
This is a repository copy of Contextualized ranking of entity types based on knowledge
graphs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/94721/

Version: Accepted Version

Article:

Tonon, A., Catasta, M., Prokofyev, R. et al. (3 more authors) (2015) Contextualized ranking
of entity types based on knowledge graphs. Journal of Web Semantics. ISSN 1570-8268

https://doi.org/10.1016/j.websem.2015.12.005

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Contextualized Ranking of Entity Types Based on Knowledge Graphs

Alberto Tonona,∗, Michele Catastab,∗∗, Roman Prokofyeva,∗, Gianluca Demartinic,, Karl Abererb,∗∗,
Philippe Cudré-Maurouxa,∗

aeXascale Infolab, University of Fribourg – Switzerland
bEPFL, Lausanne – Switzerland

cInformation School, University of Sheffield – UK

Abstract

A large fraction of online queries target entities. For this reason, Search Engine Result Pages (SERPs)
increasingly contain information about the searched entities such as pictures, short summaries, related
entities, and factual information. A key facet that is often displayed on the SERPs and that is instrumental
for many applications is the entity type. However, an entity is usually not associated to a single generic type
in the background knowledge graph but rather to a set of more specific types, which may be relevant or not
given the document context. For example, one can find on the Linked Open Data cloud the fact that Tom
Hanks is a person, an actor, and a person from Concord, California. All these types are correct but some
may be too general to be interesting (e.g., person), while other may be interesting but already known to
the user (e.g., actor), or may be irrelevant given the current browsing context (e.g., person from Concord,
California). In this paper, we define the new task of ranking entity types given an entity and its context. We
propose and evaluate new methods to find the most relevant entity type based on collection statistics and on
the knowledge graph structure interconnecting entities and types. An extensive experimental evaluation over
several document collections at different levels of granularity (e.g., sentences, paragraphs) and different type
hierarchies (including DBpedia, Freebase, and schema.org) shows that hierarchy-based approaches provide
more accurate results when picking entity types to be displayed to the end-user.

Keywords: Entity typing, Ranking, Context, Crowdsourcing, Knowledge Graphs

1. Introduction

A large fraction of online queries target entities
[1]. Commercial search engines are increasingly re-
turning rich Search Engine Result Pages (SERPs)
that contain not just ten blue links but also images,
videos, news, etc. When searching for a specific
entity, users may be presented in the SERP with
a summary of the entity itself taken from a back-
ground knowledge graph. This search task is known
as ad-hoc object retrieval [2, 3], that is, finding an
entity described by a keyword query in a structured
knowledge graph. After correctly identifying the
entity described by the user query, the subsequent
task is that of deciding what entity information to
present on the SERP among all potential pieces of

∗name.surname@unifr.ch
∗∗name.surname@epfl.ch

g.demartini@sheffield.ac.uk

information available in the knowledge graph. It is
possible, for example, to display pictures, a short
textual description, and related entities.

One interesting entity facet which can be dis-
played in the SERP is its type. In public knowl-
edge graphs such as Freebase, entities are associated
with several types. For example, the entity ‘Peter
Jackson’ in Freebase1 has 17 types, among which
‘Person’, ‘Ontology Instance’, ‘Film director’, and
‘Chivalric Order Member’ can be found. When de-
ciding what to show on the SERP, it is important
to select the few types the user would find relevant
only. Some types are in most cases not compelling
(e.g., ‘Ontology Instance’) while other types (e.g.,
‘Film director’) may be interesting for a user who
does not know much about the entity. Users who
already know the entity but are looking for some of

1http://www.freebase.com/edit/topic/en/peter_

jackson

Preprint submitted to Journal of Web Semantics February 3, 2016

its specific facets might be interested in less obvi-
ous types (e.g., ‘Chivalric Order Member’, and its
associated search results).

More than just for search, entity types can be
displayed to Web users while browsing and reading
Web pages. In such a case, pop-ups displaying con-
textual entity summaries (similar to the ones dis-
played on SERPs like the Google Knowledge Panel)
can be shown to the users who want to know more
about a given entity she is reading about. In this
case again, picking the types that are relevant is
critical and highly context-dependent.

A third example scenario is to use selected en-
tity types to summarize the content of Web pages
or online articles. For example, one might build a
summary for a given news article by extracting the
most important entities in the article and listing
their most relevant types (e.g., ‘this article is about
two actors and the president of Kenya’).

In this paper, we focus on the novel task of rank-
ing available entity types based on their relevance
given a context. We propose several methods ex-
ploiting the entity type hierarchy (i.e., types and
their subtypes like ‘person’ and ‘politician’), collec-
tion statistics such as the popularity of the types
or their co-occurrences, and the graph structure
connecting semantically related entities (potentially
through the type hierarchy).

We experimentally evaluate our different ap-
proaches using crowdsourced judgments on real
data and extracting different contexts (e.g., word
only, sentence, paragraph) for the entities. Our ex-
perimental results show that approaches based on
the type hierarchy perform more effectively in se-
lecting the entity types to be displayed to the user.
The combination of the proposed ranking func-
tions by means of learning to rank models yields
to the best effectiveness. We also assess the scala-
bility of our approach by designing and evaluating
a Map/Reduce version of our ranking process over
a large sample of the CommonCrawl dataset2 ex-
ploiting existing schema.org annotations.

In summary, the main contributions of this paper
are:

• The definition of the new task of entity type
ranking, whose goal is to select the most rele-
vant types for an entity given some context.

• Several type-hierarchy and graph-based ap-
proaches that exploit both schema and in-

2http://commoncrawl.org/

stance relations to select the most relevant en-
tity types based on a query entity and the user
browsing context.

• An extensive experimental evaluation of the
proposed entity type ranking techniques over
a Web collection and over different entity type
hierarchies including YAGO [4] and Freebase
by means of crowdsourced relevance judge-
ments.

• A scalable version of our type ranking ap-
proach evaluated over a large annotated Web
crawl.

• The proposed techniques are available as an
open-source library3 as well as an online web
service4.

The present work is based on our previous contri-
bution on type ranking [5]. However, we extend our
previous article in several different ways: We pro-
pose a new context-aware approach to rank entity
types that extends the notion of context in which an
entity appears to exploit the text surrounding it in
addition to other co-occurring entities (Section 6.4),
and a new method that mixes different features
coming from both the knowledge base, including en-
tity popularity, and the type hierarchy (Section6.5.
We report additional detail on the methods we used
to build our text collection, including a pilot study
we did in order to evaluate the best task design to
collect relevance judgements (Section 7). We add
a discussion on the relation among the features we
take into consideration and on the comparison be-
tween hierarchy based and context-aware methods
for ranking entity types (Section 9).

The rest of the paper is structured as follows.
We start below by describing related work from
entity-search and ad-hoc object retrieval. Then,
we introduce the most important concepts in the
Web of Data (Section 3) to formally define our new
type ranking task in Section 4. In Section 5 we
present the architecture of our system, and in Sec-
tion 6 propose a series of approaches to solve it
based on collection statistics, type hierarchies, and
entity graphs. Section 8 presents experimental
results comparing the effectiveness of our various
entity ranking approaches over different document

3https://github.com/MEM0R1ES/TRank
4http://trank.exascale.info

2

collections and type hierarchies as well as a scalabil-
ity validation of our Map/Reduce implementation
over a large corpus. Finally, we conclude in Sec-
tion 10.

2. Related Work

Entity-centric data management is an remerging
area of research at the overlap of several fields in-
cluding Databases, Information Retrieval, and the
Semantic Web. In this paper we target the spe-
cific problem of assigning types to entities that have
been extracted from a Web page and correctly iden-
tified in a pre-existing knowledge graph.

Named Entity Recognition and Ranking. Classic
approaches to Named Entity Recognition (NER)
typically provide as output some type information
about the identified entities; In most cases, such
types consist of a very limited set of entities includ-
ing Person, Location, and Organization (see e.g.,
[6, 7]). While this is useful for application that need
to focus on one of those generic types, for other
applications such as entity-based faceted search it
would be much more valuable to provide specific
types that are also relevant to the user’s browsing
context.

In the field of Information Retrieval, entity rank-
ing has been studied for a few years. Historically,
the first entity-oriented task being addressed was
expert finding [8] where the focus is on one spe-
cific entity type, that is, people. The goal is to find
people who are knowledgeable about the requested
topic. After this, works have looked at how to
search for multiple entity types. Early approaches
on entity ranking focused on entities of different
types which are present in Wikipedia [9, 10]. In
the IR context, TREC5 organized an Entity Track
where different entity-centric search tasks have been
studied: Four entity types were considered in that
context, i.e., people, products, organizations, and
locations. Type information can also be used for en-
tity search tasks, e.g., by matching the types of the
entities in the query to the types of the retrieved en-
tities (see for instance [11]). Moreover, the IR com-
munity has organized workshops on entity search
topics at the major research venue [12, 13].

More recently, we have proposed and hybrid ap-
proach to rank entity identifiers as answer to a Web

5http://trec.nist.gov

search query [3]. We used both standard IR meth-
ods based on inverted indices as well as a structured
search approach that exploits the graph structure
(also including type information) connecting enti-
ties each other to improve search effectiveness. In
[14] authors show how the number of entities used
for the graph-based search step influences search
effectiveness. Related to this is the aggregation of
all data available about a specific entity [15], also
including its types.

In the NLP field, entity extraction methods are
continuously being developed. Here also, the types
that are considered are typically rather limited. For
example, in the method proposed in [16] 18 types
are considered. In [17, 18], authors propose a NER
system to recognize 100 entity types using a super-
vised approach. The starting point to define the
100 entity types is the BBN linguistic collection6

which includes 12 top types and 64 subtypes.

Entity Types. The Semantic Web community has
been creating large-scale knowledge graphs defining
a multitude of entity types. Efforts such as YAGO
[4] have assigned to LOD entities many types
by combining Wikipedia categories and WordNet
senses. More recently, projects such as DBpedia
[19] and Freebase [20] have collected large collec-
tions of structured representations of entities along
with their related types. Such knowledge graphs
hence represent extremely valuable resources when
working on entity type ranking as we do in this pa-
per.

An early work about ranking entity types is [21]
where authors propose a method to select the best
type of the result for a Web search query. Simi-
larly, in [22] authors propose methods to select the
best type given a query by exploiting the type hi-
erarchy from a background knowledge graph. As
compared to this, we aim to rank types assigned
to entities mentioned on the Web and (as pointed
out in [22] as particularly challenging) to select the
right granularity of types from the background type
hierarchy.

In a recent demo [23], the task of selecting the
most relevant types used to summarize an entity
has been proposed. However, the focus of this
work was on generating an entity description of a
given size, while our focus is to select the most rel-
evant types given the context in which the entity

6http://www.ldc.upenn.edu/Catalog/CatalogEntry.

jsp?catalogId=LDC2005T33

3

is described. Similarly to that work, we build our
approaches using large knowledge graphs such as
YAGO and DBpedia. In Tipalo [24], the authors
propose an algorithm to extract entity types based
on the natural language description of the entity
taken from Wikipedia. PEARL [25] is an approach
that selects the most appropriate type for an en-
tity by leveraging a background textual corpus of
co-occurring entities and performing fuzzy pattern
matching for new entities. We also rely on a back-
ground n-gram corpus to compute type probabili-
ties (See Section 6.4), however, the task the authors
tackle is different from ours: while their goal is to
find the correct type of emerging entities (that is,
entities not yet present in a knowledge graph), we
rank the types of entities already contained in the
knowledge graph, assuming they are correct. Yao et
al. also worked on extracting entity types from text
[26]; However, contrary to our case, their approach
is not bound to a fixed ontology and extracts entity
types coming from textual surface-form expressions
(for example, “Jan Zamoyski, a magnate”) without
linking them to any knowledge graph.

Related Applications. Several applications of our
techniques could be based on existing work. For
instance, entity-type ranking could be applied on
open-domain Question Answering [27], where can-
didate answers are first generated and later on fil-
tered based on the expected answer types. For
systems like Watson [28], identifying specific and
relevant entity types could potentially significantly
improve effectiveness. Another application depend-
ing on high-quality entity types is entity resolution
over datasets of different entity types. In [29], the
authors evaluate their approach on top of four en-
tity types (that is, persons, addresses, schools, and
jobs). The availability of more specific entity types
would probably be beneficial for this type of task
as well.

3. The Knowledge Graph

The task we address in this paper is addressed on
top of the Linked Open Data (LOD) cloud7. This
is a large collections of datasets describing entities
in structured format. Popular datasets in LOD in-
clude DBPedia, Freebase, and Geonames.

Each entity in these dataset is uniquely identi-
fied by an http URI and is described by means of

7http://linkeddata.org

RDF triples, that is, factual statements including
a subject (i.e., and entity URI), a predicate, and
an object. Predicates are taked from a predefined
schema (i.e., an ontology) and objects may be ei-
ther other entity URIs (e.g., URI1 is_married_to
URI2) or textual elements (e.g., URI1 has_name
‘John Doe’).

In this work we focus on a specific set of pred-
icates in LOD datasets that indicate entity type
information. For a target entity, we collect all indi-
dated types. In detail, we look at the object values
of the set of triples containing as subject the target
entity URI and as predicate one of those indicat-
ing type information. Such set of objects represent
all correct types of the target entity. The task we
address in this paper is to produce a ranked list
of correct types with the goal of ranking first the
most relevant types for the entity also based on the
textual context where the entity appears.

4. Task Definition

Given a knowledge graph containing semi-
structured descriptions of entities and their types,
we define the task of entity type ranking for a
given entity e appearing in a document d as the
task of ranking all the types Te = {t1, . . . , tn} as-
sociated to e based on their relevance to its tex-
tual context ce from d. In RDFS/OWL, the set
Te is typically given by the objects that are re-
lated to the URI of e via the <rdfs:type> pred-
icate. Moreover, we take into consideration enti-
ties connected to e via a <owl:sameAs> to URIs
of other selected ontologies and we add to Te all
the types directly attached to them. For example,
<dp:Tom_Cruise>8 has an <owl:sameAs> connec-
tion to <fb:Tom_Cruise> which allows us to add
the new type <fb:fashionmodels>.

The context ce of an entity e is defined as textual
content surrounding the entity taken from the doc-
ument d in which e is mentioned. This context can
have a direct influence on the rankings. For exam-
ple, the entity ‘Barack Obama’ can be mentioned
in a Gulf War context or in a golf tournament con-
text. The most relevant type for ‘Barack Obama’
shall probably be different given one or the other
context. The different context types we consider

8In the rest of this article we refer to DBpedia resources
with the namespace dp, to DBpedia ontology entries with
dpo, and to Freebase resources with fb.

4

in this paper are: i) three paragraphs around the
entity reference (one paragraph preceding, one fol-
lowing, and the paragraph containing the entity); ii)
one paragraph only, containing the entity mention;
iii) the sentence containing the entity reference; and
iv) the entity mention itself with no further textual
context.

To rank the types by their relevance given a
context, we exploit hierarchies of entity types.
In RDFS/OWL, a type hierarchy is typically de-
fined based on the predicate <rdfs:subClassOf>.
For example, in DBPedia we observe that
<dp:Politician> is a subclass of <dp:Person>.
Knowing the relations among types and their depth
in the hierarchy is often helpful to when automat-
ically ranking entity types. For example, given a
type hierarchy related to a specific entity, we might
prefer a more specific type rather than a too general
one.

We evaluate the quality of a given ranking
(ti, . . . , tj) by using ground truth relevance judge-
ments assessing which types are most relevant to an
entity e given a context ce. We discuss rank-based
evaluation metrics in Section 8.

5. TRank++ System Architecture

Our solution, TRank++, automatically selects
the most appropriate entity types for an entity
given its context and type information. TRank++

implements several components to extract entities
and automatically determine relevant types. First,
given a Web page (e.g., a news article), we identify
entities mentioned in the textual content of the
document using state-of-the-art NER focusing
on persons, locations, and organizations. Next,
we use an inverted index constructed over DB-
pedia literals attached to its URIs and use the
extracted entity as a query to the index to select
the best-matching URI for that entity9. Then,
given an entity URI we retrieve (for example,
thanks to a SPARQL query to a knowledge
graph) all the types attached to the entity. In
this way, we obtain types such as <owl:Thing>,
<dpo:EFF_Pioneer_Award_recipients> and
<dpo:English_bloggers> for the entity
<dp:Tim_Berners-Lee>. Finally, our system
produces a ranking of the resulting types based

9This is the same baseline approach used in [30] for Entity
Linking.

on evidences computed by using different methods
exploiting the textual context where the entity has
been mentioned. A summary of the different steps
involved in are depicted in Figure 1.

We briefly describe the entity extraction and en-
tity linking components below. The focus of the
rest of this paper will then be on the definition and
experimental comparison of different ranking func-
tions for entity types.

Entity Extraction. The first component of the
TRank++ pipeline takes as input a document col-
lection and performs NER, that is, the identifica-
tion of entity mentions in the text. Entities that
can be accurately identified are persons, locations,
and organizations. The current implementation of
our system adopts a Conditional Random Field ap-
proach to identify entities [31].

Entity Linking. The following step is entity link-
ing, which aims at assigning a URI to an entity
mention identified in the previous step. The goal is
to disambiguate an entity (e.g., ‘Michael Jordan’)
by uniquely identifying it (e.g., the former NBA
basketball player). In order to obtain a URI for
the entity, we rank candidate URIs from DBPedia
3.8 using an inverted index by TF-IDF similarity
on the label. Note that the focus of this paper is
not on improving the state-of-the-art in named en-
tity recognition or linking, thus we apply existing
approaches for these steps.

Integrating Different Type Hierarchies. For the
purpose of our task, we require a large, integrated
collection of entity types to enable fine-grained
typing of entities. There are several large on-
tologies available, both manually constructed [32]
as well as based on the widespread success of
Wikipedia combined with information extraction
algorithms [19, 4]. However, the lack of alignment
among such ontologies hinders the ability of com-
paring types belonging to different collections.
In TRank++, we exploit pre-existing mappings pro-
vided by DBpedia and PARIS [33] to build a coher-
ent tree of 447, 260 types, rooted on <owl:Thing>

and with a max depth of 19. The tree is
formed by all the <rdfs:subClassOf> relation-
ships among DBpedia, YAGO and schema.org
types. To eliminate cycles and to enhance cov-
erage, we exploit <owl:equivalentClass> to cre-
ate <rdfs:subClassOf> edges pointing to the par-
ent class (in case one of the two Classes does

5

Text
extraction

(BoilerPipe)

Named Entity
Recognition

(Stanford NER)

List of
entity
labels

Entity linking
(inverted index:

DBpedia labels !
resource URIs)

foreach

List of
entity
URIs

Type retrieval
(inverted index:

resource URIs !
 type URIs)

List of
type
URIs

Type ranking:

- Hierarchy based
- Textual-context
- Entity-context
- Entity-based

Ranked
list of
types

Figure 1: The TRank++ Architecture.

not have a direct parent). Considering that the
probabilistic approach employed by PARIS does
not provide a complete mapping between DBpe-
dia and Yago types, we have manually added 4
<rdfs:subClassOf> relationships (reviewed by 4
domain experts) to obtain a single type tree (rather
than a forest of 5 trees).10 Figure 2 shows a visual
representation of the integrated type hierarchy used
by TRank++.

Entity Type Retrieval and Ranking. Finally, given
the entity URI we retrieve all its types (from a back-
ground RDF corpus or from a previously created
inverted index) and rank them given a context. In
this paper, we use the Sindice-2011 RDF dataset11

[34] to retrieve the types, which consists of about
11 billion RDF triples.

6. Approaches to Entity Type Ranking

The proposed approaches for entity type rank-
ing can be grouped in entity-centric, context-aware,
and hierarchy-based. Figure 3 shows on which
data such approaches are based. The entity-centric
approaches look at the relation of the entity e
with other entities in a background knowledge
graph following edges such as <dpo:wikiLink> and
<owl:sameAs>. Context-aware approaches exploit
the co-occurrence of the entity e with other entities
in the same textual context. Hierarchy-based ap-
proaches look at the structure of the type hierarchy
and rank types of e based on that.

10The such created type hierarchy is available in the form
of a small inverted index that provides for each type the
path to the root and its depth in the hierarchy at http:

//exascale.info/TRank
11http://data.sindice.com/trec2011/

6.1. Entity-Centric Ranking Approaches

We now turn to the description of several tech-
niques to rank entity types. The first group of ap-
proaches we describe only considers background in-
formation about a given entity and its types with-
out taking into account the context in which the
entity appears.

Our first basic approach (FREQ) to rank entity
types is based solely on the frequency of those types
in the background knowledge graph ranking first
the most frequent type of an entity. For example,
the type Person has a higher frequency (and thus
is more popular) than EnglishBlogger.

Our second approach (WIKILINK) exploits the
relations existing between the given entity and fur-
ther entities in the background knowledge graph.
Hence, we count the number of neighboring entities
that share the same type. This can be for exam-
ple be performed by issuing the following SPARQL
queries retrieving connected entities from/to e:

SELECT ?x

WHERE { <e> <dpo:wikilink> ?x .

?x <rdfs:type> <t_i>

}

SELECT ?x

WHERE { ?x <dpo:wikilink> <e> .

?x <rdfs:type> <t_i>

}

For example, in Figure 3a to rank types for the
entity e we exploit the fact that linked entities have
also the type ‘Actor’ to rank it first.

In a similar way, we exploit the knowledge graph
by following <owl:sameAs> connections and observ-
ing the types attached to such URIs (SAMEAS):

6

<owl:equivalentClass>

<owl:Thing>

Mappings YAGO/DBpedia (PARIS)

type: DBpedia schema.org Yago

subClassOf relationship:
explicit inferred from

<owl:equivalentClass>
manually

added
PARIS ontology

mapping

Figure 2: The integrated type hierarchy.

SELECT ?x

WHERE { <e> <owl:sameAs> ?x .

?x <rdfs:type> <t_i>

}

Our next approach (LABEL) adopts text similar-
ity methods. We consider the label of e and mea-
sure its TF-IDF similarity with other labels appear-
ing in the background knowledge graph in order to
find related entities12. At this point, we inspect the
types of the most related entities to rank the types
of e. More specifically, we select the top-10 entities
having the most similar labels to e and rank types
based on the frequency of ti ∈ Te for those entities.

6.2. Hierarchy-Based Ranking Approaches

The more complex techniques described below
make use of the type hierarchy and measure the
depth of an entity type ti attached to e in order to
assess its relevance. We define the DEPTH ranking
score of a type ti as the depth of ti in the type hi-
erarchy. This approach favors types that are more
specific (i.e., deeper in the type hierarchy).

In some cases, the depth of an entity type in
the hierarchy may not be enough. To detect the
most relevant entity types, it might also be useful to
determine the branch in the type hierarchy where

12This can be efficiently performed by means of an inverted
index over entity labels.

the most compelling entity types are defined. In
that context, we define a method (ANCESTORS)
that takes into consideration how many ancestors of
ti ∈ Te are also type of e. That is, if Ancestors(ti)
is the set of ancestors of ti in the type hierarchy,
then we define the score of ti as the size of the set
{tj |tj ∈ Ancestors(ti) ∧ tj ∈ Te}. For example,
in Figure 3c we rank first the type ‘Actor’ because
‘Person’ is its ancestor and it is also a type of e.
On the other hand, the type ‘Humanitarian Foun-
dation’ has a bigger depth but no ancestor which is
also a type of e.

A variant of this approach (ANC_DEPTH) con-
siders not just the number of such ancestors of ti
but also their depth. Thus,

ANC_DEPTH(ti) =
∑

tj∈Ancestor(ti)∧tj∈Te

depth(tj).

(1)

6.3. Entity-Based Context-Aware Ranking Ap-
proaches

We describe approaches leveraging the entity
context below. A first approach (SAMETYPE)
taking into account the context ce in which e ap-
pears is based on counting how many times each
type ti ∈ Te appears in the co-occurring entities
e′ ∈ ce also mentioned in the context. In this case,
we consider a match whenever the same type URI
is used by e and e′, or when the type of e′ has the

7

(a)

e

wikiLink

wikiLink

Person

Actor

ActorFromCalifornia

Actor

ActorFromNewYork

Actor

Person

Thing

e

(b)

e'

Person

Actor

Actor

AmericanActor

Context

e''

Organization

Thing

e

(c)

Thing

Person Organization

Foundation

Humanitarian

Foundation

Actor

Figure 3: (a) Entity-centric (b) Context-aware (c) Hierarchy-
based type ranking.

same label as the type from e. For example, in Fig-
ure 3b we rank first the type ‘Actor’ for the entity
e because it co-occurs with other entities of type
Actor in the same context.

A slightly more complex approach (PATH)
leverages both the type hierarchy and the context
in which e appears. Given all entities appearing
in the context e′ ∈ ce, the approach measures how
similar the types are based on the type hierarchy.
We measure the degree of similarity by taking the
intersection between the paths from the root of the
type hierarchy (i.e., <owl:Thing>) to ti ∈ Te and to
tj ∈ Te′ . For instance, when ranking types for the
entity ‘Tom Hanks’ in a context where also ‘Tom
Cruise’ appears, we measure the similarity be-
tween the types by considering the common paths
between the root of the type hierarchy and both
types, e.g., “Thing-Agent-Person-Artist-Actor-
AmericanTelevisionActors” and “Thing-Agent-
Person-Artist-Actor-ActorsFromNewJersey” would
be considered as highly similar. On the other hand,

the ‘Tom Hanks’ type path “Thing-PhysicalEntity-
CausalAgent-Person-Intellectual-Scholar-Alumnus-
CaliforniaStateUniversity,SacramentoAlumni” is
not very similar with the previous ‘Tom Cruise’
path. Hence, the approach ranks the ‘American-
TelevisionActors’ type higher given the context in
which it appears.

6.4. Text-Based Context-Aware Approaches

We now propose two context-aware approaches
that exploit the textual context in which the con-
sidered entities appear. Formally, we want to rank
the types of an entity e, appearing in a window of
text (w−k, w−k+1, . . . , w0 = e, w1, . . . , wk), where e
is a mention of the entity occurring inside the win-
dow. In this method, we rank types according to
the probability of seeing an entity of type t given
the tokens w−k, w−k+1, . . . , w−1, w1, . . . , wk.

We use the text of the Wikipedia Webpages in
order to compute relevant statistics for type rank-
ing. More precisely, we extend the user-annotated
entities by using a state-of-the-art entity linking
method: DBpedia Spotlight [35]. All the linked
entities are then substituted by special tokens con-
taining their entity types. For example, if we sup-
pose that an entity e having types t0 and t1 appears
in a certain window of text w̄, we replicate twice w̄
where the first time we replace the entity with t0,
and the second time with t1. The resulting sequence
of tokens is finally split into n-grams, and aggre-
gated counts are calculated. Formally, we compute
the probability of an entity type t given a window
of text w̄ by averaging the probability of finding an
entity of type t in each individual n-gram we can
extract from w̄. The probability of a type t given
an n-gram ng is computed as shown in Equation 2,
where T is the set of all considered types.

Pr(t | ng) =
Count(t | ng)∑

j∈T Count(tj | ng)
. (2)

It is worth noting that, since every entity is an in-
stance of the most general type, the probability of
<owl:Thing> given any text is always 1. Unfortu-
nately, as a consequence of the sparsity of natural
language data, we do not always have evidence of
the occurrence of all considered types, given a cer-
tain textual context. This is exacerbated when the
knowledge graph taken into consideration contains
many entity types. We address this issue using
a popular technique from statistical machine trans-
lation known as Stupid Back-off smoothing [36], in

8

which we fall back to estimating the probability us-
ing (n− 1)-grams if the original n-gram is not con-
tained in our background corpus. For unigrams, the
probability estimate is the probability of the given
type.

Finally, the score that our first text-based
context-aware approach (NGRAMS0) assigns to a
DBpedia type given a window of text w̄ is computed
as shown in Equation 3. NGrams(w̄, n) is a function
returning all the n-grams composing w. During our
experimental evaluation, we fix the length of the
textual context w̄ to 5 tokens (that is, we take two
tokens before an entity type, an two tokens after
the entity type).

Score(t, w̄) =

∑
ng∈NGrams(w̄) NGramScore(t | ng)

|NGrams(w̄)|
(3)

As one can notice, NGRAMS0 always priori-
tizes coarser types. In order to mitigate this phe-
nomenon, we devise a method drawing inspiration
from our recent work [37]. Our second text-based
context-aware approach, NGRAMS1, models the
probability of seeing an instance of a certain en-
tity type given a window of text as a flow cross-
ing the type hierarchy starting from the root (with
probability 1) and descending the tree until either
a leaf is reached or the flow of probability is broken
(that is, we reach a node that does not transmit any
probability to its children). Additionally, in order
to avoid cases in which deeper or coarser types are
always prioritized, when computing the score of an
entity type we take into consideration the entropy
its children’s probabilities, and that of its sibling’s
probabilities, too. For example, suppose that the
probability that flowed to dpo:Actor is scattered al-
most equally among all its 465 children. In this
case dpo:Actor should be prioritized as it is more
“informative” than each of its children. The main
idea supporting this decision is the fact that when
the probability mass of the current type in the hier-
archy is scattered among many of its children, this
can give us clues about how the current type should
be ranked with respect to its children. In Section 9,
we give more detail on the relation between entropy,
number of children, and relevance.

Despite using the same concepts, we cannot di-
rectly apply the algorithm we proposed in our pre-
vious work since it was designed to return only one
type. What we propose instead is a generalization
of this approach using the probability of the current
node and the entropy of its children as two features
to assign a score to an entity type. This is appropri-

ate in our context as we can exploit the labeled data
of our testset (see Section 7 for more information).
Specifically, we use a decision tree [38] to assign a
score to the current type, given a certain window
of text, by exploiting the following features:

1. NGRAMS0, the score of the NGRAMS0 method,
playing the role of the type probability;

2. ratioParent, the ratio between the current
type probability and the probability of its par-
ent;

3. nChildren, the number of children to which
some probability mass flows;

4. hChildren, the entropy of the probabilities of
the children;

5. nSiblings, the number of siblings of the current
node having some probability mass;

6. hSiblings, the entropy of the probabilities of
the siblings.

Section 8 gives more technical detail and reports
on the evaluation of NGRAMS0 and NGRAMS1;
in addition, the relation between the features we
selected and relevance is discussed in Section 9.

6.5. Mixed Approaches

Below, we report on techniques that exploit sev-
eral features to rank entity types.

Mixing Evidence from Type Hierarchy and Knowl-
edge Base. The first technique we propose, KB-
HIER, uses decision trees [38] to combine features
that come from the entity whose types are ranked,
from the type hierarchy and from the knowledge
base. The features we consider in that context are:

1. popularity of the entity in the knowledge base,
measured by computing the number of triples
with the given entity as the subject.

2. nTypes, that is, the number of types connected
to the entity.

3. nChildren, typeDepth, nSiblings, the number
of children, depth in the type hierarchy, and
number of siblings of the entity type taken into
consideration.

We focus on the interplay among those features as
we believe that it is the most interesting aspect of
this approach.

9

Learning to Rank Entity Types. Finally, since
TRank++ ranking approaches cover fairly different
types of evidences (based on the entity-graph, the
context, or the type hierarchy) to assess the rele-
vance of a type, we also propose to combine our
different techniques by determining the best po-
tential combinations using a training set, as it is
commonly carried out by commercial search engines
to decide how to rank Web pages (see for example
[39]). Specifically, we use decision trees [40] and lin-
ear regression models to combine the ranking tech-
niques described above into new ranking functions.
The decision tree method we used is M5 [41], which
is specifically designed for regression problems.

The effectiveness of these two approaches is dis-
cussed in Section 8, while in Section 9 we discuss
the relations between the various features we use.

6.6. Scalable Entity Type Ranking with MapReduce

Ranking types using the above methods for all
the entities identified in a large-scale corpus using a
single machine and SPARQL end-points is imprac-
tical, given the latency introduced by the end-point
and the intrinsic performance limitations of a single
node. Instead, we propose a self-sufficient and scal-
able Map/Reduce architecture for TRank++, which
does not require to query any SPARQL end-point
and which pre-computes and distributes inverted
indexes across the worker nodes to guarantee fast
lookups and ranking of entity type. More specifi-
cally, we build an inverted index over the DBpedia
3.8 entity labels for the entity linking step and an
inverted index over the integrated TRank++ type
hierarchy which provides, for each type URI, its
depth in the type hierarchy and the path to the
root of the hierarchy. This enables a fast computa-
tion of the hierarchy-based type ranking methods
proposed in Section 6.2.

7. Crowdsourced Relevance Judgements

To create the ground truth judgements for the
best types to be selected for an entity given a con-
text we used paid crowdsourcing13. We decided to
ask anonymous Web users rather than creating the
ground truth ourself as they are a real sample of
Web user who could benefit from the envisioned

13We run our tasks over the Amazon MTurk platform.
The collected data and task designs are available for others
to reuse at http://exascale.info/TRank

application. Each task, which was assigned to 3 dif-
ferent workers from US, consists of asking the most
relevant type for 5 different entities, and was paid
$0.10 for entities without context and $0.15 for enti-
ties in a context. Additionally, we allow the worker
to annotate the entity as an error which could have
happened either at the extraction or linking level,
and to add an additional type if the proposed ones
were not satisfactory. Overall, the relevance judge-
ment creation costed $190.

7.1. Pilot Study

In order to better understand how to obtain accu-
rate relevance judgements from the crowd, we ran a
pilot study where we compared three different task
designs for the entity type relevance judgement. In
order to compare our task designs, we assigned each
different task to 10 workers for a total of 30 requests
and a budget of $6. The workers were requested to
read a paragraph of text and rank the types of 6
entities having, on average, 11 entity types each.

Two of the task designs we analyzed are based on
the interface depicted in Fig. 4 (left) but differ from
the fact that in one the workers could select mul-
tiple relevant types, while in the other they could
only select one relevant type (they had to explicitly
mark all the other types as irrelevant). The ratio-
nale behind this choice was that having to express
an opinion for each entity type forces the worker
to read the type label, thus, reducing spam (i.e.,
random selection of one type). The high frequency
of “yes” we recorded in the first task design (6.76
on average) led us to understand that the workers
misinterpreted the crowdsourced task and signaled
as relevant all the types that they know are correct
for the entity displayed (which was not the goal
as clearly explained in the task instructions), while
the second task design was not popular among the
workers due to the high number of clicks it required
(only 7 workers out of 10 completed the task), lead-
ing to too potentially long delays to obtain judge-
ments for all our datasets.14 Finally, the interface
of the third task design we considered is similar to
the one shown in Fig. 4 (right). In this case, the
users were still allowed to select only one relevant

14During the pilot study we monitored the main web fo-
rums (e.g., http://www/mturkforum.com) where crowd work-
ers exchange information about tasks and we noticed that
this task design was criticized as using “mega-bubbles”, a
neologism used to describe the presence of numerous radio
buttons that must be clicked to complete the task.

10

Figure 4: Task design (left) and final version of the interface used by the crowd to generate relevance judgements for entity
types (right).

type for each entity displayed, but only one click
was needed to complete the task.

Given the results of the pilot study, we selected
our last task design to generate the relevance judge-
ments in our datasets since it also simulates our tar-
get use case of showing one single entity type to a
user browsing the Web. Table 1 lists the inter-rater
agreement among workers in terms of Fleiss’ k com-
puted on the final relevance judgements for each
test collection we made. We observe that agreement
increases with an increasing degree of context. We
argue that the context helps the worker in selecting
the right type for the entity; without much context,
the worker is prone to subjective interpretation of
the entity, that is, he/she associates to the entity
the type that is the most relevant based on his/her
background knowledge.

Table 1: Agreement rate among crowd assessors during the
evaluation of the four test collections.

Collection Fleiss’ κ

Entity-only 0.3662
Sentence 0.4202
Paragraph 0.4002
3-Paragraphs 0.4603

8. Experiments

8.1. Experimental Setting

We have created a ground truth of entity types
mentioned in 128 news articles selected from the top
news of each category from the New York Times
website during the period 21 Feb – 7 Mar 2013.
On average, each article contains 12 entities. Af-
ter the entity linking step, each entity is associ-
ated to an average of 10.2 types from in our Linked

11

Data collection. We crowdsourced the selection of
the most relevant types by asking workers which
types are the most relevant given a specific tex-
tual context. To generate our ground truth out of
the crowdsourcing results we consider relevant each
type which has been selected by at least one worker
to obtain binary judgements, and we consider the
number of workers who selected the type as its rel-
evance score in a graded relevance setting.

Evaluation Measures. As main evaluation measure
for comparing different entity type ranking meth-
ods we use Mean Average Precision (MAP). Aver-
age Precision (AP) for the types Te of an entity e
is defined as

AP (Te) =

∑
ti∈Te

rel(ti) · P@i

|Rel(Te)|
(4)

where rel(ti) is 1 if ti is a relevant type for the entity
e and 0 otherwise, Rel(Te) is the set of relevant
types for e, and P@i indicates Precision at cutoff i.
MAP is defined as the mean of AP over all entities
in the collection. MAP is a standard evaluation
measure for ranking tasks which considers binary
relevance: A type ti is either correct or wrong for
an entity e.

Since the original relevance judgements are not
binary (i.e., more than one worker can vote for a
type and thus have a higher relevance value than
a type with just one vote), we also measure Nor-
malize Discounted Cumulative Gain (NDCG) [42]
which is a standard evaluation measure for rank-
ing tasks with non-binary relevance judgements.
NDCG is defined based on a gain vector G, that
is, a vector containing the relevance judgements at
each rank. Then, discounted cumulative gain mea-
sures the overall gain obtained by reaching rank k
putting more weight at the top of the ranking:

DCG[k] =

k∑

j=1

G[j]/(log2(1 + j)) (5)

To obtain NDCG, we normalize it dividing DCG
by its optimal value obtained with the optimal gain
vector which puts the most relevant results first.
This gives a measure in [0, 1] where 1 is obtained
with the best possible ranking.

During the evaluation of our methods we only
consider entity-types belonging to the integrated
TRank++ hierarchy.

8.2. Dataset Analysis

Out of the NYT articles we have crawled, we cre-
ated four different datasets to evaluate and compare
approaches for the entity type ranking task. First,
we use a collection consisting exclusively of entities
and their types as extracted from the news arti-
cles. This collections is composed by 770 distinct
entities: out of the original 990 extracted entities
we consider only those with at least two types to
be ranked and we removed the errors in NER and
entity linking which were identified by the crowd
during the relevance judgements. Each entity has,
on average, 10.2 types to be ranked.

Sentence Collection. We built a Sentence collection
consisting of all the sentences containing at least
two entities. In this and the following collections
we asked the human assessor to judge the relevance
of a type in the given context (e.g., a sentence).
Thus, the assessor has to read the context and se-
lect the type that best describes the entity given
the presented text. This collection contains 419
context elements composed of an average number
of 32 words and 2.45 entities each.

Paragraph Collection. We constructed a collection
consisting of all the paragraph longer than one sen-
tence and containing at least two entities having
more than two types. This collection contains 339
context elements composed of an average number
of 66 words and 2.72 entities each.

3-Paragraphs Collection. The last collection we
have constructed contains the largest context for
an entity: the paragraph where it appears together
with the preceding and following paragraph in the
news article. As the paragraph collection, this col-
lection contains 339 context elements which are
composed on average of 165 words each. The en-
tire context contains on average 11.8 entities which
support the relevance of the entities appearing in
the mid paragraph.

We measured the similarity among relevance
judgements run displaying different entity contexts
to the human judges. Specifically, to compare the
judgements over two contexts A and B we measure

JudgOverlap(A,B) =
|sharedRelevant(A,B)|

min(|relevant(A)| , |relevant(B)|)
(6)

Table 2 shows the similarity scores among judge-
ments. We can observe that showing exclusively the

12

Table 2: Overlap of type relevance judgements run using
different entity contexts.

Context A Context B JudgOverlap

Sentence Entity only 0.7644
Paragraph Entity only 0.7689
3-Paragraphs Entity only 0.7815

Sentence Paragraph 0.8501
Sentence 3-Paragraphs 0.8616
Paragraph 3-Paragraphs 0.8328

entity to the human assessor yields to somehow dif-
ferent judgements as compared to displaying some
contextual information about the entity. No major
differences can be observed among different sizes of
contexts.

8.3. TRank++ Effectiveness Results

Evaluation over different Contexts. Figure 5 shows
the evolution of MAP and NDCG values by varying
the number of types associated to an entity. We can
see that when an entity has many different types it
is more difficult to rank types for it. Even for the
simple approach FREQ when few types are assigned
to an entity we can obtain effective results. On the
right side of Figure 5 we can see the robustness
of DEC-TREE over an increasing number of types
associated to the entity.

Figure 6 shows the average effectiveness values
for entities in different sections of our NYT collec-
tion. We can see that the most effective type rank-
ing can be obtained on articles from the Dealbook
section which deals with merge, acquisitions, and
venture capital topics. Most challenging categories
for finding the correct entity type include Arts and
Style. On the right side of Figure 6 we can see the
number of types associated to entities appearing in
a specific section of the NYT. We can see that the
entities with most types (16.9) appear in the Opin-
ion section. The less types (8.7) are associated to
entities appearing in the Dealbook section which
may also explain the fact that their types can be
ranked best.

Table 3 reports the results of the evaluation of
all the methods described in Section6. We notice
that, when we compare the results obtained among
the different collections (i.e., entity-only, sentences,
paragraph, and 3 paragraphs), the effectiveness val-
ues obtained without context are generally higher
supporting the conclusion that the type ranking

task for an entity without context is somehow easier
than when we need to consider the story in which
it is mentioned.

Among the entity centric approaches, in most of
the cases WIKILINK-OUT, that is the approach
that follows the <dpo:wikiLink> edges starting
from the entity e we are ranking types for and
checks the frequency of its types among the con-
nected entities. Among the context-aware ap-
proaches the NGRAMS1 method performs best
while, as expected, NGRAMS0 performs poorly,
obtaining scores which are similar to those of
our baseline. Despite being conceptually simple,
the hierarchy-based approaches clearly outperform
most of the other methods, showing scores similar
to the most sophisticated context-aware approach.
Even the simple DEPTH approach performs effec-
tively.

To evaluate NGRAMS1 and KB-HIER, we used
5-fold cross validation over 4’334, 6’011, 5’616, and
5’620 data points in the four different collections.
We increased the number of splits when evaluat-
ing the combination of all the approaches since we
had more data points: we ran 10-fold cross vali-
dation over 7’884, 11’875, 11’279, and 11’240 data
points. For this last approach, out of the ranking
approaches we have proposed, we selected 12 fea-
tures which cover the different methodologies (i.e.,
entity-centric, context-aware, and hierarchy-based)
to train regression models for entity type ranking.
We can observe that the best performing method
is the one based on decision trees (DEC-TREE)
which outperforms all other approaches. KB-
HIER, which was initially design to investigate how
hierarchy-based features interplay with features ex-
tracted from the knowledge base, performs actually
better than our linear regression approach (LIN-
REG) that combines scores coming from the other
approaches.

Crowd-powered Entity Type Assignment. For some
entities the knowledge base may not contain good
enough types. For example, some entities have
only <owl:Thing> and <rdfs:Resource> attached
to them. In such cases, we ask the crowd to suggest
a type for the entity they are judging. While it is
not the focus of this paper to extend existing LOD
ontologies with additional schema, we claim that
this can be easily done by means of crowdsourcing.
Some example of crowd-originated entity types are
listed in Table 4.

13

Table 3: Type ranking effectiveness in terms of NDCG and MAP for different textual contexts. Statistically significant
improvements (t-test p < 0.05) of the mixed approaches over the best ranking approach are marked with *.

Approach
Entity-only Sentence Paragraph 3-Paragraphs

NDCG MAP NDCG MAP NDCG MAP NDCG MAP

FREQ 0.5997 0.4483 0.5546 0.3898 0.5503 0.3932 0.5163 0.3682

WIKILINK-IN 0.6390 0.5110 0.5658 0.4194 0.5759 0.4361 0.5520 0.4054
WIKILINK-OUT 0.6483 0.5189 0.5795 0.4509 0.5864 0.4579 0.5668 0.4294
SAME-AS 0.6451 0.5088 0.5731 0.4192 0.5823 0.4243 0.5583 0.4046
LABEL 0.6185 0.4777 0.5693 0.4173 0.5555 0.4090 0.5344 0.3875

SAMETYPE - - 0.5964 0.4465 0.5938 0.4385 0.5583 0.4083
PATH - - 0.5959 0.4654 0.5966 0.4642 0.5609 0.4290
NGRAMS0 - - 0.5559 0.3865 0.5449 0.3855 0.5144 0.3625
NGRAMS1 - - 0.6401 0.5255 0.6608 0.5526 0.6413 0.5431

DEPTH 0.7016 0.5994 0.6210 0.5082 0.6279 0.5171 0.6117 0.4984
ANCESTORS 0.7058 0.6041 0.6484 0.5434 0.6510 0.5544 0.6335 0.5322
ANC_DEPTH 0.7138 0.6186 0.6352 0.5269 0.6420 0.5370 0.6211 0.5149

KB-HIER 0.7179 0.6167 0.6954* 0.5966* 0.7050* 0.6233* 0.6759* 0.5885*
DEC-TREE 0.7248 0.6224 0.7282* 0.6535* 0.7297* 0.6618* 0.7003* 0.6279*

LIN-REG 0.6930 0.5847 0.6337 0.5304 0.6488 0.5465 0.6202 0.5100

8.4. TRank++ Scalability

We run the MapReduce TRank++ pipeline
over a sample of CommonCrawl15 which contains
schema.org annotations. At the moment of writing
this paper, CommonCrawl is formed by 177 valid
crawling segments, accounting for 71TB of com-
pressed Web content. We sampled uniformly 1TB
of data over the 177 segments, and kept only the
HTML content with schema.org annotations. This
resulted in a corpus of 1, 310, 459 HTML pages, for
a total of 23GB (compressed).
Our MapReduce testbed is formed by 8 slave
servers, each with 12 cores at 2.33GHz, 32GB of
RAM and 3 SATA disks. The relatively small
size of the 3 Lucene inverted indexes (∼ 600MB)
used by the TRank++ pipeline allowed us to repli-
cate the indexes on each single server (transpar-
ently via HDFS). In this way, no server represented
a read hot-spot or, even worse, a single point of
failure–mandatory requirements for any architec-
ture which could be considered Web-scale ready.
We argue that the good performance of our MapRe-
duce pipeline is majorly due to the use of small,
pre-computed inverted indexes instead of expensive
SPARQL queries.
Processing the corpus on such testbed takes 25 min-
utes on average, that is to say each server runs the

15http://commoncrawl.org/

whole TRank++ pipeline on 72 documents per sec-
ond. Table 5 shows a performance breakdown for
each component of the pipeline. The value reported
for “Type Ranking” refers to the implementation of
ANCESTORS, but it is comparable for all the other
techniques presented in the paper (except the ones
based on the Learning to Rank approach, which we
did not test in MapReduce).

The observed schema.org class distributions al-
most overlaps with the one previously found by [43]
(see Table 6).16

Table 7 shows the most frequent entity
types selected by TRank++ for entities con-
tained in Web pages annotated with the top
schema.org classes. We can observe how
TRank++ types refer to specific entities men-
tioned in topic-specific pages as for example,
<yago:InternetCompaniesOfTheUnitedStates>

entities are contained in
http://schema.org/Product Web pages.

Table 8 shows the entity types that most fre-
quently co-occur in our sample of CommonCrawl.
Most frequent entity types mentioned together are
about actors.

Figure 7 shows the diversity of entity types se-
lected by TRank++ for Web pages annotated with

16More statistics can be found at http://exascale.info/
TRank.

14

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

10 20 30 40 50 60

Number of Types

0.0

0.2

0.4

0.6

0.8

1.0

M
A

P

0.0

0.2

0.4

0.6

0.8

1.0

N
D

C
G

10 20 30 40 50 60

Number of Types

0.0

0.2

0.4

0.6

0.8

1.0

M
A

P

Figure 5: MAP and NDCG of FREQ (top) and DEC-TREE (bottom) for entities with different numbers of types on the
3-paragraphs collection.

0.0 0.2 0.4 0.6 0.8 1.0

Technology

Arts

Style

Sports

Health

Opinion

New York

World

Business

Politics

Science

US

Dealbook

NDCG

MAP

0 2 4 6 8 10 12 14 16 18

Avg(Types per Entity)

Technology

Arts

Style

Sports

Health

Opinion

NewYork

World

Business

Politics

Science

US

Dealbook

Figure 6: Distribution of NDCG and MAP scores over article categories (top) and average number of types per entity over
article categories (bottom).

different schema.org classes. We can clearly see
power low distribution where the top schema.org
classes contain very many different entity types
while most of the other have low diversity of en-
tity types.

9. Discussion

In this section, we comment on the performance
of the various approaches we empirically evaluated.
We focus particularly on the new text-based ap-
proaches and on KB-HIER.

We begin by pointing the reader’s attention to
the bottom part of Figure 8, as it illustrates where
the relevant types are located in our type hierarchy.
As can be observed, most of the relevant types can
be found between the second and the fifth level of
our tree, with a remarkable peak at Type Depth
= 4. We also notice that the greatest number of

50 100 150 200 250 300 350 400

Rank of Schema.org Type

0

5000

10000

15000

20000

25000

30000

35000

O
cc

u
rr

e
n
ce

s
o
f

D
is

ti
n
ct

 T
ra

n
k

Ty
p
e
s

Figure 7: Occurrences of distinct TRank++ types in Com-
monCrawl (log scale).

15

Table 4: Examples of crowd-originated entity types.

Entity Label Existing Types Crowd Suggested Type

David Glassberg
Alumnus, Resource,

New York City policemanNorthwestern Uni. Alumni,
US television journalists

Fox Thing, Eukaryote Television Network

Bowie
Minor league team,

Musical Artist
Minor league sports team

Atlantic Resource, Populated Place Ocean

European Type of profession,
Governmental Organizations

Commission Landmark

Childress Thing, Resource Locality

Table 5: Performance breakdown of the MapReduce
pipeline.

Text
NER

Entity Type Type

Extraction Linking Retrieval Ranking

18.9% 35.6% 29.5% 9.8% 6.2%

leaves can be found at that depth level. This pro-
vides a hint as of why DEPTH performs worse than
other methods: as many of the relevant types have
a depth of four, returning deeper results is typically
not optimal.

The upper part of the figure shows how some of
the features taken into consideration by NGRAMS1
behave. We can see that both nSiblings and
hSiblings are able to detect the peak of relevant
results at Type Depth = 4 . These results suggest
that hSiblings and NGRAMS0 are good estimators of
the relevance of entity types.

As for the hChildren feature, the experimen-
tal results depicted in Figure 9 confirm that rele-
vance is related to entropy. As can be seen, nodes
whose children’s entropy is lower have a lower rel-
evance score. Despite the interesting properties of
the metrics just described, the most predictive fea-
tures for NGRAMS1 are, in order, NGRAMS0 (41%),
ratioParent (15%), hSiblings (14%), nSiblings

(11%), hChildren (10%).17 Figure 10 shows how
NGRAMS0, ratioParent and relevance relate to each
other and explains why the NGRAMS0 approach

17The reported numbers are computed on the Sentences
Collection; a similar trend was observed in the other
datasets.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

E
n
tr
o
p
y

Children

Siblings

0
10
20
30
40
50
60
70
80

N
.
N
o
d
e
s nChildrenNgrams

nSiblingsNgrams

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

N
.
Le
a
v
e
s N. of Leaves

1 2 3 4 5 6 7 8 9 10

Type Depth

0
50
100
150
200
250
300
350
400
450

N
.
R
e
le
v
a
n
t

 T
y
p
e
s N. Relevant Types

Figure 8: Distribution of NGRAMS1 features, number of
leaves in the type hierarchy, and number of relevant results
with varying a type depth.

performs poorly: it can easily detect the really few
types which have the highest level of relevance but
fails in detecting irrelevant types, which are by far
more numerous. It is also interesting to notice that,
on average, the n-gram probability mass is scattered
among very few nodes at Type Depth = 5, . . . , 7,
where most of the leaves are. This can be due partly
by the fact that the extension of the text window
we used is not big enough to catch the difference
among deeper types, thus not assigning any proba-
bility to types of those level, and partly to the fact
that in our testset there are fewer occurrences of
types having depth greater than 5. Finally, from
Figure 8 we postulate that the learner possibly fa-
vored hSiblings over hChildren because of its abil-

16

Table 6: CommonCrawl sample statistics.

Domain % in Corpus

youtube.com 39.65
blogspot.com 9.26
over-blog.com 0.67
rhapsody.com 0.54
fotolog.com 0.52

Schema.org Type % in Corpus

VideoObject 40.79
Product 32.66
Offer 28.92
Person 20.95
BlogPosting 18.97

Table 7: Co-occurrences of Schema.org annotations with entity types.

Schema.org Type top-3 most frequent TRank++ types

VideoObject

dp:GivenName

dp:Settlement

dp:Company

Product

yago:InternetCompaniesOfTheUnitedStates

yago:PriceComparisonServices

dp:Settlement

Offer

yago:InternetCompaniesOfTheUnitedStates

yago:PriceComparisonServices

dp:Company

Person

dp:GivenName

dp:Company

yago:FemalePornographicFilmActors

BlogPosting

dp:GivenName

dp:Settlement

yago:StatesOfTheUnitedStates

ity to detect the peak of relevant results occurring
at Type Depth = 4.

As for KB-HIER, surprisingly the most predictive
feature selected by the learner is nTypes (0.38%),
followed by popularity (20%), nSiblings (17%),
nChildren (14%), and typeDepth (11%).18 We stud-
ied the relation between nTypes, nSiblings, and rel-
evance. The results of our analysis are shown in
Figures 11 and 12. From the former figure we ob-
serve that, in general, with small numbers of types
to rank, those with fewer siblings are more likely
to be relevant, while as the number of types to be
ranked increases, types with fewer siblings get more
relevant. The latter figure suggests that popular en-
tities have more types, thus suggesting a connection
between nTypes and popularity.

We conclude this section with a final re-
mark about the effectiveness of context-aware and

18The reported numbers are computed on the Entity-only
collection; a similar trend was observed in the other datasets.

context-unaware methods. We noticed that, in gen-
eral, preferring deeper types has often a positive ef-
fect on the final ranking of the types of a given en-
tity. This is highlighted by the high scores achieved
by all hierarchy based methods and by NGRAMS.
However, there are cases for which such a choice
does not pay off and for which context-based meth-
ods perform better. For instance, in document
P3-0146, “Mali” co-occurs with “Paris”, “Greece”,
and “Europe”. The top-3 results selected by AN-
CESTORS (context-unaware) are “LeastDevelope-
dCountries”, “LandlockedCountries”, and “French-
speakingCountries” but they are all marked as non-
relevant by the Crowd since they were deemed too
specific. In contrast, the top-3 types selected by
PATH (context-aware), namely, “PopulatedPlace”,
“Place”, and “Country”, are all relevant. In this
case, ANCESTORS obtained a low score since it
favored the most specific types, while PATH ob-
tained a higher score since it exploited the types of

17

Table 8: Co-occurrences of entity types in the CommonCrawl sample.

Type Type %

yago:Actor109765278 yago:Actor109765278 0.193
dp:GivenName dp:GivenName 0.077
dp:Settlement dp:Settlement 0.072
yago:Actor109765278 yago:AmericanStageActors 0.064
dp:Person yago:Actor109765278 0.061
dp:GivenName dp:Settlement 0.040
yago:EnglishTelevisionActors yago:Actor109765278 0.039
dp:GivenName yago:FirstName106337307 0.038
yago:StatesOfTheUnitedStates yago:StatesOfTheUnitedStates 0.035
yago:AmericanStageActors yago:AmericanStageActors 0.030

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Relevance Score

0.5

0.6

0.7

0.8

0.9

1.0

E
n
tr

o
p
y

hChildren

hSiblings

Figure 9: Relation between hChildren, hSiblings, and
relevance. As can be observed, there is an almost linear
relation between hChildren and relevance.

the other entities to favor coarser types. We believe
that this justifies the adoption of a mixed approach
to rank entity types and partly explains the high ef-
fectiveness achieved by the DEC-TREE approach.

10. Conclusions

In this paper, we focused on the task of ranking a
set of types associated to an entity in a background
knowledge graph to select the most relevant types
given the context in which the entity appears in
text. Displaying such types can improve user en-
gagement in online platforms as well as improve a
number of advanced services such as ad-hoc object
retrieval, text summarization or knowledge capture.

We proposed different classes of ranking ap-
proaches and evaluated their effectiveness using
crowdsourced relevance judgments. We have also

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Relevance Score

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ratioParent

NGRAMS0

Figure 10: Relations between the two most predictive fea-
tures of NGRAMS1 and relevance.

evaluated the efficiency of our approaches by using
inverted indices for fast access to entity and type
hierarchy information and a Map/Reduce pipeline
for entity type ranking over a Web crawl. Our ex-
perimental evaluation shows that features extracted
from the type hierarchy and from the textual con-
text surrounding the entities perform well for rank-
ing entity types in practice, and that methods based
on such features outperforms other approaches. A
regression model learned over training data that
combines the different classes of approaches signif-
icantly improves over the individual ranking func-
tions reaching a NDCG value of 0.73. As future
work, we aim at evaluating the user impact of
the proposed techniques by running a large scale-
experiment through the deployment of a browser
plugin for contextual entity type display. An addi-
tional dimension we plan to investigate in the future

18

(0, 2] (2, 9] (9, 16] (16, 23] (23, 30] (30, 37] (37, 44]

Number of Types

0

1000

2000

3000

4000

5000

6000

M
e
a
n
 N
u
m
b
e
r
o
f
S
ib
lin
g
s

relevance = 0

relevance = 1

relevance = 2

relevance = 3

Figure 11: Interplay among nTypes, nSiblings (two of the
most predictive features of KB-HIER), and relevance.

Figure 12: Relation between the popularity of entities, com-
puted on Sindice2011 and their number of types.

is the creation and display of supporting evidence
for the selection of the entity types. For example,
a sentence or related entities may be presented to
motivate the fact that the selected type is not the
most popular type related to the entity (e.g., Tom
Cruise is a vegetarian according to Freebase).

References

[1] R. Kumar, A. Tomkins, A characterization of online
search behavior, IEEE Data Eng. Bull.

[2] J. Pound, P. Mika, H. Zaragoza, Ad-hoc object retrieval
in the web of data, in: WWW, ACM, New York, NY,
USA, 2010, pp. 771–780.

[3] A. Tonon, G. Demartini, P. Cudré-Mauroux, Combin-
ing inverted indices and structured search for ad-hoc ob-
ject retrieval, in: Proceedings of the 35th international
ACM SIGIR conference on Research and development
in information retrieval, SIGIR ’12, ACM, New York,
NY, USA, 2012, pp. 125–134.

[4] F. M. Suchanek, G. Kasneci, G. Weikum, Yago: a core
of semantic knowledge, in: Proceedings of the 16th in-

ternational conference on World Wide Web, WWW ’07,
ACM, New York, NY, USA, 2007, pp. 697–706.

[5] A. Tonon, M. Catasta, G. Demartini, P. Cudré-
Mauroux, K. Aberer, TRank: Ranking entity types us-
ing the web of data, in: Lecture Notes in Computer
Science, Vol. 8218 LNCS, 2013, pp. 640–656.

[6] M. Ciaramita, Y. Altun, Broad-coverage sense disam-
biguation and information extraction with a supersense
sequence tagger, in: Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Processing,
EMNLP ’06, Association for Computational Linguis-
tics, Stroudsburg, PA, USA, 2006, pp. 594–602.

[7] H. Cunningham, K. Humphreys, R. Gaizauskas,
Y. Wilks, GATE: a general architecture for text en-
gineering, in: Proceedings of the fifth conference on
Applied natural language processing: Descriptions of
system demonstrations and videos, ANLC ’97, Associ-
ation for Computational Linguistics, Stroudsburg, PA,
USA, 1997, pp. 29–30.

[8] K. Balog, Y. Fang, M. de Rijke, P. Serdyukov, L. Si,
Expertise retrieval, Foundations and Trends in Infor-
mation Retrieval 6 (2-3) (2012) 127–256.

[9] H. Zaragoza, H. Rode, P. Mika, J. Atserias, M. Cia-
ramita, G. Attardi, Ranking very many typed entities
on wikipedia, in: Proceedings of the sixteenth ACM
conference on Conference on information and knowl-
edge management, CIKM ’07, ACM, New York, NY,
USA, 2007, pp. 1015–1018.

[10] G. Demartini, C. Firan, T. Iofciu, R. Krestel, W. Ne-
jdl, Why finding entities in Wikipedia is difficult, some-
times, Information Retrieval 13 (5) (2010) 534–567.
doi:10.1007/s10791-010-9135-7.

[11] Y. Fang, L. Si, Z. Yu, et al., Purdue at TREC 2010
Entity Track: A Probabilistic Framework for Match-
ing Types Between Candidate and Target Entities, in:
Proc. of TREC, 2010.

[12] K. Balog, D. Carmel, A. P. de Vries, D. M. Herzig,
P. Mika, H. Roitman, R. Schenkel, P. Serdyukov, D. T.
Tran, The first joint international workshop on entity-
oriented and semantic search (jiwes), SIGIR Forum
46 (2) (2012) 87–94.

[13] K. Balog, A. P. de Vries, P. Serdyukov, J.-R. Wen, The
first international workshop on entity-oriented search
(eos), SIGIR Forum 45 (2) (2011) 43–50.

[14] M. Bron, K. Balog, M. de Rijke, Example based entity
search in the web of data, in: ECIR, 2013, pp. 392–403.

[15] G. Tummarello, R. Cyganiak, M. Catasta, S. Daniel-
czyk, R. Delbru, S. Decker, Sig.ma: Live views on the
Web of Data, Web Semantics: Science, Services and
Agents on the World Wide Web 8 (4) (2010) 355–364.

[16] J. R. Finkel, C. D. Manning, Joint parsing and named
entity recognition, in: Proceedings of Human Language
Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, NAACL ’09, Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, 2009, pp.
326–334.

[17] D. Nadeau, P. D. Turney, S. Matwin, Unsupervised
named-entity recognition: generating gazetteers and re-
solving ambiguity, in: Proceedings of the 19th interna-
tional conference on Advances in Artificial Intelligence:
Canadian Society for Computational Studies of Intelli-
gence, AI’06, Springer-Verlag, Berlin, Heidelberg, 2006,
pp. 266–277.

[18] D. Nadeau, Semi-supervised named entity recognition:

19

learning to recognize 100 entity types with little super-
vision, Ph.D. thesis, Ottawa, Ont., Canada, Canada,
aAINR49385 (2007).

[19] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, S. Hellmann, DBpedia - A crystallization
point for the Web of Data, Web Semant. 7 (3) (2009)
154–165.

[20] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Tay-
lor, Freebase: a collaboratively created graph database
for structuring human knowledge, in: Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, SIGMOD ’08, ACM, New York,
NY, USA, 2008, pp. 1247–1250.

[21] D. Vallet, H. Zaragoza, Inferring the most important
types of a query: a semantic approach, in: Proceedings
of the 31st annual international ACM SIGIR conference
on Research and development in information retrieval,
SIGIR ’08, ACM, New York, NY, USA, 2008, pp. 857–
858.

[22] K. Balog, R. Neumayer, Hierarchical target type iden-
tification for entity-oriented queries, in: CIKM, 2012,
pp. 2391–2394.

[23] T. Tylenda, M. Sozio, G. Weikum, Einstein: physicist
or vegetarian? summarizing semantic type graphs for
knowledge discovery, in: Proceedings of the 20th in-
ternational conference companion on World wide web,
WWW ’11, ACM, New York, NY, USA, 2011, pp. 273–
276.

[24] A. Gangemi, A. G. Nuzzolese, V. Presutti, F. Draic-
chio, A. Musetti, P. Ciancarini, Automatic typing of
dbpedia entities, in: International Semantic Web Con-
ference (1), 2012, pp. 65–81.

[25] N. Nakashole, T. Tylenda, G. Weikum, Fine-grained se-
mantic typing of emerging entities, in: Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), Asso-
ciation for Computational Linguistics, Sofia, Bulgaria,
2013, pp. 1488–1497.

[26] L. Yao, S. Riedel, A. McCallum, Universal schema for
entity type prediction, in: Proceedings of the 2013
Workshop on Automated Knowledge Base Construc-
tion, AKBC ’13, ACM, New York, NY, USA, 2013, pp.
79–84.

[27] A. Kalyanpur, J. W. Murdock, J. Fan, C. Welty, Lever-
aging community-built knowledge for type coercion in
question answering, in: Proceedings of the 10th inter-
national conference on The semantic web - Volume Part
II, ISWC’11, Springer-Verlag, Berlin, Heidelberg, 2011,
pp. 144–156.

[28] C. Welty, J. W. Murdock, A. Kalyanpur, J. Fan, A
comparison of hard filters and soft evidence for answer
typing in watson, in: International Semantic Web Con-
ference (2), 2012, pp. 243–256.

[29] S. E. Whang, H. Garcia-Molina, Joint Entity Resolution
on Multiple Datasets, The VLDB Journal.

[30] G. Demartini, D. E. Difallah, P. Cudré-Mauroux, Zen-
Crowd: leveraging probabilistic reasoning and crowd-
sourcing techniques for large-scale entity linking, in:
Proceedings of the 21st international conference on
World Wide Web, WWW ’12, ACM, New York, NY,
USA, 2012, pp. 469–478.

[31] J. R. Finkel, T. Grenager, C. Manning, Incorporating
non-local information into information extraction sys-
tems by gibbs sampling, in: Proceedings of the 43rd
Annual Meeting on Association for Computational Lin-

guistics, ACL ’05, Association for Computational Lin-
guistics, Stroudsburg, PA, USA, 2005, pp. 363–370.

[32] C. Matuszek, J. Cabral, M. Witbrock, J. DeOliveira,
An introduction to the syntax and content of cyc, in:
Proceedings of the 2006 AAAI spring symposium on for-
malizing and compiling background knowledge and its
applications to knowledge representation and question
answering, Vol. 3864, Citeseer, 2006.

[33] F. M. Suchanek, S. Abiteboul, P. Senellart, Paris: Prob-
abilistic alignment of relations, instances, and schema,
Proceedings of the VLDB Endowment 5 (3) (2011) 157–
168.

[34] S. Campinas, D. Ceccarelli, T. E. Perry, R. Delbru,
K. Balog, G. Tummarello, The Sindice-2011 dataset for
entity-oriented search in the web of data, in: 1st Inter-
national Workshop on Entity-Oriented Search (EOS),
2011, pp. 26–32.

[35] P. N. Mendes, M. Jakob, A. García-Silva, C. Bizer, Db-
pedia spotlight: Shedding light on the web of docu-
ments, in: Proceedings of the 7th International Confer-
ence on Semantic Systems, I-Semantics ’11, ACM, New
York, NY, USA, 2011, pp. 1–8.

[36] T. Brants, A. C. Popat, P. Xu, F. J. Och, J. Dean,
G. Inc, Large language models in machine translation,
in: Conference on Empirical Methods in Natural Lan-
guage Processing (EMNP), 2007, pp. 858–867.

[37] A. Tonon, M. Catasta, G. Demartini, P. Cudré-
Mauroux, Fixing Domain and Range of Properties in
Linked Data by Context Disambiguation (2015).

[38] P. Geurts, D. Ernst, L. Wehenkel, Extremely ran-
domized trees, Machine Learning 63 (1) (2006) 3–42.
doi:10.1007/s10994-006-6226-1.

[39] T.-Y. Liu, Learning to rank for information retrieval,
Found. Trends Inf. Retr. 3 (3) (2009) 225–331.

[40] G. Holmes, M. Hall, E. Frank, Generating rule sets from
model trees, in: Proceedings of the 12th Australian
Joint Conference on Artificial Intelligence: Advanced
Topics in Artificial Intelligence, AI ’99, Springer-Verlag,
London, UK, UK, 1999, pp. 1–12.

[41] J. R. Quinlan, Learning with continuous classes, in:
Proceedings of the 5th Australian joint Conference on
Artificial Intelligence, Vol. 92, Singapore, 1992, pp. 343–
348.

[42] K. Järvelin, J. Kekäläinen, Cumulated gain-based eval-
uation of ir techniques, ACM Trans. Inf. Syst. 20 (4)
(2002) 422–446.

[43] H. Mühleisen, C. Bizer, Web data commons - extracting
structured data from two large web corpora, in: LDOW,
2012.

20

