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• We probe the C. elegans neural network using the partially forced Kuramoto model.
• Stimuli were applied to topological, anatomical and functional modules.
• Response depends on stimulus intensity and inter-neuron connection strength.
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• Modular structure hinders global synchronization.
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a b s t r a c t

Synchronization plays a key role in information processing in neuronal networks.
Response of specific groups of neurons are triggered by external stimuli, such as visual,
tactile or olfactory inputs. Neurons, however, can be divided into several categories,
such as by physical location, functional role or topological clustering properties. Here
we study the response of the electric junction C. elegans network to external stimuli
using the partially forced Kuramoto model and applying the force to specific groups
of neurons. Stimuli were applied to three topological modules, two ganglia, specified
by their anatomical localization, and to the functional groups composed of all sensory
and motoneurons. We found that topological modules do not contain purely anatom-
ical groups or functional classes, corroborating previous results, and that stimulating
different classes of neurons lead to very different responses, measured in terms of
synchronization and phase velocity correlations. In all cases the modular structure
hindered full synchronization, protecting the system from seizures. The responses to
stimuli applied to topological and functional modules showed pronounced patterns of
correlation or anti-correlation with other modules that were not observed when the
stimulus was applied to a ganglion with mixed functional neurons.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the network of neuronal connections in the brain is key to unravel the way it works and processes
information. The complexity of these networks has been emphasized by many authors [1], and characterized with different
measures, such as degree distribution, transitivity and betweenness centrality [2]. An important feature of neural networks
is their high degree of heterogeneity, in the sense that the number of connections per neuron varies considerably and
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typically displays some sort of power law distribution. Moreover, neurons tend to form communities, where the density
of connections is higher within than among communities. Because connections are constrained by anatomical features,
neurons are also organized into physically arranged clusters, such as lobes or ganglia, where neurons with different
functional roles coexist [3–5].

Communities are often related to specialized areas of the brain and their number and structure are an indication of
how many different tasks it can perform [6]. The integration of communities, on the other hand, measures how well
the outcomes of these different processes can combined to build a global view of the inputs [3]. When triggered by
external stimuli, such as visual or olfactory inputs, the information processing occurs by the synchronized firing of neurons
responsible to process those specific tasks [7,8]. Synchronization of larger sets of neurons, or even global synchronization,
indicates cerebral disorders [9] such as epilepsy [10] and Alzheimer’s disease [11], causing a general breakdown in the
neuronal network. Lack of synchronization, on the other hand, suggests difficulty to respond to the stimulus or to function
properly, as reported in unsuccessful overnight memory consolidation in old people [12], deficiency in the auditory-motor
connections [13] or brain disorders in autistic individuals [14,15]. In this context, the knowledge of the organization
of different types of neurons in the network and their segregation into modules or communities is fundamental to
understand how stimuli affect the target module and under what conditions it propagates to other regions leading to
global or poor responses.

In this work we probe the community structure of the neural electrical junction network of the C. elegans using the
partially forced Kuramoto model of synchronization [16]. We aim to understand how the network responds to external
localized stimuli and which modules are more affected when a specific group of neurons, that can be a functional group
or a physically arranged module, is stimulated. We use two different metrics to characterize the overall behavior of the
network under a localized stimulus: the synchronization of neurons within and between modules, as measured by the
usual Kuramoto order parameter, and the phase-velocity inter-neuron correlation. We want to investigate the behavior
of the system as a function of parameters such as stimulus intensity and inter-neuron connection strength. In particular
we are interested in cases leading to global induced synchronization and highly correlated behavior, where the network
responds as a whole, or to uncorrelated states, where neurons do not react to each other. Our simulations are guided by
the results of a previous paper [16] where we studied the partially forced Kuramoto model on synthetic networks, using
the external force to simulate a localized stimulus.

C. elegans is a nematode animal, unsegmented and with bilateral symmetry, exhibiting physiological similarity to
mammals as regards the nerves and neurotransmitters morphologies and it is considered a model organism in studies
of disorders related to human nervous system, such as epilepsy [17,18] and Parkinson’s disease [19,20]. It was the first
multicellular animal to be its whole nervous system mapped, containing only 302 neurons. Its neural network has a huge
data with open source, such as the WormAtlas [21] and the OpenWorm [22]. Because it is a real complex network, we
choose this small neural network, extracting all necessary data from WormAtlas.

The 248 neurons of the electrical junction network are anatomically classified as belonging to head, body or tail, and
neuron types are divided into motoneurons, interneurons and sensory neurons. We have also performed a classification
into 10 ganglia (A: anterior ganglion, B: dorsal ganglion, C: lateral ganglion, D: ventral ganglion, E: retrovesicular
ganglion, F: posterolateral ganglion, G: ventral cord neuron group, H: pre-anal ganglion, J: dorsorectal ganglion, K: lumbar
ganglion [21]) which is a finer division of the anatomical one.

The network is first decomposed into three modules based on topological properties and numbered by 1, 2 and 3 from
largest to smallest. This modularization procedure was made on software Cytoscape using the app ModuLand [23,24].
Each module contains neurons from the three anatomical parts, and consequently the 10 ganglia, and of the three types.
We applied the stimulus to the largest module, then on the ganglion C and finally to the sensory neurons and then we
observe the response of other neurons. We show that no single partition of the brain into communities can account for
its behavior under stimuli. All partitions analyzed here, topological, anatomical and functional, play a role in the response
to external localized stimuli, revealing the complexity of the brain’s wiring and function.

This paper is organized as follows: in Section 2 we describe the materials and methods, showing the partially forced
Kuramoto model, the C. elegans neural connectome and the order parameters used to measure the state of the network.
The results of numerical calculations and its analysis are in Section 3. Finally, we summarize our discussion in Section 4.

2. Materials and methods

2.1. Partially forced Kuramoto model

The Kuramoto model of coupled oscillators [25] is a paradigm in the study of synchronization and has been explored in
connection with biological systems, neural networks and the social sciences [26,27]. Here we consider a modified version
of the original Kuramoto model where each oscillator interacts only with a subset of the other oscillators, as specified by
a network of connections [28]. Moreover, part of the oscillators also interacts with an external periodic force [16,29–31].
The force can be interpreted as an external stimulus and the set of oscillators coupled to it represents the ‘interface’ of the
system, like the photo-receptor cells in the eye [8]. The oscillators are described by their phase θ and system is governed
by the equations [16]

θ̇i = ωi + F δi,C sin(σ t − θi) +
λ

ki

N∑
j=1

Aij sin(θj − θi), (1)
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where N is the number of oscillators, λ is the internal coupling strength, Aij is the adjacency matrix of internal connections;
ki =

∑
j Aij is the degree of node i; F and σ are respectively the amplitude and frequency of the external force; and C

is the subgroup of oscillators subjected to the external force. We have also defined δi,C = 1 if i ∈ C and zero otherwise
and we shall call NC the number of oscillators in the set C . The natural frequencies ωi are taken from a distribution ρ(ω),
which is here chosen to be Gaussian with zero average and width 1.0.

Following [31] we define

φi = θi − σ t. (2)

In these new variables the explicit time dependence disappears and the equations become

φ̇i = ωi − σ − F δi,C sinφi +
1
ki

N∑
j=1

λij sin(φj − φi), (3)

where λij = λAij.
The adjacency matrix Aij gives the strength of interaction between oscillators i and j. For unweighted networks Aij

assumed the value 1 if they interact and 0 otherwise, but weighted networks like that of the C. elegans, might have very
inhomogeneous distributions of weights. For networks that can be divided into anatomical or functional communities,
the external force can be applied to one of the communities as a way to probe its influence on the others. Thus, we
will investigate how the control parameters, λ and F , affect the spontaneous and induced synchronization of the focal
community (where the force is applied) and how it spreads to the other communities of the system.

If there is no external force and if the internal coupling constant λ is sufficiently large the oscillators synchronize
spontaneously with frequency ω̄ =

∑
ωi/N in the original coordinates θ or with frequency ω̄−σ in the rotating frame φ.

On the other hand, if both λ and F are large the system synchronizes with the external frequency σ in the original frame
or −ω̄ in the rotating frame. In our simulations, since the Gaussian distribution is symmetric, ω̄ = 0, the spontaneous
synchronization corresponds to global frequency ψ̇ = −σ and forced synchronization to frequency ψ̇ = 0 [16].

Following [16] we can estimate the minimum intensity of the external force, Fc , required to induce global synchro-
nization using the relation

Fc =
σ

f
⟨k⟩
⟨k⟩C

, (4)

where f = NC/N is the fraction of forced neurons; ⟨k⟩ and ⟨k⟩C are the average degree of the network and the forced
module, respectively.

2.2. Modularization

Understanding how connections are arranged in neural networks is key to understand how the brain functions and
transmits information [32–34]. Neurons can be grouped by their location in the brain, by their function and also by their
connectivity with other neurons, independently of their position or function. Networks can generally be decomposed into
these topological modules, also called clusters or communities, where a large number of links join nodes of the same
module and comparatively few links join nodes belonging to different modules. Several methods have been recently
proposed to detect modules, each providing a different decomposition, and no optimal algorithm has yet been devised [35].
The strength of each decomposition, however, can be measure by the modularity coefficient [36,37]

Qw =
1
2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci, cj), (5)

where Aij is the (weighted) adjacency matrix, ki is the sum of the weights of all links attached to node i, ci is the module
of node i, δ(ci, cj) = 1 if nodes i and j belong the same module and 2m is the sum of all of the link weights in the network.
Eq. (5) gives Qw = [−0.5, 1.0], where positive values indicate that there exist a larger number of connections between
nodes of the same community than if connections were made randomly, and negative values mean less intra-module
connections. For real complex networks, 0.3 < Qw < 0.7 [36,37]. For unweighted networks the same formula can be
used, replacing ki by the degree of node i and m by the total number of links in the network.

Previous analysis of neural networks have shown that they do exhibit modular organization [35,37]. The most common
algorithms for module detection in biological network analysis are the so called hierarchical clustering [35]. This technique
is classified in two types: in the first, individual neurons are initially grouped if they have high similarity; then these
groups are further clustered together and so on until the desired number of modules is formed (bottom up, agglomerative
algorithm). In the second type of algorithm the network is divided in groups by the removing links that connect nodes
with low similarity (top down, divisive algorithm).

In this work we used the ModuLand plug-in [23,24] of the software Cytoscape [38] to study the modularization of the
C. elegans network. This tool uses a hierarchical algorithm which detects multiple layers of communities, where nodes of
the higher hierarchical step are modules of the lower step. ModuLand was tested in biological systems, such as protein
structure and metabolic networks, providing modules which correspond to relevant biological communities [23,24]. For
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Fig. 1. Histograms representing the fraction of (left) neuronal class (SN: sensory neuron, MN: motoneuron and IN: interneuron) and (right) of ganglia
(A: anterior ganglion, B: dorsal ganglion, C: lateral ganglion, D: ventral ganglion, E: retrovesicular ganglion, F: posterolateral ganglion, G: ventral cord
neuron group, H: pre-anal ganglion, J: dorsorectal ganglion, K: lumbar ganglion) for each module (M1: module 1, M2: module 2 and M3: module 3).

the present case of the C. elegans electric junction network ModuLand divided the network into 3 modules with Qw = 0.47.
Other procedures result in different partitions; for example [5] obtained 6 modules with Qw = 0.375, [39] found 5 modules
with Qw = 0.49 and [40] divided the network into 11 and 15 modules with Q = 0.63 and Qw = 0.66, respectively. They
all used slightly different versions of the C. elegans network, including or excluding some neurons. Here we focused on
the case of 3 modules to compare with the 3 functional categories (motor, sensory, interneurons) and 3 major anatomical
classes (head, midbody, tail). Further information is summarized in table I of S.M. We have also considered two other
partitions, containing 5 and 10 modules respectively. The details are described on S.M. (Section 2).

2.3. C. elegans neural connectome

Based on structural and functional properties of the neural network of C. elegans, Varshney et al. [41] and Yan et al. [42]
presented a division of neuronal classes, totalizing 118, in three categories: sensory neurons (SN), which respond to
environmental variations, motoneurons (MN), recognized by the presence of neuromuscular junctions and responsible
by locomotion, and the interneurons (IN), which cover all of other classes. The adjacency weighted matrix is defined as
follows: the element wij represents the total number of synapses interchange between the pair of neurons ij. In [41]
the authors also divide the set into the gap junction network, which refers to the electrical synapses, and the chemical
synapses network.

Gap junctions are a medium for electrical coupling between neurons and, since the electric signal can be made in both
directions, the electrical junction network is considered undirected and, consequently, its adjacency matrix symmetric.
On the other hand, the chemical synapses network is a directed and weighted network, whose adjacency matrix is
asymmetric. Here we will concentrate on the electrical junction network only.

We analyzed the gap junctions neural network of nematode C. elegans extracting the data from WormAtlas [21]. The
full connectome has 279 neurons (nodes) and 514 gap junctions (connections) divided into a giant component with 248
neurons plus 31 neurons not connected with it. Here we will study the dynamics on the giant component. Thereby, we
built the weighted electrical junction (EJ) network of the C. eleganswith 248 neurons and 511 gap junctions. We also used a
hierarchical algorithm to detect communities on the EJ network. For that, we used the package ModuLand [23,24] available
on the free software Cytoscape [38]. The algorithm provided three modules (M1, M2, M3) with modularity Qw = 0.47.

Each neuron were further classified as belonging to one of three functional categories (sensory, motor and interneu-
rons) and one of the 10 ganglia (A: anterior ganglion, B: dorsal ganglion, C: lateral ganglion, D: ventral ganglion, E:
retrovesicular ganglion, F: posterolateral ganglion, G: ventral cord neuron group, H: pre-anal ganglion, J: dorsorectal
ganglion, K: lumbar ganglion [21]). The compositions of neuronal categories and ganglionic classification in each module
are shown in Fig. 1. The ganglia are a finer division of the anatomical classification into head (H), body (B) and tail (T).
The histograms in Fig. 2 summarize the information extracted from the WormAtlas showing how ganglia are distributed
physically (left panel) and how neuronal functions are represented in each ganglion (right panel). Note that ganglia A, B,
C and D belong to the head, G is entirely localized in the body and J and K belong to the tail.
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Fig. 2. Histograms representing the fraction of (left) different ganglia distributed by physical localization (head, midbody and tail) and (right) the
fraction of classes (SN, MN and IN) component in each ganglion.

This set of divisions of the neural network into communities can be classified as (i) topological (M1, M2, M3); (ii)
anatomical (by ganglion A-K) and; (iii) functional (SN, MN, IN). They are all different and intertwined, showing the
complexity of the EJ network.

In the next section we will apply the stimulus to M1 (the largest of the topological modules), to ganglion C (completely
located in the head and with mixed types of functional neurons) and to the sensory neurons. Results for modules M2, M3,
ganglion G and motoneurons are shown in the supplementary material. Previous works [40] have shown that ganglion C
is important in the transmission of information between neurons that receive sensory stimulus and those responsible for
motor processing. We also performed simulations on ganglion G (see S.M.), which is localized completely in the midbody
(Fig. 2 left) and is composed only by motoneurons (Fig. 2 right). Finally we note that the sensory neurons are responsible
for collecting information from external environment and react to stimuli inside the organism, acting as a input channel.
In this sense, C. elegans uses these neuronal functions to explore the ambient, navigating over thermal, chemical and
oxygen variations, in addition to avoid hostile behavior [21].

2.4. Order parameters and correlations

The partially forced Kuramoto dynamics will be applied to the C. elegans as a way to probe its modular structure.
Forcing a particular module may or may not induce synchronization with the external frequency on other modules of the
system. In order to monitor the behavior of separate modules we define

zn =
1
Nn

∑
i∈Mn

eiφi ≡ rneiψn (6)

where the subscript n specifies the module Mn of size Nn. Therefore, rn is a local order parameter that measures how
much the oscillators in the module are synchronized among themselves. The angular velocity ψ̇n provides information
about the motion of the set: ψ̇n = 0 implies sync with the external force, ψ̇n = −σ refers to spontaneous sync whereas
nonconstant values indicate more complex behavior.

Intermodule behavior will also be monitored by the quantities

znm =
1

Nn + Nm

∑
i∈Mn∪Mm

eiφi ≡ rnmeiψnm (7)

with similar interpretations. Finally we compute the usual order parameter

z =
1
N

N∑
i=1

eiφi ≡ rteiψt (8)

that provides information on the global network synchrony.
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Fig. 3. Left panel: weighted adjacency matrix highlighting the 3 topological modules M1 , M2 and M3 separated by thick black lines and subdivided
into motor (black), sensory (green) and interneurons (red) by dashed black lines. Intermodule connections are shown in yellow. Right panel: weighted
adjacency matrix highlighting 5 groups of ganglia separated by thick black lines, {A, B}; {C}; {D, E, F}; {G} and {H, J, K}. Subdivisions and intermodule
connections follow the functional colors of left panel.

Velocity–velocity correlations between all pairs of oscillators are defined by

c̃(i, j) =
1
T

∫ t0+T

t0

(φ̇i(t) − ⟨φ̇i⟩)(φ̇j(t) − ⟨φ̇j⟩) dt (9)

where

⟨φ̇i⟩ =
1
T

∫ t0+T

t0

φ̇i(t) dt (10)

and t0 is a sufficiently long time so that the transient dynamics has passed.
The normalized velocity–velocity correlation function is then defined as:

c(i, j) =
c̃(i, j)√

c̃(i, i) c̃(j, j)
, (11)

where |c(i, j)| ≤ 1. We note that the correlation is computed in terms of the fluctuations of the average velocity, that was
subtracted out in Eq. (9). The 248 × 248 correlation matrix gives direct information about the effect of one neuron over
another, irrespective of their synchronization state. If an increase in the velocity of i leads to the average increase in the
velocity of j then nodes i and j are positively correlated and c(i, j) > 0. If, on the other hand the velocity of j decreases,
they are negatively correlated and c(i, j) < 0. Finally, if they are uncorrelated c(i, j) ≈ 0. In the simulations we used
t0 = T/2 and T = 20 which was enough for the equilibration of the system.

The parameters zn provide information about the synchronization of each module, whereas the average value of the
phase velocity ψ̇n tells whether the module follows the external force or spontaneous collective motion. This information
is complemented by the velocity–velocity correlation, which measures the effect of one node over the other even if they
synchronize with different frequencies or are not synchronized at all.

3. Results

Fig. 3 shows the weighted adjacency matrix ordered according to the topological modules M1, M2 and M3 (left
panel). Modules are separated by thick black lines and subdivided into motoneurons (black), sensory neurons (green)
and interneurons (red) by dashed black lines. The size of the dot is proportional to the intensity Aij and intermodule
connections are represented in yellow. The right panel shows the adjacency matrix ordered by ganglion, from head to
tail. The thick black lines highlight 5 groups of ganglia: {A, B}; {C}; {D, E, F}; {G} and {H, J, K}. These groupings were
defined to facilitate the visualization of the plots and to emphasize the forced ganglia (ganglion C in Fig. 5 and ganglion G
in figures 7 and 8 in the supplementary material). Subdivisions and intermodule connections follow the functional colors
of left panel. The indexes in both panels delimit the divisions made.

In order to analyze the interdependencies of the modules for different partitions of the EJ network, we have simulated
the application of an external stimulus to one of the modules and observed its effect on the others. The stimulus is
modeled by an external periodic force acting only on the selected module under the Kuramoto dynamics as described
in Section 2.1. In all our simulations we have fixed σ = 3. The effects on the other modules is measured by local order
parameters, such as rnm, and the normalized velocity–velocity correlation function as described in Section 2.4. Here we
show the numerical results for the cases where the stimulus was applied only to M1, or to ganglion C or to the sensory
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Table 1
Basic properties of forced modules: number of neurons, fraction of nodes, average degree and theoretical critical force
for full synchronization.

Module 1 Ganglion C Sensory neurons Network

Number of neurons NM1 = 130 NC = 56 NSN = 65 N = 248
Fraction of nodes fM1 = 52.42% fC = 22.58% fSN = 26.21% f = 100%
Average degree ⟨kM1 ⟩ = 7,96 ⟨kC ⟩ = 10,16 ⟨kSN ⟩ = 5,27 ⟨k⟩ = 7,13
Critical force (Eq. (4)) FM1

c,theo = 5,12 F C
c,theo = 9,32 F SN

c,theo = 22,96 Fc,theo = 3,00

neurons, Figs. 4–6, respectively. In all cases we show the global (rt ) and local (rnm) order parameters as a function of the
intensity F of the external force for four values of the internal coupling λ, panels (a) to (d), and the velocity–velocity
correlation matrices in panels (e) to (t).

We used equation (4) to calculate the expected critical force to induce global synchronization in an equivalent random
network. The values of the fraction f of forced nodes, the average degree ⟨k⟩C of the forced set and that of the whole
network ⟨k⟩ are summarized in Table 1. In Ref. [16], fully synchronized states were defined by the conditions rt > 0.95
and |ψ̇t | < 0.01. Here we also classify the network as partially synchronized if 0.8 < rt ≤ 0.95 and |ψ̇t | < 0.1. Further
information can be found in table II of S.M.

Stimulating the M1: the role of topology
Fig. 4 shows the results of simulations when only the neurons of M1 are forced (indexes 1 to 130 in the left panel of

Fig. 3.) As F increases, the neurons go through a region of asynchrony around F = 5, which is close to theoretical value
for full synchrony FM1

c,theo = 5.12 calculated with Eq. (4), and then they synchronize with the external force (ψ̇M1 = 0, Fig.
1 on S.M.) for F larger than about 10, where rM1 → 1. For large internal coupling λ, all modules appear to synchronize
with external force (see panel (d) of Fig. 4 and panel (l) of Fig. 1 on S.M.), but M3 has large fluctuations in ψ̇M3 (panel (p),
Fig. 1 on S.M.). The global order parameter reaches its maximum value at rt ≈ 0.9 with ψ̇t ≈ 0.0 for λ = 100 (Tables 2
and III of S.M.).

The most striking feature of these simulations is the strong anti-correlation patterns developed between M1 and M2
for λ ≤ 20. From the top panels we notice that, in these cases, M1 is in synchrony with the external force whereas M2 is
still synchronized spontaneously. Nevertheless the effects of M1 over M2 are very clearly shown by the purple areas of the
correlation plots. This indicates a lower value of the inter-modules order parameter rnm, as can be seen between M1-M2
and M2-M3 (panel (k) on Fig. 4 and Fig. 1 on S.M.). On the other hand, the presence of positive correlations between M1
and M3 (panel (q) on Fig. 4), is accompanied by an increase of r13.

Stimulating ganglion C: the role of anatomy
Fig. 5 shows the results of simulations when ganglion C is forced. The behavior of the order parameters rt and rn as

a function of F is similar to that observed when forcing the neurons of M1, exhibiting a region of asynchrony between
F = 5 and F = 10, which contains the theoretical value, F C

c,theo = 9.32, followed by stabilization for larger F . The forced
neurons are clearly seen as a bright yellow blocks in panels (e) to (h).

For sufficiently large F ganglion C synchronizes with the external force (r2 → 1, panels (a) to (d), and ψ̇2 = 0, Fig. 4
on S.M.) for all values of λ considered. However, the velocity–velocity correlation matrices show much simpler patterns,
displaying either nearly complete correlation (yellow areas in panels (g), (h), (k), (l) and (p)), or almost no correlation
at all (large red areas in panels (i), (m), (n), (q) and (r)) with ganglion C itself showing reduced internal correlations.
Even for F > 12, where r2 indicates that C is nearly fully synchronized for all λ’s, the correlation matrices show regions
of mixed behavior, especially for small λ, which means that part of neurons of C are non-correlated with each other or
even anti-correlated (see also Fig. 4, panels (a), (b), (i) and (j) on S.M.). Although all ganglia seem to synchronize with the
external force for λ ≥ 40 and F > 12, their dynamics are uncorrelated with other ganglia. The only exception is ganglion
G, that shows up as a yellow square in the plots (see also Figs. 7 and 8 of S.M.).

We also note that for λ = 40 the motor part of ganglion C (small yellow squares indexed by 37 to 46) correlates
separately from the rest of C for F = 12, panel (o), and F = 17, panel (s), which means that motoneurons respond
differently to external stimuli. For F = 17, panels (q), (r), (s) and (t), the number of correlated neurons increases from
λ = 10 to λ = 40 but for λ = 100 the entire network goes out of phase, with the exception of ganglion G: it keeps its
internal correlation at all times, maybe because it is entirely a motor ganglion type. Note that r4 ≈ 1 only for λ = 100,
panel (d), which means that full sync requires large internal coupling. We also note that the global order parameters for
λ = 100 are rt = 0.98 and ψ̇t = 0.0 (Table 2 and VI of S.M.), which means that the network is fully synchronized.

Stimulating the sensory neurons: the role of function
Fig. 6 shows the numerical results when all sensory neurons (SN) receive the external stimuli. Panels (a) to (d) show

that the behavior of the network is more complex in this case. The SN synchronize with the external force for: (i) λ = 10
and F > 10 (panels (a), (i) and S.M. Fig. 7), (ii) λ = 20 and F > 15 (panels (b), (j) and S.M. Fig. 7), (iii) λ = 40 and F > 20
(panels (c), (k) and S.M. Fig. 7) and (iv) λ = 100 and F > 30 (panels (d), (l) and S.M. Fig. 9). In (iii) and (iv) the values of F
are close to the theoretical value F SN

c,theo = 22.96. Contrary to all other cases, larger values of λ hinders the synchronization
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Table 2
Global order parameters for each forced subset of neurons. The network is considered to be partially synchronized if 0.8 < rt ≤ 0.95 and fully
synchronized if rt > 0.95 and ψ̇t < 10−2 .
λ rt−M1 ψ̇t−M1 Global sync (M1) rt−C ψ̇t−C Global sync (C) rt−SN ψ̇t−SN Global sync (SN)

10 0.55 0.07 No 0.52 0.03 No 0.59 −2.84 No
20 0.54 −0.01 No 0.67 0.00 No 0.63 −2.46 No
40 0.65 0.05 No 0.87 0.00 Partial 0.54 −2.70 No

100 0.91 0.02 Partial 0.98 0.00 Yes 0.81 0.00 Partial

of the forced group, since rSN decreases from λ = 10 to λ = 100, although ˙ψSN = 0 (Fig. 7, S.M.). For λ = 100, the global
order parameters are rt ≈ 0.81 and ψ̇t = 0.0 (Table 2 and VIII of S.M.), thus the system synchronizes only partially.

For λ ≤ 40, the motoneurons and almost half of interneurons were in spontaneous sync (panels (a), (b), (i) and (j) on
Fig. 7, S.M.), while for λ > 40 and F > 30 most neurons were synchronized with external stimuli. The velocity–velocity
matrices also show regions of anti and non-correlation, as can be seen on purple and red areas of Fig. 6, respectively,
particularly for weak internal coupling, λ < 40. In these cases, the lack of correlation seems to indicate a lower value of
inter-modules order parameter rnm, as can be seen in panels (e) to (h) of Fig. 9 on S.M.

4. Discussion

Information processing in the brain requires the synchronous firing of specific groups of neurons to respond to external
stimuli [43–45]. In the retina, neighboring cells synchronize at a very fine timescale to keep up with the constant motion
of the eyes and the head [46,47] and information about visual stimuli is contained in the relative spike timing [48].
In the auditory system, sound localization is determined by phase locking in the auditory nerve fibers [49], producing
correlations in spike timing that encodes the physical location of the sound source [50]. Although synchronization is
ubiquitous in neural systems [43] the specific group of neurons that synchronize depends on the type of stimulus and
the time scale of the synchronization might vary from milliseconds [48] to rates up to 170 spikes per second [49].

Groups of neurons can be defined in many ways, taking into account their anatomical location, their functional role or
their topological properties in the network. In this paper we investigated the importance of these divisions as targets to
stimuli, as well as their roles in spreading the inputs to other parts of the brain. Here we used a much simplified model
of synchronization given by the Kuramoto system of phase oscillators subjected to a single stimulus, described by the
external force, applied only to a subset of neurons representing a topological module (Fig. 4), a ganglion composed of
different functional neurons (Fig. 5) or the sensory neurons (Fig. 6). Because the stimulus is permanently turned on in
the model, the system behavior converges to an oscillatory state corresponding to an infinite sequence of spikes, which is
clearly a simplification. However, the model does provide interesting information about the ability of the group of neurons
receiving the input to synchronize among themselves or with other groups, or to develop correlations.

The modularization procedure applied to EJ network reveals that topological modules do not contain purely anatomical
groups or functional classes, but mixes neurons belonging to different ganglia and functional classes. This is illustrated
in Fig. 1, where we have analyzed the distribution of neuronal classes and ganglia membership in each module.
This corroborates previous studies that employed different modularization techniques [5,39–41,51] and highlights the
complexity of the neuronal wiring regarding their location and function. The response of the electrical neural network to
the stimulus was different for each type of neuron grouping, as we summarized in Table 2 in terms of synchronization
and below in terms of cross correlations with other modules.

Stimulation of the neurons of the largest topological module M1 induced strong anti-correlation in the velocity
fluctuations of the neurons in M2 and M3 (purple areas of panels (i), (j) and (m) on Fig. 4 or between M2 and M3 (panel (k)
on the same figure), which kept their original state of spontaneous synchronization for moderate values of the internal
coupling constant λ. The smallest topological module M3 remained oblivious to the stimulus even for large values of λ.
Interestingly, for intermediate values of the forcing (panel (j) on Fig. 4), the neurons of M1 became mostly uncorrelated
(red areas on Fig. 4), indicating a parameter region of poor response to the stimulus. It is possible, however, to identify the
modular structure by the presence of three blocks, each of one corresponding to M1, M2 and M3. A very similar behavior
is observed when M2 is stimulated (Figs. 2, 3 and table IV of the S.M.). When the stimulus is applied to M3, however, it
never spreads to the other modules, which remain in spontaneous synchrony but develop a pattern of anti-correlation
inter-modules for sufficiently large values of λ and F (Figs. 4. 5 and table V of S.M.).

The response of the network to stimulation of ganglion C was quite different from that of M1 displaying essentially
two distinct regions with (I) large parameter intervals of almost complete uncorrelated behavior, which occurs for λ ≤ 20
(red areas on panels (i), (m), (n), (q), (r) and (t) on Fig. 5) and (II) complete correlated behavior, with λ ≥ 40 (yellow areas
on Fig. 5). Effective synchronization of ganglion C with the external force required large values of the coupling constant.
Contrary to what occurs when forcing the topological module, the blocks of the correlation matrix corresponding to ganglia
groups cannot be clearly distinguished, except for ganglion G (Figs. 4 and 5 on S.M.), which seems to hold high correlation
between its neurons, possibly because it is the only group entirely composed by one class (motoneurons). Stimulation
of ganglion G is presented in the S.M. Figs. 7, 8 and table VII. The patterns of anti-synchronization between modules are
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Fig. 4. Panels (a)–(d): the global and local order parameters as a function of the external force F acting on neurons of M1 for λ fixed. The dashed
lines indicate the critical force, FM1

c,theo = 5.12. Panels (e)–(t): the velocity–velocity correlation matrix 248 × 248 obtained using Eq. (11). In each
panel, the fixed parameters λ and F are indicated. The M1 neurons are indexed by 1 to 130, the M2 neurons by 131 to 207 and the M3 neurons
are indexed by 208 to 248.

again observed in this case, reinforcing the idea that functionality, not spatial location, is the relevant structure in this
case.
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Fig. 5. Panels (a)–(d): the global and local order parameters as a function of the external force F acting on ganglion C for λ fixed. The dashed lines
indicate the critical force, F C

c,theo = 9.32. Panels (e)–(t): the velocity–velocity correlation matrix 248 × 248 obtained using Eq. (11). In each panel,
the fixed parameters λ and F are indicated. The group 1 ({A,B}) are indexed by 1 to 36, group 2 ({C}) by 37 to 92, group 3 ({D, E, F}) by 93 to 159,
group 4 ({G}) by 160 to 215 and group 5 ({H, J, K}) are indexed by 216 to 248.

Finally, stimulation of the sensory neurons leads to synchronization with the external driving for λ ≤ 40, while the
other two functional classes remained in spontaneous sync. It was only with strong internal coupling, λ > 40, and
force larger than the theoretical value, F > 30, that most of neurons were induced to the forced sync. The results also
show many regions of anti and non-correlation (purple and red areas on Fig. 6, respectively). Matrix blocks of similar
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Fig. 6. Panels (a)–(d): the global and local order parameters as a function of the external force F acting on sensory neurons for λ fixed. The dashed
lines indicate the critical force, F SN

c,theo = 22.96. Panels (e)–(t): the velocity–velocity correlation matrix 248 × 248 obtained using Eq. (11). In each
panel, the fixed parameters λ and F are indicated. The sensory neurons (SN) are indexed by 1 to 65, the interneurons (IN) by 66 to 147 and the
motoneurons (MN) are indexed by 148 to 248.

correlations identify the three classes reasonably well, although displaying visible internal structure, which indicates a
more complex relationship between them. When motoneurons are stimulated (Figs. 10, 11 and table IX of the S.M.)
partial synchronization is only possible for very large values of λ and F , but patterns of anti-correlation do appear for
small values of λ, similar to what is observed for ganglion G.
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In most cases, the order parameters r and ψ̇ exhibited a jump near critical force (dashed lines in the plots), which is
closer to Fc,theo as λ increases. Global and partial synchronization, however, is only observed in some cases and at much
larger values of F and λ than predicted by the mean field theory [16]. When the stimulus was applied to ganglion C,
in particular, global synchronization happened for λ = 100 and F ≈ 17, which is larger than theoretical value found,
F C
c,theo = 9.32.
Previous studies [16] have shown that the Kuramoto model with external localized stimuli leads to global synchro-

nization on synthetic networks with simple topologies, such as random and scale-free, if λ and F are sufficiently large.
Here we considered the real neural network of the nematode C. elegans and observed full and partial synchronization
in very few cases and for higher values of λ and F than predicted. This indicates that the particular modular structure
of the network protects the system from ‘seizures’. We found that the response of the network is highly complex and
depends strongly not only on the stimulated group but also on the intensity F and coupling strength λ. We hypothesize
that this complexity reflects the system flexibility to process and differentiate several types of inputs. The group divisions
considered here (topological, functional and anatomical) are natural but not exhaustive and finer subdivisions might be
important to understand the system response in more detail. Different types of stimuli, such as non-sinusoidal periodic
trains or localized pulses, could also bring up interesting responses that might help distinguish the behavior of the different
modules.
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