376 research outputs found

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    On the Suitability of Type-1 Fuzzy Regression Tree Forests for Complex Datasets

    Get PDF
    One of the challenges in data mining practices is that the datasets vary in complexity and often have different characteristics such as number of attributes, dependent variables characteristics etc. In terms of regression problems, the features that describe the dataset will vary in their complexity, sparseness verses coverage in relation to the decision space, and the number of outcome classes. Fuzzy Decision trees are well-established classifiers in terms of building robust, representative models of the domain. In order to represent different perspectives of the same domain, fuzzy trees can be used to construct fuzzy decision forests to enhance the predictive ability of singular trees. This paper describes an empirical study which examines the applicability of fuzzy tree regression forests to seven different datasets which have complex properties. The relationship between dataset characteristics and the performance of fuzzy regression tree forests is debated

    ACLRO: An Ontology for the Best Practice in ACLR Rehabilitation

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)With the rise of big data and the demands for leveraging artificial intelligence (AI), healthcare requires more knowledge sharing that offers machine-readable semantic formalization. Even though some applications allow shared data interoperability, they still lack formal machine-readable semantics in ICD9/10 and LOINC. With ontology, the further ability to represent the shared conceptualizations is possible, similar to SNOMED-CT. Nevertheless, SNOMED-CT mainly focuses on electronic health record (EHR) documenting and evidence-based practice. Moreover, due to its independence on data quality, the ontology enhances advanced AI technologies, such as machine learning (ML), by providing a reusable knowledge framework. Developing a machine-readable and sharable semantic knowledge model incorporating external evidence and individual practice’s values will create a new revolution for best practice medicine. The purpose of this research is to implement a sharable ontology for the best practice in healthcare, with anterior cruciate ligament reconstruction (ACLR) as a case study. The ontology represents knowledge derived from both evidence-based practice (EBP) and practice-based evidence (PBE). First, the study presents how the domain-specific knowledge model is built using a combination of Toronto Virtual Enterprise (TOVE) and a bottom-up approach. Then, I propose a top-down approach using Open Biological and Biomedical Ontology (OBO) Foundry ontologies that adheres to the Basic Formal Ontology (BFO)’s framework. In this step, the EBP, PBE, and statistic ontologies are developed independently. Next, the study integrates these individual ontologies into the final ACLR Ontology (ACLRO) as a more meaningful model that endorses the reusability and the ease of the model-expansion process since the classes can grow independently from one another. Finally, the study employs a use case and DL queries for model validation. The study's innovation is to present the ontology implementation for best-practice medicine and demonstrate how it can be applied to a real-world setup with semantic information. The ACLRO simultaneously emphasizes knowledge representation in health-intervention, statistics, research design, and external research evidence, while constructing the classes of data-driven and patient-focus processes that allow knowledge sharing explicit of technology. Additionally, the model synthesizes multiple related ontologies, which leads to the successful application of best-practice medicine

    Non classical concept representation and reasoning in formal ontologies

    Get PDF
    Formal ontologies are nowadays widely considered a standard tool for knowledge representation and reasoning in the Semantic Web. In this context, they are expected to play an important role in helping automated processes to access information. Namely: they are expected to provide a formal structure able to explicate the relationships between different concepts/terms, thus allowing intelligent agents to interpret, correctly, the semantics of the web resources improving the performances of the search technologies. Here we take into account a problem regarding Knowledge Representation in general, and ontology based representations in particular; namely: the fact that knowledge modeling seems to be constrained between conflicting requirements, such as compositionality, on the one hand and the need to represent prototypical information on the other. In particular, most common sense concepts seem not to be captured by the stringent semantics expressed by such formalisms as, for example, Description Logics (which are the formalisms on which the ontology languages have been built). The aim of this work is to analyse this problem, suggesting a possible solution suitable for formal ontologies and semantic web representations. The questions guiding this research, in fact, have been: is it possible to provide a formal representational framework which, for the same concept, combines both the classical modelling view (accounting for compositional information) and defeasible, prototypical knowledge ? Is it possible to propose a modelling architecture able to provide different type of reasoning (e.g. classical deductive reasoning for the compositional component and a non monotonic reasoning for the prototypical one)? We suggest a possible answer to these questions proposing a modelling framework able to represent, within the semantic web languages, a multilevel representation of conceptual information, integrating both classical and non classical (typicality based) information. Within this framework we hypothesise, at least in principle, the coexistence of multiple reasoning processes involving the different levels of representation

    Management of Inconsistencies in Data Integration

    Get PDF
    Data integration aims at providing a unified view over data coming from various sources. One of the most challenging tasks for data integration is handling the inconsistencies that appear in the integrated data in an efficient and effective manner. In this chapter, we provide a survey on techniques introduced for handling inconsistencies in data integration, focusing on two groups. The first group contains techniques for computing consistent query answers, and includes mechanisms for the compact representation of repairs, query rewriting, and logic programs. The second group contains techniques focusing on the resolution of inconsistencies. This includes methodologies for computing similarity between atomic values as well as similarity between groups of data, collective techniques, scaling to large datasets, and dealing with uncertainty that is related to inconsistencies

    Resolving pronominal anaphora using commonsense knowledge

    Get PDF
    Coreference resolution is the task of resolving all expressions in a text that refer to the same entity. Such expressions are often used in writing and speech as shortcuts to avoid repetition. The most frequent form of coreference is the anaphor. To resolve anaphora not only grammatical and syntactical strategies are required, but also semantic approaches should be taken into consideration. This dissertation presents a framework for automatically resolving pronominal anaphora by integrating recent findings from the field of linguistics with new semantic features. Commonsense knowledge is the routine knowledge people have of the everyday world. Because such knowledge is widely used it is frequently omitted from social communications such as texts. It is understandable that without this knowledge computers will have difficulty making sense of textual information. In this dissertation a new set of computational and linguistic features are used in a supervised learning approach to resolve the pronominal anaphora in document. Commonsense knowledge sources such as ConceptNet and WordNet are used and similarity measures are extracted to uncover the elaborative information embedded in the words that can help in the process of anaphora resolution. The anaphoric system is tested on 350 Wall Street Journal articles from the BBN corpus. When compared with other systems available such as BART (Versley et al. 2008) and Charniak and Elsner 2009, our system performed better and also resolved a much wider range of anaphora. We were able to achieve a 92% F-measure on the BBN corpus and an average of 85% F-measure when tested on other genres of documents such as children stories and short stories selected from the web

    Semantic image retrieval using relevance feedback and transaction logs

    Get PDF
    Due to the recent improvements in digital photography and storage capacity, storing large amounts of images has been made possible, and efficient means to retrieve images matching a user’s query are needed. Content-based Image Retrieval (CBIR) systems automatically extract image contents based on image features, i.e. color, texture, and shape. Relevance feedback methods are applied to CBIR to integrate users’ perceptions and reduce the gap between high-level image semantics and low-level image features. The precision of a CBIR system in retrieving semantically rich (complex) images is improved in this dissertation work by making advancements in three areas of a CBIR system: input, process, and output. The input of the system includes a mechanism that provides the user with required tools to build and modify her query through feedbacks. Users behavioral in CBIR environments are studied, and a new feedback methodology is presented to efficiently capture users’ image perceptions. The process element includes image learning and retrieval algorithms. A Long-term image retrieval algorithm (LTL), which learns image semantics from prior search results available in the system’s transaction history, is developed using Factor Analysis. Another algorithm, a short-term learner (STL) that captures user’s image perceptions based on image features and user’s feedbacks in the on-going transaction, is developed based on Linear Discriminant Analysis. Then, a mechanism is introduced to integrate these two algorithms to one retrieval procedure. Finally, a retrieval strategy that includes learning and searching phases is defined for arranging images in the output of the system. The developed relevance feedback methodology proved to reduce the effect of human subjectivity in providing feedbacks for complex images. Retrieval algorithms were applied to images with different degrees of complexity. LTL is efficient in extracting the semantics of complex images that have a history in the system. STL is suitable for query and images that can be effectively represented by their image features. Therefore, the performance of the system in retrieving images with visual and conceptual complexities was improved when both algorithms were applied simultaneously. Finally, the strategy of retrieval phases demonstrated promising results when the query complexity increases

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Imbalanced data classification and its application in cyber security

    Get PDF
    Cyber security, also known as information technology security or simply as information security, aims to protect government organizations, companies and individuals by defending their computers, servers, electronic systems, networks, and data from malicious attacks. With the advancement of client-side on the fly web content generation techniques, it becomes easier for attackers to modify the content of a website dynamically and gain access to valuable information. The impact of cybercrime to the global economy is now more than ever, and it is growing day by day. Among various types of cybercrimes, financial attacks are widely spread and the financial sector is among most targeted. Both corporations and individuals are losing a huge amount of money each year. The majority portion of financial attacks is carried out by banking malware and web-based attacks. The end users are not always skilled enough to differentiate between injected content and actual contents of a webpage. Designing a real-time security system for ensuring a safe browsing experience is a challenging task. Some of the existing solutions are designed for client side and all the users have to install it in their system, which is very difficult to implement. In addition, various platforms and tools are used by organizations and individuals, therefore, different solutions are needed to be designed. The existing server-side solution often focuses on sanitizing and filtering the inputs. It will fail to detect obfuscated and hidden scripts. This is a realtime security system and any significant delay will hamper user experience. Therefore, finding the most optimized and efficient solution is very important. To ensure an easy installation and integration capabilities of any solution with the existing system is also a critical factor to consider. If the solution is efficient but difficult to integrate, then it may not be a feasible solution for practical use. Unsupervised and supervised data classification techniques have been widely applied to design algorithms for solving cyber security problems. The performance of these algorithms varies depending on types of cyber security problems and size of datasets. To date, existing algorithms do not achieve high accuracy in detecting malware activities. Datasets in cyber security and, especially those from financial sectors, are predominantly imbalanced datasets as the number of malware activities is significantly less than the number of normal activities. This means that classifiers for imbalanced datasets can be used to develop supervised data classification algorithms to detect malware activities. Development of classifiers for imbalanced data sets has been subject of research over the last decade. Most of these classifiers are based on oversampling and undersampling techniques and are not efficient in many situations as such techniques are applied globally. In this thesis, we develop two new algorithms for solving supervised data classification problems in imbalanced datasets and then apply them to solve malware detection problems. The first algorithm is designed using the piecewise linear classifiers by formulating this problem as an optimization problem and by applying the penalty function method. More specifically, we add more penalty to the objective function for misclassified points from minority classes. The second method is based on the combination of the supervised and unsupervised (clustering) algorithms. Such an approach allows one to identify areas in the input space where minority classes are located and to apply local oversampling or undersampling. This approach leads to the design of more efficient and accurate classifiers. The proposed algorithms are tested using real-world datasets. Results clearly demonstrate superiority of newly introduced algorithms. Then we apply these algorithms to design classifiers to detect malwares.Doctor of Philosoph

    Contextualized ranking of entity types based on knowledge graphs

    Get PDF
    © 2016 Elsevier B.V. A large fraction of online queries targets entities. For this reason, Search Engine Result Pages (SERPs) increasingly contain information about the searched entities such as pictures, short summaries, related entities, and factual information. A key facet that is often displayed on the SERPs and that is instrumental for many applications is the entity type. However, an entity is usually not associated to a single generic type in the background knowledge graph but rather to a set of more specific types, which may be relevant or not given the document context. For example, one can find on the Linked Open Data cloud the fact that Tom Hanks is a person, an actor, and a person from Concord, California. All these types are correct but some may be too general to be interesting (e.g., person), while other may be interesting but already known to the user (e.g., actor), or may be irrelevant given the current browsing context (e.g., person from Concord, California). In this paper, we define the new task of ranking entity types given an entity and its context. We propose and evaluate new methods to find the most relevant entity type based on collection statistics and on the knowledge graph structure interconnecting entities and types. An extensive experimental evaluation over several document collections at different levels of granularity (e.g., sentences, paragraphs) and different type hierarchies (including DBpedia, Freebase, and schema.org) shows that hierarchy-based approaches provide more accurate results when picking entity types to be displayed to the end-user
    • …
    corecore