are the eyes, the
nose the mouth and the hair line. Any edge detector might be used to extract
them. A bottom up method try to find this features in an original image and
then they are grouped according to their geometrical relationships.

The difference between the methods in this bottom-up approach resides
in the way to choose the features and how to establish the links between
them.

One of the early methods was proposed by Govindaraju in [46]. In this
method, the facial features are characterized by curves and structural rela-
tionships which link them. Two successive stages are applied: First, curves
of the faces are extracted from an input image to find the face candidates.
The features detected are then grouped using a matching process (a cost
function and one threshold).

Leung [32] uses a random graph matching by apply a set of Gaussian
filters which is compared to a template graph representing a face. (The
comparison between the computed graph and the template is usually a simple
threshold).

In another method used by Yow and Cipolla [34], a set of derivative
filter is apply in order to select edge features like the corner of the eyes for

24

example. Then only the points that have particular properties are kept:
those which have parallel edges for example. The remaining points are then
linked together and they are used to build a face model.

Cai and Goshtasby [35] used the color information but in a different
approach than [36]. A face is recognized by the presence of particular features
which do not have the same color than the skin) in a skinned color region.

2.4 Evaluation difficulties

As the definition of detecting faces in images is really simple: determine
whether or not there are any faces in images and, if present, return the image
location and extend for each face, we can think that it is easy to evaluate
the performances of a face detector. However many parameters have to be
taken in account to do this. How can we measure the goodness of a detection?
How do we have to integrate the false alarms (how do we have to consider the
false positive rate?) What about the detection speed? Several such questions
make hard the face detection evaluation.

It would be interesting to compare the existing methods in face detection
but the major problem is that every method is made in a particular context
and today there are still no standards for face detection evaluation that will
make easier the future research work about face detection.

The first step in detection evaluation is to use a common testing set
which contains a large variety of situations. The most common used set is
probably the CMU testing set which contains many faces manually labeled
(see Fig. 2.2 for examples). Then we usually use the detection rate over false
positive rate ratio to characterize the performances even if the number of
false alarms is directly related to the way how the images are scanned (more
precisely the number of sub-windows scanned). A summary of the main
results and method comparison can be found in [22] and [37]. Nevertheless,
we can give general observations about the different approaches. The image
based techniques are quite efficient regarding the frontal face detection. The
detection rate reaches more than 90% with at most several tens of false alarms
in a typical sized image but the main limitation of the image based methods is
that the faces detected will slightly match with the training examples. Thus
it is difficult for example to include in the training set faces at many different
poses, with both rotations in and out of plane. The geometrical approaches
are more robust in term of face pose, i.e. the face orientation in front of the
acquisition system but they generally give worse detection results. Both the
segmentation part and the feature extraction are critical points. The use of
the color information needs is not really representative of faces because lots

25

of objects in the background may have the human skin color.
The speed of the detector is without any doubt the parameter the most

difficult to take into account. Each method has its own speed and it is
difficult to determine the speed performances: it depends on the scanning
method and on the way it is implemented.

So it has been shown that a lot of different approaches are available but
face detection is still an open task. Many solutions are possible taking into
account the results of the existing methods. The main promising approach
seems to be combined approaches of image based and feature based methods.
We will see one of them which uses a Boosting learning algorithm in the next
chapters.

26

Chapter 3

Fast Face Detection Using
AdaBoost

3.1 Introduction

3.1.1 Choice of the method

In this third chapter we discuss about a face detection based on a boosting
algorithm which yields good detection rates. This detector is highly inspired
by the Robust Real-time Object Detection of Viola and Jones [1]. We have
chosen to build a model using a statistical learning given some positive and
negative examples. A learning algorithm trains a classifier by selecting visual
features, so we will discuss why this chosen algorithm is appropriate for face
detection and explain how it works. We will also emphasis on some other
essentials key contributions like a new image representation, the choice of
these visual features and finally the introduction of a detection in cascade.

3.1.2 Context of the frontal face detection

Before going into details, we just remark that every face detection method
is designed in a particular context, that is why it is not always easy to
compare the results between them. Some detectors have for only goal to
have a detection rate as near as possible from 100% but our project is a little
bit in a different context: even if we naturally want reach good detection
rates, we want to build a real-time oriented detector. So the goal is to
detect all the faces (or almost all of them) even if this means we have to
accept a higher false positive rate (non-face images labeled as face by the
detector). This choice is only in order to respect most of applications which

27

need for example to detect all the people in front of a video camera. (Video
surveillance for instance).

On the other hand, if for example, a camera is placed in a airport hall, the
faces are often low resolution faces, at different scales and the background
seems to be quite textured and complicated. In this way, we have to built a
robust detector with respect to illumination, face variation and face size. On
the other side, if we keep in mind that we want to detect faces for a further
face recognition or comprehension, it would be good to select only faces which
can be considered as frontal faces, this will explain the choice of the training
set used to learn the final classifier (see 4.1). To summarize, even if we could
choose other face detection contexts, this one seems to be the most used in
the real-world applications. We will particularly pay attention to the fact
that it will be interesting to build a simple and unbiased representation that
can represent faces. (And objects by generalization).

3.1.3 Why Boosting and Haar features?

The chapter 2 presented the main approaches available to build a face detec-
tion system. Now the context of our face detection is given, we can explain
why we choose this approach using a boosting learning algorithm and simple
Haar features. As we want to detect faces in various background and prin-
cipally low resolution faces, it would be improper to use purely geometrical
methods. In fact the main advantage to these geometrical methods is the
geometric invariant properties. We are not interested by them because we
have chosen to stay in a frontal face detection context. So it is quite natu-
rally that we have oriented our choice towards learning algorithms. Boosting
is a powerful iterative procedure that builds efficient classifiers by selecting
and combining very simple classifiers. Good theoretical results have been
demonstrated, so we have some theoretical guarantees for achieving good
detection rates. This idea is interesting in the sense that a combination of
simple classifiers may intuitively give a rapid detection without deteriorating
the detection rates. So it seems to be one of the best compromise between
efficiency in term of detection and speed.

3.1.4 Overview of the detection

This new method given by Viola[1] is a combined method of more traditional
ones like geometrical and image based detection. It is a geometrical in the
sense that it uses general features of human faces: position of particular
features among which the eyes the nose and the mouth. We will not try to
extract particular face features: It is only an a-posteriori observation in the

28

sense that the selected Haar-like masks are effectively representing particular
facial features but it is not our decision. See section 4.2 for details about the
selected features. On the other hand, it is also image based because we use
a statistical learning with the use of a consequent data set needed to build
the face model.

Viola has developed this face detector in July 2001 and he was inspired
by the work of Papageorgiou[2]. It seemed to be the fastest and the most
robust and it is still today. The speed of the detection is notably given by the
simplicity of the features chosen and the good detection rates are obtained
by the use of the fundamental boosting algorithm AdaBoost which selects
the most representative feature in a large set.

To have a concrete idea of the performances of the detection, imagine that
Viola’s detector can process 15 frames of 384x288 pixel images per second
on a conventional 700 MHz Intel Pentium.

Let us look at the main steps of the fast face detector that will be explored
in the next sections.

The detector consists in scanning an image by a shifting window at dif-
ferent scales. Each sub-window is tested by a classifier made of several stages
(notion of cascade). If the sub-window is clearly not a face, it will be rejected
by one of the first steps in the cascade while more specific classifier (later in
the cascade) will classify it if it is more difficult to discriminate.

The first contribution is the choice of the features that describe the faces.
The principle of the detection is to apply successively simple classifiers to
combine them in a final strong classifier. The choice of these features is
fundamental for the performances of the detection. The difficulty is to find
masks simple enough to permit a fast classification but characteristic enough
to discriminate faces and non faces. A good compromise for that is obtained
by the use of reminiscent of Haar Basis functions. In fact the feature response
is nothing more than the difference of two, three or four rectangular regions
at different scales and shapes. To improve the computation time of these fea-
tures, we introduce a new image representation called Integral Image which
permits to compute a rectangle area with only 4 elementary operations, i.e
additions and subtractions.

Then, as we have a large set of features at disposition, AdaBoost is used
to select a small set of them to construct a strong final classifier. We want
to keep only the features which separates the best positive and negative
examples. At each selection step, a weak classifier (one feature) is selected
so AdaBoost provides an effective learning algorithm and strong bounds on
generalization performance. Finally, the third important contribution is the
cascade implementation which focuses the detection on critical regions of
interest. Thus, it first eliminates quickly regions where there are no positive

29

examples and then, the more we go down in the cascade process, the more
specific the classifiers are and so almost only faces are detected.

For example, the first stage of Viola’s detector is a combination of only
two features which rejects 60% of negative examples and it provides a false
negative rate of 1% with only 20 simple operations.

Section 2 will describe the particularity of the features and the compu-
tation with the integral image. Then, section 3 will focus on the learning
algorithm and the method in which the weak classifiers are combined to
ensure a strong final classifier. Finally, section 4 will expose the cascade
structure.

3.2 Features and Integral Image

This section presents the features used in our statistical face detection. Hu-
man faces are objects particularly hard to model because of there significant
variety in color and texture and there are no constraints on the background.
In fact, if we want to build a model which is able to take in account this face
variability without identifying cluttered backgrounds, it will not work to use
such as maximum likelihood methods for example. The next few subsections
expose different methods used to model the faces.

3.2.1 Overview of the existing face models.

Due to the context of our face detection, methods like maximum likelihood
are particularly not efficient. Will will thus focus on example based face
models to train a significant classifier.Many descriptive features could be
used to train a classifier by Boosting. The next subsections explain some
of them that have been used recently. We can distinguish to main methods
that seems to be the more efficient :

• Pixel-based models

• Haar-Like features models

3.2.1.1 A pixel-based method

A possible way of modeling faces is to use a pixel representation as presented
in Pavlovic’s detection [5].

In order to train a boosted classifier as we will discuss later, Pavlovic
uses a combination of weak classifiers based on the pixel values to boost the
model. Let

30

hk ∈
{
t (X | θ, l) = sign (X(l) − θ)

}
(3.1)

be a weak classifier where X denotes a vectorized image of gray-scale pixel
values and X(l) is its l-th pixel. The weak classifier has an image as input
and a decision face or non face as output, in comparison with a threshold
θ. The used learning algorithm is AdaBoost which selects from the training
dataset the pixels which represent the best a face structure. As you can see
on the following figure, the geometrical basic features of faces are recognized:
the eye region, the nose and the mouth.

Figure 3.1: Points on a “boosted face” align with most descriptive features on
the average face. “Boosted face” was obtained by sampling from the learned
boosted threshold model.

Figure 3.1 (a) shows an example of an average face obtained from the
training dataset. Figure 3.1(b) shows a typical “face” image sampled from a
function learned using boosting. Each non white location corresponds to a
pixel selected by the boosting algorithms.

This method seems to be quite efficient because the boosting learning
theoretically gives good training results but imagine that in a 19 x19 pixel
image, there are some 361 pixels, we have to apply at each scanning window
361 weak classifications and combine them to obtain a final strong classifier.
We will try to improve the computation time by using other face models.

31

3.2.2 Haar-like features

Comparing these face modeling methods and taking into account the spe-
cific needs of our application, we arrived to conclusion that a feature based
method would be more appropriate rather than pixel based. There are many
motivations for using features (some reminiscent of Haar Basis functions)
than pixels directly as Pavlovic [5]. The most common reason is that fea-
tures can act to encode ad-hoc domain knowledge that is difficult to learn
using a finite quantity of training data. And as we will see, these features
can operates much faster than pixel-based system.

These features are the same as those used by Papageorgiou[2]. The Haar
wavelets are a natural set basis functions which computes the difference of
intensity in neighbor regions. The next subsection recalls basic theory about
wavelet representation.

3.2.2.1 Rectangular Haar Features

In our face detection system, very simple features are used. We use some
reminiscent of Haar Basis. Recall that the wavelet function corresponding to
Haar wavelet is:

ψ(x) =

1 if 0 ≤ x < 1
2

−1 if 1
2
≤ x < 1

0 otherwise
(3.2)

There are three kinds of Haar-like features. The value of a two-rectangle
feature is the difference between the sum of the pixels within two rectangular
regions. The regions have the same size and shape and are horizontally
or vertically adjacent.(see figure 3.2). A three-rectangle feature computes
the sum within two outside rectangles subtracted from the sum in a center
rectangle. Finally, a four-rectangle feature computes the difference between
diagonal pairs of rectangles.

Given that the basic resolution of the detector is 15x20, the exhaustive
set of rectangle features is quite large: 37525. Note that unlike the Haar
basis, the set of rectangle features is over-complete.

Figure 3.3 shows the different two- three- and four- rectangles prototypes
used by our detector.

32

Figure 3.2: Example rectangle features shown relative to the enclosing detec-
tion window. The sum of the pixels which lie within the white rectangles are
subtracted from the sum of pixels in the grey rectangles. Two-rectangle fea-
tures are shown in (A) and (B). Figure (C) shows a three-rectangle feature,
and (D) a four-rectangle feature.

Figure 3.3: Feature prototypes of simple Haar-like . Black areas have negative
and white areas positive weights.

Number of features:
The number of features derived from each prototype is quite large and

differs from prototype to prototype and can be calculated as follows. Let H
and W be the size of a H ×W pixels window and let w and h be the size of
one prototype inside the window as shown on figure 3.4.

33

Figure 3.4: Upright rectangle in a window.

Let X =
⌊

W
w

⌋
and Y =

⌊
H
h

⌋
be the maximum scaling factors in x and

y direction. An upright feature of size wxh then generates features for an
image of size W ×H:

X · Y
(
W + 1− w

X + 1

2

) (
H + 1− h

Y + 1

2

)
(3.3)

Results with the notations of Figure 3.3:

Feature type w/h X/Y count

(1a) (1b) 2/1;1/2 7/20 23520
(2a) (2b) 3/1;1/3 5/20 8400

(3) 2/2 7/10 5600
Total 37520

Table 3.2: Number of features in a 15× 20 window for each prototype.

As detailed in Table 3.2 and given that the base resolution of the detector
is 15×20, the exhaustive set of rectangle features is quite large: 37520. Note
that unlike the Haar basis, the set of rectangle features is over-complete.

Even if our detector only uses these four types of features, we could use
other types: for instance we could introduce the same rectangular features
but rotated by 45 degrees as made by [7] as shown in Figure 3.5.

34

Figure 3.5: Feature prototypes of simple Haar-like and center-surround fea-
tures, in line and rotated by 45 degrees. Black areas have negative and white
areas positive weights.

With these other rotated features and center-surround features, the new
set of features has 117,941 components in a 20x24 window.

On another side, Papageorgiou [2] introduce another kind of Haar-feature
called quadruple density transform . This one permits to achieve the spatial
resolution necessary for detection and to increase the expressive power of the
model. It is nothing more than an extension of the 2D Haar wavelet as shown
in Figure 3.6.

Figure 3.6: Quadruple density 2D Haar basis.

We have decided to limit our set to the simple Haar-like wavelets of
Figure 3.3 because it seems to be complete enough to obtain good detection
results. The choice of the feature is important but not crucial in order to
train the classifiers because as explained in the next section, the training is
a combination of weak classifiers. It does not really matter if the features
are not optimal, and it seems that the horizontally and vertically oriented
features represent better faces that rotated ones which would represent non

35

symmetries of faces. It is not a lack or a great loss to limit our set to basics
features. We leave other types of features for a future work.

3.2.2.2 Discussion

The chosen rectangular features seem to be primitive if we compare them
to other alternatives such as steerable filters [10]. Steerable filters are really
well adapted to boundaries detection, image compression and texture anal-
ysis whereas the rectangle features are more sensitive to bars, the presence
of edges and quite simple image structures. All the dilemma of choosing the
representation resides in the compromise between the simplicity which pro-
vides fast computing and more representative filters but slower computation.

In the next subsection a new image representation will be introduced in
order to improve the computing speed of these Haar-like masks responses.

3.2.3 Integral Image

We now know that we need Haar-like features to train the classifiers. The
goal of this part is to introduce a new image representation called Integral
Image which yields a fast feature computation.

This representation is in close relation with “sum area tables” as used in
graphics [8].

The value of the Integral Image at the coordinates (x, y) is the sum of all
the pixels above and to the left of (x, y), including this last point as shown
in Figure 3.7.

Figure 3.7: The Integral Image representation. The Integral image value at
the point (x,y) is the sum of all the pixels above and to the left of (x,y).

Let ii be the integral image of the initial image i and ii(x, y) the value of
the integral image at the point (x, y).

We can define the integral image ii by :

36

ii(x, y) =
∑

x′ ≤ x,
y′ ≤ y

i(x′, y′). (3.4)

As we use this new representation to improve the computation time, let us
explain its advantages.

First it can be computed in a efficient way using the following pair of
recurrences: {

s(x, y) = s(x, y − 1) + i(x, y)
ii(x, y) = ii(x− 1, y) + s(x, y),

where s(x, y) is the cumulative row sum, ∀x, s(x,−1) = 0, and
∀y, ii(−1, y) = 0. The integral image can thus be computed in one pass at
the beginning of the detection over the original image i.

The main advantage using such a representation is that any rectangular
sum in the original image can be computed in four array references (see
Figure 3.8) in the integral image. The difference between two rectangular
sums can be computed in eight references. Therefore computing a feature is
only a difference of two, three or four rectangular sums.

The two rectangle features are computed with six references because the
two rectangles are adjacent. The three rectangle features need eight refer-
ences and the four rectangle array only nine.

Figure 3.8: Figure 2: The sum of the pixels within rectangle D can be
computed with four array references. The value of the integral image at
location 1 is the of the pixels in rectangle A. The value at location 2 is A+B,
at location 3 is A+C, and at location A+B+C+D. The sum within D can
be computed as 4+1-(2+3).

There are some other reasons which made us choose the integral image
representation. One of them is given by the boxlet work of Simard, et al.

37

[9]. It is based on a fundamental property of linear operations (e.g. f · g or
f ? g). Any invertible linear operation can be applied to f or g if its inverse
is applied to the result. For instance, assuming that f and g have finite
support and that fn denotes the n-th integral of f (or the n-th derivative if
n is negative), we can write the following convolution identity:

(f ∗ g)n = fn ∗ g = f ∗ gn (3.5)

where ? denotes the convolution operator. They also show that the convolu-
tion can be significantly accelerated if the derivatives of f and g are sparse.
From this property we can extract that for example:

(f ′′) ∗
(∫ ∫

g
)

= f ∗ g. (3.6)

We can apply this last formula to the rectangle sum computation: let r be
the rectangle (with value 1 inside and 0 outside) and i the image, the sum
in the rectangle is i · r and it can be computed as follow:

i.r =
(∫ ∫

i
)
· r′′. (3.7)

The integral image is in fact the double integral of the image (that is why it
is called integral image) and the second derivative of the rectangle yields four
delta functions at the corners of a rectangle. The evaluation of the second
dot product is accomplished with four array accesses.

One of the consequences of the use of such a representation is the way to
scan the images.

The conventional systems computes a pyramid of images to process the
detection at several scales. By using the integral image, we only need to
re-scale the 20x15 pixels detector and apply it on the first integral image.
No re-sampling and no image rescaling are needed that is why it provides a
significant gain of time and it becomes easier to implement than using the
pyramid approach.

This approach permits to compute a single feature at every location and
at every scale in few operations. The power of all these independent feature
is still quite weak, so the challenge of the next section is to find how the best
features are selected and how we can combine them to produce a strong final
classifier.

38

3.3 Learning with AdaBoost

3.3.1 Introduction

Considering a mono-stage classifier and given a set of features, we can build
a face detector by applying all the masks at each image location (each shift
and each scale). For this many different learning methods could be used .

Moreover, we have a complete set of 37520 features which is far larger
than the number of pixels, so even if the features responses are very simple
to compute (notably with the integral image representation), applying the
all set of features would be two expensive in time. The next stage in the
building of the face detector is thus to use a learning function which selects
a small set of these features: the ones which separates the best positive and
negative examples. The resulting final classifier would be a simple linear
combination of these few Haar-like features.

For this, we will discuss in this section about an algorithm called Ad-
aBoost (Adaptive Boosting) (see Figure 3.9) which has two main goals:

• Selecting a few set of features which represents as well as possible faces.

• Train a strong final classifier with a linear combination of these best
features.

Figure 3.9: Basic scheme of AdaBoost.

In the following subsections, it is explained why we have chosen this algo-
rithm instead of more classical ones and then we some theory is explained to
show why AdaBoost is efficient and how it can be adapted to face detection.

Possible algorithms Given a set a features and a training set of posi-
tive and negative examples (see section 4.1 on page 65 for details about the
training dataset), any machine learning approach could be used to learn a
classification function. Here is a summary of the main possible approaches
which could be used to train a classifier:

39

• Mixture of Gaussian model

• Simple image features and neural network

• Support Vector Machine

• Winnow learning procedure.

Why AdaBoost AdaBoost is an efficient boosting algorithm which com-
bine simple statistical learners while reducing significantly not only the train-
ing error but also the more elusive generalization error. As all the learning
functions, it presents advantages and drawbacks which are exposed here:

Advantages:

• No a prior knowledge. As shown in Figure 3.9, AdaBoost is an
algorithm which only needs two inputs: a training dataset and a set of
features (classification functions). There is no need to have any a priori
knowledge about face structure. The most representative features will
automatically be selected during the learning.

• Adaptive algorithm. At each stage of the learning, the positive and
negative examples are tested by the current classifier. If an example
xi is misclassified, that means that it is hard to classify i.e it cannot
clearly be assign in the good class. In order to increase the discriminant
power of the classifier these misclassified examples are up-weighted for
the next algorithm iterations. So the easily classified examples are
detected in the first iterations and will have less weight in the learning
of the next stages to focus on the harder examples.

• The training error theoretically converge exponentially to-
wards 0. As proved by Freund and Schapire in [12], given a finite
set of positive and negative examples, the training error reaches 0 in a
finite number of iterations.

Drawbacks :

• The result depends on the data and weak classifiers. The quality
of the final detection depends highly on the consistence of the training
set. Both the size of the sets and the interclass variability are important
factors to take in account. Other way, the types of basic classifiers
which are combined have some influence on the result. The only need
for all the basic functions is to be better than random selection but if we

40

want to achieve good detection rates in a cogent number of iterations,
they have to be as well chosen as possible.

• Quite slow training. At each iteration step, the algorithm tests all
the features on all the examples which requires a computation time di-
rectly proportional to the size of the features and examples sets. Imag-
ine that the training set has many thousands of positive and negative
examples and a complete set of 37520 features. However, the compu-
tation time is increased linearly with the size of the both sets.

3.3.2 The weak classifiers

This subsection shows how the Haar-like features can be used to build simple
classifiers which need AdaBoost. The principle of the Boosting is to combine
simple classifiers which are called weak learners. These weak learners are
called weak because we do not expect even the best classification function
to classify the data well, they only need to classify correctly the examples in
more of 50% of the cases.

One easy way to link the weak learner and the Haar features is to assign
one weak learner to one feature. So the AdaBoost algorithm will select at
each round the feature that provides the best separation between positive
and negative examples.

3.3.2.1 From features to weak classifiers

This subsection shows how to build the weak classifiers with the rectangle
features. A feature response is a difference of the sum of pixels in neighbor
regions. We hope that these responses then permit to distinguish positive
and negative examples. For each feature and at each iteration of AdaBoost
(because all the examples are re-weighted at each iterations, so the response
to one feature of one example will not necessary be the same at each stage).

In other terms, one weak classifier is a feature evaluation followed by
an optimal thresholding. This threshold is optimal in the sense that the
minimum number of examples are misclassified.

We can summary this by the following formula:
A weak classifier hj(x) consists of a feature fj, a threshold θj and a parity

pj indicating the direction of the inequality sign:

hj(x) =

{
1 if pjfj(x) < pjθj

0 otherwise
, (3.8)

41

where x is an weighted example, as well positive as negative. It is weighted in
the sense that all the examples are re-weighted at each stage of the algorithm.

The next subsection shows how to find the optimal threshold for each
feature.

3.3.2.2 The optimal threshold

Given one feature fj and all the examples responses fj(xi), i ∈ training set
to this feature, we want the threshold θj that separates the best positive and
negative examples. One easy method would be to approximate the positive
and negative distributions by two Gaussian, with only two parameters for
each Gaussian. This approach would work in theory in the sense that we
only want classifiers which achieve more than 50% of detection rate. But in
practice the distributions have for many features a great standard deviation
such that lots of examples are not characterized by the appropriate Gaussian
(see Figure 3.10).

Figure 3.10: Examples distribution for a single feature for the face class and
its Gaussian approximation.

A more appropriate approach is to find the threshold from the cumulative
histograms.

42

Figure 3.11: The optimal Threshold is the one that minimize the number of
positive and negative misclassified examples.

Let θ be a threshold which yields f misclassified faces and nf misclassified
non faces. The optimal threshold is the one that minimize (1 − f + nf) in
the configuration of Figure 3.11.

3.3.3 AdaBoost

3.3.3.1 Introduction

History of Boosting and AdaBoost methods The chosen learning al-
gorithm AdaBoost is a Boosting algorithm so before explaining the use of
AdaBoost in the context of face detection, basic theory about boosting will
be introduced.

The Boosting theory takes its roots in the PAC learning [12]. They proved
that a combination of simple learners, only better than random could yield
a good final hypothesis. That is the main idea of what is called Boosting.
AdaBoost (Adaptive Boosting) was introduced as a practical algorithm of
the Boosting theory.

Let h1, h2,, hT be a set of simple hypothesis and consider the composite
ensemble of hypothesis :

f(x) =
T∑

t=1

αtht(x). (3.9)

43

where αt denotes the coefficient with which the ensemble member ht is com-
bined. Both αt and ht have to be learned during the boosting process.

In the beginning, Boosting algorithms were appreciated for their perfor-
mances with low noise data. However, the first algorithms provided too bad
results with noisy patterns due to overfitting so the applications of Boosting
were limited.

On the other hand, AdaBoost can be viewed as a constraint gradient
descent in an error function with respect to the margin. AdaBoost asymp-
totically achieves a large margin classification, that means that it concentrate
its resources on a few hard-to-learn patterns that are interestingly very sim-
ilar to support vectors. [13].

Trying to improve the robustness of Boosting, it was interesting to clarify
the relations between Optimization Theory and Boosting procedures. From
here, it became possible to define Boosting algorithms for regressions [14],
multi class problems, unsupervised learning and to establish convergence
proofs for boosting algorithms by using results from the Theory of Opti-
mization.

For details about Boosting applications, publications, softwares and demon-
strations, see [15].

Introduction to Boosting and Ensemble Methods In this whole sec-
tion, we focus on the problem of binary classification to stay in the context
of face detection with the face class and the non-face class.

The task of the binary classification is to find a rule, which, given a set
of patterns, assigns an object to one of the two classes.

Let X be the input space which contains the objects and we denote the
set of possible classes by Y (In our case, Y= {−1, +1}). The task of learn-
ing can be summarized as follow: Estimate a function f : X → Y, using
input, output training data pairs generated independently at random from
an unknown probability distribution P (x, y),

(x1, y1), · · ·(xn, yn) ∈ Rd × {−1, +1} (3.10)

such that f will correctly predict unseen examples (x,y). In the case where
Y={−1, +1} we have a so-called hard classifier and the label assigned to an
input x is given by y = f(x).

The true performance of the classifier f is assessed by

L(f) =
∫

λ(f(x), y)dP (x, y), (3.11)

where λ is a chosen loss function. The risk L(f) is often called the generaliza-
tion error in the sense that it measures the loss with respect to the example

44

not observes in the training set. For binary classification, we usually use the
loss function λ(f(x), y) = I(y ·f(x) ≤ 0), where I(E)=1 if the event E occurs
and 0 otherwise. In other words,

λ(f(xi), yi) =

{
1, if xi is misclassified

0, otherwise
.

Since the probability distribution P (x, y) is unknown, this risk L(f) can-
not be directly minimized. So we have to estimate a function as close as
possible from foptimal based on the available information, i.e. the training
examples and the properties of the function class F from which f is cho-
sen. One classical solution is to approximate the generalization error by the
empirical risk defined as follow:

L̂(f) =
1

N

N∑

n=1

λ(f(xn), yn), (3.12)

It is the case if the examples are uniformly distributed. If the training set is
large enough, we expect that:

lim
N→∞

L̂(f) = L(f).

However, one stronger condition is required to validate the last formula: The
risk error L̂(f) has to converge uniformly over the class of functions F to
L(f).

While this condition is possible for large size training sets, for small sam-
ples size large deviations are possible and overfitting might occur. If it is the
case, the generalization cannot be obtained by minimizing the training error
L̂(f).

As Boosting algorithms generate a complex hypothesis, one may think
that the complexity of the resulting function class would increase dramati-
cally when using an ensemble of many learners. It is the case under some
conditions .

Now discuss about a strong and weak model called PAC for learning
binary classifiers.

Let S be a sample consisting of N data points {(xn, yn)}N
n=1 ,where xnare

generated independently at random from some distribution P (x) and
yn = f(xn), f belongs to some known class F of binary functions. A strong
PAC (Probably Approximately Correct) learning algorithm has the property
that for every distribution P , every f ∈ F and every ε ≥ 0, δ ≤ 1

2
with

the probability larger than 1− δ, the algorithm outputs a hypothesis h such
that Pr[h(x) 6= f(x)] ≤ ε. The running time of the algorithm should be

45

polynomial in 1/ε, 1/δ, n, d, where d is the dimension (appropriately de-
fined) of the input space. A weak PAC learning algorithm is defined without
any constraints, except that it is only required to satisfy the conditions for
particular ε and δ rather than all pairs.

Consider a combination of hypothesis as shown in 3.9. There are many
approaches for selecting both the coefficients αt and the base hypothesis ht.
In a Bagging approach, the hypothesis {ht}T

t=1 are chosen based on a set of
T bootstrap samples, and the coefficients αt are set to αt = 1/T (see [16] for
detailed Bagging approach) . The advantage of this simple method is that it
tends to reduce the variance of the overall estimate f(x).

The AdaBoost algorithm is a more sophisticated algorithm for Boosting
the combination of the hypotheses.

It is called Adaptive in the sense that examples that are misclassified
get higher weights in the next iteration, for instance the examples near the
decision boundary are harder to classify and therefor get high weights in the
input set after the first iterations.

The next figure illustrates AdaBoost learning on a 2-D data set.

Figure 3.12: Illustration of AdaBoost on a 2D toy data set: The color indi-
cates the label and the diameter is proportional to the weight of the examples
in the first, second third, 5th, 10th and 100th iteration. The dashed lines
show the decision boundaries of the single classifiers (up to the 5th iteration).
The solid line shows the decision line of the combined classifier. In the last
two plots the decision line of Bagging is plotted for a comparison.

46

AdaBoost is explained here, it will be discussed after in detail.

Algorithm 1 The AdaBoost algorithm. [17]

1. Input: S = {(x1,y1), ..., (xN,yN)} Number of iterations T.

2. Initialize: d(1)
n = 1/N for all n = 1, ..., N

3. Do for t = 1, ..., T,

(a) Train classifier with respect to the weighted sample set
{S,d(t)}and obtain hypothesis ht : x 7−→ {−1, +1}, i.e. ht =
L(S,d(t)).

(b) Calculate the weighted training error εt of ht:

εt =
N∑

n=1

d(t)
n I(yn 6= ht(x)n),

(c) Set :

αt =
1

2
log

1− εt

εt

.

(d) Update the weights:

d(t+1)
n = d(t)

n exp{−αtynht(xn)}/Zt,

where Zt is a normalization constant, such that
∑N

n=1 d(t+1)
n = 1.

4. Break if εt = 0 or εt ≥ 1
2

and set T=t-1.

5. Output: fT (x) =
∑T

t=1
αt∑T

r=1
αr

ht(x)

To understand this fundamental algorithm, the main steps are detailed
in the following paragraphs.

3.3.3.2 AdaBoost step by step

AdaBoost is an aggressive algorithm which selects one weak classifier at each
step.

47

A weight d(t) = (d
(t)
1 , ..., d

(t)
N) is assigned to the data at step t and a

weak learner ht is constructed based on d(t). This weight is updated at
each iteration. The weight is increased for the examples which have been
misclassified in the last iteration.

The weights are initialized uniformly: d(1)
n = 1/N for the general version

of AdaBoost but we will see in subsection 3.3.3.7 on page 55 how it is modified
to adapt AdaBoost to our face detection problem.

To estimate if an example is correctly or badly classified, the weak learner
produces a weighted empirical error defined by:

εt(ht,d
(t)) =

N∑

n=1

d(t)
n I(yn 6= ht(x)n). (3.13)

Once the algorithm has selected the best hypothesis ht, its weight
αt = 1

2
log 1−εt

εt
is computed such that it minimizes a loss function. One of

the possible loss function considered in AdaBoost is:

GAB(α) =
N∑

n=1

exp{−yn(αht(xn) + ft−1(xn))}, (3.14)

where ft−1 is the combined hypothesis of the previous iteration given by:

ft−1(xn) =
t−1∑

r=1

αrhr(xn). (3.15)

The iteration loop is stopped if the empirical error εt equals 0 or εt ≥ 1
2
.

If ε = 0, the classification is optimal at this stage and so it is not necessary
to add other classifiers. If εt ≥ 1

2
, the classifiers does not respect the weak

condition anymore. They are not better than random selection so AdaBoost
cannot be efficient at all. (see 3.3.3.3)

Finally, all the weak hypotheses selected at each stage ht are linearly
combined as follow:

fT (x) =
T∑

t=1

αt∑T
r=1 αr

ht(x). (3.16)

The final classification is a simple threshold which determines if an ex-
ample xi is classified as positive or negative.

Other similar algorithms such as LogitBoost or Arcing algorithms use
different loss functions.

48

3.3.3.3 Leverage of the weak learners

At each iteration, AdaBoost, constructs weak learners based on weighted
examples. We will now discuss the performances of these weak learners based
on re-weighted examples. To see the leverage of these weak learners, we need
to define some basic tools.

First of all, define what is a baseline learner :
Definition 1: Let d = (d1, ..., dn) be a probability weighing of the data

points S. Let S+ be the subset of the positively labeled points, and similarly
for S−. Set D+ =

∑
n:yn=+1 dn and similarly for D−. The baseline classifier

fBL is defined as :

fBL(x) = sign(D+ −D−), (3.17)

for all x. So it predicts +1 if D+ ≥ D− and -1 otherwise. It is immediately
obvious that for any weighting d , the error of the baseline is at most 1/2.

With this definition, we can define more properly what is a weak learner:
A learner is a weak learner for example S if given any weighting d on S, it is
able to achieve a weighted classification error which is strictly smaller than
1/2.

A key ingredient of Boosting algorithms is a weak learner which is required
to exit in order for the overall algorithm to perform well. We demand that the
weighted empirical error of each weak learner is strictly smaller than 1

2
− 1

2
γ,

where γ is an edge parameter quantifying the deviation of the performance
of the weak learner from the baseline classifier introduced before. Consider
a weak learner that outputs a binary classifier h based on a data set S =
{(xn, yn)}N

n=1 each pair (xn, yn) of which is weighted by a non-negative weight
dn. We then demand that

εt(ht,d) =
N∑

n=1

dnI(yn 6= h(x)n) ≤ 1

2
− 1

2
γ, (γ > 0). (3.18)

For some simple weak learners, it may not exist γ > 0 which respects the
previous condition without imposing some conditions about the data.

Now consider one situation for which it is possible to find a positive γ
which respects the empirical error condition in 3.18. Consider a mapping
f from the binary cube X = {+1,−1}d to Y = {+1,−1}, and assume
the true labels yn are given by yn = f(xn). We wish to approximate f
by combinations of binary hypotheses ht belonging to H. Let H be a class
of binary hypotheses, and let D be a distribution over X. The correlation
between f and H, with respect to D, is given by

49

CH,D(f) = suph∈HED{f(x)h(x)}. The distribution-free correlation between
f and H is given by CH(f) = infDCH,D(f). It can be shown that if T >
2log(2)dCH(f)−2 then f can be represented exactly as

f(x) = sign(
T∑

t=1

ht(x)). (3.19)

In other words, if H is highly correlated with the target function f , then
f can be exactly represented as a combination of a small number of functions
from H. Hence after a sufficiently large number of iterations, the empirical
error can be expected to approach zero.

This example shows a binary classification with to separate classes. In
general situations, the data may be strongly overlapping, so more advanced
tools need to be found to establish such rules about the weak learners.

3.3.3.4 Convergence of the Training Error to Zero

We have seen just before that under some appropriate conditions, that the
weighted empirical error could be smaller than 1

2
− 1

2
γ, (γ > 0). We will

now explain how this condition can imply a strong and fundamental result
for AdaBoost (it can be generalized to most of Boosting algorithms): The
condition εt(ht,d) ≤ 1

2
− 1

2
γ, (γ > 0) is sufficient to ensure that the empirical

error of the strong final hypothesis approaches zero as the number of itera-
tions increases. The proof of this important property of AdaBoost is given
in this paragraph.

Let f be a real-valued classification function. The classification is per-
formed using sign(f) but we will work with the actual value of f .

Let y ∈ {−1, +1} be the labels of the binary classification and f ∈ R, we
define the margin of f at the example (xn, yn) as :

ρn(f) = ynf(xn). (3.20)

Consider the following function defined for 0 ≤ θ ≤ 1/2,

ϕθ(z) =

1 if z ≤ 0
1− z/θ if 0 < z ≤ θ

0 otherwise.
(3.21)

Let f be a real-valued function taken values in [−1, +1]. The empirical
margin error is defined as :

L̂θ(f) =
1

N

N∑

n=1

ϕθ(f(xn), yn). (3.22)

50

If it is obvious from the definition that the classification error, namely
the fraction of misclassified examples, is given by θ = 0 , i.e. L̂(f) = L̂0(f).
In addition, L̂θ(f) is monotonically increasing in θ. We not that we often
use the so-called 0/1-margin error defined by:

L̃θ(f) =
1

N

N∑

n=1

I(f(xn), yn) ≤ θ.

Noting that ϕθ(yf(x)) ≤ I(yf(x) ≤ θ), it follows that L̂θ(f) ≤ L̃θ(f).

Theorem 1. Consider AdaBoost as described in Algorithm 1. Assume
that at each round, the weighted empirical error satisfies εt(ht,d) ≤ 1

2
−

1
2
γt, (γt > 0). Then the empirical margin error of the composite hypothesis

fT obeys

L̂θ(fT) ≤
T∏

t=1

(1− γt)
1−θ
2 (1 + γt)

1+θ
2 . (3.23)

Proof. We present a proof from [18] for the case where ht ∈ {−1, +1}. We
begin by showing that for every{αt}

L̃θ(fT) ≤ exp(θ
T∑

t=1

αt)(
T∏

t=1

Zt). (3.24)

Where by definition,

Zt =
N∑

n=1

d(t)
n e−ynαtht(xn)

=
∑

n:yn=ht(xn)

d(t)
n e−αt +

∑

n:yn 6=ht(xn)

d(t)
n e+αt

= (1− εt)e
−αt + εte

αt .

From the definition of fT it follows that

yfT (x) ≤ θ ⇒ exp (−y
T∑

t=1

αtht(x)θ
T∑

t=1

αt) ≥ 1,

which we rewrite as

I[Y fT (X) ≤ θ] ≤ exp (−y
T∑

t=1

αtht(x)θ
T∑

t=1

αt). (3.25)

51

Note that

d(T+1)
n =

d(t)
n exp(−αT ynhT (xn))

ZT

=
exp(−∑T

t=1 αT ynht(xn))

N
∏T

t=1 Zt

(by induction) (3.26)

Using 3.25 and 3.26 we find that

L̃θ(f) =
1

N

N∑

n=1

I[ynfT (xn) ≤ θ]

≤ 1

N

N∑

n=1

[exp(−yn

T∑

t=1

αtht(xn) + θ
T∑

t=1

αt)]

=
1

N
exp(θ

T∑

t=1

αt)
N∑

n=1

exp(−yn

T∑

t=1

αtht(xn))

= exp(θ
T∑

t=1

αt)(
T∏

t=1

Zt)
N∑

n=1

d(T+1)
n

= exp(θ
T∑

t=1

αt)(
T∏

t=1

Zt).

Next, set αt = (1
2
) log((1−εt)/εt) as in algorithm 1, which easily implies that

Zt = 2
√

(1− εt)εt.

Substituting this result into 3.24 we find that

L̃θ(f) ≤
T∏

t=1

√
4ε1−θ

t (1− εt)1+θ

which yields the desired result result upon recalling that εt = 1/2 − γt/2,
and noting that L̂θ(f) ≤ L̃θ(f). In the case that θ = 0, i.e. one considers the
training error, we find that

L̂(fT) ≤ e−
∑T

t=1
γ2

t /2, (3.27)

from which we infer that the condition
∑T

t=1 γ2
t → ∞ suffices to guarantee

that L̂(fT) → 0. For example, the condition γt ≥ c/
√

t. Clearly this holds if
γt ≥ γ0 > 0 for some positive constant γ0. In fact, in this case L̂θ(fT) → 0
for any θ ≤ γ0/2.

52

If each weak classifier is slightly better than random so that γt is bounded
away from zero, then the training error drops exponentially fast. This bound,
combined with the bounds on generalization error given below prove that
AdaBoost is indeed a boosting algorithm in the sense that it can efficiently
convert a weak learning algorithm into a strong learning algorithm.

We have establish the proof of the convergence to zero of the training
error. This property is essential for the performances of AdaBoost but not
enough. What is even more important is the evolution of the generalization
error.

3.3.3.5 Generalization Error Bounds

We know that the training error produced by AdaBoost approaches exponen-
tially zero as the number of iterations increases. However, as the examples of
the training set are manually labeled, it is not really interesting to know that
these examples are well classified. It will be wiser to see how efficient the
final model is on other dataset which haven’t been used for the training. The
error committed on this new dataset (with positive and negative examples)
is called the generalization error and it will be shown in this paragraph how
it can be bounded.

Recalling that AdaBoost, such as all learning algorithms can be viewed
as a procedure for mapping any data set S = {(xn, yn)}N

n=1to some hypoth-
esis h belonging to a hypothesis class H consisting to functions from X to
{−1, +1}. We want to test the performance of the hypothesis f̂ on future
data, considering that f̂ and S are random variables. Let λ(y, f(x)) be a
loss function which measures the loss caused by using the hypothesis f to
classify input x, the true label of which is y. The loss expected is given by
L(h) = E{λ(y, f(x))}, where the expectation is taken with respect to the
unknown probability distribution generating the pairs (xn, yn).We will use
the following loss function :

λ(y, f(x)) = I[y 6= f(x)], (3.28)

where I[ε] =

{
1 if event ε occurs

0 otherwise
. In this case: L(f) = Pr[y 6= h(x)],

the probability of misclassification.
Vapnik [19] proved a classical result about the empirical classification of

binary hypothesis f, to the probability of error Pr[y 6= f(x)]. Let P (y 6=
f(x) be the classification error probability and P̂ (y 6= f(x)) the empirical
classification error.

First of all, we need to define the VC-dimension of a class of binary
hypotheses F.

53

Definition : Consider a set of N points X = (x1, ..., xN) . Each
binary function f defines a dichotomy (f(x1), ..., f(xN)) ∈ {−1, +1}N on
these points. Allowing f to run over all elements of f , we generate a subset
of the binary N-dimensional cube {−1, +1}N , denoted by FX , where FX =
{(f(x1), ..., f(xN)) : f ∈ F} . The VC-dimension of F, noted VC-dim(F), is
defined as the maximal cardinality of the set of points X = (x1, ..., xN) for
which |FX | = 2N .

Good estimates of the VC dimensional are available for many classes of
hypotheses.

We can now use a theorem from [21] to introduce a generalization error
bound:

Theorem : Let F be a class of {−1, +1}-valued functions defined over a
set X . Let P be a probability distribution on X×{−1, +1},and suppose that
N-samples S = {(x1, y1), ..., (xN , yN)}are generated independently at random
according to P. Then there is an absolute constant c, such that for any integer
N, with probability at least 1 − δ over samples of length N, every f ∈ F
satisfies

P (y 6= f(x)) ≤ P̂ (y 6= f(x)) + c ·
√

V Cdim(F) + log(1/δ)

N
. (3.29)

While structural risk minimization is a mathematically sound method,
the upper bounds on L(f) that are generated in this way might be larger the
actual value and so the chosen number of iterations T might be much smaller
than the optimal value, leading to inferior performance. A simple alternative
is to use cross validation in which a fraction of the training set is left outside
the set used to generate fT (x). The value of T is chosen to be one for which
the error of the final hypothesis on the validation is minimized.

3.3.3.6 A few comments

It would be interesting to notice that the final hypothesis fT (x) is closely
related to the Bayesian theory.

Let (x, y) be the examples generated according to the distribution P on
X× {0,1}. Suppose we are given a set of {0, 1}-valued hypotheses h1...hT

and that our goal is to combine the predictions of these hypotheses as good
as possible. Then, given an example x and the hypothesis prediction ht(x),
the Bayes optimal decision rule says that we should predict the label with
the highest likelihood, given the hypothesis values, i.E. we should predict :

{
1 if Pr[y = 1|h1(x), ..., hT (x)] > Pr[y = 0|h1(x), ...hT (x)]

0 otherwise
.

54

Now assume that the errors of the all hypotheses are independent of one
another and of the target concept, in other words, we assume that ht(x) 6= y
is conditionally independent of y and the predictions of all other hypotheses
h1,, ht−1, ht+1, ..., hT . With these assumptions, we can rewrite the Bayesian
optimal decision as the prediction of :

{
1 if Pr[y = 1]

∏
t:ht(x)=0 εt

∏
t:ht(x)=1(1− εt) > Pr[y = 0]

∏
t:ht(x)=1 εt

∏
t:ht(x)=0(1− εt)

0 otherwise
,

(3.30)
where εt = Pr[ht(x) 6= y].

Assuming that h0 always predicts 1, Pr[y = 0] = ε0. Taking the logarithm
on both sides in 3.30 and rearranging the terms, we find that the Bayes
optimal decision is the same as the final rule generated by AdaBoost.

3.3.3.7 Adaptation to face detection

The algorithm presented in the previous paragraph is not specific to face de-
tection. This new subsection will explain how the algorithm can be adapted
to our face detection context, particularly with the introduction of an asym-
metric classification.

AdaBoost, as described in 1, is a an algorithm which minimize the classi-
fication error (or generalization error) but it does not minimize the number
of false negative as explained in 3.1.2.

There are several methods to modify AdaBoost in order to obtain an
asymmetric algorithm, asymmetric in the sense that we want to increase the
influence of the positive examples which have been misclassified earlier in the
precess in order to minimize the false negative rate, i.e. the rate of the faces
which are missed.

One first simple mean would be to unbalance the initial distribution of
the positive and negative examples as in [20]. If we want to minimize the
false negatives, we can increase the weight on positive examples so that the
minimum error criteria will also have very low false negatives.

This idea can be introduced by changing the loss function in a non sym-
metric loss function.

Recall that the classical AdaBoost minimizes

∏

t

Zt =
∑

i

exp(−yi

∑

t

ht(xi)). (3.31)

Each term in the summation is bounded above by the loss function from
3.28:

55

exp(−yi

∑

t

ht(xi)) ≥ λi(yi, f(xi)) = I[yi 6= f(xi)], (3.32)

where λ is the loss function. It follows that minimizing
∏

t Zt minimizes an
upper bound on simple loss.

So we can introduce the asymmetric loss defined by:

Aλi =

√
k if yi = 1 and f(xi) = −1

1√
k

if yi = −1 and f(xi) = 1,

0 otherwise

(3.33)

where false negative cost k times more than false positives. Note that
Aλi = exp(yi log

√
k)λi.We can easily obtain the bounds of the asymmet-

ric loss by combining 3.32 and 3.33. If take 3.32 and multiply both sides by
exp(yilog

√
k) we find :

exp(−yi

∑

t

ht(xi)) · exp(yi log
√

k) ≥ Aλi (3.34)

In order to minimize this bound, we can use a non-uniform weight ini-
tialization:

Modify 2 in AdaBoost algorithm 1 by

d(1)
n = exp(yi log(

√
k))/N.

Updating the weights will become:

Dt+1(i) =
exp(−yi

∑
t ht(xi)) · exp(yi log(

√
k))∏

t Zt

(3.35)

The modification of the pre-weighting is transmitted through the second
term of the numerator.

This new weighting process permits to reduce efficiently the false negative
rate as shown in Figure 3.13.

56

Figure 3.13: Two simple examples: positive examples are x, negative o and
weak classifiers are linear separators. On the left is the naive asymmetric
result. The first feature selected is labeled 1. Subsequent features attempt
to balance positive and negative errors. Notice that no linear combination of
the 4 weak classifiers can achieve a low false positive and low false negative
rate. On the right is the asymmetric boosting result. After learning 4 weak
classifier the positives are well modeled and most of the negative are rejected.

However, the effects of the unbalanced weights are lost after the first
iteration. In fact, the AdaBoost algorithm seems to be too greedy. The first
classifier absorbs the effects of the asymmetric weights.

3.3.4 discussion

AdaBoost selects thus a small set of features and as detailed in section 4.2,
good results can be obtained with some 200 features. The first features
selected in the process can be quite easily interpreted: they emphasize on
particular features of faces. The eye region is often darken than the front
and the nose bridge is brighter than the eyes.

However, this is not enough to reach the fixed goal of our project. The
computation time for a 200 features classifier is to large to satisfy us. We will
introduce a way to combine classifiers in cascade in order to focus quickly on
the regions of interest.

3.4 Classification in Cascade

We know how to select a small number of critical features and to combine
them into a strong classifier. However, we need to introduce a new main
contribution in our face detection system in order to reduce significantly the
computation time. This contribution is an attentional cascade which can

57

furthermore achieve better detection performances. We have seen that it is
possible to minimize the number of false negatives instead of classical training
error, that is precisely the main idea that will be used to build this cascade
classifier.

3.4.1 Why is it so efficient?

The principle is to reject quickly the majority of negative windows while
keeping almost all positive examples and then focus on more sensitive sub-
windows with more complete classifiers. To do that, the first stages in the
cascade will contain only few features, which achieve very high detection rates
(about 100 %) but will have a false positive rate of roughly 40 %. It is clear
that it is not acceptable for a face detection task but combining succecively
many of these stages which are more and more discriminant will permit to
reach the goal of fast face detection.

We can just compare this cascade structure with a degenerated decision
tree. If a sub-window is classified as positive at one stage, it proceeds down in
the cascade and will be evaluated by the next stage. It will be like this until
this sub-window is found negative by one stage or if all the stages classify
it as positive. In this last case, it will finally be considered as a positive
example. The Figure 3.14 shows this cascade process.

58

Figure 3.14: Schematic description of cascade detection. A series of classi-
fiers is applied to every sub-window. The initial classifier eliminates a large
number of negative examples with very little processing. Subsequent lay-
ers eliminate additional negatives but require additional computation. After
several stages of processing, the number of sub-windows have been reduced
radically. The examples classified as positive by the last stage are definitively
considered as positive.

As explained in a context of the face detection in 3.1.2, the goal of the
project is to detect faces in images which contain few faces. Noticing that
there are about 20.000.000 windows in a 100×100 image for only a few faces,
the great majority of windows are negative ones. So it is a real gain of time to
reduce quickly this number. Even if the last stages of the cascade are based
on many thousand features, they will be called only for few sub-windows.

3.4.2 Building more consistent classifiers

We have defined the cascade as a succession of classifiers. The first ones are
quite simple but as we progress in the cascade, the classifiers have to be more
consistent. This paragraph describes how such more consistent classifiers can
be built at each stage.

First of all, the last stages of the cascade have more features than the first
ones. The AdaBoost algorithm generates a training error which decreases
theoretically exponentially with the number of iteration (see 3.3.3.4). If there
are more features (i.e. AdaBoost has been ran with more iterations) the
final classifier is more discriminant between positive and negative examples,

59

in other words, we can say that such classifier are “stronger” than classifiers
with few features (i.e. few iterations).

The second but not less important reason for using a cascade classification
is the way chosen to select the training set. At each learning step, the
classifier or the i-th stage, so-called i-th classifier is tested on a test set of
negative examples. All the misclassified examples are kept for the (i + 1)-th
classifier such that the (i+1)-th classifier will focus on harder examples than
ordinary ones. By this mean, we force the further classifiers to have better
false positive rate.

3.4.3 Training a cascade of classifiers

The goal of the cascade detection is to achieve given both false positive rate
and detection rate. The choice of these goals is arbitrary. Typically, past
systems have achieved detection rates between 85 and 95 percent and false
positive rate on the order 10−5. The number of features in each stage and
the total number of stages will depend of these constraints.

Let F be the false positive rate of the cascaded classifiers, K the number
of classifiers and fi the false positive rate of the i-th classifier on examples
that get through to it. For a given trained cascade of classifiers, F is given
by:

F =
K∏

i=1

fi, (3.36)

Then the detection rate can be computed as:

D =
K∏

i=1

di, (3.37)

where di is the detection rate of the i-th classifier on the examples that get
through to it.

To fix the ideas, a examples is given here. If we want to achieve a detection
rate of 90 percent, we can build a 10 stage classifier in which each stage has a
detection rate of 0.99. Indeed, 0.9 ' 0.9910. If each of these stage rejects 70
percent of negatives (i.e. a false positive rate of 30 percent), the total false
positive rate is 0.3010 ' 6.10−6 .

The number of features evaluated when scanning real images is necessary
a probabilistic process. Any window will progress down through the cascade,
one classifier at a time, until it is decided that the window is negative or, in
really rare cases, the window succeeds in each test and is labeled positive.
The behavior of this process is determined by the distribution of the images

60

of the test set. The main tool which can measure the performance of a given
classifier is its positive rate, which is the proportion of windows which are
labeled as potentially containing the object of interest. Given a number of
stages in the cascade K, the positive rate pi of the i-th classifier. Let ni be
the number of features in the i-th stage. The expected number of features
which are evaluated is given by:

N = n0 +
K∑

i=1

(ni

∏

j<i

pi) (3.38)

We can notice only few examples are objects, that is why the positive rate is
almost equal to the false positive rate.

As it was explained in section 3.3.3.7, the original AdaBoost algorithm
has to be modify to ensure the minimization of the false negative rate instead
of the training error. One simple way to impose that is to adjust the final
threshold. Increasing this threshold will affect badly the detection rate and
improve the false positive rate, while the opposite will yield lower detection
rate with higher false positive rate. The main problem is that is has never
been proved that modifying the AdaBoost theoretical training threshold pre-
serve the guarantees in term of generalization error.

The cascade structure has three main parameters that we have to deter-
mine :

• The total number of classifiers : K

• The number of features ni of each stage i

• The threshold θi of each stage i.

Finding the three optimal parameters is quite complicated if we keep in mind
that we want to minimize the computation time of the total classification.
The principle is to increase the number of features and of stages until the
given detection objective are reached.

Given the minimum acceptable rates fi (false positive rate for the i− th
stage) and di (detection rate for the i − th stage), the detection rate di

is reached by decreasing the AdaBoost threshold θiand this also directly
affects fi. We increase the number of features ni in the i − th stage until
fi is obtained. The general principle of the cascade learning is given in the
algorithm 2 :

One major factor for the efficiency of the cascade learning is the manage-
ment of the sets during the training. Usual training sets are used for the first
stage, and then, at each iteration, the current stage classifier is evaluated on

61

a validation set in order to minimize coherent false positive and false negative
rates. It would obviously unskilled to evaluate Fi and Di on the training set
which was used to obtain the model because these values would be evaluated
much better than with other examples. Then, at each stage we reinitialize
the negative training set. Once the objectives Fi and Di are reached for the
stage i, the current model is tested on a large negative set chosen randomly
and many false positive alarms are introduced into the negative training set
for the stage i− 1. As the new negative training set is made with examples
which have been misclassified by the stage i, the stage i + 1 will be build
with examples which can be considered as “hard examples”. So, the more
we go down into the cascade, the more critical the examples are, and the
last stages in the cascade are more robust models which discriminate bet-
ter positives and negatives than the first stages. Since the large majority of
negative windows have been rejected by the first stages, even if the further
stages need more computation time to classify the windows, only few win-
dows have passed earlier stages and the global computation time is not too
much affected by these last discriminant stages.

3.5 Scanning

As explained with the definition of the integral image in 3.2.3, the scanning
of an input image is quite simple and efficient with the integral image rep-
resentation. To detect faces of different sizes and places in a image, we will
apply scaled and shifted detectors all over the image. Our basic detector is
a 20x15. All the images used to train the model, as well faces as non faces
are of this size, and accordingly, all the selected rectangular features that we
have to apply in the windows are defined in this 20x15 basic window.

Although the scanning process seems to be simple at the first sight we
need to take some care while rescaling the detector if we want to preserve the
efficiency of the model. See A.1 for details about the implementation issues
about the scanning window.

Once all the possible windows have been scanned all over the image, we
have to integrate a process which clusters the multi-detections of a single face
in order to have finally one bounding box around one face. It is clear that
the shifting of the window at different scales using a small shift step and a
small scaling steps permits to detect all the faces of any size and position.
However, one face may be detected several times during the scanning process
(by neighbor windows or very close scales at the same position). The cho-
sen method to cluster these multiple detections is to cluster all the positive
windows which are close enough. Then the center of the resulting bounding

62

box is simply the gravity center of all the centers in the cluster and the size
is the mean of all the sizes.

Let {c1, c2, ..., cn} be the centers of the windows in a cluster containing
n windows and {w1, w2, ..., wn} their respective width (The height of the
window is directly given and preserved by the constant ratio r = h

w
). The

center of the cluster is given by: c = 1
n

∑n
i=1 ci and the final width is simply

w = 1
n

∑n
i=1 wi.

63

Algorithm 2 Learning in cascade.

1. Input: Definition of the targets of the learning

• f the maximum acceptable false positive rate per stage.

• d the minimum acceptable detection rate per layer

• Ftarget the false positive rate desired at the end of the process.

• P the set of positive examples

• N the set of negative examples

2. Initialization:

• F0 = D0 = 1

• i = 0 the number of the current layer.

3. Main loop:

• While Fi > Ftarget

– i ← i + 1

– ni = 0

– Fi = Fi−1

– while Fi > f × Fi−1

∗ ni ← ni + 1

∗ Train a classifier using AdaBoost (Algorithm 1 at page
47) with P and N as training set.

∗ Compute Fi and Di for the current classifier with the val-
idation set.

∗ Decrease the threshold of the classifier until the detection
rate for the i-th classifier is at least d×Di−1:
Di ≥ Di−1.d

– Empty the negative training set.

– If Fi > Ftarget , evaluate the current cascade classifier on a set
of negative examples and put any false detections into the set
N .

64

Chapter 4

Experiments and Results

This Section exposes the different results obtained by the face detector that
has been developed. We will discuss our choices, try to interpret some results
such as the power of the selected features and finally estimate the global
performances of the system. Of course, all these results are obtained in
specific conditions and we will particularly pay attention to explain these
testing conditions.

The first step we will focus on is the choice of the datasets because it
influences a lot the quality of the learning (and the evaluation of the results).
Then, an important step is the result of the learning algorithm, how does
AdaBoost perform? what kind of features are selected? what are the different
training rates which can fix the quality of the learning? Then in which way
the cascade implementation improves the face detection will be explained.
The final section relates about the performances of the final detector tested
on a particular Testing Set.

4.1 Datasets

The Datasets represent all the images that we use for our face detection task.
It is really important to notice that the choice of the datasets is crucial for
the learning and the tests on the detectors. We can separate the Datasets as
follows:

• Learning Data

• Testing Data

Learning Data : It clusters all the examples that have been used to train
and test the different classifiers. There are some positive and negative ex-

65

amples. On one side there are positive examples which are faces extracted
from different sources: Banca database (see [39]), the BioID images (can be
found in [38]) and XM2VTS [40]. The faces are thus pictures from different
acquisition conditions and lightning conditions. Concerning the Negative ex-
amples (non faces), they have to represent the best the backgrounds that can
be found in real situations. Thus we just extract them randomly from the
web in images without faces. It is hard to know a priori which images are
the most representative of the non face class and the number of non faces
that we need to train the classifier. However a bootstrap method will select
non face images that are the hardest to classify and so to find more precisely
the boundary between the face and non face classes.

The images from the various Databases are of different sizes and the faces
are more or less cropped while our learning set has to be homogeneous in
term of size and face repartition . As most of the faces are higher than larger,
we have chosen a rectangular window of 20x15 pixels. All the faces have been
cropped and rescaled if necessary in order to respect this basic detector size.
(We notice that the examples are effectively low resolution ones as imposed
in the context of the detection.)

• Training Set : It is the input of AdaBoost for the mono-stage classi-
fier (to train some 500 features) and for the first sage of a learning in
cascade. Recall that one of the limitations of AdaBoost is the large in-
fluence of the input data on the boosting results, the choice of the train-
ing set needs particular careful. The use of diverse databases is well
adapted because images from a single database are often taken from
from similar conditions. For example, faces of the BANCA database
have a lot of variety in the sense that people do not always look exactly
at the camera but the lightning conditions are quite troublesome be-
cause the light often comes from one side of the face. Regrouping the
different sources, we have 8257 faces and more than 300.000 non faces.

• Testing Set : Once a classifier has been trained using AdaBoost, we
have to train it on another set of images (both positive and negative
images).Thus we can obtain the test error of the classifier.

In the case of the cascade, this set is used during the learning to test the
current cascade. The misclassified examples become the train examples
of the next stage. Thus each stage is directly adapted to the efficiency
of the previous ones, in the sense that it is trained from the examples
that have been badly classified by the previous stages.

For the mono-stage classifier, we have 60.000 non faces built by an in-
termediate detector and 8257 faces. The examples used by the cascade

66

are the same as the ones used in the training set.

• Validation Set: This set is used to test the performances of the cas-
cade: Some images are presented to the final cascade detector and it
permits to evaluate the global quality of the detector.

Testing Data :

• Images from the CMU: They represent many real situations with sev-
eral faces and unconstrained background. (See Figure 2.2 p 15 for
examples.) They are used to test the final classifier using a scanning
window. They are the most used Test images because they englobe a
large radius of real situations and the exact position of the faces in these
images has been manually labeled in a groundtrouth file containing the
position of the eyes. This set differs from the learning set because the
images are not 20x15 ones. The size of the images vary (roughly from
80x80 to 750x750). Testing these images allows to evaluate the detec-
tion rates, the speed of the detector (and the scanning window) and
the behavior of the scaling system .

4.2 Learning results

This section explains the performances of AdaBoost and all the learning
process in general by giving the results of different classifiers trained with
different parameters such as the dataset used, number of features, the number
of stages in the cascade, etc...

4.2.1 Weakness of the weak classifiers

It has been shown in theory that the weak classifiers used to train with
AdaBoost need to satisfy one condition. They have to be better than random
selection. That means that they have to classify correctly the examples in
at least 50% of cases. Let us look how evolutes the error rate of the selected
features. The model used is trained with 3000 faces and some 30.000 non
faces. The results are shown in Figure 4.1.

We can notice that the best feature (the first selected by AdaBoost) mis-
classifies roughly 13% of the examples (faces and non faces are treated indif-
ferently), while this error rate increases quickly until more than 40% for the
last selected features. That shows clearly why the feature responses followed

67

Figure 4.1: Classification errors of the selected features. The first selected
feature classify well the examples in 13% of the cases while the 500th features
only 42.5%.

by a threshold are qualified of weak. It proves that the challenge of boost-
ing is to organize many of these weak classifiers into a linear combination
followed by another final threshold.

4.3 Test results

4.3.1 Mono-stage classifier

Let us see what are the performances of a single stage classifier trained with
about 37.520 features, 3000 faces and 30.000 non faces chosen by bootstrap-
ping (false alarms from a previous simple classifier.). To evaluate the learning
performances, i.e. the classification rates after the Boosting process, we have
to recall the definition of two of the main evaluation errors:

1. The Training error noted εtr which is the error rate made on the
training set:

εtr =
1

Ntr

Ntr∑

i=1

|H(x
(tr)
i)− y(tr)(x

(tr)
i)|,

68

where Ntr denotes the total number of training examples (positive +

negative), x
(tr)
i the i-th example and y

(tr)
i the label of the i-th example.

The theory about Boosting shows that this training error tends to 0
when the number of iterations increases.

2. The Testing error noted εte which is the error rate made on the
testing set:

εte =
1

Nte

Nte∑

i=1

|H(x
(te)
i)− y(te)(x

(te)
i)|,

where Nte denotes the total number of training examples (positive +

negative), x
(te)
i the i-th example and y

(te)
i the label of the i-th example.

In this first experiment, the testing set is made of 6.000 faces taken from
the Banca Database and a part of the BioID database, while we use 30.000
randomly selected non faces. The Figure 4.2 shows the obtained results.

Figure 4.2: Training and Testing errors for a model trained on 3.000 faces
and 30.000 non faces.

69

4.3.2 Results

Figure 4.3 shows some examples tested on the CMU Data set.

Figure 4.3: Examples of CMU images tested with a mono-stage classifier.

You can see that some of the faces are missed and there are still lots of
false alarms. Some faces are missed because for this mono-stage classifier
only the training error has been minimized during the training. That means
that we have not specified to keep as many positive examples as possible
while having higher false positive rate.

For this, as explained in the theory, to minimize the false negative rate,
the final threshold in AdaBoost is decreased until all the positive examples
are well classified. On the other hand, the false positive rate increases highly

70

when decreasing this threshold. To keep a reasonable false positive rate at
each iteration step, we admit to miss a few faces.

4.4 The multiple detections

As it is shown in the last figures, it is difficult to see and evaluate clearly which
are the regions of the images that contain faces. Indeed, many bounding
boxes often frame a single face and the arbitration is made by the integration
of multiple detections. Here are some pictures before and after the multi-
detection algorithm.

(a) (b)

Figure 4.4: Integration of the multiple detections. (a) multiple detections:
17 positive windows. (b) after arbitrating: 6 windows.

The integration of these multiple detection is quite intuitive. All the
detected windows in the image are clustered. Two windows are clustered
together if their recovering area is higher than a predefined threshold. Then
for each cluster, the final window is computed as the mean of the windows
in the cluster. Thus, the center of the final window is the gravity center of
all the centers and the definitive size is the mean of the size. One problem
may arise when two faces are very close. In fact, when neighbor windows
containing two close faces are detected, they are clustered together and so
the resulting window can be between the two faces. Thus both of the faces
may be missed.

An example is given in figure 4.5. To solve this problem, we can introduce
another condition to cluster two windows together. The difference of their
sizes has to be larger than a predefined threshold.

71

Another implementation which may be more appropriate would be the
use of median windows instead of simple mean window. This is let to a future
work.

Figure 4.5: Example of bad multiple detection integration. The black bound-
ing box contains two faces.

4.5 The Cascade classifier

4.5.1 Training the cascade

4.5.1.1 Choice of the parameters

In this project, a cascade of classifiers has been developed. The final version
of the cascade was built as follows.

First of all, we had to choose the training examples and the cascade
parameters which determine the number of stages and the number of features
in each stage.

We use an initial set of about 300.000 negative examples. This set is built
by bootstrapping and then, each example is symmetrized in order to ensure
the invariability to face illumination orientation. We have a total of 8500
faces.

The goal of the cascade is to apply classifiers more and more specialized
when we go through the process. To reject quickly the great majority of
negative windows while keeping a high detection rate, we have taken:

• f = 60%: the false positive rate needed to add a new stage. That means
that at each stage 60% of the negative windows that have passed the
previous stages are rejected.

72

• d = 99.9%: the detection rate needed at each stage. 99.9% of the
positive examples kept by the previous stages have to pass through the
current stage.

During the learning process, we start with roughly 300.000 negative exam-
ples. Then, at each stage, only the examples that are considered as positive
are kept for the next training set. Thus, the stages in the process are directly
trained to classify the examples that have been misclassified by the previous
ones. The examples that are hardest to classify are left to the last stages of
the cascade. Thus we have trained a cascade of 20 stages.

Table 4.1 shows the training results.

Stage Number Size of the Negative Training set Feature Number

1 298.900 5
2 163.149 7
3 97.687 10
4 55.088 13
5 32.124 13
6 19.245 14
7 11.330 17
8 6.418 21
9 3.740 24
10 2.173 28
11 1.271 33
12 745 43
13 417 49
14 249 40
15 88 23
16 49 22
17 28 10
18 12 09
19 5 2
20 1 2

Table 4.1: Training Results. Number of negative examples in the train set
and the corresponding number of features used.

One of the limitations of this cascade is when the negative example num-
ber becomes too small. As shown in Table 4.1 and in Figure 4.6, the number
of features per stages decreases from the 14−th stage. In fact, AdaBoost uses
only 249 negative examples to train the model. It seems to be not consistent

73

enough and it is possible to classify these examples with less features. Thus,
we will only use the 14 first stages in our final face detector.

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50
Number of features used at each stage

Stage Number

N
um

be
r

of
 F

ea
tu

re
s

Figure 4.6: Number of features per stage.

4.5.1.2 Discussion

Let us see what are the main characteristics of building a cascade. Many
variants could be used to train a cascade of classifiers and is is not easy to
find the most appropriate one. For example, we have chosen to determine the
number of stages and the number of features in each stage given the detection
rates targets. Let us wonder if it would be better to build a cascade with
more stages and fewer features in each stage or less stages with more features.

Adding a stage in the cascade produces a reduction of the number of false
alarms which is one of our main goals. However, the stages have to be more
and more specialized while the number of stages increases so more features
are needed to obtain the targets specified and it is clear that the detection
rate is more affected by the last stages than the first ones which are few
discriminant. This notice has been verified during the tests of the detector
by adding more or less stages.

Another implementation could be used to train the cascade. Instead
of fixing the target parameters f and d, we could decide a priori to build
a cascade structure as follow: Fix for each cascade stage the number of
features (for example 2 features in the first stage, 5 in the second, 10 for the
two following stages, etc..) and then add stages while the global rates targets
are not reached. This method does not guarantee to have the same efficiency

74

for all stages but the global performances of the cascade are similar to our
implementation.

4.5.2 Results of the cascade

This section gives the main results that have been obtained using a cascade
of 14 classifiers. The first stage has five features while the second one has
seven. The number of features increases until the last stage which has 40
features. Figure 4.7 shows the rate of negative examples rejected at each
stage in the cascade. It shows clearly the principle of the cascade. The first
stages reject a great majority of negative examples, those which are easy
to distinguish from faces and then as the number of stages increases, the
remaining examples are harder to reject. The last stage focus only on few
examples hard to classify which we could call face-like examples.

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Rejection of the negative examples during the cascade

Stage number

%
 o

f n
eg

at
iv

e
ex

am
pl

es
 n

on
 r

ej
ec

te
d

Figure 4.7: Evolution of the false positive rate during the cascade of 14
stages.

The evaluation of the performances of the classifier can be divided into
two groups: the test on the test set made of 8500 faces and about 900.000
non faces and the test on the CMU Dataset.

4.5.2.1 Experiments on a Real-World test Set

The detector has been tested on the MIT-CMU frontal face test set [23].We
have 132 images with a total of 507 frontal faces. The performances of
the detector can be placed at every fonctionning point. By changing the

75

final threshold of the detection, we can modify the detection rate and the
false positive rate. Decreasing the threshold will yield a better detection
rate (100% if the threshold equals 0) but the false positive rate will increase
slightly. On the other hand, increasing the threshold will decrease the number
of false alarms and also the detection rate. We can choose the threshold
depends on the goals of the detector. In our case, we want a high detection
rate so the threshold will be quite low.

In these tests, we use a shifting step of 1 pixel for the scanning window
and a scale factor of 1.25.

The next figures show some results using this detector.
Figure 4.8 shows well detected faces in the set of CMU while Figure 4.10

shows some poor detections.

76

Figure 4.8: Results of the detector using a cascade of 14 classifiers. Good
Detections

77

Figure 4.9: Results of the detector using a cascade of 14 classifiers. Example
of good detections with some false alarms.

78

Figure 4.10: Results of the detector using a cascade of 14 classifiers. Example
of poor detections. Some faces are missed and false alarms are detected.

The detector using these 14 stages is robust and quite efficient on the
CMU Dataset. We obtain 85% of detection rate considering the 507 faces in
the test set and 55 false alarms. 85% of detector rate may appear insufficient
but we have to take into account the contain of the CMU set. Some of
the 507 faces in the 132 images are not well adapted to be detected by our
cascade. In fact some of the faces are not really frontal faces but more profile
views, other faces are manually drawn or photographs of cards and these
kinds of examples were not in our training set. So they were not supposed
to be classified as faces. We have also used these examples and taken them
into account in our test because they already were used in testing previous
detectors. Thus we can compare our work with existing methods.

Our detector is quite efficient on this set even if Viola’s detector is more
efficient. We can notice that Viola’ s detector contains 32 stages with more

79

features which yields lower false positive rate. For more examples, see An-
nexes A.3.

4.5.2.2 Experiments on a Video sequence

The detector has also been tested on video sequences. We have applied
our detector on 220 images successively. The situation is a classical real
time application: a video camera was placed in a corridor and some people
crossed the scene. The detector is quite efficient and it permits us to evaluate
the power of the features. In fact, faces were quite well detected during the
sequence but not in every image. A well detected face in the image number
i was not necessarily detected in the image i + 1 even the visual difference
between the two images is very low. That shows the detection is really
precise. A single pixel may have lot of weight in the detection.

We have to notice that in this test, no time integration was used. Figure
4.11 shows the general scene of this video sequence test.

Figure 4.11: One image of the video sequence used to test the detector.

4.6 Speed of the detector

The method used is particularly well adapted to real time applications. In
fact, the computed model needs few operations to be applied on an image.
The scanning windows is clearly the slowest part of the decision but we have
seen that the integral image representation and the use of the rectangular
Haar-like features authorize an efficient way to implement the scaling of the
window. No down-sampling is needed because it is the detector itself that
change of size.

80

However, the implementation of our final detector is not well adapted and
the code is not optimized enough to obtain good speed performances. It will
be the first step of the future work.

81

Chapter 5

Conclusions and Future Work

5.1 Conclusion

We have seen in this report the complexity of the face detection task. Many
methods can be used existing a precise context for each of those methods.
We have chosen an intermediate method between the image based and the
feature based detection method. A face detection system has been developed
using a Boosting algorithm and simple rectangular Haar-like features. This
method presents many advantages in comparison with other methods for
detecting faces.

• The frontal face detector yields very good detection performances (in
term of ratio over detection rate and false positive rate).

• The performances can be highly increased in specific applications. In
fact, if the face detector is placed in a fixed scene, the training set can
be adapted to this scene to build a robust detector.

• The computation of the classifier is very fast because of the use of simple
rectangular features which are easily computed with the integral image.

• The method can be easily adapted to other kind of application such
as pedestrian detection for example. The principle is to change the
training sets.

However, we have to recall that this method, as every face detection method
has its own limitations:

• The detector has been trained with only frontal faces with uniform
pose.

82

• It is difficult to predict the optimal values of some parameters. It is the
case, for example, of the number of training examples. The efficiency of
the final detector depends directly on this dataset. The main problem
remains the generalization power of the trained model. If the model
is efficient on the train data set, we do not know a priori how it acts
on the testing data. Particularly, if the train set is too complete, the
classifier will be too specialized on the train faces and some faces may
be missed on real set images.

• This detection of low resolution images gives the position of eventual
faces and an idea of their size. However we do not have a precise
position of the faces. We do not know precisely the position of the eyes
for examples such that a further face analysis may be applied in some
applications.

Our face detection system present good results. Face detection using Ad-
aBoost is an interesting compromise between image based and feature based
methods. We use a learning procedure to extract feature which are linked
to the geometrical characteristics of faces. We can distinguish three main
contributions in this face detection system: The use of rectangular Haar-
features computed efficiently with a new image representation called image
integral, the learning algorithm AdaBoost which selects the best set of these
Haar-like threshold and finally an implementation in cascade which permits
to decrease the detection time while increasing the detection rates.

The result is that the detector is efficient in terms of detection rate in
spite of a non negligible number of false alarms.

5.2 Future Work

The results of this face detection system are really promising but it is clear
that many improvements are possible. The main improvements could target
the detection speed and the detection performances.

• The first improvement possible is certainly to modify the implementa-
tion of our scanning processing in order to take profit of the power of
the cascade. The classification of a window needs only few processor
instructions.

• Then the training of the cascade may be improved using more appro-
priated training sets. The problem is to find an optimal set with a
large generalization power. The Bootstrapping principle seems to be

83

particularly well chosen and it could be more used during the learning
process to improve the robustness of the classifier.

• Our final cascade has finally 14 stages with a total of some 100 features.
We could modify a little the cascade learning to obtain more stages
and features. This would reduce the number of false detections while
keeping good detection rates. One of the limitation of Boosting is the
learning time so more time would certainly give more consistent stages.

• Another interesting work would be to try other kind of features. For
this, many solution can be tried. For example, we could introduce
rotated Haar-like features with the corresponding equivalent of integral
image representation. Some other features could be tried.

• The learning process could be improved by introducing the advantages
of decision trees into the learning via AdaBoost.

• The case of detected rotated faces has to be taken into account. Many
methods are possible. The first method would be to introduce directly
rotated images into the face training set such that a single cascade
would detect the faces at each given angle. A second method consists
in using the vertical detector and applying it with a rotation of the
scanning window. The problem would be the approximations of the
rotated features which would decrease the global performances. The
last method seems to be the most appropriate. It would be to train a
cascade for each given angle such that each cascade would be specialized
for one angle. All the cascades would then be applied to the scanned
windows.

84

Appendix A

Annexes

A.1 Scanning implementation

Like the most of the Image-based methods, we use a sliding window to scan
the images. The implementation of this sliding window needs some care for
different reasons if we want to obtain good results in term of detection rate
and speed.

Recall that our basic detector is a 20 × 15 pixels and that the training
of the classifiers using AdaBoost has been made with examples of the same
size. We want to detect faces from different scales and positions so we have
to re-scale this basic detector along the scanning process. We have seen that
the Integral representation permits to re-scale the detector instead of using
a traditional image pyramid, i.e. no down-sampling is needed to scan the
image at different scales. There are three main issues about this window
scanning:

• How can we change the detector size (and the size of th features) with-
out changing the properties of the selected features?

• How can we choose the shifting and scaling steps to find a good com-
promise between speed and precision?

• How can we integrate the multiple detections?

A.1.1 Rescaling the window

Let us see how to re-scale the basic window of h × w where h and w are
respectively the height and the width of the initial window. Suppose that
we want to re-scale this window by a factor of ∆ = 1.25. It is clear that the
h and w values are integers so we have to make an approximation to obtain

85

a window at the next scale. We choose to preserve the ratio r = h/w to
keep a window of the same shape as the basic detector. Thus, the size of the
window rescaled by ∆ is :

(b∆ · hc)×
(
b r

b∆ · hcc
)

where b·c represents the rounding operation towards the largest integer smaller
than the argument ·.

The problem is now to re-scale the Haar-like features which have been
selected by AdaBoost. For example , consider a 2-rectangle feature as defined
in Figure :

Denote x and y the coordinates of the up left corner of the feature, hf and
wf the height and width of the feature. We choose another time to keep the

ration between height and width such that r = h
w

= x
y

=
hf

wf
. So the feature

is rescaled and moved proportionally in the window. The problem is that
rounding the values of the coordinates of the rectangle’s corners change a few
the properties of the mask. The rescaled mask is one mask which is maybe not
so good than the basic one, and it would maybe not be selected by AdaBoost.
However, there is no other possibility than making an approximation.

The experiments made on several set of images shows that this issue has
not too bad consequences on the final results. In fact choosing sufficiently
small shift step and scale step ensure to detect faces in different scales so
even if a face is missed because the imprecision of one scale, it is in most of
the cases detected at other scales.

A.2 AdaBoost implementation

We have seen that AdaBoost is a powerful learning algorithm which selects
the best weak classifiers given a set of training images. One of the main
drawbacks is that the result depends highly on the size and consistence of
the datasets. Our final choice has been to choose a training set containing
some 300.000 negative examples and more than 8000 positive ones. Recalling
that there are 37520 features, the computing time during the learning is quite
long as well as the memory used is big.

For example, if we want to build a simple mono-stage classifier using 200
features. The first step is to write the integral images of all the positive and
negative examples. Considering our 308.000 images 15×20 (which means 300
integers per image) written into a binary format, the integral image file takes
352 Mb on the disk. Then, given these integral images, we have to compute

86

the total set of features responses. Indeed, as the same feature responses are
used at each learning step, it would be two heavy to compute them at each
iteration. A feature response is an integer (sums and differences of integers)
and we have a total of 37520 features which means that a single file containing
all the features responses would have a size of 43 Gb. Assuming that this file
would be created, we have then to read it completely at each iteration step
(It can not be loaded into the memory in one time, of course). It would take
many days to build a classifier with these data.

In order to improve that, we have chosen to work using a parallel im-
plementation to distribute the work on several processors. For this we have
used the MPI (Message Passing Interface) library. The cluster on which we
have provided the training has 5 machines and we just launch 2 processes on
each machine so we have a total of 10 process than can work in parallel.

The parallel method chosen in a traditional master slave implementation.
The master process (Process 0) send the respective data to each of the 10
slaves processes and then clusters all the independent results. In the practice,
the repartition of the processes is made as follow: As we have to evaluate
and compare the features responses for 308.000 images and 37520 features,
each slave process will treat 3752 features for all the images.

The process 0 sends the image weights to each slave process, then each
process finds, independently of the others, the best feature into the set of 3752
and send the results back to the process 0 (the index of the best feature and
the corresponding classification error). Finally, the master process compares
the results of the 10 processes and extract the best of the 10. Then the
weights are reevaluated and a new iteration begins with the new weights.

Thus the total computing time is reduced by a factor of 10 (or a few less if
we take into account that all the processes have access to the same hard-disk
in the same time). Note that each feature file written in a binary format
still need 4 Gb and they have to be read completely at each iteration step.
Thus, building a complete classifier of 200 features needs roughly one week
to compute.

A.3 Examples

This annexes relates complementary examples from the CMU Database.

87

Figure A.1: Examples of the CMU Database.88

Figure A.2: Examples of the CMU Database.

89

Bibliography

[1] Paul Viola & Micheal Jones. Robust real-time object detection. Sec-
ond International Workshop on Statistical Learning and Computational
Theories of Vision Modeling, Learning, Computing and Sampling, July
2001.

[2] C.Papageorgiou, M. Oren, and T. Poggio. A general framework for ob-
ject detection. In International Conference on Computer vision , 1998.

[3] M. Betke and N. Makris. Fast object recognition in noisy images simu-
lated annealing. In Proceedings of the Fifth International Conference on
Computer Vision, pages 523-20, 1995.

[4] K.-K. Sung and T. Poggio. Example-based learning for view-based hu-
man face detection. A.I. Memo 1521, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, December 1994.

[5] Pavlovic V. and Garg A. Efficient Detection of Objects and Attributes
using Boosting.IEEE Conf. Computer Vision and Pattern Recognition.
2001.

[6] Mallat S. A theory for the multi-resolution signal decomposition: the
Wavelet representation. IEEE Pattern Analysis and Machine Intelli-
gence, Vol.11, n◦ 7, pages 676-693, 1989.

[7] Rainer Lienhart and Jochen Maydt, An Extended Set of Haar-like Fea-
tures for Rapid Object Detection, Intel Labs, Intel Corporation, Santa
Clara, CA 95052, USA

[8] F. Crow. Summed-area tables for texture mapping. In Proceedings of
SIGGRAPH, volume 18(3), pages 207212, 1984.

[9] Patrice Y. Simard, Lon Bottou, Patrick Haffner, and Yann Le Cun.
Boxlets: a fast convolution algorithm for signal processing and neural
networks. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in
Neural Information Processing Sys-tems, volume 11, pages 571577, 1999.

90

[10] William T Freeman and Edward H. Adelson. The design and use of
steerable filters. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(9): 891-906, 1991.

[11] H. Rowley, S. Baluja and T. Kanade. Neural network-based face detec-
tion. In IEEE Patt. Anal. Mach. Intell., volume 20, pages 22-38, 1998.

[12] Yoav Freund and Robert and E. Schapine. A decision-theoretic gener-
alization of on-line learning and an application to boosting. In Com-
putational Learning Theory: Eurocolt ’95, pages 23-37. Springer-Verlag,
1995.

[12] L.G Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, November 1984.

[13] G. Rätsch, T. Onoda K-R. Müller. Soft Margins for AdaBoost, Machine
Learning, 1-35, August 1998.

[14] Duffy and D.P Helmbold. Boosting methods for regression. Technical re-
port, Department of Computer Science, University of Santa Cruz, 2000.

[15] http://www.boosting.org

[16] L. Breiman. Bagging predictors. Machine Learning, 26(2):123-140,
1996.

[17] Y. Freund and R.E Schapire. Game theory, on-line prediction and boost-
ing In Proc. COLT, pages 325-332, New York, NY, 1996. ACM Press.

[18] R.E. Schapire. A brief introduction to boosting. In Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, 1999

[19] V.N. Vapnik. Estimation of Dependencies Based on Empirical Data.
Springer-Verlag, 1982

[20] P. Viola and M. Jones, Fast and Robust Classification using Asymmetric
AdaBoost and a Detector Cascade. Mitsubishi Electric Research Lab,
Cambridge, MA. 2001

[21] R. Meir and G. Rätsch. An Introduction To Boosting and Leveraging.
Department of Electrical Engineering, Technion, Haifa 32000, Israel.

[22] M.H. Yang, D. Kriegman, N. Ahuja, Detecting Faces in Images: A sur-
vey. IEEE Transactions on pattern analysis and machine intelligence,
vol. 24 n◦ 1, January 2002.

91

[23] CMU Dataset: ftp://whitechapel.media.mit.edu/pub/images/.

[24] P. Belhummer, J. Hespanha, and D. Kriegman. Eigenfaces versus fisher-
faces: Recognition using class specific linear projection. IEEE Transac-
tions on Pattern Analisis and machine Intelligence, 19(7):711-720, 1997.

[25] D. Pissarenko , Eigenface-based facial recognition, December 1, 2002

[26] P. Hallinan. A low dimmensional representation of human faces for ar-
bitrary lighting Conditions. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition. pages 995-999, 1994.

[27] L. Sirovitch and M. Kirby, low dimensional procedure for the caracteri-
zation of human faces. J. Optical Soc. of America A, 2:519-524, 1987

[28] M. Turk and A. Pentland. Eigenfaces for recognition. J. of Cognitive
Neuroscience, 3(1), 1991.

[29] Y. Moses, Y. Adini and S Ullman. Face Recognition: the problem of
the compensating for changing in illumination direction. In Europeean
conference on Computer Vision, pages 286-296, 1994.

[30] G. Yang and T. S. Huang. Human face detection in a complex back-
ground. Pattern Recognition, 27(1):53-63, 1994

[31] A. Lanitis, C. J. Taylor, and T. F. Cootes. An automatic face identifi-
cation system using flexible appearance models. Image and Vision Com-
puting, 13(5):393-401, 1995

[32] T. Leung, M Burl and P. Perona. Finding Faces in cluttered scenes using
labeled random graph matching. In Proc. 5th Int. Conf. on Computer
Vision, pages 637-644, MIT, Boston 1995.

[33] Y. Sumi and Y. Ohta. Detection of face orientation and facial compo-
nents using distributed appearance modeling. In Proc. Int. Workshop on
Auto. Face and Gesture Recogn., pages 254-259, Zurich, 1995.

[34] K. C. Yow and R. Cipolla. Scale and orientation invariance in human
face detection. In Proc. British Machine Vision Conference, pages 745-
754, 1996.

[35] J. Cai, A. Goshasby, Detecting human faces in color images. Image and
Vision Computing, 18:63-74, 1999.

92

[36] M. H. Yang and N. Ahuja. Detecting human Faces in Color Images.
Beckman Institute and Department of Electrical and Computer Engi-
neering University of Illinois at Urbana-Champaign., Ubrana, IL 61801.

[37] T. Pham, M. Worring. Face Detection Methods, A Critical Evaluation.
Intelligent Sensory Information Systems, Department of computer sci-
ence., Amsterdam 2002.

[38] BioID Face Database. www.humanscan.de/support/downloads/facedb.php

[39] E. Bailly-Baillire, S. Bengio, F. Bimbot, M. Hamouz, J. Kittler, J. Ma-
riethoz, J. Matas, K. Messer, V. Popovici, F. Poree, B. Ruiz, J.P. Thi-
ran. The BANCA Database and Evaluation Protocol. IDIAP, Martigny,
Switzerland, IRISA, Rennes, France, ITS-EPFL, Lausanne Suisse, Uni-
versity Carlos, Madrid Spain, University of Surrey, Surrey UK. 2003.

[40] XM2VTS Database. xm2vtsdb.ee.surrey.ac.uk

[41] F. Samaria and S. Young, HMM Based Architecture for Face Identifica-
tion, Image and Vision Computing, vol 12, p 537-583 1994

[42] F. Samaria. Face Recognition Using Hidden Markov Models. PhD Thesis,
University of Cambridge, 1994.

[43] K-K Sung, Learning and Example Selection for Object and Pattern De-
tection, PhD Thesis, Massachusetts Institute of Technology 1996.

[44] A. Rajagopolan, K. Kumar, J. Karlekar, R. Manivasakan, M. Patil, U.
Desai, P. Poonacha and S. Chaudhuri. Finding Faces in Photographs,
Proc Sixth IEEE Int’l Conf. Computer Vision, 1998

[45] N. Littlestone. Learning quickly when irrelevant attributes abound : a
new linear-threshold algorithm. Machine learning vol 2 pp 285-318 1998

[46] V. Govindaraju, S.N. Srihari, D.B Sher. A computational model for face
location. In Proc. of the Third International Conference on Computer
Vision, pages 718-721, 1990.

[47] E. Saber and A.M. Tekalp. Frontal-view face detection and facial feature
extraction using color, shape and symmetry based cost functions. Pattern
Recognition Letters, 19(8), pages 669-680, 1998.

[48] G. Wei, I.K Sethi. Face detection for image annotation. Pattern Recog-
nition letters, 20(11), pages 1313-1321, 1999.

93

[49] Osuna E., Freund E. Girosi F.: Training support vector machines: an
application to face detection. In Proceedings of Computer Vision and
pattern recognition. 1998 45-51.

94

