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Summary

The amount of multimedia data available on the Internet has increased exponen-

tially in the past few decades and is likely to keep on increasing. Given multimedia’s

nature of having multiple information sources, fusion methods are critical for its data

analysis and understanding. Multimedia fusion is a way to integrate multiple media,

their associated features, or the intermediate decisions in order to perform an analysis

task. It is useful for several objectives such as detection, recognition, identification,

tracking, and decision making in many application domains. Multimedia fusion has

been attracting increasing attention. However, some important issues in the multi-

media fusion still need to be properly studied, such as how to utilize the correlation

among different multimedia information sources, how to cope with the uncertainty and

diversification of multimedia information, and how to adapt the fusion models to the

conditions of changing and increasing amount of data.

This thesis proposes fusion methods that address the research challenges of

proper utilization of the correlation among multimedia information sources. The thesis

also addresses how to evolve the multimedia fusion model and improve the performance

with new data. In MultiFusion, we make more use of the correlation among multimedia

information sources by combining and utilizing the correlation in each iteration of an

Adaboost-like structure. In portfolio fusion method, we maximize the return and min-

imize the risk (uncertainty) to achieve a high dependable performance by introducing

the widely used and effective portfolio theory from finance. A more sophisticated model

to utilize correlations among different information sources is also presented. For the

situation that the multimedia data keep increasing with time and the nature of the

data collection can change, we develop the Up-Fusion method. With the utilization of

multimedia correlation and refinement, the method evolves the fusion model along with

the newly added multimedia data to improve the performance. Moreover, the situations

v



that the labels of newly added data are not available and that the context or nature of

data changes, are also handled by using pseudo labels and sliding window. How to fuse

the information sources most appropriately is also considered in this thesis. Based on

the common practice of seeking opinions from specialists before making a decision, a

specialist fusion method that adaptively predicts the expertise of different information

sources on different data instances and effectively combines the expertise with decision

is proposed in this thesis. The proposed fusion methods are mainly intended for classifi-

cation and retrieval problems which are the main problems of multimedia applications.

To show the advantages and utility of our methods, simulation and real appli-

cation experimental results are provided for each fusion method. Moreover, the fusion

methods in the thesis aim to solve different objectives. The appropriate situations for

different fusion methods are argued in the conclusion chapter. In the end, some limita-

tions and broad vision for multimedia fusion methods are discussed.
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Chapter 1

Introduction

With the advances of technology and ubiquitous spread of multimedia devices, the num-

ber of multimedia applications has been increasing over the past two decades. Conse-

quently, the sources of multimedia data production are also proliferating at an unprece-

dented pace. The amount of multimedia data available on the Internet has increased

exponentially, such as broadcast news archives, radio recordings, music collections, TV

program archives, lecture and presentation recordings, meeting room recordings, and

personal archives. With the enormous amount of multimedia data, it is inefficient and

tedious to manually analyze the data. In order to facilitate the use of the multime-

dia data, analysis of multimedia data is therefore needed in many applications such

as information retrieval, education, and security. A multimedia analysis task involves

processing of multimodal data in order to obtain valuable insights about the data, a

situation, or a higher level of activity [Atrey, Kankanhalli, and Jain, 2006]. For example,

surveillance systems utilize the data from multiple types of sensors like microphones,

video cameras to detect events such as bag abandonment; for news video retrieval, video

data are combined with audio data and text information for concept detection to en-

able semantic search. Multimedia fusion is a way to integrate multiple media, their

associated features, or the intermediate decisions in order to perform an analysis task.
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Given multimedia’s nature of having multiple information sources, fusion methods are

critical for its data analysis and understanding. Multimedia fusion is useful for several

objectives such as detection, recognition, identification, tracking, and decision making

in many application domains.

1.1 Overview of multimedia fusion

1.1.1 Motivation of multimedia fusion

Multimedia data generally comprise of data of different modalities. Here, a media is

characterized mostly by its nature (for example, audio, video, and text), while a modal-

ity is characterized by both its nature and the physical structure of the provided infor-

mation (for example, X-Ray image, and MRI(Magnetic resonance imaging) image). In

other words, the multimedia data usually contain several different information sources.

Data of different modalities are obtained from different information sources, and the

useful information can be extracted from the data with proper analysis. For example,

surveillance data usually contain video data captured by regular camera and infrared

camera as well as audio data; the photo data from Flickr contain image content as well as

text tags and descriptions; the multimedia digital library data contain video, audio, and

text. However, conventional analysis methods generally utilize one information source

while leaving out the other information sources. Nevertheless, no single information

source can help to accomplish the analysis task perfectly. As a result, people seek ways

to combine the different information sources to improve the performance using the com-

plementary, correlated or redundant data available in these information sources. Take

a surveillance system for example: The “running” event can be detected by both visual

and audio data. But neither contains complete information for the task. The event

cannot be accurately decided with either moving speed from visual data or sound from

audio data. The result can be improved by taking both information sources. In [Yang
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et al., 2007], visual low-level features, semantic features, audio feature, and surrounding

text features are fused for better web video categorization. In [Geng et al., 2010], gait

and face information is fused for robust human identification. Thus, multimedia fusion

is quite useful and has attracted much attention. In general, the multimedia fusion

procedure can be illustrated as in Figure 1.1.

Fusion

Method
Output

Processing

Processing

Processing

Processing

information

source n

information

source 2

information

source 1

Figure 1.1: The illustration of the multimedia fusion framework

“The intrinsic connection to our daily life experiences provides an undeniably

strong psychological pretext. Seeking additional opinions before making a decision is

an innate behavior for most of us, particularly if the decision has important financial,

medical or social consequences. Our goal in considering the decisions of multiple experts,

is to improve our confidence that we are making the right decision, by weighing various

opinions, and combining them through some thought process to reach a final decision.

[Polikar, 2006].” For example in financial security investment, instead of thinking about

one major factor or consulting one person, people would like to take all the related

factors into account or seek different people’s opinions in order to make a good decision.

There are also several mathematically sound reasons for considering multimedia

fusion. A set of information sources may have different performances. Combining the

outputs of several information sources may reduce the risk of an unfortunate selection of
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a poorly performing information source. The fusion of information sources may or may

not beat the performance of the best information source in the ensemble, but it definitely

reduces the overall risk of making a particularly poor selection. In multimedia fusion,

if we have several sets of data obtained from various information sources, it should

be helpful to fuse different information sources instead of using one single information

source.

1.1.2 Advantages of multimedia fusion

Essentially, multimedia fusion method is useful because the multimedia fusion utilizes

more information sources, hence more information, than single modality data analysis.

• First, the different multimedia sources contain correlated information. The cor-

relations can be complementary, redundant, or a mix. For example, there are

several cameras in the surveillance systems. If two cameras are capturing differ-

ent perspectives of the environment, the information of the two cameras will be

complementary. If two cameras are capturing almost the same perspective, the

information will be redundant (the redundancy here means the two cameras will

give almost the same decisions for surveillance). If two cameras are capturing the

environment at different but overlapped environment, the information will be in

between of complementary or redundant. The information from any single multi-

media source is usually incomplete. It improves the fusion results by making good

use of the correlations among different information sources. Recall the surveillance

system example. The “running” event can be detected by both visual and audio

data. But neither contains complete information for the task. The event cannot

be accurately decided with either moving speed from visual information source or

sound from audio information source. People can walk fast or run quietly. The

result can be improved by taking both information sources.
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• Second, the fusion of several information sources may reduce the risk of an un-

fortunate selection of a poorly performing information source. For example, the

regular camera works well in the day, while infrared camera works better in the

dark. Fusion of the data from two cameras will reduce the risk of poor performance

at any time.

1.1.3 Levels of multimedia fusion

Generally speaking, there are three different fusion categories: low, intermediate, or high

level fusion, depending on the processing stage at which fusion takes place [Dasarathy,

1994].

• Low level fusion, also called data level fusion, combines several sources of raw

data to produce new raw data that are expected to be more informative than

the inputs. For example, regular image and infrared image are fused to enhance

photos [Zhang, Sim, and Miao, 2008]. The data fusion combines and utilizes the

raw data which contain the comprehensive information. However, the multimedia

data are usually heterogeneous. Hence, it is difficult to integrate the multimedia

data.

• Intermediate level fusion, also called feature level fusion, combines various features

to produce a better feature set. Those features may come from several raw data

sources (several sensors, different moments, etc.) or from the same raw data

source. The objective is to obtain a limited number of relevant features. For

example, Snoek et al. in [Snoek, Worring, and Smeulders, 2005] proposed the

classification-based feature fusion method. The method concatenates unimodal

feature vectors to obtain a fused multimedia representation and then relies on

supervised learning to classify semantic concepts.

• High level fusion, also called decision level fusion, combines decisions coming from
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several sources. By extension, one speaks of decision fusion even if the decision

is a confidence score (soft decision) and not a crisp decision (non-fuzzy decision,

e.g., “yes / no”). For example, Geng et al. [Geng et al., 2010] proposed a context-

aware fusion method. Instead of using static fusion weights, the method uses

linear weighted sum method and introduces context factors to dynamically adapt

the weights to the environment.

Data fusion can, due to the data processing inequality, achieve the best perfor-

mance improvements, because at this early stage of processing the most information is

available [Koval, Voloshynovskiy, and Pun, 2007]. Complex relations in data can be ex-

ploited during fusion, provided that their way of dependence is known. In practice, the

exploitation of feature or modality dependencies presumes their statistical knowledge,

which can be problematic. Drawbacks in data and feature fusion are problems due to the

“curse of dimensionality”, its computational expense and that it needs a lot of training

data. The opposite is true for decision fusion [Kludas, Bruno, and Marchand-Maillet,

2007]. In multimedia applications, the data are usually of different modalities. It is

very difficult to combine raw data or features from different modalities. The decision

fusion generally has the best portability. Moreover, according to the work of Snoek et al.

[Snoek, Worring, and Smeulders, 2005], the classification-based decision fusion method

tends to give better performance than the classification-based feature fusion method in

multimedia applications.

1.1.4 Strategies of multimedia fusion

In the fusion of complementary information, the information gain results from combining

multiple complementary information sources to generate a more complete representation

of the world. Here, the overall goal is to exploit the sources’ diversity or complementarity

in the fusion process. In the fusion of redundant information, the fusion method utilizes



7

the redundancy in information sources. It provides a reduced overall uncertainty and

hence also increased robustness in fusion systems by combining multiple information

sources or, e.g., multiple features of a single source [Kludas, Bruno, and Marchand-

Maillet, 2007]. Given two vectors X,Y , a measure of the exchange of information,

called mutual information, is denoted as I(X,Y ). The conditional entropy that permits

to measure the additional information from the vector Y given the vector X is denoted

as H(Y |X). The information-theoretic description provides thus a representation of the

dual concepts of redundancy and complementarity. In fact, we have I(X,Y )+H(Y |X) =

H(Y ) = constant. It is shown as in Figure 1.2. Since the sum of complementarity and

I(X,Y) H(Y|X)H(X|Y)

H(X) H(Y)

H(X,Y)

H(X) H(Y)

Figure 1.2: Venn diagram: the relationship between simple entropy, joint entropy and
mutual information

redundancy of a source equals a constant, it is only possible to optimize a fusion system

in favor of the one or the other [Fassinut-Mombot and Choquel, 2004].

The various fusion methods are generally divided into three categories: Rule-

based methods, Classification-based methods, and Estimation-based methods [Atrey et

al., 2010]. This categorization is based on the basic nature of these methods. Rule-based

methods include Linear Weighted Fusion, Majority Voting Rule, and Custom-defined

rule. Classification-based methods include Support Vector Machine, Bayesian Infer-

ence, Dynamic Bayesian Networks, Neural Networks, and Maximum Entropy Model.

Estimation-based methods include Kalman Filter, Extended Kalman Filter, and Parti-

cle Filter.
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1.1.5 Issues of multimedia fusion

Several factors need to be considered when designing multimedia fusion methods:

• Fusion quality: Fusion of several multimedia information sources may achieve

the desired output or a worse output. Some issues such as, how to utilize the cor-

relations among multimedia information sources, how to properly fuse the infor-

mation from different multimedia information sources, etc., should be considered

to obtain the desired fusion output.

• Scalability: The multimedia fusion method may work well for certain number

of multimedia information sources. However, whether it can still work or can be

easily adapted when the number of multimedia information sources increases is a

desired property.

• Portability: Multimedia fusion methods can be ad-hoc or generic. It is better

to generalize the fusion method so that the method can be applied into different

application scenarios. In multimedia applications, the data are usually heteroge-

neous. Thus, the portability of data and feature level fusion is not easy to achieve,

while decision level fusion can usually have good portability since different infor-

mation sources can be analyzed using different yet appropriate methods to obtain

the individual decisions with the same representation.

• Computational Complexity: Different applications may have different require-

ments on the computation complexity of multimedia fusion method. Real-time

application may require a fast computational fusion method, while off-line pro-

cessing may not care much about that. It is always desirable to have a light

computation multimedia fusion method, but it usually is a compromise between

computational complexity and fusion quality.



9

1.2 Advantages of Multimedia decision fusion

Decision level fusion is suitable for multimedia data analysis because of the following

reasons:

• In decision level fusion, data from different information sources can be analyzed

using different yet appropriate methods to obtain the individual information source

decisions having the same representation. For example, in multimedia sensor

surveillance, video and audio from sensors can be processed separately to extract

different features at different sampling rates. These features can be then processed

using different methods, such as learning algorithm or rules, to get the decisions.

It is easy to combine the homogeneous decisions, while it is hard to combine the

heterogeneous data/feature. Data/feature level fusion needs perfect synchrony

and cannot perform well when the nature of data/feature is different. Decision

level fusion provides much more flexibility to the multimedia fusion process.

• Decision level fusion is intuitive and easy to perform, while data/feature level fu-

sion suffers from “curse of dimensionality”. The work of Beyer et al. [Beyer et al.,

1999] shows that, when data dimensionality is large, the distances between pairs

of objects in the space become increasingly similar to each other due to the cen-

tral limit theorem. This phenomenon is called the dimensionality curse [Bellman,

1961], because it can severely hamper the effectiveness of data analysis [Wu et al.,

2004]. In [Yanagawa et al., 2007], many high-dimensional features, such as edge

direction histogram (73D), Gabor textures(48D), and grid color moments(225D),

are used for concept detection. The dimensionality will be very large if feature

level fusion is employed.

• In decision level fusion, it is easy to control the relative contributions of infor-

mation sources to fusion results (e.g., by weighting), while in data/feature level
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fusion, this is more difficult.

• Though the information contained in a decision is less, we can use confidence

score to keep the possible hypotheses in decision level fusion. It is consistent with

Principle of Least Commitment (Don’t do something that may later have to be

undone. To keep multiple hypotheses alive for subsequent processing until a crisp

decision is required [Keller, Gader, and Caldwell, 1995]). Moreover, according

to Principle of Graceful Degradation (degrading the data should not prevent the

delivery of at least some of the answer), useful information can still be retained in

decisions.

• When a new information source is introduced, decision level fusion only needs to

train the model for the new information source as well as fusion model. Thus, it

is easy to scale. But the whole model needs to be trained again for data/feature

level fusion.

The comparison of data, feature and decision level fusion is summarized in Table 1.1.

Category Dimensionality Data of different

nature

Information Scalability

data level

fusion

high hard to combine and
cannot perform well

the most
information

difficult

feature

level fusion

high hard to combine and
cannot perform well

less difficult

decision

level fusion

low can use different yet
appropriate methods

least easy

Table 1.1: Comparison of different fusion levels

1.3 Scope of the dissertation

There are some works on related topics such as Multi-Classifier Systems (MCSs) (also

known as ensembles or committee of classifiers). Slightly different classifiers can be ob-

tained by using different learning paradigm for the approximation of the same function.
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Such a combination of diverse classifiers for the combined classification of data is known

as a multi-classifier.

Multimedia fusion is similar to MCS in that they both fuse information to im-

prove the results. However, compared to Multi-Classifier Systems, multimedia fusion

has three main differences:

• First, multimedia fusion is to combine multiple information sources, e.g., multi-

ple modalities or by extension, multiple features of a single modality. The data

are usually heterogeneous. The Multi-Classifier Systems will just utilize different

learning methods on the same data. Diversity for Multi-Classifier Systems results

from independence among classifiers. The diversity of multimedia fusion is more

complex. It also results from different information sources.

• Second, multimedia fusion can adopt fusion at different levels: data level, feature

level, or decision level. The Multi-Classifier Systems have just decision fusion of

different classifiers. The decisions can be obtained using classification paradigms

while it is not necessary for multimedia fusion.

• Third, multimedia fusion may be affected more by context compared to Multi-

Classifier Systems. Multimedia fusion combines multiple heterogeneous informa-

tion sources on which context may have different effects. Multi-Classifier Systems

use the same data and may not be greatly affected by the context.

These differences make multimedia fusion, especially multimedia decision fusion, an

equally, if not more, challenging problem. In this dissertation, we will focus on the

multimedia decision fusion problem, especially the decision fusion strategies and their

corresponding multimedia applications, mainly classification and retrieval. The Multi-

Classifier Systems are out of the scope of this dissertation, but some of the ideas may

be useful for multimedia decision fusion and will be mentioned.
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1.4 Summary

Multimedia fusion presents new opportunities because more complete and diverse infor-

mation can be extracted through facets of multimedia sources such as speech transcript

text, audio, camera motion, and visual features. The multimedia fusion approach is

becoming more useful as multimedia data proliferates. The multimedia fusion problem

can be represented in a general formulation as follows:

I = F(I1, . . . , In) (1.1)

where Ii is the decision from information source i, I is the final fusion decision, and F is

the fusion function. Several decision fusion methods have been proposed in literature.

However, some important issues in the multimedia fusion still need to be properly

studied. The objective of this dissertation is to develop fusion methods that address

various research challenges. In this thesis, the literature of multimedia decision fusion

methods have been carefully studied and reviewed. Several multimedia decision fusion

methods have been proposed to solve some important issues encountered in previous

studies:

• First and foremost, the correlation among different information sources is not well

utilized to obtain better results. The different information sources contain comple-

mentary, redundant, or correlated information. There are different goals in fusion

of different correlation information. In the fusion of complementary information,

the information gain results from combining multiple complementary information

sources to generate a more complete representation of the world. Here, the overall

goal is to exploit the sources diversity or complementarity in the fusion process.

In the fusion of redundant information, the fusion method utilizes the redundancy

in information sources. It provides a reduced overall uncertainty and hence also

increased robustness in fusion systems by combining multiple information sources
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or, e.g., multiple features. However, how to differentiate the correlation among

information sources and how to utilize the different correlations are seldom consid-

ered. A well utilization of correlation among information sources should improve

the fusion performance significantly. Most of the previous methods generally com-

bines different information sources only once, like [Polikar et al., 2001]. We try to

apply fusion and use correlation multiple times in MultiFusion method proposed

in Chapter 3. By using boosting structure and combining the results at each

iteration, the fusion performance is improved.

• The uncertainty in decision is occasionally considered. The decision cannot be

estimated with absolute certainty using the classification models. The uncertainty

is the lack of complete certainty, that is, the existence of more than one possibility.

There are many sources of uncertainty such as ambiguity, noise, and deviations

between the scoring function and the true probability of relevance. Thus, the

risk (uncertainty) is an intrinsic feature of prediction using classification models.

Taking the real accuracy as type of “an investment return” of our classification

models, we should maximize the return as a desirable thing and minimize the

variance of the return as an undesirable thing. Most of the methods consider the

fusion as an information aggregation task. They aim to maximize the aggregated

information by assigning proper weights to individual information channels [Li

et al., 2009], for example, Max, Min, Average [Ngo et al., 2007] fusion methods.

To the best of our knowledge, minimizing the effect of uncertainty has never

been explicitly considered in multimedia fusion methods. Thus, how to minimize

the uncertainty while maximizing the return should be studied. Sophisticated

correlation model should also be helpful in this. We try to propose a decent

formalized method to consider the uncertainty and find the optimized weights. A

portfolio fusion method is proposed in Chapter 4 by introducing the widely used
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and effective portfolio theory from finance.

• In multimedia fusion, the evolution of the fusion model is of primary importance

because of the nature of multimedia applications. First of all, the semantic label

information is important for multimedia analysis because many multimedia anal-

ysis tasks are based on classification and a large amount of labeled training data

are necessary for good classification. However, most of multimedia data have lim-

ited label information, or even worse, has no label information. For example, on

Flickr, the label for the multimedia document (image, tags and description) is not

available or quite noisy. Labeled examples are fairly expensive to obtain due to

the high labor costs faced when annotating videos [Wang et al., 2007]. Thus, little

amount of training data are available at the beginning. The fusion performance

may suffer as a result. Furthermore, the multimedia data keep increasing with

time. New instances of multimedia data are continuously added. For example,

new videos are periodically uploaded to Youtube. Thus, the fusion model may not

always be valid or effective as the multimedia data increase because the nature

of the data collection can change. As a result, it will be quite useful to evolve

the multimedia fusion model and improve the performance with new data. The

previous methods generally cannot cope with the new data well. For example, the

context aware fusion methods like [Movellan and Mineiro, 1998], [Lee and Park,

2008], [Geng et al., 2010] need the context information which may not be avail-

able and dealing with all influential context factors is unrealistic in practice. An

evolving fusion method, called Up-Fusion, is proposed in Chapter 5.

• The confidence measurement of individual output decision should be considered.

The output from each individual information source may not reflect the confidence.

Moreover, the information source may have different confidence on different output

so that an overall weight for the information source is not suitable. Some methods
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like [Keller, Paterson, and Berrer, 2000; Brazdil and Soares, 2000] have adopted

data dependent combination. However, the expertise of individual information

source has not been exploited in multimedia fusion. Thus, how to measure the

expertise of the output from individual information source and then effectively

adopt it in fusion process is also an important problem. A specialist fusion method

is proposed in Chapter 6 by measuring expertise of different information sources

on different data.

The fusion function F varies with different fusion methods. For MultiFusion, F

is a weighted majority voting function. For portfolio fusion, F is a linear function. For

upfusion method, F = Ft is evolved when new data are added with time and for each

iteration it is a linear function. For specialist fusion, F = FX is a data dependent linear

function.

The dissertation is organized as follows: Chapter 2 categorized and reviewed the

literature of multimedia decision fusion methods according to the nature of combination

strategies. Chapter 3 proposed a method to apply fusion and explicitly use correlation

multiple times. By using boosting structure and combining the results at each iteration,

the fusion performance is improved. Chapter 4 proposed a decent formalized method

to consider the uncertainty and find the optimized weights for linear fusion. Chapter 5

proposed a method to cope with the situation that the multimedia data keep increasing.

The method evolves the multimedia fusion model and improves the performance with

new data. Chapter 6 adaptively combined the decisions from different information

sources by measuring expertise of different information sources on different data.
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Chapter 2

Literature Review

There have been several studies on the multimedia fusion problem in the literature.

Various ways of combining the evidences from different information sources have been

proposed. Information fusion is defined as “an information process that associates,

correlates and combines data and information from single or multiple sensors or sources

to achieve refined estimates of parameters, characteristics, events and behaviors” [Llinas

et al., 2004]. The roots of decision fusion can be found in the neural network literature,

where the idea of combining neural network outputs was published as early as 1965

[Nilsson, 1965]. Later its application expanded into other fields like econometrics as

forecast combining, machine learning as evidence combination and also information

retrieval in e.g. page rank aggregation [Kludas, Bruno, and Marchand-Maillet, 2007].

There is a good survey on multimodal fusion for multimedia analysis [Atrey et al.,

2010]. It provides an overview of fusion strategies of different levels. This chapter adopts

some of the categorization and focuses on the multimedia decision fusion. The state-

of-the-art literature that uses different multimedia decision fusion strategies for various

analysis tasks such as audio-visual person tracking, video summarization, multimodal

dialog understanding, speech recognition and so forth is commented. Various issues such

as the use of correlation, context and confidence, and the optimal modality selection that



17

influence the performance of a multimodal fusion process are also critically discussed.

The classification systems are different according to different facets of fusion

methods. According to the variability of the fusion strategies, the fusion methods can

be divided into static and non-static categories. In the static fusion, the fusion rules

are predefined and remain fixed when the system is running [Geng et al., 2010]. On the

contrary, the fusion rules in non-static fusion can evolve as the system running. Ac-

cording to the process of algorithms, fusion can be divided into two types, non-heuristic

and heuristic [Tan et al., 2009]. Non-heuristic algorithms do not need the training

phrase. Through a simple calculation, such as Max, Min, Average, and Product, etc.,

they can get the results. Non-heuristic algorithms are simple but not efficient. Heuristic

algorithms include some parameters, and require special data sets for training. Such

algorithms are OWA (Ordered Weighted Average) [Yager, 1988], WA (Weighted Av-

erage) [Wu and Crestani, 2002], and so on. According to the nature of combination

strategies in the fusion methods, the decision fusion methods can be categorized into

three categories: Rule-based methods, Classification-based methods, and Cascaded (or

Sequential) methods. Similar to [Atrey et al., 2010], rule-based methods denote the

methods that combine information sources using different rules, which include Linear

Opinion Pool, Independent Opinion Pool, Bayesian rule, min-max rule, majority voting

rule, and Dempster-Shafer (D-S) Theory. Classification-based methods represent the

methods that combine different information sources and obtain the decision based on

classification models. The methods in this category include classification-based decision

fusion like super-kernel fusion [Wu et al., 2004]. Cascaded methods are the methods

combine multimedia information sources sequentially instead of fusing together at the

same time. This kind of methods usually uses filtering or boosting methods. In the

remainder of this chapter, the nature of combination strategies categorization will be

mainly adopted and the fusion methods are discussed separately. The rule-based fu-

sion methods are discussed in Section 2.1, the classification-based fusion methods are
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discussed in Section 2.2, and the cascaded fusion methods are discussed in Section 2.3.

Finally, the discussion is given in Section 2.4.

2.1 Rule-based Fusion

2.1.1 Overview of methods

Various rule-based fusion methods have been proposed to use rules to combine multi-

media data, such as Linear fusion, Dempster-Shafer theory, maximum rule, minimum

rule, median rule, and (weighted) majority vote.

2.1.1.1 Linear Opinion Pool

When a group of N individuals are required to make a joint decision, it occasionally

happens that there is an agreement on a utility function for the problem but that

opinions differ on the probabilities of the relevant states of nature. Stone in [Stone,

1961] proposed a fusion rule by attaching a measure of value such as weight to the

information provided by each information source.

Suppose that,

• Y is the set of available decisions

• X denote the state of nature, to which probability density functions on some

measure µ(X) may be attributed

• The utility of y ∈ Y is u(y,X)

• There are N opinions given by probability density functions pM1(X), . . . , pMN
(X)

Thus, for a probability density function p(X),

u(y|p(X)) =

∫

u(y,X)p(X)dµ(X) (2.1)
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The rule for choosing y is stated as follows: “ Choose weights w1, . . . , wN (wi ≥

0, i = 1, . . . , N , and
N∑

i=1
wi = 1); construct the pooled density function pMλ

(X) =

N∑

i=1
wipMi

(X); choose the y maximizing u(y|pMλ
(X))” This rule is called Linear Opin-

ion Pool. The rule can be made democratic by setting w1 = · · · = wN = 1
N

.

Let pa(X) denote the actual, operative probability distribution. It is proved by

Stone that:

• If, for some µ1, µ2, pa(X) = µ1pM1(X) + µ2pM2(X), then, u(yMλ
|pa(X)) ≥

min
i=1,...,N

u(yMi
|pa(X)) holds for any weights w1, w2. (It is assumed that yM1, yM2,

yMλ
exist.)

• If

1. Y is an interval of real numbers

2. u(y,X) is, for each X, a strictly convex function of y

then, u(yMλ
|pa(X)) ≥ min

i=1,...,N
u(yMi

|pa(X)) holds for all weights w1, . . ., wN . (It

is assumed that yM1, . . ., yMN
, yMλ

exist.)

By adopting it into multimedia fusion, the decisions or posteriors from each

information source are combined linearly [Punska, 1999]. Let X(i) be the observations

from the source Mi, and N be the total number of information sources. It is defined as:

p(y|X(1),X(2), . . . ,X(N)) ∝
N∑

i=1

wip(y|X(i)) (2.2)

where wi is a weight such that, 0 ≤ wi ≤ 1 and
N∑

i=1
wi = 1. The weight wi reflects

the significance attached to the source Mi. In literature, there are various methods for

weight normalization such as min-max, decimal scaling, z-score, tanh-estimators and

sigmoid function. The Linear Opinion Pool is illustrated in Figure 2.1.

A variation of Linear Opinion Pool is Logarithmic Opinion Pool [Heskes, 1998].

If the output of a network is interpreted as a probability statement, the sum-squared
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w1p(y|X(1))

w2p(y|X(2))
∑

wNp(y|X(N))

p(y|X(1)
,X(2)

, . . . ,X(N))

Figure 2.1: Linear Opinion Pool

error corresponds to the negative of its log likelihood or equivalently the Kullback-Leibler

divergence, and linear averaging of the outputs corresponds to logarithmic averaging of

the probability statements: Logarithmic Opinion Pool.

The distance between the true probability q(y|X) and an estimated p(y|X) is

modeled as the Kullback-Leibler divergence:

K(q, p) = −

∫

dXp(X)

∫

dyq(y|X) log[
p(y|X)

q(y|X)
] (2.3)

The average model p(y|X) is defined to be the one that is closest to the given set of

models:

p(y|X) = arg min
p(y|X)

∑

i

wiK(p, pi) (2.4)

Introducing a Lagrange multiplier for the constraint
∫

dXp(y|X) = 1, the solution is:

p(y|X) =
1

Z(X)

∏

i

[pi(y|X)]wi (2.5)

with normalization constant Z(X) =
∫

dy
∏

i

[pi(y|X)]wi . It can be written for multime-

dia fusion as:

p(y|X(1),X(2), . . . ,X(N)) = α
∏

i

[p(y|X(i))]wi (2.6)

and it is illustrated in Figure 2.2.

The Logarithmic Opinion Pool is “externally Bayesian”, i.e., can be derived

from joint probabilities using Bayes’ rule [Bordley, 1982]. But the complete pool assigns

probability zero if any source assigns zero. The main problem for both Linear Opinion

Pool and Logarithmic Opinion Pool is how to choose the weights wi [Heskes, 1998].
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∏
p(y|X(1)

,X(2)
, . . . ,X(N))

[p(y|X(1))]w1

[p(y|X(2))]w2

[p(y|X(N))]wN

Figure 2.2: Logarithmic Opinion Pool

2.1.1.2 Independent Opinion Pool

By assuming the information obtained conditioned on the observation set p(y|X(m)) is

independent, the Independent Opinion Pool is derived in [Manyika and Durrant-Whyte,

1994]:

p(y|X(1),X(2), . . . ,X(N)) = α

N∏

i=1

p(y|X(i)) (2.7)

where α is a normalizing constant. The Independent Opinion Pool is defined by the

following equation:

p(y|X(1),X(2), . . . ,X(N)) ∝
N∏

i=1

p(y|X(i)) (2.8)

and is illustrated in Figure 2.3. In general, the independence assumption is difficult

p(y|X(2))

p(y|X(1))

∏

p(y|X(N))

p(y|X(1)
,X(2)

, . . . ,X(N))

Figure 2.3: Independent Opinion Pool

to satisfy. However, in the the realm of measurement and experimentation based on

physical laws and principles, the conditional independence can often be justified exper-

imentally [Manyika and Durrant-Whyte, 1994]. This is usually done by showing that

the residual uncertainty in each observation arises from the uncorrelated noise terms.

One drawback of the Independent Opinion Pool is that it needs to have prior
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information about the probability distribution of each source.

p(y|X(1),X(2), . . . ,X(N)) = α[
pM1(X

(1)|y)pM1(y)

pM1(X
(1))

× · · · ×
pMN

(X(N)|y)pMN
(y)

pMN
(X(N))

] (2.9)

If the prior information at each information source is common, i.e., obtained from

the same source, then pM1(y) = · · · = pMN
(y) and this results in unwanted extreme

reinforcement of opinion. The Independent Opinion Pool is only appropriate when the

priors are obtained independently on the basis of subjective prior information at each

information source.

A variation of Independent Opinion Pool is Independent Likelihood Pool when

each information source has common prior information, i.e., information obtained from

the same origin.

p(y|X(1),X(2), . . . ,X(N)) =
p(X(1),X(2), . . . ,X(N)|y)p(y)

p(X(1),X(2), . . . ,X(N))
(2.10)

By assuming that the likelihoods from each information source are independent, the

Equation 2.10 can be written as:

p(y|X(1),X(2), . . . ,X(N)) = p(y)p(X(1)|y)p(X(2)|y)···p(X(N)|y)

p(X(1),X(2),...,X(N))

=
p(y)

N∏

i=1
p(X(i)|y)

p(X(1),X(2),...,X(N))

= αp(y)
N∏

i=1
p(X(i)|y)

(2.11)

where α is a normalizing constant. The Independent Likelihood Pool is illustrated in

Figure 2.4.

∏
p(y|X(1)

,X(2)
, . . . ,X(N))

p(X(1)|y)

p(X(2)|y)

p(X(N)|y)

p(y)

Figure 2.4: Independent Likelihood Pool
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2.1.1.3 Maximum, Minimum and Median Rules

The Maximum fusion takes the maximum prediction score of all information sources as

the final prediction score. The maximum rule can be expressed as:

I(X) = max
i

Ii(X) (2.12)

However, this immediately fails if some classifiers are more overtrained than others

[Duin, 2002]. In that case they may be overconfident and thereby dominate the outcome,

without having a better performance. The maximum rule also fails for simple classifiers

that are not sensitive for nuances that more complicated, and thereby better, classifiers

are able to detect [Duin, 2002].

The Minimum fusion takes the minimum prediction score of all information

sources as the final prediction score. The minimum rule can be expressed as:

I(X) = min
i

Ii(X) (2.13)

Like for the maximum rule, a good example of a situation in which this rule is really

adequate is hard to find [Duin, 2002].

The Median fusion takes the median prediction score of all information sources

as the final prediction score. The median rule can be expressed as:

I(X) = mediani(Ii(X)) (2.14)

In general, these rules can be considered as special cases of linear fusion. By

assigning the weight of the maximum prediction as 1, it is Maximum fusion. By assigning

the weight of the minimum prediction as 1, it is Minimum fusion. By assigning the

weight of the median prediction as 1, it is Median fusion.

2.1.1.4 Majority Voting

In majority voting based fusion, the final decision is the one where the majority of

the information sources reach a similar decision [Sanderson and Paliwal, 2004]. By
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introducing weights on different information sources, we have the weighted majority

voting which is used in Adaboost [Freund and Schapire, 1997]. The majority voting is

a special case of weighted combination with all weights to be equal.

The classifier selection problem for majority voting is studied in [Ruta and

Gabrys, 2005] on multi-classifier system. The authors compared different selection cri-

terions experimentally to combine different classifiers obtained with different algorithms

on the same dataset: Mean classifier error, Majority voting error, Product-moment cor-

relation, Double-fault measure, Q statistics measure, etc.. The better the correlation

between the measure (selection criterion) and the combiner performance, the higher the

performance of the selected combinations. Ultimately, majority voting error used as a

selection criterion showed the optimal results.

2.1.1.5 Dempster-Shafer Theory

The Dempster-Shafer Theory (DST) [Shafer, 1976] is an effective tool for combining

measures of evidence. It is well-known for its usefulness to express uncertain judge-

ments of experts and is used in many data fusion applications such as [Braun, 2000;

Koks and Challa, 2003] based on two ideas: obtaining degrees of belief for one question

from subjective probabilities for a related question, and Dempster’s rule for combining

such degrees of belief when they are based on independent items of evidence [Shafer,

1992]. The advantage of DST is that it allows coping with absence of preference, due to

limitations of the available information, which results in indeterminacy. The theory is

often viewed as a generalization of Bayesian probability theory, by providing a coherent

representation for ignorance (lack of evidence) and also by discarding the insufficient

reasoning principle. However, the two approaches (Bayesian and Dempster-Shafer The-

ory) differ significantly and the extent of their applicability to data fusion is still being

debated [Braun, 2000]. Bayesian theory is based on the classical ideas of probability,

while Dempster-Shafer Theory is a recent attempt to allow more interpretation of what
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uncertainty is all about [Koks and Challa, 2003]. DST contains two new ideas that are

foreign to Bayesian theory. These are the notions of support (belief) and plausibility

[Koks and Challa, 2003]. Many researchers have been inspired to investigate different

aspects related to uncertainty or imprecision and lack of knowledge and their applica-

tions to real life problem. The DST covers several different models, such as the theory

of hints [Kohlas and Monney, 1995] and the transferable belief model (TBM) [Smets,

1998].

Some fundamentals of the Dempster-Shafer theory are first introduced here. In

DST, which is also referred to as evidence theory or the Dempster-Shafer Evidential

Theory, evidence is represented in terms of evidential functions and ignorance. These

functions include mass functions (or basic probability assignment function, m), belief

functions (bel), and plausibility functions (pl) [Shafer, 1976].

Let Θ be a finite non-empty set, called the frame of discernment [Bi, Guan, and

Bell, 2008]. The elements of Θ are the hypotheses. Its power set 2Θ is the set of all

subsets. A mass function is a mapping function m : 2Θ → [0, 1] such that:

m(φ) = 0

∑

X⊆Θ
m(X) = 1

(2.15)

φ is the null set. The first property requires an appropriate choice of the universal set

Θ. That means, the set Θ has to be complete and contain all possible hypotheses of the

scenario considered. The second property means that all statements of a single data

source have to be normalized, just to ensure that the evidence presented by each data

source is equal in weight, e.g. no data source is more important than another one [Kay,

2007]. A mass function is a basic probability assignment(BPA) to all subsets X of Θ. A

subset A of a frame Θ is called a focal element or focus of a mass function m over Θ if

m(A) > 0 and A is called a singleton if it is a one-element subset.
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A function bel : 2Θ → [0, 1] is called a belief function if it satisfies:

bel(φ) = 0

bel(Θ) = 1

bel(A1
⋃

A2
⋃
· · ·

⋃
An) =

∑

1≤i≤n

bel(Ai)−

∑

1≤i≤j≤n

bel(Ai

⋂
Aj) + · · ·

+(−1)n+1bel(A1
⋂

A2
⋂

· · ·
⋂

An)

(2.16)

Here, A1, A2, . . . , An is subsets of Θ. The measure represents the total evidence or

belief that the element belongs to the set as well to its various special subsets, so

bel(A) =
∑

B⊆A

m(B) [Telmoudi and Chakhar, 2004].

A function pl : 2Θ → [0, 1] is called a plausibility function if it satisfies [Telmoudi

and Chakhar, 2004]:

pl(A1
⋂

A2
⋂

· · ·
⋂

An) =
∑

1≤i≤n

bel(Ai)−

∑

1≤i≤j≤n

bel(Ai

⋃
Aj) + · · ·

+(−1)n+1bel(A1
⋃

A2
⋃

· · ·
⋃

An)

(2.17)

The plausibility function represents not only the total evidence or belief that the element

in question belongs to the set or to any of its subsets but also the additional evidence

or belief associated with sets that overlap with it, so pl(A) = 1− bel(A) =
∑

B
⋂

A 6=φ

m(B)

[Telmoudi and Chakhar, 2004].

For a set A, the belief function and plausibility function are illustrated as in

Figure 2.5. The belief is a kind of loose lower limit to the uncertainty. On the other

hand, the plausibility is a loose upper limit to the uncertainty.

The combination of evidence from different sources is accomplished within the

basic DST formalism by the Dempster combination rule:

mc(H) =

∑

X
⋂

Y =H

m1(X)m2(Y )

1 −
∑

X
⋂

Y =φ

m1(X)m2(Y )
(2.18)
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Uncertainty

bel(A) bel(A)

pl(A)

Figure 2.5: The illustration of the belief and plausibility

where mc is the combined BPA for a given hypothesis H.

Dempster-Shafer Theory and Bayesian methods both offer mechanisms with

which some of the sensor fusion fundamental problems of information uncertainty, con-

flicts, incompleteness, and disparity, can be approached [Braun, 2000]. In the field of

sensor data fusion, the respective advantages of the two formalisms remain a topic of

interest [Braun, 2000]. The results of the simulations in [Braun, 2000] show that both

methods are robust over the entire sensor information domain, and generally where

one succeeds or fails the other will do the same, with just a slight edge being given

to Dempster-Shafer as compared with the Bayesian approach [Koks and Challa, 2003].

The Dempster-Shafer method has several other advantages over Bayesian decision the-

ory. Most importantly, hypotheses do not have to be mutually exclusive, and the prob-

abilities involved can be either empirical or subjective [Dailey, Harn, and Lin, 1996].

DST also has some shortcomings. As one might expect, application of the Dempster-

Shafer method demands extensive computational capabilities [Dailey, Harn, and Lin,

1996]. The calculations tend to be longer and more involved than their Bayes analogues

(which are not required to work with all the elements of a set) [Koks and Challa, 2003].

Other shortcomings of DST, include the manner in which it handles conflicting infor-

mation and its reliance on the basic assumption that two pieces of evidence must have

the same population universe [Dailey, Harn, and Lin, 1996]. Despite the fact that re-

ports such as [Cremer, den Breejen, and Schutte, 1998] and [Braun, 2000] indicate that

Dempster-Shafer can sometimes perform better than Bayes theory, Dempster-Shafer’s
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computational disadvantages do nothing to increase its popularity [Koks and Challa,

2003].

2.1.2 Representative works of rule-based fusion

Rule-based fusion strategies have been adopted for performing various multimedia anal-

ysis tasks. Some representative works will be discussed in the following chronologically.

Neti et al. [Neti et al., 2000] presented a unified framework for fusion of audio and

visual information for speech recognition, speaker recognition, speaker change detection

and speech event detection. In the speech recognition problem, individual numerical

scores obtained using audio and visual features are fused in a weighted product way. This

product fusion assumes that the two streams of information are independent, especially

when individual scores are interpreted as probabilities of occurrences of the symbolic

units associated with the two streams. In practice such an independence assumption

could be debated, especially since the two streams are realizations of the same perceptual

process synchronously observed in time. In the speaker recognition problem, the average

similarity over the facial features between the test candidate and the face template is

computed as the visual similarity. The sum of the distance over all the test frames

is used as the audio likelihood. Here, the distance is the logarithm of the likelihood

between test frame and the speaker Gaussian Mixture Model(GMM). Scores are fused

using a linear weighted sum: the weight for visual similarity is cos α and the weight

for audio similarity is sin α, where α is selected according to the relative reliability of

audio and face identification. In speaker change detection, the difference between the

Bayesian information criterion(BIC) values is considered as the audio information score.

The visual score is computed using Kullbach-Liebler type divergence criterion. Then,

scores are fused using a linear weighted sum. In speech event detection, two probability

densities are computed using audio and visual features respectively as GMM. A simple

linear weighted sum fusion strategy is then used.
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Lucey et al. in [Lucey, Sridharan, and Chandran, 2001] used audio and visual

modalities fusion for speech recognition. At first, the individual word likelihood scores

are obtained through Hidden Markov Model(HMM) using audio or visual modalities.

Then, essentially a weighted fusion rule is applied on the scores. The weights for different

modalities are sum up to 1. By considering the likelihoods as a feature vector, the sec-

ondary classification method measures the correctness of audio and video modalities on

word basis and thus adaptively weight the audio and visual modalities. Bhattacharyya

distance is used to measure the separability of correct and incorrect likelihoods distri-

butions. If only one modality is classified as correct, the weight of the modality is set

to 1. If both are correct, the weights are set to 0.5.

Foresti et al. presented a sensor fusion method for tracking in [Foresti and

Snidaro, 2002]. The tracking procedure fuses information coming from the different

sensors in the distributed sensor network. Each sensor is associated with a dynamically

changing reliability factor as a confidence measure. The trajectory coordinates obtained

from each sensor are weighted averaged in order to estimate the correct location of the

blob. The weights are estimated using appearance ratio in [Snidaro et al., 2004].

Iyengar et al. combined visual and audio information for the monologue detection

in [Iyengar, Nock, and Neti, 2003a]. The monologue is defined as “detection of video

segments which contain(s) an event in which a single person is at least partially visible

and speaks for a long time without interruption by another speaker.” According to

the definition, the monologue is related to both visual and audio steams. The method

utilizes face scores, speech scores, and synchrony scores.

• The face score is calculated as the ratio between the likelihood based on GMMs

trained on frontal face and non-face images.

• The speech score is the normalized concept score obtained through the audio

concept HMMs.
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• The mutual information between each pixel in the video frames and the audio

features are computed. The synchrony score is derived as the ratio between the

best mutual information region and the background.

The three scores are fused using linear weighted sum and weighted product with the

independence assumption. Here, the weight for each information source is obtained

using grid search in the range (0, 1).

Polikar et al. introduced a supervised incremental learning algorithm Learn++

in [Polikar et al., 2001]. The algorithm is based on generating a number of hypotheses

using different distributions of the training data and combining these hypotheses using

a weighted majority voting. Later on, Parikh et al. applied Learn++ to the multimodal

fusion problem [Parikh et al., 2004]. The classifier is trained from each modality data

in the way similar to Adaboost. Then, the different classifiers from different modality

datasets are combined together using weighted majority voting. It is illustrated in Fig-

ure 2.6. In Figure 2.6(a), M1, ...,MN are the multimodal data. Hypotheses H1, ...,HN

Learning

Learning

Learning

H2

H1

Hf

Weighted

Majority

Voting
MN

M2

M1

HN

(a) Training Phase

Weighted

Majority

Voting

H1

H2

L1

L2

L

x(1)

x(2)

x(N) HN LN

X

(b) Testing Phase

Figure 2.6: The illustration of the Learn++ Fusion

are obtained through the learning algorithm for each modality data. The hypotheses
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are combined using weighted majority voting to develop the final hypothesis Hf . In

Figure 2.6(b), different modalities X(1), ...,X(N) of testing data X are tested using cor-

responding hypothesis. The final label L of X is obtained by combining the results from

each modality.

Atrey et al. [Atrey, Kankanhalli, and Jain, 2006] presented a novel framework for

multiple sensor fusion to detect events in the surveillance and monitoring systems. The

decisions of media streams are sequentially combined using the Logarithmic Opinion

Pool while considering the confidence and correlation. The Bayesian method is used to

fuse the confidence levels in individual streams. “Agreement coefficient” is introduced

to measure the correlation among the media streams. The agreement fusion model is

based on average-link clustering. Recently, the authors proposed a confidence evolution

method in [Atrey and Saddik, 2008]. The method dynamically computes the confidence

level of different modalities based on the past history of their agreement with the trusted

streams. The limitation is that the trusted streams whose confidence is above a certain

threshold need to be specified first.

Yang et al. applied multimedia fusion method to web video categorization in

[Yang et al., 2007]. Web videos have rich information from multiple information sources.

Not only visual and audio information, but also the surrounding text (the titles, de-

scriptions and tags of web videos), and even the social (i.e. the relationship among

videos through the users or the recommendations) information can be applied. Vi-

sual low-level features, semantic features (e.g., concept histogram), audio feature, and

surrounding text features are extracted. The scores for each information source are

obtained using Support Vector Machine (SVM) and then fused using max fusion, aver-

age fusion, and linear weighted fusion (the weight is selected according to the average

precision of each single modality), respectively. It is shown that the linear weighted

fusion outperforms the other two fusion methods in this application.

A probabilistic fusion method is proposed in [Zheng et al., 2008]. Relevance
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Vector Machine (RVM) [Tipping, 1999] is used to train classifiers for different infor-

mation sources to obtain the probabilistic outputs. Then, the outputs are fused using

Independent Opinion Pool for concept detection.

A method for enhancing the performance of a correlated biometrics verification

system is presented in [Srinivas, Veeramachaneni, and Osadciw, 2009]. The outputs

of correlated biometric classifiers are dynamically weighted. The particle swarm opti-

mization (PSO) algorithm which updates the weights in each iteration is applied to a

training dataset to obtain the weights that minimizes the Bayesian risk function. The

correlation among different information sources is not explicitly considered.

A multimodal fusion method exploiting complementary information stemming

from multiple information sources is proposed in [Papandreou et al., 2009] to improve

performance by uncertainty compensation. The authors adopted the product of each

feature probability as the fusion rule. The adaptive compensation is considered to

account for the observation uncertainty. The observation noise for each information

source is considered Gaussian, and the feature probability is modeled using GMM. Thus,

the noisy observations are compensated by shifting the models means and increasing

the model covariances. This method is demonstrated in the application of audio-visual

automatic speech recognition. However, reliable methods for dynamically estimating

the feature observation uncertainty are needed in the method. Moreover, the noise is

approximated using a Gaussian model which may not always be true.

The previous methods are generally static, i.e., the fusion function for the entire

data. Geng et al. [Geng et al., 2010] proposed a context-aware fusion method. The

fusion method uses linear weighted sum fusion rule. But instead of static fusion weights,

the method introduced context factors to dynamically adapt the weights to the envi-

ronment. For example, in the human identification problem, gait and face information

is fused. But the context factors, i.e., view angle and subject-to-camera distance, may

effect the reliability relationship between gait and face. The effect of context factors to
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the relationship between different information sources are based on either prior knowl-

edge or machine learning. For the prior knowledge based method, more parameters

need to be empirically determined and carefully tuned to suit different dataset. For the

machine learning (neural network) based method, neural network can learn non-linear

relationship, but it is difficult to scale and must be re-trained when the dataset changes.

It is illustrated in Figure 2.7.

∑
p(y|X(1)

,X(2)
, . . . ,X(N))

p(y|X(1))

p(y|X(2))

p(y|X(N)) Context

w = (w1, . . . , wN)

Figure 2.7: Context-aware linear fusion

A probabilistic framework that combines Context and Content for processing

video information is introduced in [Jasinschi et al., 2002]. The Context and Content

are represented in two layers using Bayesian networks. Hierarchical priors provide the

connection between the two layers. The integration of content and context informa-

tion is formalized using Chapman-Kolmogorov equation. The classification task can

be improved by combining context and content information. However, prior knowledge

between the different features is needed and it is difficult to generalize the method for

other applications.

In the following part, the works using Dempster-Shafer Theory (DST) are dis-

cussed chronologically.

Transferable belief model is used in multimedia fusion in [Guironnet, Pellerin,

and Rombaut, 2005] for video concept detection. The video is first segmented into

shots. One or more keyframes are then extracted from the shot. The color features and

texture features are extracted and principal component analysis (PCA) is performed
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to reduce feature dimensionality. Then, Support Vector Machine (SVM) learning is

used to recognize a given concept individually. The fuzzy sets can be used to model

the Basic Belief Assignment (BBA) from the output of the SVM learned on a given

concept. The set of hypotheses is defined Ω = {H,H} where H is a given concept and

H is not a given concept. The sensor fusion of color and texture is performed for each

concept to improve the classification. A mass is often assigned to the empty set known

as conflict, and the mass in conflict is transferred to avoid making decision. The authors

also suggested to use the concept fusion modeling interaction between concepts if there

is a relation existing between the two concepts to improve the performance.

Singh et al. [Singh et al., 2006] presented a fingerprint classification fusion algo-

rithm using Dempster-Shafer theory. The authors used DST to combine the decisions

of three different fingerprint classification algorithms based on the minutiae, ridge and

fingercode, respectively. The belief function associated with each algorithm is revised

using the Dempster’s update rule when new evidences are added. The fusion method

outperforms many other fusion algorithms such as sum rule and min-max rule.

Reddy et al. [Reddy, 2007] also used the DST for fusing the outputs of two

sensors, the hand gesture recognizer and the Brain Computing Interface. It is shown

that the fusion system is able to resolve the ambiguity between the concepts satisfactorily

under various operating scenarios.

Bi et al. [Bi, Guan, and Bell, 2008] proposed a “class-indifferent” method for

combining classifier decisions represented by evidential structures called triplet and quar-

tet, using Dempster’s rule of combination. The authors presented a formalism for mod-

eling classifier decisions as triplet mass functions and established a range of formulae for

combining these mass functions in order to arrive at a consensus decision. The compar-

ison made between Dempster’s rule and majority voting over the UCI benchmark data

showed that DST is better than majority voting in combining the individual classifiers.
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2.1.3 Summary

The weighted-sum strategy is more tolerant to noise because sum does not magnify

noise as severely as the product [Wu et al., 2004]. In comparison, the Independent

Opinion Pool is highly sensitive to noise [Wu et al., 2004]. The work of Tax et al.

[Tax et al., 2000] concluded that the product-combination rule works well only when

the posterior probability of individual classifiers can be accurately estimated. If there

are dependencies between information sources, the Linear Opinion Pool should be used

instead of the Independent Opinion Pool [Punska, 1999]. In addition to the fact that

we will not have truly independent modalities, we generally cannot estimate posterior

probabilities with high accuracy [Wu et al., 2004].

There are also some experimental studies in Multi-Classifier Systems (MCSs).

In [Kittler et al., 1998], the various fusion schemes, such as the product rule, sum

rule, minimum rule, maximum rule, median rule, and majority voting were compared

experimentally. It is shown that the sum rule outperforms other fusion schemes since

the sum rule is most resilient to estimation errors.

It is concluded in [Tax et al., 2000] averaging-estimated posterior probabilities

is to be preferred in the case when posterior probabilities are not well estimated. Only

in the case of problems involving multiple classes with good estimates of posterior class

probabilities the product combination rule outperforms the mean combination rule.

Alexandre et al. [Alexandre, Campilho, and Kamel, 2001] compared two types of aver-

aging combination rules: arithmetic mean (equal weights for Linear Opinion Pool) and

geometric mean (equal weights for Logarithmic Opinion Pool). For a problem with two

classes, these rules have exactly the same performance when using two classifiers, while

geometric mean performs better when more than two classifiers are combined.

The Dempster-Shafer Theory (DST) is an effective tool for combining multiple

evidence. The main advantage of DST is that no a priori knowledge is required. More-
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over, a value for ignorance can be expressed, given information on the uncertainty of a

situation. It has been found more suitable for handling mutually inclusive hypotheses.

However, the mass functions and belief functions need to be designed for different ap-

plications, which degrades the portability of DST. It also suffers from the combinatorial

explosion and conflicting beliefs problem. A belief function must distribute belief to

the power set of the universal set (frames of discernment). Thus, the computational

complexity increases exponentially with the number of frames of discernment Θ [Chen

and Aickelin, 2006]. Dempster’s rule of combination redistributes the mass values of

empty propositions to non-empty propositions, also known as normalization step, due

to the definition of the mass function. This sometimes leads to erroneous results, which

causes the conflicting management problem [Chen and Aickelin, 2006].

A summary of all the linear fusion works described above is provided in Table 2.1.

The linear fusion model is easy to adopt and does not need much computation. It is

easy to scale. A theoretical framework for bounding the average precision of a linear

combination function in video retrieval is presented in [Yan and Hauptmann, 2003]. The

authors concluded that the linear combination functions have limitations, and suggested

that non-linearity and cross-media relationships should be introduced to achieve better

performance. Moreover, the correlations among different information sources in fusion is

not well studied. The determination of optimal weights for different information sources

is still an open problem.
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Table 2.1: A list of the representative works in linear fusion

methods

Work Fusion method Weight

type

Correlation Uncertainty Multimedia

analysis task

[Neti et al.,

2000]

linear weighted

sum with relative

reliability for

weights

static Not consid-

ered

Not consid-

ered

speaker recog-

nition, speaker

change detection

and speech event

detection using

visual and audio

information

Lucey et al.

[Lucey, Srid-

haran, and

Chandran,

2001]

weighted product

with confidence

measured by

secondary clas-

sification for

weights

word

based

Not consid-

ered

Not consid-

ered

speech recogni-

tion

[Foresti and

Snidaro,

2002]

linear weighted

sum with ap-

pearance ratio

for weights

dynamic Not consid-

ered

Not consid-

ered

tracking



38

Table 2.1 – continued from previous page

Work Fusion method Weight

type

Correlation Uncertainty Multimedia

analysis task

Iyengar et

al. [Iyengar,

Nock, and

Neti, 2003a]

linear weighted

sum and

weighted prod-

ucts with grid

search for weights

static Not consid-

ered

Not consid-

ered

monologue detec-

tion using visual

and audio infor-

mation

Parikh et al.

[Parikh et

al., 2004]

weighted major-

ity voting with

weights related to

accuracy

static Not consid-

ered

Not consid-

ered

identifying de-

fects in pipelines

[Wu and Mc-

Clean, 2005]

linear weighted

sum with weights

related to aver-

age correlation

coefficient

static Simply con-

sidered

Not consid-

ered

document re-

trieval

Atrey et

al. [Atrey,

Kankanhalli,

and Jain,

2006]

logarithmic opin-

ion pool using

agreement coeffi-

cient for correla-

tion

static Simply con-

sidered

Not consid-

ered

event detection

Yang et al.

[Yang et al.,

2007]

linear weighted

sum with average

precision for

weights

static Not consid-

ered

Not consid-

ered

web video catego-

rization
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Table 2.1 – continued from previous page

Work Fusion method Weight

type

Correlation Uncertainty Multimedia

analysis task

Atrey et

al. [Atrey

and Saddik,

2008]

logarithmic opin-

ion pool using

agreement coeffi-

cient for correla-

tion

dynamic Simply con-

sidered

Not consid-

ered

event detection

[Zheng et al.,

2008]

product rule static Not consid-

ered

Not consid-

ered

concepts detec-

tion

[Srinivas,

Veeramacha-

neni, and

Osadciw,

2009]

linear weighted

sum with par-

ticle swarm

optimization for

weights

static Not consid-

ered

Not consid-

ered

biometrics verifi-

cation

[Papandreou

et al., 2009]

weighted product

with weights re-

lated to Gaussian

noise model

static Not consid-

ered

Not consid-

ered

speech recogni-

tion

[Geng et al.,

2010]

linear weighted

sum with weights

related to context

factors

dynamic Not consid-

ered

Not consid-

ered

human identifica-

tion
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Figure 2.8: The illustration of the classification-based fusion

2.2 Classification-based Fusion

Besides the rule-based fusion models, some researchers have also sought to use classification-

based methods for multimedia fusion. With the various powerful classification algo-

rithms, effective fusion results can be obtained.

2.2.1 Overview of methods

The general procedure for classification-based fusion are as follows: With the multi-

media data, the decisions can be obtained from each information source after certain

processing. Then, the decisions from different information sources are composed and

passed to classification algorithms as input. The output of the classification model is

taken as the fused decision. It can be illustrated as in Figure 2.8.

2.2.2 Representative works

The representative classification-based decision fusion methods are discussed in the fol-

lowing chronologically.

Adams et al. [Adams et al., 2003] adopted SVM based decision fusion for
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semantic-concepts detection (e.g., sky, water, speech) using visual, audio, and text

information. The semantic-concept is modeled as a class conditional probability den-

sity function over a feature space. The authors used GMMs for independent observation

vectors and HMMs for time series data. Initially, concept models in the individual infor-

mation sources are learned to generate the scores for concept. Then, the concept scores

for individual information sources are integrated into a vector and passed to SVM. In

this way, the fusion model can be learned and the classification results of score vectors

are considered as the fusion results. A similar approach has been presented in [Iyengar,

Nock, and Neti, 2003b].

Wu et al. proposed a two-step multimodal fusion approach for multimodal data

analysis in [Wu et al., 2004]. The authors pointed out that there are three design fac-

tors that affect fusion performance: modality independence, curse of dimensionality,

and fusion-model complexity. The two-step approach achieves a careful balance of the

three design factors. In the first step, statistically independent modalities from raw

features are extracted using independent modality analysis (IMA). The procedure con-

sists of the following three stages: principal component analysis (PCA), independent

component analysis (ICA), and independent modality grouping (IMG). PCA technique

is first applied to raw features to remove noise and reduce the feature dimensionality.

The first k principal components are obtained as the output. Then, by assuming that

the observations are mixture signals coming from k unknown independent components,

ICA is performed on the main eigenvectors of PCA representations to determine which

PC’s actually are independent and which should be grouped together as parts of a mul-

tidimensional component. Since the resulting k components from ICA might not be

independent, and the number of components can be too large to face the challenge of

“dimensionality curse”. IMG is adopted to divide k components into D groups by min-

imizing inter-group feature correlation and maximizing intra-group feature correlation.

Here, the value of D is experimentally determined. In the second step, super-kernel
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fusion is used to determine the optimal combination of individual modalities. Given

D independent modalities, individual classifiers are trained and the posterior probabil-

ity for each training sample is estimated to obtain a super-kernel matrix. The scores

are again trained using SVM to yield the fusion model. For a new test sample which

is represented in raw features, it is divided into D modalities. Then, posterior prob-

ability for each modality is calculated and formed into a vector of D elements. The

vector is then inputted into the fusion model to achieve a class prediction. Independent

modality analysis can improve the effectiveness of multimedia data analysis by achiev-

ing a tradeoff between dimensionality curse and modality independency. On the other

hand, super-kernel fusion has high model complexity and can explore interdependencies

between modalities.

Zhu et al. [Zhu, Yeh, and Cheng, 2006] reported a multimodal fusion method

for image categorization by combining visual and text cues. For visual cue, the top K

categories are selected based on the bag-of-words model. For text cue, the text line is

detected and described in a 16-Dimension feature. The text concept is learned using

Multiple Instance Learning (MIL). Then, K probabilities are obtained using visual cue

and the weighted Euclidian distance are obtained using text cue. The features calculated

from these information are assembled as the input for SVM-based classification. Here,

pair-wise binary SVM classifiers (PWC) using a linear kernel are adopted to fuse the

visual and text cues. The PWC needs K×(K−1)
2 classifications. The computation cost

becomes the major limitation as K increases.

An Integrated Statistical Model (ISM) is proposed in [Gao, Lim, and Sun, 2007].

Different from the traditional fusion models where only the original value was used, the

ISM fusion model used the deep structure of modality distribution. The modality may

contain rich structures. Each structure is modeled by a Gaussian distribution which

is called the mode. Each modality will have K modes to characterize its distribution.

Given an observed modality value, the mode with the maximal probability is chosen as
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the corresponding mode identity. For all the modalities of one object, the corresponding

mode configuration is treated as a document. The co-occurrence mode features similar

to that adopted in text categorization [Nigam, Lafferty, and McCallum, 1999] is ex-

tracted. The concept models are then trained using maximum entropy (ME) approach

[Berger, Pietra, and Pietra, 1996]. Then, the predict concept probability for a concept

is calculated as the exponential of weighted features, and the concept with the maximal

probability is assigned to the document.

Li et al. proposed an ordered weighted aggregation (OWA) based fusion method

in [Li et al., 2009]. The ordered weighted aggregation operator was first introduced by

Yager [Yager, 1988]. A mapping F from [0, 1]n → [0, 1] is called an OWA operator of

dimension n if associated with F is a weighting vector W =













w1

w2

...
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
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
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such that

1. wi ∈ (0, 1)

2.
∑

i

wi = 1

and where

F (a1, a2, . . . , an) = w1b1 + w2b2 + · · · + wnbn (2.19)

where bi is the ith largest element in the collection a1, a2, . . . , an. It is proved that

OWA operators are monotonic with respect to argument values. Yager also introduced

two characterizing measures associated with the weight vector W of an OWA operator:

“orness” and “dispersion”. The degree of “orness” associated with this operator is

defined as:

orness(W) =
1

n − 1

n∑

i=1

((n − i)wi) (2.20)

The “orness” measures how much the aggregation associated with vector W is like “or”
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aggregation operator. The measure of “dispersion” of W is defined as:

dispersion(W) = −
n∑

i=1

wi ln wi (2.21)

The “dispersion” is a measure of entropy. The method optimizes the variability by

maximizing the orness or the dispersion while keeping the dispersion or orness at a

fixed level. The weight vectors with different orness and dispersion are evaluated in

the cross validation set and the one that gives the highest precision is chosen to be

the OWA aggregation operator’s weight vector. Li et al. used OWA operator fusion

in concept detection problems. The features of training set are extracted and different

classifiers are trained. Then, by using the outputs of different classifiers as the collection

a1, a2, . . . , an, the weight vectors with different orness and dispersion are evaluated on a

cross validation set to find the optimal weight vector. In this way, the OWA aggregation

operator is trained and will be used for fusion on test set.

A machine learning fusion model is proposed in [Muneesawang, Guan, and Amin,

2010] for retrieval and classification of movie clips. The audio and visual features are

extracted separately and are processed by different similarity functions to obtain the

similarity scores. The audio and visual modalities similarity scores are integrated into

a two-dimensional vector. SVM is then used to combine the opinions of the different

information sources to give a binary decision. The method can be illustrated as in

Figure 2.9. It is claimed that it may not be appropriate to directly concatenate audio

and visual features into a single representation because of two reasons:

• First, visual feature usually has a physical structure different from audio feature

in both dimensions as well as weighting scheme.

• Second, based on previous studies [Massaro, 2001] with respect to human per-

ception, audio and visual processing is likely to be carried out independently in

different information sources and combined at a very late stage.



45

audio video

score

SVM

score

decision

score

vector

Figure 2.9: Learning fusion model

A multiple feature selection and combination approach for face recognition using

Adaboost is proposed in [Contreras, Urunuela, and del Rincon, 2009]. There are two

phases of fusion in the approach: feature level fusion and score level fusion. In the

feature level fusion, different filters are applied and projected to the PCA/LDA space

to obtain new features. A simple substraction of the feature patterns is done, and

the resulting features are introduced into the Adaboost algorithm. In the score fusion

level, the only difference is that the nearest neighbor matching results in the PCA/LDA

space are introduced into the Adaboost algorithm. Thus, the features are considered as

a whole in the Adaboost algorithm. Generally, the method transforms different modality

features into one whole feature, and then uses the feature in Adaboost. However, the

method is not generic for different applications.

For the sake of completeness, there has also been a few classification-based fea-

ture fusion methods, for example, [Ross and Govindarajan, 2005; Snoek, Worring, and

Smeulders, 2005]. In [Ross and Govindarajan, 2005], the features from biometric sources

are normalized using the median normalization scheme. The feature fusion is accom-

plished by a simple concatenation of the feature sets obtained from multiple informa-

tion sources. Then, a feature selection relying on an appropriately formulated objective
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function is applied to the fused feature to elicit the optimal subset of features from

the complete feature set. The match level score is obtained by taking the average of

matching score from each source. Euclidean distance and thresholded absolute dis-

tance between fused feature vectors are consolidated into one feature level score via

average rule. The average of both match level score and feature level score is con-

sidered as the final score. However, this method does not allow incompatible feature

sets (such as minutiae points of fingerprints and eigen-coefficients of face) to be com-

bined. Snoek et al. compared the classification-based feature fusion and decision fusion

method for semantic concept detection in [Snoek, Worring, and Smeulders, 2005]. The

classification-based feature fusion method is to concatenate unimodal feature vectors

to obtain a fused multimedia representation and then rely on supervised learning to

classify semantic concepts. On the other hand, the classification-based decision fusion

method is to learn semantic concepts directly from unimodal features and then combine

the individual scores to yield a final detection score as input for classification using

supervised learning. The classification-based feature fusion method requires one learn-

ing phase only, but it is difficult to combine features into a common representation.

The classification-based decision fusion method requires multiple learning phases (ev-

ery information source requires a separate supervised learning stage and the combined

representation requires an additional learning stage), and may have potential loss of

correlation. Based on an experiment of 20 semantic concepts on 184 hours of broad-

cast video, it is concluded that the classification-based decision fusion method tends

to give better performance for most concepts. Moreover, the improvements are more

significant when the classification-based feature fusion method performs better. These

results suggest that a fusion strategy on a per-concept basis yields an optimal strategy

for semantic video analysis [Snoek, Worring, and Smeulders, 2005].
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2.2.3 Summary

A summary of all the classification-based fusion works described above is provided in

Table 2.2. The classification-based fusion methods can be divided into classification-

based feature fusion method and decision fusion method as stated above. In general, the

classification-based fusion method does not have the limitations of linear combination

functions. Sophisticated fusion models can be learned using classification algorithm.

Furthermore, it is very easy to adopt. However, the computation is much higher than

linear fusion methods since it usually requires multiple learning phases. It is also difficult

to scale. The fusion model needs to be learned again when a new information source is

introduced.

2.3 Cascaded Fusion

2.3.1 Overview of methods

The cascaded fusion methods are another category of decision fusion methods. In gen-

eral, the cascaded fusion methods use the multiple information sources at different stages

instead of integrating and processing the multiple information together.

2.3.2 Representative works

According to the study on different video genres in [Li et al., 2000], “news can fall equally

into both the informational audio-centric and informational video-centric categories,

and can take advantage of a combination of the different indices for effective browsing”.

Christel et al. [Christel, Huang, and Moraveji, 2004] exploited aural and visual cues for

interactive video retrieval. Text-based features are the most reliable high-level features

applicable in news and documentary video retrieval [Adams et al., 2002]. Thus, the text

from ASR (automatic speech recognition) is used first to locate a candidate shot set.

Then, less accurate visual features can be used for filtering by users.
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Work Fusion data Fusion

method

Correlation Multimedia

analysis task

[Ross and
Govindarajan,
2005]

concatenated
features

threshold Not explicitly
considered

verify the iden-
tity

Adams et al.
[Adams et al.,
2003]

score vector SVM Not explicitly
considered

concepts detec-
tion

Wu et al. [Wu et
al., 2004]

score vector SVM Not explicitly
considered

concepts detec-
tion

[Zhu, Yeh, and
Cheng, 2006]

score vector SVM Not explicitly
considered

image catego-
rization

[Gao, Lim, and
Sun, 2007]

co-occurrence
mode features

maximum en-
tropy

Not explicitly
considered

concepts detec-
tion

[Li et al., 2009] score vector Learning
weights through
cross validation

Not explicitly
considered

concepts detec-
tion

[Contreras,
Urunuela, and
del Rincon,
2009]

transformed fea-
tures

Adaboost Not explicitly
considered

face recognition

[Muneesawang,
Guan, and
Amin, 2010]

score vector SVM Not explicitly
considered

retrieval and
classification of
movie clips

Table 2.2: A list of the representative works in classification-based fusion methods
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Tieu and Viola [Tieu and Viola, 2004] used Adaboost for multiple features selec-

tion. Multiple features are extracted from one modality data (image). In each iteration

of Adaboost, classifiers are trained for each feature and the best feature is selected. The

distribution is updated according to the classification results and instances are resam-

pled. The final result is the weighted combination of the features selected from each

iteration. A similar multimodal Adaboost algorithm is proposed in [Xue and Ding,

2006] to integrate 3D and 2D information for face localization. Adaboost is used for

training a classifier of multimodal features. At each stage of Adaboost, different single-

modality features ((R,G,B) Haar-like feature, mean curvature Haar-like feature, etc.)

are selected and trained as an intermediate classifier, and the distribution is updated

accordingly. The final classifier is a combination of these intermediate classifiers. The

method can be applied to multimodal data that have same granularity features. It did

not discuss how to use the method for multimodal data that have different granularity

features, such as, image and audio.

By simply defining the combination method and optimization criterion, genetic

algorithm is used to search for the optimized weights of classifiers in [Ruta and Gabrys,

2001]. The optimization criterion is defined as the sum of decisions and true labels

over the validation set. The weights can be either 0 (classifier excluded) or 1 (classifier

included). Later, a multidimensional genetic algorithm (GA) is proposed in [Gabrys

and Ruta, 2006]. The multidimensional selection model (MSM) is designed to repre-

sent the selection dimensions of features, classifiers and combiners. Then, mutation and

cross-over operations are defined to guarantee that the average performance will not de-

crease in the subsequent generations. This particular implementation of GA represents

a hill-climbing algorithm. Experiments confirm the superiority of the method. The

method is designed for Multi-Classifier Systems. Moreover, validation is needed for the

optimization fusion after classifier training.

A fusion learning for multimedia streams using a greedy performance driven
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algorithm is proposed in [Joshi, Naphade, and Natsev, 2007]. There are a fixed number

of boosting iterations. The decision streams are fixed from the beginning. The fusion

learning phase is to find the optimal weights for each decision stream. In each iteration, a

proportion of data are used for decision fusion learning. In the decision fusion learning

phase, the multiple decision streams from the multimodal data are weighted using a

greedy hill-climbing algorithm to find the best set of decision stream weights by which

the minimum error is obtained. In the end of the boosting, the weights are averaged.

An average precision (AP) based Adaboost fusion for concept detection is pro-

posed in [Cai et al., 2007]. Six visual features are extracted for each keyframe globally

or locally. They are Color Histogram (CH), Color Correlogram (CC), Color Moments

(CM), Edge Histogram (EH), TextureWavelet (TW) and Texture Cooccurence (TC).

Different features are processed independently to build weak classifiers. For each run,

the precision is calculated according to the prediction on samples of each weak classifier.

Then, the weak classifier with the max precision is chosen as the classifier for this run.

The weights of samples, as well as the weight of this classifier, are updated according

to this classifier’s precision. Sample weights are used to weight the individual average

precision of each sample so that the larger weight and former rank the sample has, the

more contribution it does to the total average precision of the weak classifier. In the

end, the weighted sum of the selected classifiers is used as the strong classifier. Since

the non-interpolated average precision is applied as a measure of High Level Feature

Extraction at TRECVID, AP-based Adaboost outperforms the standard Adaboost and

many other fusion methods in High Level Feature Extraction at TRECVID. In general,

it is similar to the method in [Xue and Ding, 2006].

A novel fusion method based on the Combined Adaboost Classifier Ensembles

(CACE) algorithm is proposed in [Tan et al., 2009]. The visual features is categorized by

different granularities and a pair-wise feature diversity measurement is defined. Then,

the simple classifiers based on the feature diversity is constructed. The authors then
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use modified AP-based Adaboost to fusion the classifier results.

2.3.3 Summary

A summary of the main cascaded fusion works described above is provided in Table 2.3.

Work Stages Fusion stage Correlation Multimedia

analysis

task

[Christel, Huang,
and Moraveji,
2004]

Filtering using differ-
ent information se-
quentially

No Not consid-
ered

interactive
video re-
trieval

[Xue and Ding,
2006]

One modality selected
at each stage

Combination of clas-
sifiers at all stages

Not consid-
ered

face localiza-
tion

[Joshi, Naphade,
and Natsev,
2007]

Greedy hill-climbing
algorithm to find the
best set of decision
stream weights

Average of weights at
all stages

Not consid-
ered

concepts de-
tection

[Cai et al., 2007] One modality selected
at each stage

weighted sum of the
selected classifiers

Not consid-
ered

concepts de-
tection

[Tan et al., 2009] One modality selected
at each stage

weighted sum of the
selected classifiers

Simple diver-
sity

concepts de-
tection

Table 2.3: A list of the representative works in classification-based fusion methods

2.4 Discussion of decision fusion methods

In sum, there have been several existing decision fusion methods in literature. However,

several problems are still open and not well studied. The rule-based fusion methods,

especially the linear fusion methods, generally are easy to adopt and scale, and does

not need much computation. But how to determine the optimal weights is still an open

problem. The classification-based fusion methods are generally more sophisticated, but

more computational complex and difficult to scale. The cascaded fusion methods use

different information sources sequentially at different stages instead of combining them

in one stage. The methods generally overlook the correlation among information sources
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and also suffer from high computation cost.

Generally speaking, there are some issues in the previous decision fusion methods:

• First and foremost, the correlation among different information sources is not well

utilized to obtain better results. How to differentiate the correlation among infor-

mation sources and how to utilize the different correlations are seldom considered.

A multiple utilization of correlation or a sophisticated correlation model should

help to improve the fusion performance.

• In multimedia applications, usually little amount of training data are available at

the beginning. The fusion performance may suffer as a result. Furthermore, the

multimedia data keep increasing with time. New instances of multimedia data

are continuously added. Thus, the evolution of the fusion model is of primary

importance because of the nature of multimedia applications. However, few fusion

methods have been proposed to cope with the new data well. An evolving fusion

method which evolves the multimedia fusion model and improves the performance

with new data should be quite useful.

• The information source may have different expertise on different data so that an

overall weight for the information source is not suitable. Few data dependent fu-

sion methods have been proposed. A sophisticated data dependent fusion methods

that effectively measures the expertise of the output and then adopt it in fusion

process should be helpful to improve the performance.

The objective of this dissertation is to develop fusion methods that address these re-

search challenges.
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Chapter 3

MultiFusion

Multimodal fusion is useful for many multisensor applications. The utilization of corre-

lations plays an important part and is crucial for multimedia fusion. The appropriate

synchronization of the different modalities is still a big research problem [Atrey et al.,

2010]. It has also been observed that correlation at the semantic level (decision level)

has not been fully explored, although some initial attempts have been reported. More-

over, the correlation of multiple information sources at decision level is usually utilized

only once in the whole fusion procedure. In this chapter, a novel multimedia fusion

algorithm is proposed which is referred to as “MultiFusion”. The approach adopts a

boosting structure where the atomic event is considered as the fusion unit to process

the multimedia data uniformly. The correlation of multimedia information sources is

implicitly used to form an overall classifier in each iteration.

3.1 Introduction

In multimedia fusion, one decision can be obtained from each information source. Con-

sidering each information source as an expert, the decisions from all the information

sources can be combined together to achieve an improved result. In general, classifica-
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tion is one of the basic ways to get a decision from each information source.

For each information source in the multimodal data, a classifier can be trained

using some supervised learning algorithm. Then, the outputs of the classifiers from

each information source will be weighted and combined to develop a final classifier.

By assembling multiple classifiers, the ensemble based systems have been shown to

produce favorable results compared to the single classifier systems for a broad range

of applications and under a variety of scenarios [Polikar, 2006]. There are also several

mathematically sound reasons for considering ensemble systems. A set of classifiers with

similar training performances may have different generalization performances. Combin-

ing the outputs of several classifiers by averaging may reduce the risk of an unfortunate

selection of a poorly performing classifier. The averaging may or may not beat the

performance of the best classifier in the ensemble, but it definitely reduces the overall

risk of making a particularly poor selection. In multimedia fusion, if we have several

sets of data obtained from various information sources, where the nature of features is

incompatible (heterogeneous features), a single classifier cannot be used to learn the

information contained in all of the data. Ensemble based approaches have successfully

been used for such applications, such as monologues detection in video shots using both

audio and video signals in [Iyengar, Nock, and Neti, 2003a].

There have been several multimedia fusion methods. But how to utilize the dif-

ferent correlations in the multimedia data are seldom considered. A good utilization of

correlation among information sources should improve the fusion performance signifi-

cantly. For the previous multimedia fusion methods, the different information sources

are generally fused only at the final combination step. Here, we try to apply fusion and

use correlation multiple times by adopting boosting structure and combining the results

at each iteration. Based on the Adaboost-like structure, the fusion of these classifiers

may lead to an overall performance improvement.
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3.1.1 Background

Classification is a machine learning technique for deducing a function from training

data. The training data consist of pairs of input objects (typically vectors) and de-

sired outputs. The output of the function can predict a class label of the input object.

Machine learning algorithms take a training set, form hypotheses or models, and make

predictions about the labels. Because the training set is finite and the future appli-

cation dataset is uncertain, learning theory usually does not yield absolute guarantees

of performance of the algorithms. Instead, probabilistic bounds on the performance of

machine learning algorithms are quite common.

One of the popular ensemble based algorithms is Adaboost [Freund and Schapire,

1997]. It boosts a weak learner into a strong learner. Here, the weak learner and strong

learner are defined in the PAC (probably approximately correct) model. In this model,

the learner tries to identify an unknown concept based on randomly chosen examples

of the concept. Examples are chosen according to a fixed but unknown and arbitrary

distribution on the space of instances. The learner’s task is to find a hypothesis or

prediction rule of his own that correctly classifies new instances as positive or negative

examples of the concept. With high probability, the hypothesis must be correct for all

but an arbitrarily small fraction of the instances [Schapire, 1990].

The notations are defined as follows:

• C is concept class. C is decomposed into subclasses Cn indexed by a parameter n,

C =
⋃

n≥1
Cn.

• X =
⋃

n≥1
Xn. Xn is the common domain for the concepts in Cn.

A concept class C is learnable, or strongly learnable, if there exists an algorithm A such

that for all n ≥ 1, for all target concepts c ∈ Cn, for all distributions D on Xn, and

for all 0 < ǫ, δ ≤ 1, algorithm A, given parameters n, ǫ, δ, the size s of c, and access

to oracle EX (source of examples), runs in time polynomial in (n, s, 1
ǫ

and 1
delta

), and
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outputs a hypothesis h that with probability at least 1 − δ is ǫ-close (the probability

of misclassification is no more than ǫ, which is an arbitrarily small fraction) to c under

D [Schapire, 1990]. That is, a strong learner generates a classifier that can correctly

classify all but an arbitrarily small fraction of the instances. A concept class C is weakly

learnable, if there exists a polynomial p and an algorithm A such that for all n ≥ 1,

for all target concept c ∈ Cn, for all distributions D on Xn, and for all 0 < δ ≤ 1,

algorithm A, given parameters n, δ, the size s of c, and access to oracle EX, runs in

time polynomial in (n, s and 1
δ
), and outputs a hypothesis h that with probability at

least 1− δ is (1/2− 1/p(n, s))-close (the probability of misclassification is no more than

(1
2 − 1

p(n,s)), which is less than 1
2) to c under D [Schapire, 1990]. In other words, a

weak learner produces a prediction rule that performs just slightly better than random

guessing. It has been proved that the strong and weak learnability are equivalent. A

concept class C is weakly learnable if and only if it is strongly learnable [Schapire, 1990].

Adaboost has many variations. Here, we will mainly discuss Adaboost.M1 [Fre-

und and Schapire, 1996]. The pseudocode of the algorithm is provided in Algorithm 1.

Here are some remarks about the symbols:

• (X1, Y1), . . . , (Xn, Yn) are the training data set. Xi ∈ X where X is the set of data

instances, and Yi ∈ Y = {ω1, . . . , ωC} where Y is the set of labels, ω1, . . . , ωC are

the classes of labels.

• WeakLearn is a weak learning algorithm defined in the PAC model.

• Pt is the distribution at step t

• Hf is the final hypothesis

• The function I[Q] is Iverson bracket, which is defined as follows:

I[Q] =







1 if Q is true

0 otherwise
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Input: (X1, Y1), . . . , (Xn, Yn) where Xi ∈ X , Yi ∈ Y = {ω1, . . . , ωC};
Weak Learning algorithm WeakLearn;
Initially the distribution P1, P1(i) = 1

n
for i = 1, . . . , n.

Output: Hf

for t = 1 to T do
Select a training data subset St drawn from the distribution Pt;
Train WeakLearn with the training data St, and obtain hypothesis
ht : X → Y ;

Calculate the weighted error of ht: εt =
n∑

i=1
Pt(i)I[ht(Xi) 6= Yi];

if εt > 1/2 then
set T = t − 1;
abort;

end

Calculate βt = εt

1−εt
;

Update distribution Pt: Pt+1(i) = Pt(i)
Zt+1

×

{

βt if ht(Xi) = Yi

1
βt

otherwise
where

Zt =
n∑

i=1
Pt(i) is a normalization factor;

end

Hf (X) = arg max
Y ∈Y

T∑

t=1
(log 1

βt
)I[ht(X) = Y ]

Algorithm 1: Adaboost

Adaboost takes a weak learning algorithm and a sequence of instances initially.

Then, Adaboost generates a set of hypotheses by training a weak classifier using in-

stances drawn from an iteratively updated distribution of the training data. The dis-

tribution update ensures that instances misclassified by the previous classifier are more

likely to be included in the training set of the next classifier. Hence, consecutive clas-

sifiers’ training data are geared towards increasingly hard-to-classify instances. In the

end, all the hypotheses generated at each step are combined through weighted majority

voting of the classes predicted by the individual hypothesis. Thus, Adaboost is a way

to boost a weak learning algorithm to a strong learning algorithm.
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3.1.2 Related Work

Polikar et al. introduced a supervised incremental learning algorithm Learn++ [Po-

likar et al., 2001]. Here, the ability of a classifier to learn with subsequently acquired

datasets and acquire the newly introduced knowledge without forgetting the previously

learnt information is usually referred to as incremental learning. The algorithm is based

on generating a number of hypotheses using different distributions of the training data

and combining these hypotheses using a weighted majority voting. Later on, Parikh

et al. applied Learn++ to the multimodal fusion problem in the method of combining

classifiers [Parikh et al., 2004]. Incremental learning and multimodal fusion are concep-

tually similar: in incremental learning, the algorithm will learn from multiple datasets

and the datasets may introduce new classes. In multimodal fusion, the algorithm will

combine multiple modalities datasets and the datasets may contain different features.

Learn++ is used to train the classifier for information fusion. The classifier is trained

from each modality data in the way similar to Adaboost. Then, the different classifiers

from different modality datasets are combined together using weighted majority voting.

Here, without newly introduced data, we adopt Adaboost to train classifiers for different

modalities and combine together using weighted majority voting. The fusion method is

illustrated in Figure 2.6. For clarity, it is referred to as Learn++ fusion in the rest of

this chapter.

Learn++ boosts the classifiers from different datasets using Adaboost and the

decisions from different datasets are combined using weighted majority voting. The

decisions have the same representation. Moreover, the algorithm can be scaled in terms

of the modalities used in the fusion process. However, there are some disadvantages for

Learn++ in multimedia fusion. The different classifiers are trained to obtain the local

decisions which are combined in the end. It is likely that the final decision depends

more on the accuracy of each modality instead of the combination of multiple modali-
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ties. The correlation of the multimodal data is used only at the final combination step.

Thus, one of the disadvantages lies in its failure to fully utilize the correlation among

modalities. If we can shift the combination of multiple modalities to each step of boost-

ing, the correlations among modalities can be made better use of, thus obtaining better

combination results at each step. Moreover, by doing this in the boosting structure, we

are actually improving the overall utilization of multimodal data instead of individual

performance of each modality. It can therefore improve the fusion performance.

The Adaboost algorithm has already been used in many unimodal applications,

such as [Guo and Zhang, 2001], [Zhang, Li, and Zhang, 2002], [Pickering, Ruger, and

Sinclair, 2002], [Tieu and Viola, 2004]. Guo et al. [Guo and Zhang, 2001] directly

applied Adaboost with face features to boost the face recognition results. Some other

methods [Amores et al., 2004], [Zhang, Li, and Zhang, 2002], [Tieu and Viola, 2004] used

Adaboost for multiple features selection. The method in [Zhang, Li, and Zhang, 2002]

used Adaboost for each feature, while the method in [Tieu and Viola, 2004] compared

the different features and selected one best feature at each step of Adaboost. In [Tieu

and Viola, 2004], multiple features are extracted from one modality data (image). In

each iteration of Adaboost, classifiers are trained for each feature and the best feature

is selected. The distribution is updated and instances are resampled. The final result

is the weighted combination of the features selected from each iteration. Barbu et al.

[Barbu, Iqbal, and Peng, 2005] used similar methods to [Tieu and Viola, 2004]. Guo et

al. proposed a method of SAR image target recognition based on Adaboost algorithm

in [Guo et al., 2008]. They adopt the Adaboost algorithm for feature selection. Initially,

there is a multi-dimension feature generated from the image. For each dimension, an

optimal threshold is selected such that the minimum number of instances are misclas-

sified. Each thresholded single feature is viewed as a linear binary classifier. For the

Adaboost feature selection procedure, the classifier is a weighted combination of all the

thresholded single features according to the probability. The final classifier is the combi-
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nation of each intermediate classifier. In this way, the weight of each feature dimension

is determined and the effective features are selected according to the weights.

There are also a few similar works in the multimodal analysis area. Maghooli

et al. [Maghooli and Moin, 2004] proposed a novel approach in the field of multimodal

biometrics based on Adaboost. The multimodal features are fused together, and a

weak learner (only one neuron neural network) is used in the Adaboost. A multimodal

Adaboost algorithm similar to [Tieu and Viola, 2004] is proposed in [Xue and Ding,

2006] to integrate 3D and 2D information. Adaboost is used for training a classifier

of multimodal features. At each stage of Adaboost, different single-modality features

((R,G,B) Haar-like feature, mean curvature Haar-like feature, etc.) are selected and

trained as an intermediate classifier, and the distribution updated accordingly. The

final classifier is a combination of these different classifiers. The method can be applied

to multimodal data that have same granularity (or compatible) features. It did not

discuss how to use the method for multimodal data that have different granularity

features, such as, image and audio. However, by using the fusion unit we introduced

in this chapter, the method can be used for fusion of various heterogeneous multimodal

data. We refer to this method as the Selection fusion method. A fusion learning for

multimedia streams using a greedy performance driven algorithm is proposed in [Joshi,

Naphade, and Natsev, 2007]. There are a fixed number of boosting iterations. The

decision streams are fixed from the beginning. The fusion learning phase is to find the

optimal weights for each decision stream. In each iteration, a proportion of data are used

for decision fusion learning. In the decision fusion learning phase, the multiple decision

streams from the multimodal data are weighted using a greedy hill-climbing algorithm

to find the best set of decision stream weights by which the minimum error is obtained.

In the end of the boosting, the weights are averaged. A multiple feature selection and

combination approach for face recognition using Adaboost is proposed in [Contreras,

Urunuela, and del Rincon, 2009]. There are two phases of fusion in the approach: feature
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level fusion and score level fusion. In the feature level fusion, different filters are applied

and projected to the PCA/LDA space to obtain new features. A simple substraction of

the feature patterns is done, and the resulting features are introduced into the Adaboost

algorithm. In the score fusion level, the only difference is that the nearest neighbor

matching results in the PCA/LDA space are introduced into the Adaboost algorithm.

Thus, the features are considered as a whole in the Adaboost algorithm. Generally, the

method transforms different modality features into one whole feature, and then uses the

feature in Adaboost. However, the method is not generic for different applications.

To make use of the advantages of multimodal data and the correlations among

the information sources, a novel multimedia fusion approach is proposed here, which

is referred to as MultiFusion. The MultiFusion algorithm utilizes multiple fusion in a

way similar to Adaboost. It fuses the multimodal data using weighted majority voting

in each step, thus the correlations among multimodal data are implicitly utilized in

every individual step. In this way, it improves the overall fusion performance instead of

individual modality performance. In the following, we first state the proposed algorithm

in details in Section 3.2. Then, both the simulation and real application results are

shown in Section 3.3 to demonstrate the improvements. Finally, the conclusion is given

in Section 3.4.

3.2 Proposed Algorithm

Our proposed multimodal fusion algorithm adopts the decision level fusion strategy

[Wang and Kankanhalli, 2010a]. It represents the decisions at the semantic level in the

same form. The scalability can also be achieved depending upon the information sources

used. Moreover, it overcomes the disadvantages of single time fusion (such as Learn++

fusion) by introducing the notion of a “fusion unit” and fusing using weighted majority

voting at each step to implicitly utilize the correlation among information sources. In the
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single time fusion approach, the multimodal data are fused only at the final combination

step. Thus, it fails to fully utilize the correlation among information sources. In contrast,

each fusion unit contains multiple information sources and can be dealt with uniformly.

It can work with heterogeneous features since each information source of fusion unit can

be trained using an appropriate method. Moreover, the correlation among information

sources is better utilized by fusing at each step based on the fusion unit. Unlike the

unimodal Adaboost algorithm, our proposed fusion method is for multimodal fusion

in one integrated framework. By introducing atomic events as the fusion unit, the

correlations among the various information sources are utilized by fusing the multimodal

data at each step. Moreover, by adopting the Adaboost-like structure, the fusion of these

classifiers leads to an overall performance improvement.

3.2.1 Data Representation

First of all, we need to specify the representation of the input data to the multimodal

fusion algorithm. Multimodal data are heterogeneous. Thus, the management of the

multimodal data is also related to multimodal fusion. There are generally two kinds

of approaches of managing multimodal data: media-centric approach and event-centric

approach. The media-centric approach manages the multimodal data according to the

data type. Providing an alternative perspective, the event-centric approach manages

the multimodal data in the form of events. Here, the appropriate method of managing

multimodal data is the event-centric method. The multimodal data from each infor-

mation source will be synchronized in the preprocessing stage. Then, the synchronized

multimodal data will be segmented into a sequence of segments, say, events. The con-

cepts are defined in [Atrey, Kankanhalli, and Jain, 2006]. Event is a physical reality

that consists of one or more living or non-living real world objects (who) having one or

more attributes (of type) being involved in one or more activities (what) at a location

(where) over a period of time (when). Atomic event is an event in which exactly one



63

object having one or more attributes is involved in exactly one activity. Compound

event is the composition of two or more different atomic events. In multimodal data,

each atomic event is associated with parts of the data of each information source. For

example, the compound event “A person ran through the corridor, and then entered

the meeting room” consists of two atomic events “a person ran through the corridor”

followed by “person entered the meeting room”. The detection of the atomic events

requires multimodal data. For example, a “running” event can be detected based on

both video and audio streams. In image retrieval, the atomic event is an image object

which contains a single image for image modality and comments about the image for

text modality. The image can be retrieved based on both image and text content.

For each application, suppose we have a multimodal dataset M which contains

N information sources, i.e., Mk, k = 1, 2, . . . , N . The information sources can be video,

audio, image, text, etc. The multimodal data are heterogeneous and organized on a

timeline. Thus, the data set will be segmented into unit segments, i.e., atomic events,

and each atomic event is one dataset instance which consists of a segment of data

of each modality. The atomic events are used to define the basic fusion granularity,

i.e., the fusion unit. The multimodal data express a sequence of events. Each event

is associated with parts of each modality data. The granularity is different for each

modality and is based on the nature of different modality. For example, for the concept

detection application in Flickr images, the multimodal data are the images and the

corresponding comments over the site. Then, the atomic event is a single image for

image modality and comments about the image for text modality. Similarly, for the

Youtube video search, the multimodal data are the videos and text descriptions. Then,

the atomic event is a single video clip for video modality and corresponding description

words for text modality.

The multimodal dataset is illustrated in Figure 3.1. For a multimodal dataset

M, it contains N modalities M1, . . . ,MN . For example, in a multimodal surveillance
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data set, there may be different information sources, such as, infrared camera video,

audio, and video. The multimodal dataset can be segmented into several atomic events.

The atomic event is taken as the basic fusion unit. In a multimodal surveillance dataset,

the fusion unit may be a shot.

Fusion unit

Information sources

M1

M2

M

Time

MN

1 event/segment

Figure 3.1: The illustration of the data representation

3.2.2 Fusion Phases

The proposed multimodal fusion algorithm consists of two phases: training and testing.

The multimodal data will first be segmented into fusion units. In the training phase, the

input will be training datasets consisting fusion units X with corresponding labels Y.

After the training process, the output will be a final classifier Hfinal : X → Y. Then, in

the testing phase, the input is the set of multimodal fusion units data, and the output

is the label for each input fusion unit by using the final classifier. The two phases of

the proposed multimodal fusion algorithm are illustrated in Figure 3.2.
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Training data

with N informa-

tion sources

Test data with

N information

sources

Training fusion units

with labels

Test fusion units with

unknown labels

Training Phase

Testing Phase

Hfinal

Hfinal: an ensemble

of N × T classifiers

Labels

Figure 3.2: The illustration of the fusion phases

3.2.3 Fusion Algorithm Description

The MultiFusion algorithm is illustrated in Figure 3.3, and the details of the algorithm

are described in Algorithm 2.

• Inputs to our method are a sequence of labeled fusion units (training data) from

each of the dataset of different information sources

• metaFusion denotes a classifier learning algorithm. It can be SVM, KNN, etc..

metaFusion is similar to WeakLearn in Adaboost which has already been defined

in the PAC model.

• T is an integer which specifies the number of classifiers (iterations) to be generated

by metaFusion for each dataset.

In the proposed method, the different labeled instances of the same position will

correspond to the same segment in the multimodal dataset, which means the multimodal

data are synchronized. The multimodal data will be segmented into uniform units. Each

instance of training fusion units data contains different modalities of the multimodal

data and metaFusion will use different modality data in X to train classifiers for

different modality Mk, k = 1, 2, . . . , N .

Our proposed algorithm iteratively updates the distribution of training data by

assigning appropriate weights to each fusion unit such that the classifier of metaFusion,
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metaFusion

Classifier:

h1
2

Classifier:

h2
2

Classifier:
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T

Classifier:
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T
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Overall Classifier: HT

Distribution: PT+1

Overall Classifier: H2

Distribution: P3
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Weighted Majority

Weighted Majority

Weighted Majority

metaFusion

Classifier:

hN
2

Classifier:

hN
T

Classifier:

hN
1

Figure 3.3: The illustration of the proposed fusion method. There are T iterations. At
each iteration t, N different information sources of fusion units are trained separately
to obtain multiple classifiers h1

t , . . . , h
N
t . The classifiers are combined using weighted

majority to get an overall classifier Ht for the fusion units. The distribution is updated
to Pt+1 and used for re-sampling fusion units in the next iteration. In this way, the
re-sampling at each iteration is aimed to boost the overall classifier for the fusion units.
Finally, the classifiers at each iteration H1, . . . ,HT are combined to develop the final
classifier Hfinal.



67

Input: The datasets drawn from information sources Mk, k = 1, 2, . . . , N ;
Sequence of n fusion units data S = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)},
where Xi ∈ X , Yi ∈ Y = {ω1, . . . , ωC};
Basic fusion classifier learning algorithm metaFusion;
Integer T , specifying the number of iterations;
Initialize the distribution P1(i) = 1

n
,∀i

Output: The final classifier: Hfinal : X → Y
for t = 1 to T do

Select a training fusion unit subset St drawn from the distribution Pt;
for k = 1 to N do

Select the corresponding data Sk
t in information source Mk from

fusion units subset St;
Call metaFusion, providing it with the training data Sk

t , and obtain
a classifier hk

t : X → Y;

Calculate the weighted error of hk
t : εk

t =
n∑

i=1
Pt(i)I[hk

t (Xi) 6= Yi];

if εk
t > 1/2 then
set T = t − 1;
discard hk

t and abort;
end

Calculate scaled error βk
t =

εk
t

1−εk
t

;

end

Call weighted majority, obtain the overall classifier Ht : X → Y:

Ht(X) = arg max
Y ∈Y

N∑

k=1

(log 1
βk

t

)I[hk
t (X) = Y ];

Compute the overall error Et =
n∑

i=1
Pt(i)I[Ht(Xi) 6= Yi];

Calculate scaled error Bt = Et

1−Et
;

Update the distribution Pt:

Pt+1(i) =
Pt(i)

Zt+1
×

{

Bt, if Ht(Xi) = Yi

1
Bt

, otherwise

where Zt =
∑

i

Pt(i) is a normalization constant such that Pt+1 will be a

distribution;
end

Call Weighted majority and the final classifier:

Hfinal(X) = arg max
Y ∈Y

T∑

t=1
(log 1

Bt
)I[Ht(X) = Y ]

Algorithm 2: MultiFusion – The Proposed Multimedia Fusion Method
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which is trained with a subset training data drawn from this distribution, is forced to

focus on increasingly harder fusion units for the overall classifiers Ht.

At iteration t (T iterations in total), our algorithm provides metaFusion with a

subset training data drawn according to distribution Pt from the original training data

S = {(X1, Y1), (X2, Y2), . . ., (Xn, Yn)}, where Xi are training fusion units data and

Yi are the correct labels for fusion units i = 1, . . . , n. metaFusion then computes a

classifier hk
t : X → Y, which should correctly classify a fraction of the training set with

respect to Pt. That is, metaFusion’s goal is to find a classifier hk
t , which minimizes

the training error:

εk
t =

n∑

i=1

Pt(i)I[hk
t (Xi) 6= Yi]

and scaled error is calculated as

βk
t =

εk
t

1 − εk
t

Similar to Adaboost, it requires that εk
t < 1/2 for each hk

t , that is, each classifier must

obtain a minimum performance of 50%. If εk
t > 1/2, the metaFusion will abort. For

each modality dataset, hk
t is obtained. Then, the overall classifier is obtained using

weighted majority voting

Ht(X) = arg max
Y ∈Y

N∑

k=1

(log
1

βk
t

)I[hk
t (X) = Y ]

and the error is calculated as:

Et =

N∑

i=1

Pt(i)I[Ht(Xi) 6= Yi]

The initial distribution Pt is uniform over S, that is, Pt(i) = 1
n

(the probability for

fusion unit Xi). All fusion units in S are therefore equally likely to be drawn as the

subset training data. The distribution is updated by

Pt+1(i) =
Pt(i)

Zt+1
×







Bt, if Ht(Xi) = Yi

1
Bt

, otherwise
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where

Bt =
Et

1 − Et

and Zt =
∑

i

Pt(i) is a normalization constant such that Pt+1 will be a distribution.

Essentially, easy fusion units that are correctly classified by Ht get a lower prob-

ability, and hard fusion units that are misclassified have a higher probability of being

selected for the next training data subset. Thus, our algorithm focuses on the fusion

units that seem to be hardest for metaFusion to train the overall classifier.

At the end of T iterations, the algorithm combines the intermediate classifiers

H1, . . . ,HT (the fusion classifier at each iteration) into a single final classifier Hfinal

using weighted majority voting.

Hfinal(X) = arg max
Y ∈Y

T∑

t=1

(log
1

Bt
)I[Ht(X) = Y ]

There are n fusion units of N information sources. Suppose the complexity of

metaFusion is α. If we adopt SVM, the complexity of metaFusion is α = O(n3).

The complexity of each iteration is then O(Nn3). There are T iterations in our fusion

method. Then, the total complexity is O(TNn3). It is the same as Learn++ fusion

method. Usually, T,N ≪ n.

3.2.4 Remarks

We make the following observations about our proposed MultiFusion algorithm.

• In the proposed fusion algorithm, metaFusion denotes a classifier training al-

gorithm, such as SVM. For the N information sources and T iteration steps,

the metaFusion classifier can be the same or different for different information

sources. Thus, it can be suitably adapted.

• A classifier is a mapping from a feature space X to a discrete set of labels Y. Thus,

for each modality dataset Mk, at each step t, though the feature space and discrete
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set of labels are the same, the mapping will be different. Thus, the classifiers are

different at each step even for the same modality dataset. As a result, for the N

information sources and T iteration steps, the total number of different classifiers

are N × T .

• At each step t, all the N classifiers for all the information sources will be trained

and then fused using weighted majority voting. In this way, a fused classifier Ht for

N information sources at step t is obtained and stored. After all the T iteration

steps, T fused classifiers Ht, t = 1, 2, . . . , T will be obtained. The final classifier

Hfinal is a combination of these fused classifiers using weighted majority voting.

After the training phase, for each data instance X ∈ X , the final label Y is the

weighted majority voting of Ht(X), t = 1, 2, . . . , T as for the Hfinal.

• The iteration steps T is user defined. Boosting forever can overfit the data and

therefore in order to achieve consistency, it is necessary to stop the boosting

procedure early after a very small number of iterations, such as 10 or 100 [Zhang

and Yu, 2005].

3.2.5 Comparison

It can be seen that there are several boosting methods for both unimodal and multi-

modal data. The unimodal methods are not be suitable for multimodal data due to the

heterogeneity of the data and features. Some of the previous multimodal algorithms us-

ing Adaboost fuse the features and use the combined features as the input for Adaboost.

It may be suitable only for some features since not all the features are homogeneous

and compatible to be combined together. It may be difficult to scale them for too many

features due to the high dimensionality of the combined feature. The related works are

summarized and compared in Table 3.1.

As shown in the table, our proposed MultiFusion algorithm has some advantages.
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Methods Modality Fusion

level

Intermediate

samples

Intermediate

output

Modalities

used

[Tieu and
Viola,
2004]

Unimodal Decision Resampled in-
stances

One feature clas-
sifier

One

[Maghooli
and Moin,
2004]

Multimodal Feature Fused multi-
modal features

Classifier for
fused multimodal
feature

All

Learn++
Fusion
[Parikh et
al., 2004]

Multimodal Decision Resampled data
for each modality

Classifier for each
modality

All

Selection
Fusion
[Xue and
Ding,
2006]

Multimodal Decision One feature
of resampled
instances

One feature clas-
sifier

All

[Joshi,
Naphade,
and Nat-
sev, 2007]

Multimodal Decision Partial bagging
data & Fixed
classifiers

Weights of classi-
fiers

Part

[Contreras,
Urunuela,
and del
Rincon,
2009]

Multimodal Feature Resampled data
for whole inte-
grated feature

Classifier for inte-
grated feature

All

MultiFusion
method

Multimodal Decision Resampled mul-
timodal instances

Weighted multi-
modal classifiers

All

Table 3.1: Comparison of proposed algorithm with representative related existing fusion
algorithms
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First of all, it works for multimodal data. We propose to use atomic event as the fusion

unit for multimodal data. This allows for each fusion unit to contain multiple informa-

tion sources and can be dealt with uniformly. It can work with heterogeneous features

since each information source of fusion unit can be trained using an appropriate method.

Second, it is a decision fusion method. The algorithm is thus easily scalable since only

decisions from all information sources are combined. Third, it adopts the Adaboost

structure and makes good use of the correlations among the information sources. By a

simple weighted combination of the multimodal data, the correlation of multimodal data

is used to develop one overall fusion decision at each iteration. More complicated forms

of multimodal data combination based on the data correlation can be applied without

much change. Then by updating the distribution and re-sampling the data, the overall

fusion performance should be improved because of the boosting structure. Moreover,

the proposed algorithm utilizes information from all of the information sources.

3.3 Experiments and Results

In order to show the effectiveness, our proposed fusion method has been tested on both

simulated data and a real application task.

3.3.1 Simulation

To show the effectiveness of the MultiFusion method, we simulated different cases of

multiple modalities and compared with different fusion methods. The notations are as

follows:

• Let M1,M2, . . . ,MN represent the set of N information sources.

• Let {M}K
1 ,K = 1, 2, . . . , N represent the fusion results of modalities 1 to K.

• Let N (µ, σ) represent a Gaussian distribution with mean µ and variance σ.
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We compared our fusion method with the widely-used and related method: one is

Learn++ fusion [Parikh et al., 2004], and the other one is Selection fusion [Xue and Ding,

2006], which selects one best single-modality feature to train an intermediate classifier

at each stage, and combines these different classifiers to obtain the final results. We

performed our simulation on the fusion of N different information sources. We simulated

N modalities M1,M2, . . . ,MN and then fused them one by one. For each modality, we

assume the data for each class obey the normal distribution [Aly and Hiemstra, 2009].

Thus, the data samples are generated using the following equation:

X = µ + ǫ (3.1)

Here, µ is the mean value for the corresponding class. ǫ is the noise which follows normal

distribution N (0, σ) ( mean 0 and variance σ). For each modality, there are binary

classes. Each class follows the above distribution with different mean value with distance

2. Then, a different σ value will generate data of a different noise characteristic. Smaller

variance σ value represents clearer data with less confusion, and large σ generates quite

noisy data. The number of instances is SP = SN = 50. To reduce the effects of

randomness in the results, we repeated every simulation run L = 50 times. The results

of each simulation run are actually obtained as an average over 50 times. In order to

test the results on different noise level, we have five σ values, σ = 1, 4, 9, 16, 25. Based

on these generated data, we simulated the fusion of N modalities. Here, N ranges from

1 to 10. The actual simulation process is described in Algorithm 3.

The simulation results are shown in Figure 3.4. It should be noted that the

fusion performance may be degraded when a new noisy information source is introduced.

However, the fusion results still generally outperform each information source. As can

be seen, the MultiFusion generally outperforms the Learn++ fusion method by 3-9%.

When there is less noise in the data and more information sources available, both

methods obtain good fusion results and the improvement does not seem to be much. For
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Figure 3.4: Simulation results. (a1-e1) shows the simulation fusion accuracy for Multi-
Fusion and weighted majority voting with 1-10 information sources and data distribution
variance σ ranging from 1 to 25. In each figure, the red dash line with black square rep-
resents the MultiFusion accuracy, the blue line with green circle represents the Learn++
fusion accuracy, and the magenta line with yellow diamond represents the Selection fu-
sion accuracy. (a2-e2) shows the simulation accuracy for 10 modalities fusion. M1−M10

represents the accuracy for each information source, LF represents the Learn++ fusion,
SF represents the Selection fusion, and MF represents the MultiFusion result.
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Input: σ for n modalities
Output: Fusion results for {M}K

1 ,K = 1, . . . , N
foreach Repetition l ∈ [1..L] do

foreach Modality Mi do

// Data generation

Generate SN negative samples and SP positive samples;
Select 50% negative and positive samples as training dataset;
Use remaining negative and positive samples as test dataset;

end

// Modality fusion

foreach Combination of modalities {M}K
1 do

Train a MultiFusion model for modalities {M}K
1 using the training

data;
Test fusion performance and report the results;

end

end

Report the average achieved performance over L repetitions;

Algorithm 3: The Simulation Procedure

example, the MultiFusion method only outperforms the Learn++ fusion method by no

more than 1% with noise σ = 1 and 10 information sources as shown in Figure 3.4(a).

But as the noise in the data increases, the improvement becomes obvious. For example,

the MultiFusion method outperforms the Learn++ fusion method by 6% with σ = 16

using all the information sources. On the other hand, the Selection fusion method

generally gets comparable results when the modalities are few (generally less than 4),

while the results do not improve much and are generally worse than Learn++ fusion and

MultiFusion as the number of information sources increases. Our proposed MultiFusion

method generally outperforms the Selection fusion method by 2-11%.

The significance test has also been done for the proposed MultiFusion method.

The final fusion results of fusing 10 information sources for different scenarios are col-

lected. By combining all the fusion accuracies of the 50 repetitions, paired t-tests have

been done between MultiFusion method and Learn++ fusion or selection fusion method.

It shows that MultiFusion method has passed the t-test with Learn++ fusion at the

5% significance level. The p − value is 0.002. As well, MultiFusion method passed the
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(a) human in the region(distant view) (b) human in the region but occluded

(c) human outside the region (d) human in the region(close view)

Figure 3.5: Human detection application

t-test with Selection fusion at the 5% significance level.

3.3.2 Human detection

To test the proposed MultiFusion method for a real application, we evaluated it for

a human detection task. The data are obtained from AVSS challenges set (http:

//www.elec.qmul.ac.uk/staffinfo/andrea/avss2007_d.html). We chose a dataset

containing both video and two-channel audio for multimodal fusion. Preview images

can be seen in Figure 3.5. The video is 8-bit color AVI format with 360 × 288 pixels

resolution. Video sampling rate is 25 Hz and audio sampling rate is 44.1 kHz. Sensor
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details are as follows:

• The camera is placed in the center of a bar that supports two microphones

• Distance between the microphones: 95 cm

• Microphones: Beyerdynamic MCE 530 condenser microphones

• Camera: KOBI KF-31CD analog CCD surveillance camera

The task is to detect whether there is a human in the rectangle region of the

frame, as shown in Figure 3.5.

The data are first segmented into frames and corresponding audio samples as

the atomic event. There are 1,077 frames. We randomly select 100 frames as training

samples, and the remaining frames are treated as the test set. The features used for

human detection are as follows:

• Audio: the ratio and differences of audio energy of two different channels. For

each frame, the audio energy for left and right channel EL and ER can be easily

calculated using audio samples. Then, the ratio of audio energy is obtained as

R = EL

ER
, and the difference of audio energy is calculated as D = EL − ER.

• Visual: the frame difference with the background. The background frame of the

scene B is chosen. Then, the gray scale frame difference between any frame F and

background B is calculated as fd = F − B.

In this experiment, we compared our proposed method with Learn++ fusion and

Selection fusion methods. Both methods utilize the Adaboost structure.

Figure 3.6 shows the results. There are only two information sources in the task.

Moreover, both features are quite noisy and do not perform well (the audio modality

classification accuracy is only 48%, and visual modality classification accuracy is 51%).

Sometimes they may conflict with each other. However, the MultiFusion approach still
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Figure 3.6: The results of human detection on AVSS dataset. Audio denotes the audio
modality accuracy. Visual denotes the visual modality accuracy. LF represents the
Learn++ fusion results. SF represents the Selection fusion results. MF represents the
MultiFusion results.

performs a little better than the Learn++ fusion and Selection fusion approach. The

Learn++ fusion approach obtains a result with about 52% accuracy, the Selection fusion

obtains a result with about 63% accuracy, while the MultiFusion approach achieves

about 64% accuracy. The proposed MultiFusion method outperforms Learn++ fusion

and Selection fusion by 12% and 1% respectively.

3.3.3 Discussion

The resampling procedure can help to improve the performance in Adaboost-like struc-

ture. In our proposed MultiFusion method, instead of resampling the instances accord-

ing to the performance of individual information source, the data are resampled based

on the performance of the fusion classifier. Thus, the procedure focuses more on the

instances that are difficult for fusion classifier instead of individual information source

classifier. For example, in the human detection task, the audio and visual information is

used. The difficult instances for single source classifier may not be difficult for the fusion

classifier. The human utters sound from time to time. Thus, the case when the human
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does not utter sound will be difficult for audio classifier, but it may not be difficult for

the fusion classifier since the human can be visually seen sometimes. Similarly, the hu-

man can be occluded sometimes. Thus, it is difficult for visual classifier, but it may not

be difficult for fusion classifier since the human can be detected by audio. For Learn++,

the procedure will focus more on the difficult cases for individual information source.

But for MultiFusion, the resampling procedure focuses on the difficult cases for fusion

classifier, which is the real difficult cases for fusion. The performance of MultiFusion is

thus better than Learn++ fusion. For Selection Fusion, only one information source is

used in each iteration, and the others are discarded. Thus, the performance of Selection

Fusion is also not as good as that of MultiFusion.

3.4 Conclusions

In this chapter, a novel multimodal fusion algorithm is proposed. The MultiFusion ap-

proach is used for multimodal data by segmenting multimodal data into atomic events

and using the atomic event as fusion unit. It adopts a boosting structure, where in

each iteration, the correlation of multiple information sources is implicitly used by com-

bining different modality classifiers using weighted majority voting to form an overall

classifier. The correlations are implicitly used multiple times. Moreover, by adopting

the Adaboost-like structure, the overall performance is improved. In this way, the mul-

timodal fusion can be applied to multimodal data in different applications to utilize

complementary yet correlated information and improve the performance. Both the sim-

ulation experiment and the real application task show the effectiveness of the algorithm.

The measurement of multimodal correlations still needs to be studied in detail. More

sophisticated fusion techniques to make better use of correlations for improved fusion

results will be investigated in the future. Chapter 4 can be one of the possible ways to

properly measure and utilize correlation to improve multimedia fusion performance.



80

Chapter 4

Portfolio Fusion

Various ways of combining the evidences from different information sources have been

proposed as discussed in literature review. The correlation among information sources

should be useful, but is seldom explicitly considered. Chapter 3 has shown that multiple

utilization of correlation can help to improve the performance. A sophisticated modeling

of correlation should also help to find the optimal weights in linear fusion.

Linear Opinion Pool is one of the simplest and most widely used methods for com-

bining information from a multiplicity of information sources. As discussed in Chapter 2,

the linear fusion method is computationally less expensive compared to other methods.

It is also easily scalable. Several methods based on linear fusion have been proposed.

Max, Min, Average [Ngo et al., 2007] and Adaboost [Freund and Schapire, 1997] are

such commonly used methods. Max, Min, Average [Ngo et al., 2007] fusion methods do

not take the difference between modality performances into account. Adaboost fusion

obtains the final decision by assigning appropriate weights to each information source.

The weights are related to the accuracy-error rate of each information source.

Most of the methods consider the fusion as an information aggregation task.

They aim to maximize the aggregated information by assigning proper weights to in-

dividual information channels [Li et al., 2009]. However, how to find the appropriate
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weights (or confidence level) for different information sources is still an open research

issue [Atrey et al., 2010]. Furthermore, the existing methods generally aim to maximize

the accuracy, but perfect classification models generally cannot be learned due to noise

and the training/test distribution gap. Moreover, in a multimedia data-understanding

task, we often assert similarity between data based on our beliefs which does not come

from classical probability experiments [Wu et al., 2004]. Thus, the decision cannot be

estimated with absolute certainty using the classification models. Thus, the risk (uncer-

tainty) is an intrinsic feature prediction using classification models. The uncertainty is

the lack of complete certainty, that is, the existence of more than one possibility. There

are many sources of uncertainty such as ambiguity, noise, and deviations between the

scoring function and the true probability of relevance. Taking the real accuracy as a

type of “an investment return” of our classification models, we should maximize the

return as a desirable thing and minimize the variance of the return as an undesirable

thing. To the best of our knowledge, minimizing the effect of uncertainties has never

been explicitly considered in multimedia fusion methods. To solve this problem, the

portfolio theory is introduced.

4.1 Portfolio Theory

Portfolio theory was introduced by Markowitz in [Markowitz, 1952], for which he won

the Nobel prize in economics. In his work “Portfolio Theory Selection”, he recom-

mended the use of expected return-variance of return rule, “... both as a hypothesis

to explain well-established investment behavior and as a maxim to guide one’s own ac-

tion”. Later, Jagannathan and Wang [Jagannathan and Wang, 1996] recognized the

mean-variance analysis and the Capital Asset Pricing Model as “... major contributions

of academic research to financial managers during the postwar era”. Campbell and

Viciera [Campbell and Viceira, 2002] wrote on Page 7, “Most MBA courses, for exam-
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µ

σ

Figure 4.1: The illustration of the portfolio bound

ple, still teach mean-variance analysis as if it were a universally accepted framework for

portfolio choice”.

Portfolio theory is a theory of investment which tries to maximize the return

and minimize the risk by carefully choosing different securities and is widely used in the

finance industry. Security is a legal entitlement to receive (or an obligation to pay) an

amount of money. A portfolio is a combination of existing securities, which tell us how

many units of each security have to be bought or sold to create the portfolio [Černý,

2003]. The theory starts with relevant beliefs about future performances of available

assets according to the past track records, and ends with a choice of portfolio. The

portfolio theory models a portfolio as a weighted combination of securities. Let µ be

the expected return and σ be the variance of the gross returns. The set of possible

µ, σ-combinations offered by portfolios of risky securities that yield minimum variance

for a given rate of return is called minimum-variance opportunity set or portfolio bound.

It is illustrated in Figure 4.1. The upper part of the portfolio bound is called efficient

frontier, also known as Markowitz frontier. All the portfolios on the efficient frontier

have the highest attainable rate of return given a particular level of standard deviation.

The efficient portfolios are candidates for the investor’s optimal portfolio.

There are two salient features of any security investment.
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• Uncertainty is an inherent feature of security investment. Economic forces are

not understood well enough for predictions to be beyond doubt or error. The

consequences of economic conditions are not understood perfectly. Moreover,

non-economic influences, such as changes in international tensions, or a natural

disaster, can change the success of a particular investment.

• The correlation among security returns is another inherent feature of security

investments. As seen in the recent past, bank stocks were highly correlated. Or

a country specific stocks could be correlated, e.g., companies of Haiti. To reduce

investment risk, it is necessary to avoid a portfolio whose securities are all highly

correlated with each other. One hundred securities whose returns rise and fall

in near unison afford little more protection than the uncertain return of a single

security. The returns on correlated securities tend to move up and down together.

Diversification of security investments could eliminate risk if their returns are not

correlated.

The criteria for choosing an investment portfolio, which serves as a guide to

the important and unimportant, the relevant and irrelevant, depends on the nature

of the investor. Investors can be conservative, balanced, or aggressive based on their

appetite for risk. Conservative investors may emphasize more on low risk. However,

two objectives of portfolio analysis are common:

• Investors want the “return” to be high.

• They want this return to be dependable, stable, not subject to uncertainty.

By combining different securities whose returns are not correlated, portfolio the-

ory seeks to reduce the total variance of the portfolio. The appetite for risk determines

the variance. Due to its excellent performance, this theory is widely used today. Besides

financial instruments, some experts have applied the theory to other areas and disci-
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plines. Portfolio theory has been applied to portfolios of projects [Hubbard, 2007]. In

developmental economics, Conroy [Conroy, 1975] modeled the labor force in the econ-

omy using portfolio-theoretic methods to examine growth and variability in the labor

force. In social psychology, the self-concept consisting of self attributes is modeled using

portfolio theory [Chandra and Shadel, 2007]. The predictions based on this model have

been confirmed in studies involving human subjects. Recently, Wang et al. adopted

portfolio theory in information retrieval in [Wang and Zhu, 2009]. The ranking problem

is formulated as a portfolio selection problem. That is, in document retrieval, a top-n

ranked list (portfolio) of documents is selected as a whole, rather than ranking docu-

ments independently. The volatility (the change) of the documents’ relevance can be

reduced by diversification. The weights of rank positions are chosen according to the

discount factors in [Järvelin and Kekäläinen, 2002]. By deriving an objective function

considering both relevance and uncertainty according to portfolio theory, the proposed

document ranking algorithm sequentially selects a document and optimizes the objective

function. As a result, a right combination of top-n relevant documents are chosen. The

theory brings improved text retrieval performance. It is different from our multimedia

portfolio fusion method. The weights are fixed for the retrieval work, and the method

is to select appropriate documents.

The multimedia fusion problem is quite similar to portfolio analysis in finance.

Each information source can be considered as a security in financial investment. The

information source also has two salient features:

• First of all, the information source has the uncertainty feature. There is still no

perfect learning to predict without doubt or error. For example, some objects may

be misclassified in object detection if they have similar color with background.

• Moreover, it is quite common that some information sources are correlated. For

example, two spatially proximate cameras will report results in near unison.
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In multimedia fusion, we study each information source to obtain classifiers and

invest different weights on each information source to obtain good classification results

on future unseen instances. The objective is to achieve a high dependable return. Most

of existing methods aim to maximize expected accuracy. However, it will not be able

to guarantee actual high accuracy due to uncertainty. Even when we have a classifier

with high expected accuracy, it is not safe if its variance is high [Breiman, 1996]. Take

surveillance scenario as an example: camera information is generally reliable in human

detection, i.e., high expected detection accuracy. However, it works well in the day time,

but can barely detect anything in the dark. That is, the performance varies dramatically

from time to time, and thus the variance is also high. On the other hand, the audio

sensor generally cannot perform detection as well as camera, but it can work in both

the day time and the dark. That is, the audio sensor can have low expected accuracy as

well as low variance. Thus, uncertainty is an extremely important feature that demands

serious consideration. Moreover, the information sources in the multimedia systems are

generally correlated. It is not always correct to assume independence of the information

sources. Thus, diversification is beneficial for multimedia fusion. Poh et al. in [Poh

and Bengio, 2005] discussed how the correlations affect the fusion performance. It is

shown that the more dependent the information sources are, the lesser the gain one

can benefit out of fusion. The positive correlation “hurts” fusion (fusing two correlated

information sources of similar performance will not always beneficial) while negative

correlation (greater “diversity”) improves fusion. For example, the spatially proximate

cameras will report results in near unison and have positive correlation. They may

dominate the decision even if their predictions are wrong, and thus hurt the fusion

performance. On the other hand, camera and audio sensor in surveillance capture

different information from visual and audio data and may complement each other. Thus,

they have negative correlation and can improve the fusion performance. As stated

above, both uncertainty and correlation should be considered in multimedia fusion. It
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is not advisable to only maximize the expected performance in multimedia fusion. We

should attempt to maximize expected return (desired performance, e.g., accuracy) and

minimize risk (the uncertainty in the decision) to achieve an overall good performance.

The portfolio theory is key in helping achieve this.

4.2 Problem formulation

• S is a multimedia system designed for accomplishing a detection task D. The mul-

timedia system S consists of N ≥ 1 correlated information sources M1,M2, ...,MN .

• For 1 ≤ i ≤ N , let Ii(X) be the prediction of the detection task D based on

the individual ith information source on instance X. It is obtained by employing

a detector on the features extracted from Mi, and can be either probabilistic

output (posterior probability estimations) or decision output (belief values or -

1/+1 decision values). The final prediction I of S consisting of information sources

M1,M2, ...,MN is modeled as:

I(X) =

N∑

i=1

wiIi(X) (4.1)

where, wi is the normalized weight assigned to Mi. 0 ≤ wi ≤ 1,
N∑

i=1
wi = 1. In

the classification problem, the prediction is the output of likelihood for different

classes.

• For 1 ≤ i ≤ N , let ri(X) be the return of Mi at X individually, and Ri be the

expected return of Mi, which is defined as Ri = E[ri]. The return depends on the

application.

• For 1 ≤ i, j ≤ N , let Φ = [Φij] be the covariance matrix between information

sources. The element Φij is defined as Φij = E[(ri−E[ri])(rj −E[rj ])]. It captures

the correlations of different information sources.
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Our aim is to find the optimized weights wi so that the fusion prediction I

achieves good performance (desirable results, e.g., high accuracy or high average preci-

sion, for different applications). To solve this problem, the portfolio theory is employed

to obtain suitable weights. The portfolio theory helps pick a portfolio of securities ac-

cording to their return and risk. To adopt it in multimedia fusion, the return and risk

of each information source need to be defined first.

4.2.1 Return and Risk

Each information source in the multimedia system is considered the equivalent of a

security in financial investment. The definition can be varied to different applications

according to their aims. For example, in the classification problem, since the aim of the

classifier of the information source is to accurately predict the labels and the performance

is evaluated using accuracy, the return should be positive if the prediction is correct and

negative otherwise. For ith information source on instance X, the return ri(X) is defined

as Equation 4.2:

ri(X) =







1 if hi(X) = y(X)

−1 otherwise

(4.2)

where hi(X) is the predicted class of ith information source on instance X, and y(X)

is the actual class of instance X. For the retrieval problem, where we evaluate the

performance using average precision, the definition of return can be Equation 4.3:

ri(X) =







Ii(X) − 0.5 if y(X) = 1

−(Ii(X) − 0.5) otherwise

(4.3)

Based on this definition, the expected return of ith information source Ri is

approximated using ri(X) over all the previous instances Xα, α = 1, . . . , n:

Ri = E[ri] =
1

T

n∑

α=1

ri(Xα) (4.4)
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The risk of information source is modeled as the standard deviation σ of return.

For information source Mi,

σ2
i = E[(ri − E[ri])

2] (4.5)

σi ∈ [0, 1], and larger value indicates more risk.

4.2.2 Correlation

The correlation among different information sources represents how they co-vary with

each other. In many situations, the correlation between information sources provides

useful information. Moreover, diversification which is related to correlation among in-

formation sources is beneficial for multimedia fusion to reduce risk.

The popular Pearson’s correlation coefficient is used to measure the correlation

between different information sources. Pearson’s correlation coefficient between two

variables is defined as the covariance of the two variables divided by the product of

their standard deviations. For information source Mi and Mj , the correlation ρij is

defined as Equation 4.6:

ρij =
E[(ri−E[ri])(rj−E[rj ])]

σiσj

=







1 if i = j
n∑

α=1
(ri(Xα)−Ri)(rj(Xα)−Rj)

√
n∑

α=1
(ri(Xα)−Ri)2

√
n∑

α=1
(rj(Xα)−Rj)2

otherwise

(4.6)

ρij ∈ [−1, 1]. The covariance matrix for N information sources is Φ = [Φij ]N×N , in which

Φij = ρijσiσj . The σi and σj are the standard deviation of returns for information source

Mi and Mj , which is defined in Equation 4.5. Φ = [Φij ]N×N captures the correlations

and risk of multiple information sources.
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4.2.3 Optimal Weights with Portfolio Theory

According to portfolio theory, the optimal portfolio is on the Markowitz frontier and it

can be found by minimizing the expression 4.7, which is to maximize the return while

minimize the variance of return:

f = wTΦw − λRTw (4.7)

where,

• w =













w1

w2

...

wN













is the vector of the weights for information sources. 0 ≤ wi ≤ 1 and

N∑

i=1
wi = 1.

• R =













R1

R2

...

RN













is the vector of the expected returns for information sources. RTw

models the expected return of the portfolio of information sources.

• Φ is the covariance matrix for the information sources in the multimedia system.

wTΦw models the variance of return of the portfolio.

• λ ∈ [0,+∞) is “risk tolerance” factor. Different values can be used for different

“risk appetite” in various applications. λ = 0 results in minimizing the risk

(conservative risk appetite), while λ = +∞ results in maximizing the expected

return of the fusion results (aggressive risk appetite).

To solve the optimization problem, we used the quadratic programming (QP) ap-

proach. A linearly constrained optimization problem with a quadratic objective function

is called a quadratic program (QP).
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In the multimedia portfolio fusion method, the aim is to minimize:

f = wTΦw − λRTw

It is equivalent to minimizing (by multiplying 1
2 on both sides)

fw =
1

2
f =

1

2
wTΦw + RT

p w

where, Rp = (−λ
2 ) × R. There is one equality constraint (

N∑

i=1
wi = 1):

[

1 1 · · · 1

]













w1

w2

...

wN













= 1

There are N inequality constraints (wi ≥ 0 for i = 1, ..., N):

[

0 0 · · · 1 · · · 0

]

︸ ︷︷ ︸

i













w1

w2

...

wN













≥ 0

In our case, Φ is the covariance matrix according to our definition. It can be

proved that the covariance matrix is positive semidefinite. The problem is thus a convex

QP and can be solved using the active set method. Active set method can be described

in general as follows in Algorithm 4. The details of the algorithm can be found on page

472 of [Nocedal and Wright, 2006].

Generally, the “risk tolerance” factor λ is set such as the values of covariance Φ

and return Rp are of the same order of magnitude to trade-off between risk and return.

Too large λ will hurt the performance. Here, we simply set λ = 1, which corresponds

to a moderate appetite for risk of a balanced investor.
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Input: A quadratic program
Output: Feasible optimization solution
Compute a feasible starting point;
Set a subset of the active constraints at this point;
while There are negative Lagrange multipliers do

solve the equality problem defined by the active set;
compute the Lagrange multipliers of the active set;
remove a subset of the constraints with negative Lagrange multipliers;
search for infeasible constraints and update;

end

Algorithm 4: Active Set Method

4.2.4 Multimedia Portfolio Fusion

In summary, the portfolio fusion method is described in Algorithm 5 and 6, and is

illustrated in Figure 4.2. The return and risk for information sources are first computed

using the past (training) data. Then, portfolio theory gives the optimal weights for the

information sources by minimizing the risk while maximizing the return, as shown in

Algorithm 5. After that, as shown in Algorithm 6, for each test instance, the predictions

from the information sources will be combined linearly using the optimal weights, and

the class with largest prediction value will be chosen as the class of the instance. When

a new information source is introduced, only the correlations will be computed against

training the fusion model again in training-based fusion method, which saves many

computation efforts.

4.3 Simulation Experiment

To show the effectiveness of our proposed portfolio fusion method, we simulated different

cases of multiple information sources and applied to different fusion methods. We

performed our simulation on the fusion of N information sources. The notations are in

the following:

• Let M1,M2, ...,MN represent the set of N information sources.
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Input: Labeled observations for N information sources,
“risk tolerance” factor λ
Output: Optimal weights w for the fusion
// Calculate the return for each information source

foreach Information source Mi do
Train a classification or decision model modeli using the observations in
information source Mi;
Calculate the return ri(X) for each observation in information source
Mi;
Obtain the expected return Ri for information source Mi;

end

// Calculate the return vector

Obtain the vector of the returns for all the information sources R =








R1

R2
...

RN







;

// Calculate the covariance matrix of information sources

foreach Information source pair Mi,Mj do
Calculate the covariance Φij of information source Mi,Mj ;

end

Obtain the covariance matrix Φ =
[
Φij

]

N×N
;

// Portfolio theory optimization

Rp = (−λ
2 ) × R;

Minimize fw = 1
2w

TΦw + RT
p w using the constraints to obtain optimal

weights w (e.g., using Active Set Method);

Algorithm 5: Optimal Weights Determination by Portfolio Theory

Input: Optimal weights w for different information sources
Output: Prediction result c
In the future, for instance X;

Calculate the prediction I(X) =
N∑

i=1
wiIi(X) for each class;

The class c with largest prediction value is the predicted result for X;

Algorithm 6: Portfolio Fusion Method
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Covariance Matrix Φ
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Figure 4.2: The architecture of the portfolio fusion method

• Let {M}K
1 ,K = 1, 2, ..., N represents the fusion result of information sources 1 to

K.

• Let N (µ, σ) represent a Gaussian distribution with mean µ and standard deviation

σ.

We compared our fusion method with other widely used methods under different

conditions. One is the weighted linear fusion. The weights are obtained according to

the widely used Adaboost [Polikar et al., 2001] method. For information source Mi,

wi = 1
2 ln(1−ei

ei
), where ei is the error rate of the classifier for information source i. The

fusion result for N information sources is defined as:

I(X) =

N∑

i=1

wiIi(X) (4.8)

We refer to this method as the weighted fusion method. We refer to the method that

assigns the same equal weights to all different information sources as the average fusion

method.
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The other method is the naive Bayesian fusion [Manyika and Durrant-Whyte,

1994] method. The fusion results for N information sources is defined as:

I(X) =

N∏

i=1

Ii(X) (4.9)

where Ii(X) is the probabilistic output of information source Mi. We refer to this

method as the Bayesian fusion method.

We now describe the results of the simulation runs. Section 4.3.1 gives the

description of the simulations. Section 4.3.2 specifies what parameter changes are in-

vestigated in our simulation experiments and how they affect the results.

4.3.1 Simulation Setup

We performed our simulation on the fusion of N different information sources. We sim-

ulated N information sources M1,M2, ...,MN and then fused them one by one. For each

information source, we generally assume two Gaussians for the negative and positive

class [Aly and Hiemstra, 2009]. We randomly generate the annotated collection for each

information source (which carries -1/+1 label for each instance). The negative class has

distribution N (µ0, σ0) and positive class has distribution N (µ1, σ1). The number of

instances is SP = SN = 200. To reduce the effects of randomness in the results, we

repeated every simulation run L = 50 times. The results of each simulation run is ac-

tually obtained as an average over 50 times. The actual simulation process is described

in Algorithm 7.

4.3.2 Simulation Parameter Variation

As our goal is to validate the performance of the proposed fusion algorithm, we vary

the parameters combination to see the overall performance of the fusion algorithm and

compare with other widely used methods. We choose different values for simulation

parameters µ0, σ0, µ1, σ1 for each information source. Here, a large standard deviation
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Input: µ0, σ0, µ1, σ1 for N information sources
Output: Fusion results for {M}K

1 ,K = 1, ..., N
foreach Repetition l ∈ [1..L] do

foreach Information source Mi do

// Data generation

Generate SN negative samples from N (µ0, σ0);
Generate SP positive samples from N (µ1, σ1);
Select 50% negative and positive samples as training dataset;
Use remaining negative and positive samples as test dataset;
// Model training

Train a classification model modeli for information source Mi using
the training data;
Calculate the returns;

end

// Modality fusion

foreach Combination of information sources {M}K
1 do

Find the optimal weights w using portfolio theory;
Calculate classification performance and report the results;

end

end

Report the average achieved performance over L repetitions;

Algorithm 7: The Simulation Procedure

represents more noise thus more uncertainty in the data. The large mean difference

between positive and negative class µ1 − µ0 represents more discriminative in the data.

The models are trained using LIBSVM [Chang and Lin, 2001]. For each simulation run,

we use new seeds for the random number generator to ensure high quality of randomness.

Here, we empirically set λ = 1.

In the simulation experiments, we tested the methods on six different scenarios

with up to N = 10 information sources. The simulations are tested on both independent

information sources and correlated information sources. Then, in each of these cases, we

examined the information sources with different standard deviation and same standard

deviation (both large discriminative and small discriminative information sources). The

six scenarios are specified as follows:

1. Independent information sources with different standard deviation for each infor-

mation source
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2. Independent information sources with the same standard deviation for each infor-

mation source but large difference between positive and negative class

3. Independent information sources with the same standard deviation for each infor-

mation source but small difference between positive and negative class

4. Correlated information sources with different standard deviation for two categories

of information sources

5. Correlated information sources with the same standard deviation for two cate-

gories of information sources but large difference between positive and negative

class

6. Correlated information sources with the same standard deviation for two cate-

gories of information sources but small difference between positive and negative

class

The simulation results are shown in Figure 4.3. The descriptions can be found in

Table 4.1.

• Figure 4.3(a) and 4.3(d) show the simulation results of independent information

sources with varying standard deviations (scenario 1). We set the standard devi-

ation σ0 = σ1 = i for i = 1, ..., N with µ1 − µ0 = 10.

• The next two figures show the simulation results of independent information

sources with the same standard deviation σ0 = σ1 = 1. Figure 4.3(b) and 4.3(e)

show the experiment with larger mean difference between positive and negative

class µ1 −µ0 = 2 (scenario 2), while Figure 4.3(c) and 4.3(f) show the experiment

with smaller mean difference between positive and negative class µ1 − µ0 = 1

(scenario 3).
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Scenario Correlation µ1 − µ0 σ

1 Independent 10 1–10 for each in-
formation source
respectively

2 Independent 2 1

3 Independent 1 1

4 Correlated
(information
sources 1–9)

10 9 for correlated
information
sources, and 1 for
the other one

5 Correlated
(information
sources 2–10)

2 1

6 Correlated
(information
sources 2–10)

1 1

Table 4.1: Descriptions of simulation scenarios: µ1−µ0 denotes mean difference between
positive and negative class, σ denotes standard deviation

Then, the same scenarios are simulated on the fusion of correlated information

sources. Here, for high correlation, we have 9 out of 10 information sources with the

same data (the models are trained separately).

• In the simulation shown in Figure 4.3(g) and 4.3(j), we have σ0 = σ1 = 1 for one

information source and σ0 = σ1 = 9 for the other 9 information sources (scenario

4). The mean difference between positive and negative class is µ1 − µ0 = 10.

• In the other two simulations, we use information sources with the same standard

deviation σ0 = σ1 = 1 but different mean difference between positive and neg-

ative class for different discrimination. The mean difference is µ1 − µ0 = 2 for

Figure 4.3(h) and 4.3(k) (scenario 5), while the mean difference is µ1 −µ0 = 1 for

Figure 4.3(i) and 4.3(l) (scenario 6).

We can draw the following conclusions from the simulation results,

• For independent information sources (scenario 1-3),
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(a) Fusion results of scenario 1
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(b) Fusion results of scenario 2
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(c) Fusion results of scenario 3
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(d) Information source specifica-
tion of scenario 1: independent
information sources. σ0 = σ1 =
11 − i for Mi with µ1 − µ0 = 10.
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(e) Information source specifica-
tion of scenario 2: independent
information sources. σ0 = σ1 = 1
for all information sources with
µ1 − µ0 = 2 for all information
sources.
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(f) Information source specifica-
tion of scenario 3: independent
information sources. σ0 = σ1 = 1
for all information sources with
µ1 − µ0 = 1 for all information
sources.
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(g) Fusion results of scenario 4
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(h) Fusion results of scenario 5
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(i) Fusion results of scenario 6
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(j) Information source specifica-
tion of scenario 4: correlated in-
formation sources. σ0 = σ1 = 9
for the first 9 information sources,
σ0 = σ1 = 1 for last with µ1 −

µ0 = 10 for all.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Modality M
i

Ac
cu

ra
cy

(k) Information source specifica-
tion of scenario 5: correlated in-
formation sources. σ0 = σ1 = 1
for all information sources with
µ1 − µ0 = 2 for all information
sources.
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(l) Information source specifica-
tion of scenario 6: correlated in-
formation sources. σ0 = σ1 = 1
for all information sources with
µ1 − µ0 = 1 for all information
sources.

Figure 4.3: The results of simulation runs for different simulation scenarios. Red circle
represents the results of our proposed portfolio fusion method, blue asterisk represents
the results of weighted fusion method, cyan plus sign represents the results of average
fusion method and magenta square represents the results of Bayesian fusion method.
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– For the information sources that are of the similar performance (scenario

2-3), the fusion results are similar for all the 4 different fusion methods.

– For the information sources that are of different performance (scenario 1),

the fusion results of portfolio fusion, Bayesian fusion, and average fusion are

similar, and all outperform the weighted fusion method by 2-20%.

• For highly correlated information sources (scenario 4-6),

– For the information sources that are of either similar (scenario 5-6) or dif-

ferent performance (scenario 4), the portfolio fusion method outperforms the

Bayesian fusion, average fusion and weighted fusion methods. The portfolio

fusion method outperforms the other fusion methods by about 3-15%.

It is observed that our portfolio fusion method is robust and has the best performance

compared to the other methods in the various cases. Moreover, our portfolio fusion

method can adapt to both probabilistic output and decision label output for the infor-

mation sources. This is because the return and risk definition does not depend whether

the output is probabilistic or deterministic. The Bayesian fusion method can only be

used to probabilistic output.

4.3.3 Risk Tolerance Variation

We choose different values for risk tolerance and measure the performance in the 6

scenarios. The simulation results with different λ values (from very small value, i.e., 0,

to very large value , i.e., 100) are shown in Figure 4.4.

It can be observed that for independent information sources scenarios, moderate

values can achieve good performance. For correlated information sources scenarios (more

emphasis on risk), small values can achieve better performance. In general, moderate

values can always achieve rather good performance.
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(c) Results of scenario 3
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(f) Results of scenario 6

Figure 4.4: The results of simulation runs for different λ values.
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4.4 Concept Detection Using Portfolio Fusion

To test the proposed portfolio fusion method for real applications, we evaluated it for

concept detection on MSRA-MM dataset [Wang, Yang, and Hua, 2009]. There are

10,000 images labeled with respect to each concept. The dataset is equally divided

into development and test sets: 5,000 images are selected for development of concept

detection, and the other 5,000 images are for testing of concept detection. In the dataset,

there are 50 concepts labeled non-exclusively for the images, such as mountain, ocean,

indoor, building, cartoon.

In this experiment, four types of features from each images are exploited for

the concept detection, including: (1) 64D HSV color histogram; (2) 256D RGB color

histogram; (3) 75D edge distribution histogram; (4) 128D wavelet texture. The classi-

fication models are trained using the data from each information source with LIBSVM

[Chang and Lin, 2001]. The attributes are scaled before applying SVM. When train-

ing SVM models, it is important to maintain balance between the number of positive

and negative samples provided [Yanagawa et al., 2007]. In general, the concepts in the

dataset are highly skewed towards negative samples (on average 6.5% positive samples).

In our implementation, we utilized all available positive samples and randomly selected

negative examples. The procedure for selecting negative samples is as follows: Let Np

denote the number of positive samples, and Nn denote the number of negative samples

in the dataset. Take all the positive samples. Then,

• If Np > Nn, all available negative samples are chosen.

• If Np < 10% × Nn, we randomly selected 10% of negative samples.

• If 10% ×Nn < Np < Nn, we randomly selected a set of negative samples equal in

size to the number of positive samples.

The reliability of learned SVM models can also be highly sensitive to the selection of
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model parameters. In our experiments, the objective is to evaluate the relative fusion

performance rather than the absolute performance. Thus, we used the RBF kernel

which in general is a reasonable first choice, and set the cost parameter to be 10. The

other parameters were kept at default values [Chang and Lin, 2001].

After learning separate models for each feature, the outputs of each model are

combined to obtain the fusion results. Here, we empirically set the “risk tolerance”

factor λ = 1 (moderate risk) and compare our method with average fusion and Bayesian

fusion methods which are popular and reported to have good performance for concept

detection in [Li et al., 2009] and [Zheng et al., 2008].

The evaluation criteria for concept detection is the mean average precision (MAP),

which is the mean of average precision (AP) for each concept. The AP is defined as:

AP =

K∑

k=1

P (k) × R(k)

T
(4.10)

where k is the retrieved rank, K is the total number of images retrieved, P (k) is the

precision of retrieved first k images, R(k) is the relevance of image at rank k (0 or 1),

and T is the total number of relevant images in the corpus. Precision is defined as:

P =
#retrieved relevant images

#retrieved images
(4.11)

Relevance R(k) is defined as:

R(k) =







0 if image k is not relevant

1 if image k is relevant

(4.12)

The average precision for each concept is calculated over the retrieved relevant

images K = 5, 000 and is shown in Figure 4.5. Here, only the concepts with precision

larger than 1× 10−7 in any fusion method are shown. There are 14 concepts, including

animal, building, cartoon, crowd, earth, indoor, man, mountain, ocean, outdoor, people,

sky, vegetation, and woman. As shown in Figure 4.5, the portfolio fusion method out-

performs Bayesian fusion on 13 concepts (except earth which has same performance) and
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average fusion on 14 concepts. It suggests that our portfolio fusion method can make

good use of correlation and uncertainty in decisions in different information sources. For

example, in the concepts of mountain and ocean, the information sources have similar

performances and are highly correlated. The information sources can be approximately

considered as one group and the weights can be assigned to any source. As a result,

the portfolio fusion method assigns all the weight to HSV color histogram feature. Be-

cause the information sources are highly correlated, the fusion does not improve the

performance much and the average precision for different fusion methods are all low.

In addition, the results of our portfolio fusion method are generally better for almost

all the concepts. It indicates the superiority of our proposed portfolio fusion method

against the average fusion method and Bayesian fusion method. It may be because our

fusion method made better use of correlation and uncertainty of the decisions from dif-

ferent information sources. The correlation of different information sources in different
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Figure 4.5: Average precision of each concept

concepts is shown in Figure 4.6. The whiter the image, the larger the correlation. It

shows that the correlation is consistent with the performance. For the concepts that

have diverse information sources and some are highly correlated, e.g., outdoor and man,
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the improvement is significant. But for the concepts that all the information sources

are highly correlated or rather independent, e.g., indoor and sky, the improvement is

not so much.

(a) animal (b) building (c) cartoon (d) crowd (e) earth

(f) indoor (g) man (h) mountain (i) ocean (j) outdoor

(k) people (l) sky (m) vegeta-
tion

(n) woman

Figure 4.6: The correlation of different information sources in different concepts

The mean average precision (MAP) results are shown in table 4.2. It can be

observed that the MAP of our portfolio fusion method outperforms MAP of the average

fusion and Bayesian fusion by about 24% (relative).

4.5 Human Detection Using Portfolio Fusion

The portfolio fusion method is also evaluated for human detection. The dataset is

recorded using multiple sensors. There are three audio sensors and two cameras. The

sensor layout schema in Figure 4.7 shows the relative camera and audio sensor position

and overlap. The example camera views are shown in Figure 4.8. Comparing to the

dataset in Chapter 3, the dataset here is captured by multiple sensors (3 audio sensors
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and 2 cameras).

Methods Average fusion Bayesian fusion Portfolio fusion

MAP 0.083 0.084 0.104

Table 4.2: MAP by different fusion methods

Board

Audio sensor 1 Audio sensor 2 Audio sensor 3

Camera 1 Camera 2

Figure 4.7: Sensor layout schema

The task is to detect whether there is human in the region. The data in different

streams are first synchronized by timeline. Then, the data are segmented into frames

and corresponding audio samples as the examples. There are 840 examples, each with

one frame and corresponding 1 second audio samples. 420 examples are selected as

training set, and the remaining examples are treated as test set. The features using for

human detection are as follows:

• Audio: the audio energy. For each time interval, the audio energy can be easily

calculated as the sum of squared audio samples.

• Visual: the frame difference with the background.

The features are easy to use and reasonable for human detection. Moreover, the ob-

jective is to demonstrate the proposed method works well compared to other fusion

methods. Though not too complicated features are used, it should not impact the

relative performance of the different fusion methods.
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Figure 4.8: Example camera views

The model for each information source is trained using LIBSVM with default

parameters. Then, the portfolio fusion method is compared with average fusion method,

Bayesian fusion method, weighted fusion method, and MultiFusion method. The “risk

tolerance” factor for portfolio fusion is empirically set to be λ = 1 here.

The performance of each information source is shown in Figure 4.9. Table 4.3

illustrates the fusion results with different fusion methods. The video and audio in-

formation sources are highly correlated, and degraded the fusion performance in other

fusion method. The performance in other fusion methods are lower and almost the

same. That is because the audio information sources are majority and dominate the

performance in other fusion methods. The portfolio fusion method makes use of the

correlation and uncertainty. It outperforms the other three methods by about 7.8%

(relative). The correlation of different sensors in recorded data is shown in Figure 4.10.

It shows that the audio sensors are highly correlated, and can dominate the results since

they are in majority.
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Figure 4.9: The performance of each information source

Figure 4.10: The correlation of different information sources for recorded data

Methods Average Bayesian Weighted MultiFusion Portfolio

Accuracy 82.86% 82.86% 82.86% 82.86% 89.29%

Table 4.3: Detection accuracy by different fusion methods
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The significance tests have been conducted. The experiments have been repeated

20 times and the t-tests have been done. It shows that the proposed portfolio fusion

method passes the t-test with other fusion methods at the 5% significance level.

4.6 Conclusion

In this chapter, a novel multimedia fusion method using portfolio theory is proposed.

It shows that the proper modeling of correlation among information sources can help to

improve the performance. The proposed method can be applied to either probabilistic

output or decision output. Moreover, it is easily scalable. Our proposed fusion method

does not require additional learning for weights after models for each information source

are trained. When a new information source is introduced, only the correlations will

be computed instead of training the fusion model again. With well defined returns

and risk, portfolio fusion method tries to maximize the return while minimizing the

risk. Using appropriate definition of returns and risk, the method can also be adapted

to different application scenarios. It is shown to achieve good performance in actual

experiments. The proposed fusion method can be tuned for different risk appetite of

applications by using proper risk tolerance values. More study will be done on exploiting

recent advances in modern Portfolio theory, such as, dynamic correlations adaptation,

for improving the performance.
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Chapter 5

Up-Fusion

The first two chapters show that proper utilization of correlation (multiple utilization

or sophisticated modeling) can improve the fusion performance. As discussed in Sec-

tion 2.4 Chapter 2, another important issue is that the fusion model is generally not

evolving. In multimedia fusion, the evolution of fusion models is of primary importance

because of the nature of multimedia applications. First of all, the semantic label infor-

mation is important for multimedia analysis because many multimedia analysis tasks

are based on classification and a large amount of labeled training data are necessary for

good classification. However, most of multimedia data have limited label information,

or worse yet, have no label information. For example, on Flickr, the labels for the

multimedia documents (images, tags and descriptions) are not available or quite noisy.

Labeled examples are fairly expensive to obtain due to the high labor costs faced when

annotating videos [Wang et al., 2007]. Thus, little amount of training data are available

at the beginning. The fusion performance may suffer as a result. Furthermore, the

multimedia data keep increasing with time. New instances of multimedia data are con-

tinuously added. For example, new video are periodically uploaded to Youtube. Thus,

the fusion model may not always be valid or effective as the multimedia data increase

because the nature of the data collection can change. As a result, it will be quite useful
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to evolve the multimedia fusion models and improve the performance with new data.

Most of the traditional fusion methods are static with respect to time. To address

this, in recent years, several evolving fusion methods have been proposed. However, they

can only be used in limited scenarios. For example, the context-aware fusion methods

need the context information to update the fusion model, but the context information

may not always be available in many applications. In this chapter, a new evolving fusion

method, called Up-Fusion, is proposed based on the online portfolio selection theory.

The proposed method takes the correlation among different information sources into

account, and evolves the fusion model when new multimedia data are added. It can

deal with either crisp or soft decisions without requiring additional context information.

Pseudo-labels are used in the case when the label information of newly added data are

not available. A sliding window approach has been utilized to deal with temporal

changes of the multimedia data. The key contributions are:

• The method evolves the fusion model along with the newly added multimedia data

to improve the performance.

• The evolution of fusion method considers the correlation among different informa-

tion sources, can deal with both crisp and soft decision, and no context information

is required. The situations that the labels of newly added data are not available

and that context or nature of data changes, are also solved with proper refinement.

The rest of this chapter is organized as follows. Section 5.1 briefly reviews the

related fusion methods and the motivation for the evolving fusion method. Section 5.2

introduces the online portfolio selection theory and discusses why and how it can be

useful for multimedia fusion. Section 5.3 describes the proposed Up-Fusion method.

Section 5.4 gives some refinements on the method, including the pseudo labels and

the sliding window. Experimental results on concept detection and human detection

are shown in section 5.5. Section 5.6 concludes the chapter with a summary of the
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proposed work and discussions.

5.1 Related Work

Most of the traditional decision fusion methods are static fusion methods, such as,

min/max/average fusion, majority vote fusion, Bayesian fusion, weighted fusion, and

super-kernel fusion, etc.. That is, the fusion models in the methods stay unchanged

no matter how the nature of data varies. Generally speaking, the fusion rules of these

methods are predefined or classification based. The correlation and the different per-

formances of different sources are generally not considered. The information sources

in the multimedia systems are generally correlated. For example, two spatially proxi-

mate cameras will usually capture similar images. It is not always correct to assume

independence of the modalities. Poh et al. in [Poh and Bengio, 2005] discussed how

the correlations affect the fusion performance. It is shown that the more dependent

the information sources are, the lesser the gain one can benefit out of fusion. The

positive correlation “hurts” fusion (fusing two correlated information sources of similar

performance will not always beneficial) while negative correlation (greater “diversity”)

improves fusion. Based on this understanding, a fusion method based on the portfolio

selection theory is proposed in [Wang and Kankanhalli, 2010b]. With the mean-variance

analysis, the portfolio fusion finds the optimal fusion weights for different information

sources by minimizing the correlation while maximizing the performance. But it is still

a static method.

More importantly, once obtained, the fusion models in these fusion methods are

static over time. In reality, the correlation and reliability of information sources might

vary with the increase of data, or the changes of context. The static fusion methods

cannot adapt to the changing data and environment, which may make the methods

unreliable or even fail to work. Particularly, the portfolio fusion method [Wang and
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Kankanhalli, 2010b] cannot be simply extended for evolution:

• First and foremost, the portfolio fusion method needs all the data labeled. But in

many multimedia applications, correct labels of the new data are not available.

• Second, simply applying portfolio fusion cannot guarantee to improve the fusion

performance and it is inefficient to update the fusion model whenever there is a

new data instance.

• Third, the correlation and reliability of different information sources can vary over

time. Simply considering all the previous data to update the fusion model is thus

also not appropriate.

There are also a few evolving fusion methods, such as adaptive fusion method

[Chen and Ansari, 1998], confidence evolution method [Atrey and Saddik, 2008], and

context-aware fusion method [Movellan and Mineiro, 1998; Lee and Park, 2008; Geng

et al., 2010].

• Chen et al. proposed an adaptive fusion method in [Chen and Ansari, 1998].

They modeled the decisions as conditional probabilities and used log-likelihood as

weights for each information source. The weights are updated according to their

agreements with the fusion decision at each iteration. However, only crisp decisions

are considered in the method, and it is not consistent with Principle of Least

Commitment. Therefore, the possible hypotheses are dropped intermediately and

the performance may be degraded. For clarity, we refer it as crisp decision fusion

method.

• A confidence evolution method is described in [Atrey and Saddik, 2008]. The

method needs training for initial confidence for individual information source.

Then, at each instance, the information sources are divided into two subsets based
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on their decisions. The confidences are updated according to their agreement co-

efficients with the subsets. The methods need trusted information sources. More-

over, only confidence is updated according to the agreement coefficients. The

fusion model is based on the underlying assumption that the media streams are

independent, and the correlation among information sources are not considered.

The method needs to update the confidence for each new instance. It is inefficient,

and a significant restriction is that the labels may not be available online, as it

may require manual intervention at every update step. A more realistic scenario

is the update of the existing fusion model when a new batch of data becomes

available.

• Recently, some context aware fusion methods have been proposed like [Movellan

and Mineiro, 1998], [Lee and Park, 2008], [Geng et al., 2010]. In context weight

fusion method [Lee and Park, 2008], adaptive weighting scheme is adopted for

acoustic and visual speech recognition. The weights for audio and visual vary

according to the noise level in speech. The method needs the context informa-

tion which may not be available and dealing with all influential context factors is

unrealistic. Again, correlation among information sources is not considered. The

correlation is an important factor for multimedia fusion. Proper utilization of cor-

relation among different information sources can improve the fusion performance

[Wang and Kankanhalli, 2010b].

In this chapter, we propose an evolving fusion method based on the online port-

folio selection theory.

• Compared to the previous static fusion methods, especially portfolio fusion method,

our proposed fusion method is evolutionary. The fusion model evolves as new data

being added. In this way, the fusion model can adapt to the changing data and

environment conditions. Suitable fusion models for different conditions should
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improve the performance than a fixed fusion model.

• Compared to the previous evolving fusion methods, our proposed method utilizes

the correlation among different information sources, can deal with either crisp or

soft decision, and no context information is required. By taking correlations into

account, a more proper fusion model can be achieved. Moreover, by dealing with

different decisions without requiring the context information, the fusion method

can be employed in various application scenarios. Even in the situation where the

context information is available, the data in the same context situation can be

measured to update the fusion model for this context situation. In this way, our

fusion method should further improve the performance.

5.2 Online Portfolio Selection

In the dynamic multimedia application scenarios, the multimedia fusion method should

be able to improve the fusion performance as the amount of available data increase.

Moreover, the correlations among different information sources should be considered to

achieve an appropriate fusion model. The online portfolio selection theory is appropriate

for these requirements. First of all, the online portfolio selection theory considers the

correlations among different stocks for investment. Second, the online portfolio selec-

tion theory gets the previous prices and updates the investment accordingly for better

performance.

Online portfolio selection [Helmbold et al., 1998] is a mechanism developed in

economics and finance. Consider a portfolio containing n stocks. Each trading day, the

performance of the stocks can be described by a vector of price relatives, denoted by

x = {x1, x2, . . . , xn}, where xi is the next day’s opening price of the ith stock divided by

its opening price on the current day. Thus the value of an investment in stock i increases

(or falls) to xi times its previous value from one morning to the next. A portfolio is
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defined by a weight vector w = {w1, w2, . . . , wn} such that wi ≥ 0 and
n∑

i=1
wi = 1. The

ith entry of a portfolio w is the proportion of the total portfolio value invested in the

ith stock. The online portfolio selection strategy is as follows: At the start of each day

t, the portfolio selection strategy gets the previous price relatives of the stock market

x1, . . . ,xt−1. From this information, the strategy immediately selects its portfolio wt

for the day. Over time, a sequence of daily price relatives x1,x2, . . . ,xT is observed and

a sequence of portfolios w1,w2, . . . ,wT is selected.

The mechanism aims to maximize the wealth on each day based on previous

observations. Similarly, we want to improve the multimedia fusion performance as the

data increasing in multimedia systems. The major difference is that everyday we can

observe the price and the return in the stock investment. In our multimedia fusion,

the scenario is similar if the “correct” labels of the new instances can be revealed for

each update. Unfortunately, it is a challenging task because the multimedia data are

generally provided without labels and there is no perfect classification model that can

always give correct labels. The availability of correct labels of the new instances is not

possible in many situations. Thus, we will also consider the case that the labels for the

new instances are not available. When there are multiple information sources, different

information sources generally make mistakes on different instances. Thus, intuitively

we can get nearly perfect correct labels with multimedia fusion.

5.3 Up-Fusion Method

• S is a multimedia system designed for performing a task D, such as retrieval or

classification. The multimedia system S consists of N ≥ 1 correlated information

sources M1,M2, . . . ,MN .

• For 1 ≤ i ≤ N , let Ii(X) ∈ [0, 1] be the decision of the task D based on the ith

information source on instance X. It is usually obtained by employing a detector
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on the features extracted from information source i. The final prediction I of S

is modeled as the fusion of Ii(X), i = 1, 2, . . . , N based on the fusion model.

• For 1 ≤ i ≤ N , let ri(X) be the return of information source Mi at X, and Ri be

the expected return of information source Mi, which is expressed as Ri = E[ri].

The return depends on the requirement of different applications. More specifically,

ri;Xα:β
denotes the returns for instances Xα to Xβ based on information source

Mi.

• For 1 ≤ i, j ≤ N , let Φ = [Φij] be the covariance matrix of information sources.

The element Φij is defined as Φij = E[(ri − E[ri])(rj − E[rj ])]. It captures the

correlation of different information sources.

• For 0 ≤ t ≤ T , let f t
i be the model of information source Mi at iteration t,

and F t be the multimedia fusion model obtained at iteration t. For example,

there are many video cameras in multimedia surveillance systems. Each camera

is an information source, and the system will have a classification model to detect

certain event for each camera. At time t, the classification model of camera i is

f t
i . The fusion model for the surveillance system is F t, which is a combination of

the models for different cameras f t
1, . . ., f t

N .

• Y is a set of classes. y(X) is the true label of instance X.

Some of the symbols are summarized in Table 5.1. The fusion flow is described in

Algorithm 8, and the procedure can be illustrated in Figure 5.1.

5.3.1 Definition

Each information source in the multimedia system is considered equivalent to a security

in financial investment. The definition of return, expected return, risk of information
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Symbol Meaning

Mi ith information source

ri(X) return of ith information source at X

ρij correlation between information source i and j

f t
i the model of information source i at iteration t

F t fusion model at iteration t

wt weights for different information sources at iteration t

λ “risk tolerance” factor

Table 5.1: Summary of used symbols

seed

dataset

current

dataset

fusion

model

new data

add

Evolve Predict

Figure 5.1: The framework of the proposed Up-Fusion method

source, correlation between information sources, and covariance matrix can be found in

Chapter 4 Section 4.2.

With the portfolio fusion method, the optimal weights w for different information

sources are obtained by minimizing:

ϕ = wTΦw − λRTw (5.1)

Here, wTΦw is the variance (risk) of the information sources. RTw is the return.

λ ∈ [0,+∞) is a “risk tolerance” factor. The formulation is to maximize the return

while minimizing the risk.

5.3.2 Initialization

The method starts with a dataset of N0 labeled instances. This dataset is called the

seed dataset. The classification model for individual information source can be obtained
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Input: Seed dataset (the initial labeled dataset)

• Initialization (Section 5.3.2)

– With the seed dataset, the classification model fi for individual information
source can be obtained

– The return R0, as well as the covariance matrix Φ0 for the information
sources can be obtained according to Equation (5.2) and (5.3) based on the
seed dataset

– The initial fusion model F 0 is constructed using the portfolio fusion based
on the expectation R0 and correlation Φ0 obtained from seed dataset using
Equation (5.4)

• Evolution (Section 5.3.3)

– At each iteration t, K new instances are added. The decisions can be
obtained using the previous portfolio fusion model F t−1

– Consequently, the expectation Rt and correlation Φt for the information
sources will be updated using Equation (5.5) and (5.7). The portfolio fusion
model F t will thus be updated according to Equation (5.8)

Output: Fusion model F t

Algorithm 8: Proposed Up-Fusion Method

with the labeled data. Here, binary classification is considered because multi-class

classification can be achieved by the One-Versus-the-Rest strategy. The classification

model for information source i is denoted as f0
i . The decision according to f0

i on instance

X is Ii(X).

With the initial dataset, the expected return R0 and covariance Φ0 are calcu-

lated. The initial expected return is

R0 = [R0
i ]N×1 (5.2)

The initial covariance matrix for n information sources is Φ0 = [Φ0
ij]N×N , in which

Φ0
ij = ρ0

ijσ
0
i σ

0
j (5.3)

The optimal weights w0 for each information source are obtained by minimizing

ϕ = (w0)TΦ0(w0) − λ(R0)T(w0) (5.4)
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The initial fusion model is F 0 = w0 · f0
i .

5.3.3 Evolution

The fusion model is updated at every iteration when new data are added. It will be

inefficient to update the fusion model whenever there is a new data instance. Moreover,

a significant constraint is that the labels will not be discovered soon after the prediction

is made. In our Up-Fusion method, we will update the fusion model when a batch of K

new instances becomes available. At iteration t(t = 1, 2, . . . , T ), K new instances are

added into the dataset and the data instances are X1:Nt .

According to the definition, the return Rt = [Rt
i]N×1, in which Rt

i is defined as:

Rt
i = E[ri;Xαt:βt

] (5.5)

The correlation ρt
ij between information source i and j can be updated as follows:

ρt
ij =

E[(ri;Xαt:βt
− Rt

i)(rj;Xαt:βt
− Rt

j)]

σi;Xαt:βt
σj;Xαt:βt

(5.6)

Thus,

Φt
ij = ρt

ijσ
t
iσ

t
j = E[(ri;Xαt:βt

− Rt
i)(rj;Xαt:βt

− Rt
j)] (5.7)

For the first step, the exact return and covariance method is used. That is, take

all the current available data instances X1:Nt into account, and calculate the return on

the instance with Equation (4.2) or (4.3). Then, the new Rt
i and Φt are re-calculated on

the whole dataset based on the definition. New Rt
i is calculated using Equation (5.5),

and Φt is calculated using Equation (5.7). Here, αt = 1 and βt = Nt.

The distribution of the newly added data instances may be largely different from

the actual distribution, or the correlation of the different information sources on the

newly added data instances varies from the actual correlation. The noisy new data in-

stances may degrade the fusion performance. Thus, merely computing the exact return

and covariance may not always improve the results. The performance may be unstable
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and go up and down as the data increasing. In order to overcome this disadvantage,

we refine the evolving fusion method by introducing a validation step. When new data

instances are added, the weights can be obtained by the Up-Fusion method. Then,

the weights are validated on the initial seed dataset. If the performance on the initial

seed dataset is improved compared to the previous weights, the new weights are up-

dated. Otherwise, the weights remain unchanged. In this way, we can expect the fusion

performance to be always improved.

Thus, the weights wt for each information source at iteration t are obtained by

minimizing

ϕ = (wt)TΦt(wt) − λ(Rt)T(wt) (5.8)

Subject to:

•
N∑

i=1
wt

i = 1, and 0 ≤ wt
i ≤ 1

• P(wt) ≥ P(wt−1). Here, P(w) denotes the fusion performance on seed dataset

with weights w

To take the prior knowledge into account, the initial point for minimization is

set to be the previous weights. Starting from the initial weight vector, the formula

is optimized as a quadratic programming problem. If the performance on validation

dataset with new weights is better than that of the old ones, the fusion model is updated

with new weights. Otherwise, the weights remain unchanged. In this way, the method

evolves the fusion model to improve the fusion performance. The fusion model at

iteration t is then expressed as: F t = wt · f t
i . Here, f t

i = f0
i because the classification

model is not re-trained when new data instances are added. The Up-Fusion method

only updates the correlation of different information sources at each iteration. The

computational complexity is O(N2d), where N is the number of information sources, d

is the number of data instances for update, and usually N ≪ d. The optimal weights
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can be found in polynomial time of N (usually O(N2)). Thus, the total complexity for

each iteration is O(N2d).

The evolution is one of our key contributions. Compared to static fusion method,

the fusion model is updated at every iteration when new data are added. Compared

to the previous evolving fusion methods, the evolution utilizes the correlation among

different information sources, can deal with either crisp or soft decision, and no context

information is required.

5.4 Refinement

5.4.1 Pseudo labels

With the above procedure, the baseline version of Up-Fusion model can be obtained.

However, the calculation of correlation and return needs the true labels of the newly

added data instances. There are also many situations that the true labels may be not, or

costly, available. In order to incorporate the Up-Fusion method with the situation that

the true labels of the newly added data are unknown, the pseudo labels are introduced.

Instead of the true labels, the predicted labels on the newly added data according to the

previously obtained fusion model are used as the labels of the new data. Specifically,

at a time, a fusion model F is achieved. For a data instance X whose true label is

unknown, the pseudo label y⋆ is defined as:

y⋆(X) = arg max
y∈Y

Fy(X) (5.9)

where Y is the set of labels, and Fy is the confidence for class y with fusion model F .

That is, the most probable label of X based on the current fusion model is considered as

the pseudo label. The pseudo label y⋆(X) is then used as y(X) to calculate the return

and correlation. This strategy is similar to the co-training method in semi-supervised

learning algorithm [Blum and Mitchell, 1998]. The co-training approach [Blum and
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Mitchell, 1998] has proven to converge, if two assumptions hold:

• (a) the error rate of each classifier is low

• (b) the views must be conditionally independent

For practical usage, co-training can even be applied, if the learners are slightly corre-

lated. In the Up-Fusion method, the two assumptions generally also hold:

• First, it is reasonable to assume decent performance for each information source in

the multimedia system. The fusion method generally improves the performance,

and achieves results better than individual information source.

• Second, due to the nature of Up-Fusion method, which tries to maximize diversity,

slightly correlation should be achieved.

As a result, it is reasonable to use pseudo labels as true labels for the new data to up-

date the fusion model. Moreover, the correlation among different information sources

represents how they co-vary with each other. When the label of an instance changes,

the returns of different information sources will change together. Thus, the pseudo

labels, even with some errors, should not effect the correlation of the different infor-

mation sources much. In case that error happens, the methods like [Chen and Ansari,

1998; Atrey and Saddik, 2008] give more confidence to the information sources that

have consistent predictions with pseudo label, which in fact is wrong. With the wrong

information sources having more confidence, it may result in more errors in the future

and almost cannot recover from it. However, in the proposed Up-Fusion method, the

diversity between the correct and wrong information sources can still be maintained

when errors occur. By maximizing the diversity, due to its good property, the proposed

method still has the potential to maintain more confidence in the correct information

sources and thus can handle the erroneous pseudo labels.

It is proved in [Blum and Mitchell, 1998] that:
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Lemma 5.4.1. If concept class C is learnable in the classification noise model, then it

is also learnable with (α, β) classification noise so long as α + β < 1.

Here, (α, β) classification noise is a setting in which true positive examples are

incorrectly labeled (independently) with probability α, and true negative examples are

incorrectly labeled (independently) with probability β.

With this lemma, we can further prove in a similar way to [Blum and Mitchell,

1998]:

Theorem 5.4.2. If (C1, . . . , CN ) is learnable in the PAC model with classification noise,

then (C1, . . . , CN ) is learnable in the online fusion model from unlabeled data only, given

N initial weakly-useful predictors h1(X), . . . , hN (X).

Here, a “weakly useful predictor” h of a function f is defined to be a function

such that:

1. PrD[h(X) = 1] ≥ ǫ, and

2. PrD[f(X) = 1|h(X) = 1] ≥ PrD[f(X) = 1] + ǫ

for some ǫ > 1
poly(N)

Proof. Let f(X) be the target concept and p = PrD(f(X) = 1) be the probability that

a random example from D is positive. According to the fusion model, we have h which

is a fusion function of h1(X), . . . , hN (X). It is reasonable to assume h will be at least as

useful as the worst predictor in h1(X), . . . , hN (X). Thus, h is a weakly useful predictor.

Let q = PrD(f(X) = 1|h(X) = 1) and let c = PrD(h(X) = 1). So,

PrD(h(X) = 1|f(X) = 1) = PrD(h(X)=1|f(X)=1)PrD(h(X)=1)
PrD(f(X)=1)

= qc
p

(5.10)

and

PrD(h(X) = 1|f(X) = 0) =
(1 − q)c

1 − p
(5.11)
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If we use h(X) as a noisy label of X, this is equivalent to (α, β)-classification

noise, where α = 1 − qc
p

and β = (1−q)c
1−p

. Based on the assumption that h is a weakly

useful predictor, we have c ≥ ǫ and q − p ≥ ǫ. The sum of the two noise rates satisfies:

α + β < 1 According to the previous lemma, the theorem is proved. According to PAC

learning [Valiant, 1984], in the online fusion model, a performance of error less than or

equal to γ with at least 1 − δ probability can be learned. Here, 0 < γ, δ < 1
2 .

With the pseudo-labels, our proposed Up-Fusion method solves the update prob-

lem when the labels of new data are not available, which were not handled well in

previous fusion methods.

5.4.2 Sliding window

Despite the pseudo labels, the return and correlation of different information sources

may vary as time goes by due to the context or the nature of data changes. Thus, in

the temporal situation, the recent data instances may be more useful in updating the

fusion models because these instances are more likely to have same nature or context. A

sliding window of the data instances can be used so that only the recent instances will

be considered for obtaining the fusion model. Even for the situation where the nature

of multimedia data does not change much with the passage of time, the sliding window

can also reduce the computation complexity and the memory usage. Thus, it is helpful

to have a sliding window on the data for update to cope with the varying situations.

To achieve this, at iteration t, the return Rt
i and covariance Φt

ij are re-calculated using

instances Xαt to Xβt
as:

Rt
i = E[ri;Xαt:βt

]

Φt
ij = E[(ri;Xαt:βt

− Rt
i)(rj;Xαt:βt

− Rt
j)]

Here,
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• βt = Nt, which means Xβt
is the newest data instance.

• αt = Nt−π +1, where π is the size of the sliding window. π most recent instances

(Xαt to Xβt
) are considered for the update of fusion model.

The return and correlation of different information sources may change in different

contexts. The window size is generally chosen to be the size of the minimum context

duration expected. In this way, the instances in the same context are used to obtain

a more proper fusion model. Thus, the proposed Up-Fusion method can deal with

changing context or nature of data, which is another advantage of our work.

5.5 Experiments

To show the effectiveness of the proposed Up-Fusion method, experiments have been

conducted on both concept detection on TRECVID 2007 dataset [Smeaton, Over, and

Kraaij, 2009] and human detection on recorded multiple sensors dataset. The two

experiments are representative: concept detection is an important task in information

retrieval with average precision as performance measurement, and human detection is

a fundamental task in surveillance security with accuracy as performance evaluation.

The TRECVID 2007 dataset is one of the mostly used dataset in concept detection

task, while the recorded multiple sensors dataset represents the typical multiple sensor

surveillance scenario.

The performance is compared with the popular state-of-the-art fusion methods:

average fusion method and super-kernel fusion method. The average fusion method

simply assigns equal weights to different information sources. It is the most widely

used fusion method, and is reported to have good performance for concept detection in

[Li et al., 2009]. Super-kernel fusion method [Wu et al., 2004] determines the optimal

combination of information sources by further training the output decision scores of

different information sources with SVM.
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Figure 5.2: The illustration of the experiment setup

5.5.1 Experiment Setup for concept detection

For the concept detection on the TRECVID 2007 dataset [Yanagawa et al., 2007], the

models are trained using three visual features: edge direction histogram (EDH), Gabor

(GBR), and grid color moment (GCM) [Yanagawa, Hsu, and Chang, 2006]. Table 5.2

shows the description of each feature.

Name of Features Number of Dimensions

Edge Direction Histogram (EDH) 73

Gabor Texture (GBR) 48

Grid Color Moment (GCM) 225

Table 5.2: Description of the features

There are 21,532 instances in the dataset. The data are evenly divided into three

parts: the initial part, the new data part, and the evaluation part. It is illustrated in

Figure 5.2. The initial part is taken as the initial seed dataset. The new data part is

used to simulate adding new data instances. Then, we evaluate the performance for

different concepts on the evaluation part of the dataset.

In the evolution step, at each iteration, we sequentially include K = 1, 000

instances from new data part into the available dataset and update the fusion models

using the proposed Up-Fusion method. The average precision for different concepts

is used to evaluate the performance. Here, the average precision for each concept is

calculated over the 2, 000 retrieved relevant shots. In this experiment, a total 32 concepts

are evaluated, such as Airplane, Animal, Boat Ship Building, Bus, Car, Charts, etc..

The mean average precision (MAP) which is the mean of average precision (AP) for all

concepts is used as the performance evaluation criterion.
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Figure 5.3: MAP based on whole exact return and covariance with true labels. Circle
denotes the results of proposed method Up-Fusion, square denotes the results of average
fusion method, while diamond denotes the results of SKF-OL

5.5.2 Results

For complete comparison, we give an online version of the super-kernel fusion method by

re-training the fusion model with SVM at each iteration. For simplicity, some notations

are given here: the average fusion method is denoted as AVF, the super-kernel fusion

method is denoted as SKF, the portfolio fusion method is denoted as PTF, the proposed

Up-Fusion method is denoted as Up-Fusion, and the online version of super-kernel fusion

method is denoted as SKF-OL. Moreover, by default the fusion method means the one

based on all the past return and covariance. We add -Win to denote the fusion method

with sliding window, and add -P to denote the fusion method with pseudo labels. For

SVM training, LIBSVM [Chang and Lin, 2001] is used with RBF kernel and default

parameter values. λ = 1 is used.

The MAP for each iteration based on whole exact return and covariance with

true labels is shown in Figure 5.3.

The MAP for each iteration based on return and covariance in sliding window

with true labels is shown in Figure 5.4. Here, the window size π is empirically set to

1,000.
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Figure 5.4: MAP based on windowed return and covariance with true labels. Circle
denotes the results of proposed method Up-Fusion-Win, square denotes the results of
average fusion method, while diamond denotes the results of SKF-OL-Win

The MAP results of different fusion methods are given in Table 5.3. Compared to

the MAP of average fusion method, which is 0.123, the final MAP for Up-Fusion method

on whole data is 0.143. The final MAP for Up-Fusion-Win method is 0.146. Compared

to the portfolio fusion method that utilizes the initial dataset only and stays unchanged

as data increase, the proposed Up-Fusion method improves the performance by evolving

the fusion models as new data are added. The Up-Fusion method improves PTF by

1.4%(relative), and Up-Fusion-Win method improves by 3.5%(relative). Compared to

other fusion methods, the improvement is larger.

We further evaluate the MAP on the situation in which the true labels are

unknown and pseudo labels are used as labels. Figure 5.5 shows the MAP for each

iteration based on the whole exact return and covariance with pseudo labels. Figure 5.6

shows the MAP for each iteration based on windowed return and covariance with pseudo

labels.

The MAP results of different fusion methods are given in Table 5.4. The final

MAP for Up-Fusion-P is 0.142. The final MAP for windowed fusion Up-Fusion-Win-P

is 0.143. First of all, the proposed Up-Fusion methods on data without true labels
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Figure 5.5: MAP based on whole return and covariance without true labels. Circle de-
notes the results of proposed method Up-Fusion-P, square denotes the results of average
fusion method, while diamond denotes the results of SKF-OL-P
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Figure 5.6: MAP based on windowed return and covariance without true labels. Circle
denotes the results of proposed method Up-Fusion-Win-P, square denotes the results of
average fusion method, while diamond denotes the results of SKF-OL-Win-P

Methods MAP

AVF 0.123

SKF 0.09

PTF 0.141

SKF-OL 0.098

Up-Fusion 0.143

SKF-OL-Win 0.123

Up-Fusion-Win 0.146

Table 5.3: Performance comparison of different fusion methods on data with true labels



130

Methods MAP

SKF-OL-P 0.093

Up-Fusion-P 0.142

SKF-OL-Win-P 0.102

Up-Fusion-Win-P 0.143

Table 5.4: Performance comparison of different fusion methods on data without true
labels

outperform the other representative fusion methods. Furthermore, compared to the

performance of Up-Fusion methods on data with true labels, the methods with pseudo

labels still have comparable performance.

5.5.3 Discussion

Generally speaking, the proposed method obtains better performance than the average

fusion method and super-kernel fusion method. The proposed fusion method in the case

of unknown labels also demonstrates the superiority over the other fusion methods. The

evolution phase generally improves the results. However, the improvement of MAP on

concept detection is not quite much. It results from the fact that the distribution and

nature of the data in this experiment does not change much, so does the correlation

between different information sources. Thus, the update of correlation in each iteration

only slightly improves the performance because of more data. Moreover, according to

the experimental results, the fusion methods with pseudo labels are comparable to the

ones with true labels. Surprisingly, the performance of the online super-kernel fusion

method is generally the worst when it takes the new data into account. It may be

because the generalization performance tends to suffer when there is too much noise

and unbalanced limited data. When training SVM models, it is important to maintain

balance between the number of positive and negative instances provided [Yanagawa et

al., 2007]. However, given a limited amount of data, maintaining balance is difficult to

achieve, especially for the windowed version.
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5.5.4 Experimental Setup For Human Detection

To show the utility of our proposed Up-Fusion method, we present the experimental

results of human detection (to detect whether there is a human in the region) in the

recorded data of a multimedia surveillance system. The experiments are designed with

the following two objectives:

• to demonstrate that the proposed Up-Fusion method works well. The overall

accuracy of the human detection task, when the proposed method is used, should

be better.

• to compare the performance of Up-Fusion with pseudo labels to that with true

labels.

The dataset and the experiment setup can be found in Chapter 4 Section 4.5.

The model for each information source is trained using LIBSVM with default

parameters. Here, experiments with K = 1 and π = 10 are tested. For the case

K = 1, we can further compare our proposed fusion method with the confidence evo-

lution method [Atrey and Saddik, 2008] because the method is designed for updating

confidence whenever one new data instance is added. The method is denoted as CFE

in this chapter.

5.5.5 Results and discussion

The overall accuracy is used as the performance evaluation measure. The experimental

results are shown in Table 5.5. As can be seen, the average fusion method gets results

of 83.6% accuracy, the confidence evolution method has 82.4% accuracy.

• For the situation that the true labels of the new instances are available, the su-

per kernel fusion method achieves 95.5%, while the proposed Up-Fusion method

achieves performance with about 97.4%. The Up-Fusion method outperforms SKF
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Methods Overall Accuracy

AVF 83.6%

CFE 82.4%

SKF-OL-Win 95.5%

Up-Fusion-Win 97.4%

SKF-OL-Win-P 95.5%

Up-Fusion-Win-P 96.7%

Table 5.5: Performance comparison of different fusion methods on human detection

method by 2%(relative). Compared to the AVF method, the Up-Fusion method

improves the performance by 16.5%(relative). Compared to the CFE method, the

Up-Fusion method improves the performance by 18.2%(relative).

• For the situation that the true labels of the new instances are not available, the

super kernel fusion method achieves 95.5%, while the proposed Up-Fusion method

achieves performance with about 96.7%. The Up-Fusion method outperforms SKF

method by 1.3%(relative). Compared to the AVF method, the Up-Fusion method

improves the performance by 15.7%(relative). Compared to the CFE method, the

Up-Fusion method improves the performance by 17.4%(relative).

Generally speaking, the proposed Up-Fusion method outperforms the other meth-

ods. Consider the situation that the human is occluded, if the video has been considered

reliable before, the fusion decision may be wrong. The methods like CFE will give more

confidence to the video and thus may not recover from the error. However, with the

Up-Fusion method, the diversity between video and audio will still be increased due

to different predictions. Thus, the audio can still be given a high weight and have the

chance to recover from the error. This might explain why Up-Fusion outperforms the

other methods. Moreover, it can be seen that the results of the fusion methods with

pseudo labels are comparable to the ones with true labels.
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5.6 Conclusions

In this chapter, an evolving fusion method has been proposed. Compared to the previous

static fusion methods, especially the portfolio fusion method, as new data are continually

added, the proposed Up-Fusion method evolves to adapt to the changing data and

environment conditions. Evolved fusion models for different conditions can perform

better than a fixed fusion model. Compared to the previous evolving fusion methods,

our method utilizes the correlation among different information sources, can deal with

either crisp or soft decision, and no context information is required. Pseudo labels are

used in the case when the label information of newly added data is not available. A

sliding window has been introduced to deal with the temporal change of multimedia

data. Experiments on representative concept detection and human detection tasks have

shown the superiority of the proposed Up-Fusion method. Better updating methods

will be studied in the future. The fusion performance in the situation where the context

information is available will also be investigated.
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Chapter 6

Specialist Fusion

In multimedia fusion, different information sources generally do not have consistent

performance on different data instances. Some may predict correctly on one instance,

but cannot perform well on another data instance. Particularly, we say the information

source is an expert for a data instance if it predicts correctly on the instance. If we can

predict whether an information source is an expert for a data instance, the information

sources can then be combined using appropriate fusion model based on the prediction.

This way should improve the fusion performance. As a result, a specialist fusion method

is proposed in this chapter. The intrinsic connection to our daily life experiences provides

a very strong psychological basis. Our goal in considering the decisions of multiple

experts, is to improve our confidence that we are making the right decision. Seeking

opinions from specialists before making a decision is an innate behavior for most of us.

Given multiple experts, they may be experts in different areas: one may be expert in one

area but not expert in another area. When we have some problem to consult, instead

of seeking opinions from experts in all different areas, we usually consult the relevant

experts in the particular area of the problem. For example, when we have a software

problem, we may would like to consult a software engineer instead of a pharmacist. For

the problems in different areas, we may consult different experts.
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The rest of this chapter is organized as follows: Section 6.1 reviews related

work. Section 6.2 describes the architecture and details of the proposed specialist fusion

method. Experiments setup and results are shown and discussed in Section 6.3. In the

end, Section 6.4 gives the conclusion.

6.1 Related Work

For multimedia decision fusion, the decisions from individual information sources are

first obtained. Then, different strategies are applied on the individual decisions to

combine them for the final decision. Among these strategies, Linear Opinion Pool

is one of the most widely used methods. This method attaches a measure of value

such as a weight to the decision provided by each information source. In this way,

the decisions from different information sources are linearly combined. Usually equal

weights are set to different information sources. This way is referred to as average fusion.

Recently, a fusion method that sets weights using portfolio theory has been proposed

in [Wang and Kankanhalli, 2010b]. The weights for different information sources are

obtained by maximizing expected return while minimizing risk to achieve an overall good

performance. It is referred to as portfolio fusion. The linear fusion method is limited

by the linear-model complexity [Wu et al., 2004]. Then, a more sophisticated super-

kernel fusion method has been proposed in [Wu et al., 2004], which utilizes high model

complexity to explore interdependencies between information sources. The decision

scores are concatenated into vectors, and again, SVM is employed to yield the fusion

model with the decision vectors as input.

In general, the previous fusion methods, both the linear and non-linear fusion

models, tend to have one single static fusion model on all the data. However, in reality,

even for the same task, different information sources generally do not have consistent

performance in different situations. The information source may work well in some
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situation while does not perform well in another situation. For example, in surveillance

systems, the visual camera may perform better in detecting person in normal situation,

but the audio sensor may be better when there are occlusions. Thus, one single fusion

model may not work well on all the data.

Some context aware fusion methods have been proposed like [Lee and Park, 2008;

Geng et al., 2010]. In context weight fusion method [Lee and Park, 2008], adaptive

weighting scheme was adopted for acoustic and visual speech recognition. The weights

for audio and visual vary according to the noise level in speech. These context aware

fusion methods have different fusion models according to different contexts. Based on

the context information, the appropriate fusion model is chosen and better performance

is achieved. However, the methods need the context information which may not be

available and dealing with all influential context factors is unrealistic.

In the specialist fusion method, an expert predictor of the information source is

introduced. For any data instance, the decisions from different information sources are

combined based on their expert predictions. In this way, the decisions of expert infor-

mation sources are fused as the final decision, which should be better than combining

the decisions from all the information sources without distinction. Moreover, the expert

prediction is based on the data instance and no context information is required.

There are also some similar works in meta-learning literature, especially in

the area of building meta-rules matching task properties with algorithm performance

[Vilalta and Drissi, 2002], such as landmarking [Bensusan and Giraud-Carrier, 2000;

Pfahringer, Bensusan, and Giraud-Carrier, 2000]. The idea is to choose that learning

algorithm displaying best performance around the neighborhood of the test example

[Keller, Paterson, and Berrer, 2000; Brazdil and Soares, 2000]. By gathering the k-

nearest neighbor examples of a test example in the meta-domain, the method simply

selects the learning algorithm with best averaged performance around the neighborhood

of the test example. The method is thus referred to as best neighborhood selection
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method (BNS) in the remaining part. It is worthy to mention that the best neigh-

borhood selection meta-learning algorithm is to select the different learning algorithms

that are trained on the homogeneous feature set. It is different from fusion method

that combines information in different modalities. Moreover, the BNS method tries to

predict the best algorithm using KNN method and use the algorithm to predict the

test example. First, the method uses only one information source. Second, the model

for predicting the best algorithm is also quite simple. In our specialist fusion method,

we use more sophisticated classification model to predict the expertise of information

source. Then, the decisions together with the expertise from all the information sources

are combined in a linear fusion, which utilizes all the information sources and is more

tolerant to noise.

Collaborative filtering technique is also a popular way of fusing opinions from

different users for recommendation. It assumes that “users who have similar preferences

in the past are likely to have similar preferences in the future, and the more similar they

are, the more likely they would agree with each other in the future” [Jambor and Wang,

2010]. In multimedia classification application, we may need to consider each example

as a user. For a test example, the most similar example can be selected and used for

the prediction of the test example. In this way, the best neighborhood selection method

can be considered as a collaborative filtering technique in our multimedia classification

applications.

6.2 Proposed Method

For a multimedia data analysis task, there are N information sources M1, . . . ,MN . The

proposed specialist fusion architecture is depicted in Figure 6.1.

The algorithm of specialist fusion consists of the following steps:

1. Training classification models: Given the training data, obtain the classifica-
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Figure 6.1: The proposed fusion architecture

tion model for individual information source. For each data instance X = {

X(1),X(2),. . .,X(N)}, the corresponding label y(X) is available in the training data.

Here, X(i) is the observation from information source Mi. Then, for information

source Mi, the training instances X(i) and their corresponding labels can be ob-

tained. The classification model fi can then be trained through learning algorithm.

Though many learning algorithms can be employed, SVM is employed here be-

cause of its effectiveness.

2. Training expert prediction models: Obtain the expert predictors for individual

information source. With the N classification models from different information

sources, N decision scores can be obtained for each data instances. The decision

scores are then composed into a decision vector V (X) = [f1(X), . . ., fN (X)].

Moreover, for information source Mi, the expert label for each data instance X

can also be obtained based on the classification performance of fi. It is worthwhile

to mention that the decision score s from SVM is in [0, 1]. The predicted class

membership is based on sign(s− 0.5). The expert label e can then be defined as:

e(X) =







1 if sign(fi(X) − 0.5) = y(X)

−1 Otherwise

(6.1)

That is, if one information source predicts correctly on X, its expert label on X is
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+1. Otherwise, it is −1. The decision vectors and the corresponding expert labels

(V, e) are then treated as training instances. The expert predictor for individual

information source can be trained using SVM. The expert predictor for information

source Mi is denoted as Di. Taking decision vector V (X) as the input to the model

Di, the prediction Di(X) can be considered as the confidence that Mi is an expert

on instance X.

3. Test situation: For the test data instance, fuse the decisions from different in-

formation sources to obtain the final decision. For data instance X, the deci-

sion vector V (X) = [f1(X), . . . , fN (X)] can be obtained according to the models

fi, i = 1, . . . , N obtained in step 1. With the decision vector as input, the expert

predictions P (X) = [D1(X), . . . ,DN (X)] can be obtained based on the expert

prediction models Di, i = 1, . . . , N obtained in step 2. Then, the decisions from

different information sources are combined to obtain the final decision as:

I(X) = sign((V (X) − 0.5)(P (X) − 0.5)T ) (6.2)

I(X) is the class membership for X. That is, the decisions from classification

models are weighted combined using their corresponding expert confidences.

The fusion procedure is illustrated in Figure 6.2.

Data Instance X

Expert

Prediction P

Final Decision

Decision

Vector V
f1(X) fi(X) fN(X)

D1(X) Di(X) DN(X)

F

Classification

Model f

Expertise Prediction

Model D

Figure 6.2: Specialist Fusion Method
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6.3 Experiments

Our experiments were designed to evaluate the effectiveness of the specialist fusion

method. Specifically, we want to compare its performance with three popular state-

of-the-art fusion methods: super-kernel fusion method (SKF), average fusion method

(AVF), and portfolio fusion method (PTF). We also compared with the best neighbor-

hood selection method (BNS). Here, we measured the neighborhood of a test example in

the space of meta-features (decision vector), and simply set k = 1 for k-nearest neighbor

[Bensusan and Giraud-Carrier, 2000]. We conducted our experiments on image aesthet-

ics inference and affective image classification problems. They are appropriate problems

to test our method: Judging aesthetic qualities or emotional content of photographs is

a highly subjective task. It is also very useful to measure the aesthetic qualities or

emotions for image retrieval. More importantly, it is still unclear what properties may

have correlation with aesthetics or emotions and how they are important to aesthetics

or emotions. Generally speaking, many kinds of features from different information

sources will be used for both problems. Thus, a proper fusion method to combine the

information sources is important for improving performance.

Two real-world datasets are used in this experiment: one is an image aesthet-

ics dataset [Datta, Li, and Wang, 2008], and the other is an affective image dataset

[Machajdik and Hanbury, 2010]. The image aesthetics dataset contains 3,581 images

downloaded from Photo.net. The task is to distinguish between photographs of high

and low aesthetic values. According to the analysis in [Datta et al., 2006], two classes of

data are chosen, high containing samples with aesthetics scores greater than 5.8, and low

with scores less than 4.2. The affective image dataset is a set of 806 artistic photographs

downloaded from deviantart.com. The task is to classify images into emotional cate-

gories: Amusement, Awe, Contentment, Excitement as positive emotions, and Anger,

Disgust, Fear, Sad to represent negative emotions [Machajdik and Hanbury, 2010]. The
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Category Number

Amusement 101

Awe 102

Contentment 70

Excitement 105

Anger 77

Disgust 70

Fear 115

Sad 166

Table 6.1: Number of images per emotional category in affective image dataset

details for affective image dataset are shown in Table 6.1.

• For the image aesthetics inference task, the dataset is evenly divided into training

and testing parts, with two parts containing the same number of high and low

aesthetics images. A total 59 features in [Datta, Li, and Wang, 2008] are extracted

for aesthetics inference, such as Brightness, Contrast, Image aspect-ratio, Wavelet

feature, etc..

• For the affective classification task, it is considered as several binary classification

problems: for each category, to classify whether the images belong to this category.

For each category, the dataset is evenly divided into training and testing parts.

A total 10 features in [Machajdik and Hanbury, 2010] are employed. They are

Saturation, Brightness, Pleasure-Arousal-Dominance, Hue, Colorfulness, Tamura,

Wavelet textures, GLCM features, Low Depth of Field (DOF), and Rule of Thirds.

Each category is separated against all others and trained using one-against-all

method.

The classification models are trained for individual information sources by apply-

ing SVM. For all the SVM training procedures, LIBSVM [Chang and Lin, 2001] is used

with RBF kernel and default parameters. In general, the instances in the dataset are

highly skewed towards negative samples. Thus, the instances are sub-sampled for bal-

anced data in a similar way to [Yanagawa et al., 2007]. The procedure of sub-sampling is
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Method SKF AVF PTF BNS SPF

Accuracy 62.4% 53.4% 60.0% 60.0% 63.0%

Table 6.2: Comparison of different methods on image aesthetics inference performance

as follows: Let Np denote the number of positive instances, and Nn denote the number

of negative instances in the dataset. If Np < Nn, we randomly selected a set of negative

instances equal in size to the number of positive instances.

The proposed specialist fusion method is compared with SKF, AVF, PTF, and

BNS on both tasks. For each experiment setup, the average classification accuracy over

10 runs is taken as the result to reduce the effects of randomness. The classification

accuracy of image aesthetics inference for individual information source is shown in

Figure 6.3. The performances of proposed specialist fusion method (SPF) and other

methods are given in Table 6.2.
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Figure 6.3: The performance of image aesthetics inference for individual information
source

As it can be seen, in image aesthetics inference task, the proposed SPF method

outperforms the other methods. The SPF method improves the performance of SKF by

around 1%(relative), and outperforms the best information source(M10), whose accuracy

is 58%, by 8.6%(relative). The correlation of different information sources for image

aesthetics inference is shown in Figure 6.4. It shows the information sources generally
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Figure 6.4: Correlation of different information sources for image aesthetics inference

have consistent performance. The improvement over SKF is not much may be because

the information source set contains many noisy information sources with low accuracy

and no single information source that performs very well (the accuracies of all individual

information sources are around 52%–58%). We also compared SPF with feature fusion

(FF), which uses a single SVM taking all features. The performance of FF (67%) is

slightly better than SPF because the performance of individual feature is similar and

thus the SPF does not improve the performance much. Another reason for feature fusion

performs better may be that some information may be lost in decision.

The performance of affective classification for individual information source is

shown in Figure 6.5.

The performances of proposed specialist fusion method (SPF) and other methods

are given in Table 6.3.

Method SKF AVF PTF BNS SPF3

Amusement 58.5% 85.9% 86.3% 76.3% 87.1%

Anger 37.5% 9.5% 51.7% 73.9% 89.7%

Awe 35.5% 21.7% 57.4% 69.2% 86.2%

Contentment 41.2% 29.2% 54.7% 71.6% 91.1%

Disgust 35.8% 21.2% 55.2% 73.6% 90.8%

Excitement 49.2% 21.5% 62.4% 76.1% 86.5%

Fear 51.7% 14.2% 78.9% 78.0% 84.6%

Sad 49.0% 20.6% 43.4% 68.0% 76.1%

Average 44.8% 28.0% 61.3% 73.3% 86.5%

Table 6.3: Comparison of different methods on affective image classification performance
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Figure 6.5: The performance of affective classification for individual information source

It can be seen that the SPF generally outperforms the other methods in affec-

tive image classification for different emotional categories. On average, SPF improves

the performance of PTF by about 41.1%(relative). SPF also outperforms the best in-

formation source(M2), which achieves 51.6% accuracy. In fact, for the affective image

classification problem, some of the information sources such as M8 have an accuracy

that is as low as 22% on average. This is also why AVF generally has poor performance.

Moreover, the SPF significantly outperforms the FF (21.6%).

The correlation of different information sources for affective image classification

is shown in Figure 6.6. It can be seen that the information sources in image affective are

less correlated than those in image aesthetics. It is consistent with the performance in

these two datasets and explains why the improvement on affective image data is larger.

Significance tests have also been conducted on the proposed method. The accu-

racies of the 10 runs on the different tasks of image aesthetics inference and affective

image classification are obtained. The proposed SPF passes the t-tests with SKF, AVF,

PTF, and BNS at the 5% significance level. Moreover, the permutation test have also

been done. For n = 1, 000, the p− value between SPF and all other fusion methods are
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(a) Amusement (b) Anger (c) Awe (d) Contentment

(e) Disgust (f) Excitement (g) Fear (h) Sad

Figure 6.6: Correlation of different information sources for affective image classification

0.

6.4 Conclusions

Based on the common practice of seeking opinions from specialists before making a

decision, a specialist fusion method is proposed in this chapter. The notion of an expert

predictor for individual information source on different situations is introduced. With

the expert predictions, the decisions from different information sources are combined

to obtain the final results. Experiments have been conducted on both image aesthet-

ics inference and affective image classification tasks. The experimental results show

the superiority of the proposed specialist fusion method compared to other popular fu-

sion methods. When there are too many noisy information sources, the improvement

is not much. Thus, a good feature selection method before fusion or better combina-

tion method will be investigated in the future. Moreover, the possibility of applying

collaborative filtering techniques to multimedia fusion will also be studied.



146

6.5 Further Comparison

Till now, four multimedia decision fusion methods have been presented in this disser-

tation: MultiFusion method (MF), portfolio fusion method (PTF), Up-Fusion method,

and specialist fusion method (SPF). Among the four methods, Up-Fusion is used to

evolve the fusion model using correlation, and can be used in the system with increas-

ing amount of data. For the other three methods, they can be used to classification

problem. Thus, we further compare the three methods in different scenarios with simu-

lation data. We simply test the performance of the three fusion methods in 6 scenarios,

which are listed in Table 6.4. In each scenario, we simulate 10 information sources

M1 − M10 and fuse them. For balanced data, we generate 100 positive and 100 nega-

tive training instances. For unbalanced data, we generate 20 positive and 200 negative

training instances.

Scenario Data Correlation µ1 − µ0 σ

1 balanced
Independent 10 i for Mi2 unbalanced

3 balanced
Correlated (M1 − M9) 10 9 for M1 − M9, 1 for M104 unbalanced

5 balanced
Correlated (M2 − M10) 1 1

6 unbalanced

Table 6.4: Description of simulation scenarios

The simulation results are shown in Table 6.5. It can be seen that all the meth-

ods can perform well when the information sources are independent and have different

performances (scenarios 1 and 2). Among the different scenarios, MF can perform well

when there are unbalanced noisy data (e.g., scenario 4). PTF generally shows good

performance, especially when there are correlated information sources (e.g., scenario 3).

But it does not give performance as good as MF when the data are unbalanced (e.g.,

scenario 4). SPF generally works well and can handle the unbalanced noisy data. It per-

forms the best on independent data. But it may not perform well when the information
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sources give consistent performance (e.g., scenario 3 and 6).

Scenario MF PTF SPF

1 100% 100% 100%

2 98.7% 99.6% 99.8%

3 99.9% 100% 94%

4 99.8% 91.4% 99.6%

5 67.8% 70.9% 68.8%

6 90.1% 90.7% 87.1%

Table 6.5: Performance of different fusion methods in simulation

In summary, all the proposed fusion methods can fuse the information sources to

improve the performance. PTF works well when the information sources are diverse and

some are positively correlated. SPF works well when the different information sources

do not have consistent performance on data instances. MF can perform well on un-

balanced noisy data since it uses the boosting structure. However, there are also some

limitations. For example, MF uses weighted majority voting and thus can be dominated

by poor information sources that in majority. PTF has sophisticated correlation model

and improve the performance by minimizing correlation and maximizing expected per-

formance. But it is still linear fusion and data independent fusion method. SPF is a

promising attempt to adopt data dependent fusion model with linear weighted sum.

But it cannot improve the performance much if the information sources have similar

performance. More thorough study will be investigated. Up-Fusion is an attempt to

evolve fusion model with increasing data. Better updating methods will be studied in

the future.
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Chapter 7

Conclusions

In this chapter, we summarize the conclusions that we have reached in multimedia

decision fusion. Also, a few potential areas for extension and possible applications of

these research results will be presented.

7.1 Summary of Research

This dissertation proposes to develop more comprehensive methods for multimedia de-

cision fusion. The aim is to properly utilize the correlation among multimedia infor-

mation sources to achieve goals such as concept detection, and surveillance. We argue

that multiple information is useful in drawing more accurate inferences and in making

better decisions. Use of multimedia fusion raises several research issues such as how

to utilize the correlation among different multimedia information sources, how to cope

with the uncertainty and diversification of multimedia information, and how to adapt

to the changing and increasing data. The dissertation has proposed several multime-

dia decision fusion methods to address these issues. Below, we summarize the specific

contributions and findings of our works.
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7.1.1 MultiFusion Method

We began by developing a multimedia decision fusion method to make better use of the

correlation among multimedia information sources. It was observed that the correla-

tion was usually used only once in the multimedia fusion task. Therefore, in Chapter

3, we have presented a novel MultiFusion approach to make better use of multimedia

correlations. By adopting a boosting structure, the correlation of multiple informa-

tion sources is used to form a multimodal classifier in each iteration. Therefore, the

multimedia correlation is used multiple times instead of being combined once. How to

apply MultiFusion to multimodal data in different applications to utilize complemen-

tary yet correlated information and improve the performance is shown in the chapter.

A framework for adopting Adaboost-like structure to utilize correlation multiple times

is described. The fusion model for each iteration and for all the intermediate classifiers

are also presented in this chapter. By comparing with other boosting structure fusion

methods, we have demonstrated in both simulation experiments and the real applica-

tion task that multiple utilization of correlations among different information sources

helps in obtaining more accurate and credible decisions. The fusion performance ob-

tained by MultiFusion method outperforms several other related fusion methods, such

as Learn++ Fusion [Parikh et al., 2004] and Selection Fusion [Xue and Ding, 2006]. The

results in human detection corresponds well with the observation obtained in simulation

experiments. The experiment results suggest that the novel use of multiple utilization

of correlations can improve the fusion performance.

7.1.2 Portfolio Fusion Method

It was also observed that there is always an uncertainty problem in multimedia in-

formation fusion and diversity in information sources can improve the performance.

Classification based on any one information source is usually not perfect. Thus, the
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decision cannot be estimated with absolute certainty using the classification models.

There are many sources of uncertainty such as ambiguity, noise, and deviations be-

tween the scoring function and the true probability of relevance. Uncertainty is an

extremely important feature that demands serious consideration. Even when we have

a classifier with high expected accuracy, it is not safe if its variance is high [Breiman,

1996]. Moreover, the information sources in the multimedia systems are generally cor-

related. Thus, diversification is beneficial for multimedia fusion. Both uncertainty and

correlation should be considered in multimedia fusion. Therefore, in Chapter 4, we have

proposed the portfolio fusion method to maximize the return and minimize the risk (un-

certainty) by introducing the widely used and effective portfolio theory from finance. A

more sophisticated technique to utilize correlations among different information sources

is presented. The method using portfolio theory that attempts to maximize expected

performance and minimize risk to achieve a high dependable performance is described in

this chapter. Each information source in the multimedia system is considered the equiv-

alent of a security in financial investment. By properly modeling the return and risk

of information sources, portfolio theory gives the optimal weights for the information

sources by minimizing the risk while maximizing the return. The experimental results

in simulation and concept/human detection have demonstrated that the portfolio fusion

makes better use of correlations and helps in achieving a better performance. Based

on the results, it appears that the method is able to utilize the correlation and model

uncertainty properly. It is shown that the method is also easily scalable because our

proposed fusion method does not require additional learning for weights after models

for each modality are trained. This may be attributed to the proper modeling of corre-

lation and uncertainty. To the best of our knowledge, this study is the first to explicitly

consider both the uncertainty and correlation issues in multimedia decision fusion.
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7.1.3 Up-Fusion Method

For multimedia analysis, it is common that little amount of training data are available

at the beginning. Furthermore, the multimedia data keep increasing with time and the

nature of the data collection can change. Most of the traditional fusion methods are

static with respect to time. To address this, in recent years, several evolving fusion

methods have been proposed. However, they can only be used in limited scenarios.

Thus, Chapter 5 has described an attempt to evolve the multimedia fusion model and

improve the performance with new data to deal with such situations. A novel evolving

fusion method, called Up-Fusion, is proposed based on the online portfolio selection

theory in this chapter. Evolved fusion models for different conditions can perform

better than a fixed fusion model. Compared to the previous evolving fusion methods,

the proposed method takes the correlation among different information sources into

account, and evolves the fusion model when new multimedia data are added. It can

deal with either crisp or soft decisions without requiring additional context information.

Pseudo-labels are used in the case when the label information of newly added data are

not available. A sliding window approach has been utilized to deal with temporal

change of the multimedia data. Experiments on representative concept detection and

human detection tasks have shown the superiority of the proposed Up-Fusion method.

With the utilization of multimedia correlation and refinement, the method evolves the

fusion model along with the newly added multimedia data to improve the performance.

Moreover, the situations that the labels of newly added data are not available and that

context or nature of data changes, are also handled.

7.1.4 Specialist Fusion Method

Many multimedia fusion methods have been proposed to utilize information from differ-

ent sources to improve the analysis performance. However, how to fuse the information
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sources most appropriately have not yet been solved. Seeking opinions from specialists

before making a decision is an innate behavior for most of us. Getting back to multime-

dia fusion, evaluating expertise of information sources before combining the decisions

from different information sources should also help to make a better decision. Thus, in

Chapter 6, based on the common practice of seeking opinions from specialists before

making a decision, a specialist fusion method that adaptively fuses different information

sources according to the expertise of different information sources on different data in-

stances is proposed. In multimedia fusion, different information sources generally do not

have consistent performance on different data instances. Some may predict correctly on

one instance, but cannot perform well on another data instance. Particularly, we say

the information source is an expert for a data instance if it predicts correctly on the

instance. In this chapter, the notion of an expert predictor for the information source

is introduced. For any data instance, the decisions from different information sources

are weighted and combined based on their expert predictions. In this way, the decisions

of expert information sources are fused as the final decision. The experimental results

on both image aesthetics inference and affective image classification tasks have demon-

strated the superiority of the proposed specialist fusion method when compared to other

popular fusion methods. Particularly, combining the decisions from expert information

sources is better than combining the decisions from all the information sources without

distinguishing their expertise. Moreover, the expert prediction is based on the data

instance and no context information is required.

7.2 Conclusions

Based on the work presented in this thesis, we can draw the following conclusions:

• The decision level multimedia fusion is advantageous over data/feature level fu-

sion. It offers flexibility and scalability in terms of information sources used in
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multimedia analysis task. Data from different information sources can be ana-

lyzed using different yet appropriate methods in decision level fusion. It is consis-

tent with Principle of Least Commitment and Principle of Graceful Degradation.

When new information source is introduced, only the model for the new informa-

tion source as well as fusion model need to be updated. Furthermore, decision

level fusion is intuitive and easy to perform, and it is easy to control the relative

contributions of information sources to fusion results.

• Use of correlations among the different information sources helps in improving the

performance of multimedia analysis task such as concept detection and human

detection. MultiFusion method shows that using correlations multiple times can

help in improving the performance. Portfolio fusion method further shows that

sophisticated modeling of correlations can also improve the performance.

• Utilization of the correlation and uncertainty can help in obtaining a better de-

pendable performance. Portfolio fusion method provides a possible way to combine

both correlation and uncertainty.

• Evolved fusion models for different conditions can perform better than a fixed

fusion model. With the utilization of multimedia correlation and refinement such

as pseudo-labels and sliding window, the fusion model can be evolved along with

the newly added multimedia data to improve the performance. Moreover, the

situations that the labels of newly added data are not available and that context

or nature of data changes, can also be handled.

• Based on the common practice of seeking opinions from specialists before making

a decision, combining the decisions from expert information sources can help in

obtaining better classification accuracy. The specialist fusion method is a useful

attempt and shows promising results.



154

• Several decision level multimedia fusion approaches have been proposed. They

aim to solve different objectives. Thus, the suitable occasions for different fusion

methods are as follows: Generally speaking, the MultiFusion method is based on

Adaboost-like structure and improves the fusion performance by implicitly using

correlation multiple times. It generally works for classification problem. Because

the MultiFusion method needs to train N × T (N is the number of information

sources, and T is the number of iterations) classifies in total. The method can

be used when there is weak learner for training data and the computational com-

plexity is not critical. Moreover, the method implicitly utilizes the correlation by

fusing information sources using weighted majority voting. It may not work as

well as portfolio fusion in the case that the information sources are highly cor-

related. Portfolio fusion method uses a more sophisticated model of correlation.

The improvement will be obvious when there are highly correlated information

sources in the multimedia system. In this case, the positive correlation may hurt

the performance. By minimizing the risk while maximizing the expected perfor-

mance, portfolio fusion method can achieve diversity in information sources and

improve the performance. Both of the above methods are used in the static sit-

uation. In the case that the multimedia data keep increasing and the nature of

data can change, the static fusion model may not be effective as the data in-

crease. In this case, the Up-Fusion method can be used to evolve the fusion model

with newly added data. Specialist fusion method adaptively weights different in-

formation sources according to their expert predictions. It should be helpful in

improving fusion performance when the information sources do not have consis-

tent performance on all the data, e.g., the data from different contexts. In this

case, different information sources may have different performances on data from

different contexts. Then, assigning the same confidence on the information source

over all the data is not effective. The specialist fusion method can be used to pre-
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Method Strategy Suitable Occasion

MultiFusion multiple use of correlation in
Adaboost-like structure

classification problem can be
weakly learned and high com-
putational complexity is not
critical

Portfolio Fu-
sion

portfolio theory with a more so-
phisticated modeling of correlation

multimedia system with highly cor-
related information sources

Up-Fusion evolve the fusion model with newly
added data

multimedia system with increas-
ing data, the nature of which can
change

Specialist
Fusion

adaptively weight information
sources according to their expert
predictions on different data

multimedia information sources
that do not have consistent per-
formance on all the data, e.g., the
data from different contexts

Table 7.1: Summary of proposed fusion methods

dict the expertise of the information source on different data instances and gives

different appropriate confidences on different data instances for the information

source, which can improve the fusion performance. The discussion is summarized

in Table 7.1.

7.3 Future Directions

There are some limitations and potential extensions in the areas of research presented

in this thesis.

7.3.1 Correlation and Risk Modeling

We have proposed the portfolio fusion method by modeling variance as the risk and

mean as the expectation. However, there were some limitations in this model. In our

portfolio fusion method, variance as an indicator of the risk does not distinguish a

negative return from a positive return. It is thus worthwhile investigating “down-side

risk” in finance that considers only bad surprises. For the changing and increasing

multimedia data situation, better updating methods can be studied for Up-Fusion in
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the future. How to properly model the correlation and update it is also an important

issue.

7.3.2 Active Fusion

Current multimedia analysis systems are usually designed to handle the specified task

using multimedia fusion methods with the data obtained by the different information

sources, such as different heterogeneous sensors. There are few interactions between the

fusion module and the information sources. The information sources are designed to

obtain the data from environment. Then, the fusion module tries to accomplish the task

based on the data that different information sources give. The fusion method can only

build fusion model and probe the decision using the input data. Thus, almost all the

previous multimedia fusion works are passive fusion. That is, the data are all what the

fusion methods have and there is no interaction between the information sources and the

fusion module. The fusion methods passively combine what they can get from the data

to obtain an improved result compared to using single information source. However, it

is worthwhile to extend the fusion to active fusion. The fusion methods not only analyze

the obtained data, but also can actively get new useful data based on the analysis. This

way should be more useful in many applications. For example, in modern multimedia

surveillance systems, the sensors usually have certain freedom of motion or even are

completely mobile. Initially, the different sensors observe the environment and send the

data to fusion module. The fusion method then constructs the fusion model based on

the data and tries to reach a decision. If the data are not enough, the fusion module

may further instruct certain sensors to move and probe more data. The interactions

can be made until a credible decision has been reached. In addition, the fusion module

can even pick proper fusion models or suggest new sensors to accomplish the task.
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7.3.3 Context Modeling

Context modeling requires a model that describes the context in a generic and scalable

manner. In the multimedia analysis systems, the context of the data usually varies

greatly. The performance of different information sources also varies greatly under

different contexts. There have been some context-aware fusion methods proposed, such

as [Geng et al., 2010]. These methods dynamically determine the relative reliability of

different information sources based on the context. The context is usually captured from

the environment. However, the context information in some multimedia systems may

not be available and dealing with all influential context factors is unrealistic in practice.

In order to achieve better fusion performance, the system should be able to identify the

context of different data with proper context modeling from the data. Then, the system

can choose proper fusion models for different contexts. In this way, better fusion results

should be obtained.
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Järvelin, Kalervo and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR

techniques. ACM Transactions on Information Systems, 20(4):422–446, Octo-

ber.

Jasinschi, R. S., N. Dimitrova, T. McGee, L. Agnihotri, J. Zimmerman, D. Li, and

J. Louie. 2002. A probabilistic layered framework for integrating multimedia

content and context information. In IEEE International Conference on Acous-

tics, Speech and Signal Processing, volume 2, pages 2057–2060.

Joshi, Dhiraj, Milind R. Naphade, and Apostol Natsev. 2007. Semantics reinforcement

and fusion learning for multimedia streams. In International Conference on

Image and Video Retrieval, pages 309–316.

Kay, Rakowsky Uwe. 2007. Fundamentals of the dempster-shafer theory and its appli-

cations to system safety and reliability modelling. Reliability: Theory & Appli-

cations, December.

Keller, James M., Paul D. Gader, and Charles W. Caldwell. 1995. Principle of least



164

commitment in the analysis of chromosome images. Applications of Fuzzy Logic

Technology II, 2493(1):178–186.

Keller, Jörg, Iain Paterson, and Helmut Berrer. 2000. An integrated concept for multi-

criteria-ranking of data-mining algorithms. In Proceedings of the ECML’2000

workshop on Meta-Learning: Building Automatic Advice Strategies for Model

Selection and Method Combination.

Kittler, Josef, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. 1998. On combining

classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence,

20:226–239.

Kludas, J., E. Bruno, and S. Marchand-Maillet. 2007. Information fusion in multime-

dia information retrieval. Adaptive Multimedial Retrieval: Retrieval, User, and

Semantics, pages 147–159.

Kohlas, Jürg and Paul-Andre Monney. 1995. A Mathematical Theory of Hints: An

Approach to the Dempster-Shafer Theory of Evidence, volume 425 of Lecture

Notes in Economics and Mathematical Systems. Springer.

Koks, Don and Subhash Challa. 2003. An introduction to bayesian and dempster-shafer

data fusion. Technical Report DSTO-TR-1436, Defence Science and Technology

Organisation.

Koval, O., S. Voloshynovskiy, and T. Pun. 2007. Error exponent analysis of person

identification based on fusion of dependent/independent modalities. SPIE-IS&T

Electronic Imaging.

Lee, Jong-Seok and Cheol Hoon Park. 2008. Adaptive decision fusion for audio-visual

speech recognition. Speech Recognition, Technologies and Applications, pages

275–296.

Li, Francis C., Anoop Gupta, Elizabeth Sanocki, Li-wei He, and Yong Rui. 2000.



165

Browsing digital video. In SIGCHI conference on Human factors in computing

systems, pages 169–176, New York, NY, USA. ACM.

Li, Ming, Yantao Zheng, Shouxun Lin, Yong-Dong Zhang, and Tat-Seng Chua. 2009.

Multimedia evidence fusion for video concept detection via OWA operator. In-

ternational Conference on MultiMedia Modeling, 5371:208–216.

Llinas, J., C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White. 2004. Revis-

iting the jdl data fusion model ii. In International Conference on Information

Fusion, volume 2, pages 1218–1230.

Lucey, Simon, Sridha Sridharan, and Vinod Chandran. 2001. Improved speech recog-

nition using adaptive audio-visual fusion via a stochastic secondary classifier.

International Symposium on Intelligent Multimedia, Video and Speech Process-

ing, pages 551–554, May.

Machajdik, Jana and Allan Hanbury. 2010. Affective image classification using features

inspired by psychology and art theory. In ACM International Conference on

Multimedia, pages 83–92.

Maghooli, K. and M. S. Moin. 2004. A new approach on multimodal biometrics based

on combining neural networks using adaboost. In Biometric Authentication,

pages 332–341.

Manyika, J. and H. Durrant-Whyte. 1994. Data Fusion and Sensor Management: A

Decentralized Information-Theoretic Approach. Prentice Hall.

Markowitz, Harry. 1952. Portfolio selection. The Journal of Finance, 7(1):77–91.

Massaro, D.W. 2001. Auditory visual speech processing. European Conference on

Speech Communication and Technology, pages 1153–1156.

Movellan, Javier R. and Paul Mineiro. 1998. Robust sensor fusion: Analysis and

application to audio visual speech recognition. Machine Learning, 32:85–100,

August.



166

Muneesawang, Paisarn, Ling Guan, and Tahir Amin. 2010. A new learning algorithm

for the fusion of adaptive audio-visual features for the retrieval and classification

of movie clips. Signal Processing Systems, 59(2):177–188.
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