10,357 research outputs found

    Modular structure in C. elegans neural network and its response to external localized stimuli

    Get PDF
    Synchronization plays a key role in information processing in neuronal networks. Response of specific groups of neurons are triggered by external stimuli, such as visual, tactile or olfactory inputs. Neurons, however, can be divided into several categories, such as by physical location, functional role or topological clustering properties. Here we study the response of the electric junction C. elegans network to external stimuli using the partially forced Kuramoto model and applying the force to specific groups of neurons. Stimuli were applied to topological modules, obtained by the ModuLand procedure, to a ganglion, specified by its anatomical localization, and to the functional group composed of all sensory neurons. We found that topological modules do not contain purely anatomical groups or functional classes, corroborating previous results, and that stimulating different classes of neurons lead to very different responses, measured in terms of synchronization and phase velocity correlations. In all cases, however, the modular structure hindered full synchronization, protecting the system from seizures. More importantly, the responses to stimuli applied to topological and functional modules showed pronounced patterns of correlation or anti-correlation with other modules that were not observed when the stimulus was applied to ganglia.Comment: 23 pages, 6 figure

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Opinion dynamics and synchronization in a network of scientific collaborations

    Full text link
    In this paper we discuss opinion dynamics in the Opinion Changing Rate (OCR) model, recently proposed (A.Pluchino, V.Latora and A.Rapisarda Int. J. Mod. Phys. C, 16, No.4, 515-531 (2005)). The OCR model allows to study whether and how a group of social agents, with a different intrinsic tendency rate to change opinion, finds agreement. In particular, we implement the OCR model on a small graph describing the topology of a real social system. The nodes of the graph are scientists partecipating to the Tepoztlan conference, celebrating Alberto Robledo's 60th birthday, and the links are based on coauthorship in scientific papers. We study how opinions evolve in time according to the frequency rates of the nodes, to the coupling term, and also to the presence of group structures.Comment: 15 pages, 4 figures, Physica A (2006) in pres

    Co-movements in commodity prices: a note based on network analysis

    Get PDF
    This paper analyses co-movements in a wide group of commodity prices during the time period 1992-2010. Our methodological approach is based on the correlation matrix and the networks inside. Through this approach we are able to summarize global interaction and interdependence, capturing the existing heterogeneity in the degrees of synchronization between commodity prices. Our results produce two main findings: (a) we do not observe a persistent increase in the degree of co-movement of the commodity prices in our time sample, however from mid-2008 to the end of 2009 co-movements almost doubled when compared with the average correlation; (b) we observe three groups of commodities which have exhibited similar price dynamics (metals, oil and grains and oilseeds) and which have increased their degree of co-movement during the sampled period. These results suggest that speculation and uncertainty are drivers of the sharp slump in commodity prices synchronization.commodity prices, co-movement, hierarchy and topology, networks, complex systems

    Optimal map of the modular structure of complex networks

    Full text link
    Modular structure is pervasive in many complex networks of interactions observed in natural, social and technological sciences. Its study sheds light on the relation between the structure and function of complex systems. Generally speaking, modules are islands of highly connected nodes separated by a relatively small number of links. Every module can have contributions of links from any node in the network. The challenge is to disentangle these contributions to understand how the modular structure is built. The main problem is that the analysis of a certain partition into modules involves, in principle, as many data as number of modules times number of nodes. To confront this challenge, here we first define the contribution matrix, the mathematical object containing all the information about the partition of interest, and after, we use a Truncated Singular Value Decomposition to extract the best representation of this matrix in a plane. The analysis of this projection allow us to scrutinize the skeleton of the modular structure, revealing the structure of individual modules and their interrelations.Comment: 21 pages, 10 figure

    Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators

    Full text link
    A chimera state is a spatio-temporal pattern in a network of identical coupled oscillators in which synchronous and asynchronous oscillation coexist. This state of broken symmetry, which usually coexists with a stable spatially symmetric state, has intrigued the nonlinear dynamics community since its discovery in the early 2000s. Recent experiments have led to increasing interest in the origin and dynamics of these states. Here we review the history of research on chimera states and highlight major advances in understanding their behaviour.Comment: 26 pages, 3 figure

    Dynamical Systems on Networks: A Tutorial

    Full text link
    We give a tutorial for the study of dynamical systems on networks. We focus especially on "simple" situations that are tractable analytically, because they can be very insightful and provide useful springboards for the study of more complicated scenarios. We briefly motivate why examining dynamical systems on networks is interesting and important, and we then give several fascinating examples and discuss some theoretical results. We also briefly discuss dynamical systems on dynamical (i.e., time-dependent) networks, overview software implementations, and give an outlook on the field.Comment: 39 pages, 1 figure, submitted, more examples and discussion than original version, some reorganization and also more pointers to interesting direction
    corecore