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Kanitha Phalakornkule 

ACLRO: AN ONTOLOGY FOR THE BEST PRACTICE IN ACLR 

REHABILITATION 

With the rise of big data and the demands for leveraging artificial intelligence 

(AI), healthcare requires more knowledge sharing that offers machine-readable semantic 

formalization.  Even though some applications allow shared data interoperability, they 

still lack formal machine-readable semantics in ICD9/10 and LOINC.  With ontology, the 

further ability to represent the shared conceptualizations is possible, similar to 

SNOMED-CT.  Nevertheless, SNOMED-CT mainly focuses on electronic health record 

(EHR) documenting and evidence-based practice.  Moreover, due to its independence on 

data quality, the ontology enhances advanced AI technologies, such as machine learning 

(ML), by providing a reusable knowledge framework.  Developing a machine-readable 

and sharable semantic knowledge model incorporating external evidence and individual 

practice’s values will create a new revolution for best practice medicine. 

The purpose of this research is to implement a sharable ontology for the best 

practice in healthcare, with anterior cruciate ligament reconstruction (ACLR) as a case 

study.  The ontology represents knowledge derived from both evidence-based practice 

(EBP) and practice-based evidence (PBE).  First, the study presents how the domain-

specific knowledge model is built using a combination of Toronto Virtual Enterprise 

(TOVE) and a bottom-up approach.  Then, I propose a top-down approach using Open 

Biological and Biomedical Ontology (OBO) Foundry ontologies that adheres to the Basic 

Formal Ontology (BFO)’s framework.  In this step, the EBP, PBE, and statistic 

ontologies are developed independently.  Next, the study integrates these individual 
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ontologies into the final ACLR Ontology (ACLRO) as a more meaningful model that 

endorses the reusability and the ease of the model-expansion process since the classes can 

grow independently from one another.  Finally, the study employs a use case and DL 

queries for model validation. 

The study's innovation is to present the ontology implementation for best-practice 

medicine and demonstrate how it can be applied to a real-world setup with semantic 

information.  The ACLRO simultaneously emphasizes knowledge representation in 

health-intervention, statistics, research design, and external research evidence, while 

constructing the classes of data-driven and patient-focus processes that allow knowledge 

sharing explicit of technology.  Additionally, the model synthesizes multiple related 

ontologies, which leads to the successful application of best-practice medicine.  
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CHAPTER ONE INTRODUCTION 

1.1 Introduction 

Since the early 1990s, health information technology (HIT) has played an 

essential role in improving health care delivery globally (Zillner et al., 2014).  Electronic 

Health Record Systems (EHRs) and their clinical decision support (CDS) were essential 

influencers providing novel functions over traditional documentation in health care and 

facilitating continuity of care throughout the patient’s lifespan across regional and 

healthcare systems.  The CDS system (CDSS) is programmable software that helps 

clinicians in decision making at the point of care by advising the best evidence and 

alerting clinicians with analyzed information that is in its knowledge model 

(Phalakornkule, Jones, & Finnell, 2013).  Therefore, the knowledge model in the CDSS is 

critical to its performance, efficiency, and accuracy (O'Neill, Dluhy, Fortier, & Michel, 

2004).  Additionally, the demand for information exchange among EHRs is rapidly 

growing in the company with the efforts to improve the quality of patient care (Adler-

Milstein, Bates, & Jha, 2013).  In order to succeed in knowledge sharing, individual 

practices must develop their sharable knowledge framework (Wang & Noe, 2010). 

There are two types of knowledge sources for CDSS: (1) Evidence-Based Practice 

(EBP) and (2) Practice-Based Evidence (PBE).  EBP collects knowledge through the best 

external research evidence, while PBE learns through clinicians’ own experiences gained 

in a local environment (Barkham & Mellor‐Clark, 2003).  EBP has been in medicine for 

decades and is more commonly used in CDSS (Purcell, 2005).  However, it does not offer 

a perfect approach in all situations.  First, EBP is neither practice nor patient-focused, 

leading to a lack of information about individual patients, healthcare providers, as well as 
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clinical workflow from its conclusions (Slim, 2005).  Therefore, EBP should not be used 

by itself without requiring additional information about the patient, clinician, and practice 

criteria(Wilkinson et al., 2000).  Next, the knowledge discovered in EBP is gathered from 

the aggregated data analysis under a controlled setting, such as randomized and 

controlled trials (Tonelli, 1998).  This setting is not proper for day-to-day patient cares.  

Besides, many research confounder variables and the description of the study 

environment are not published in articles (Chung, Swanson, Schmitz, Sullivan, & 

Rohrich, 2009).  The influences of this information are essential, but unknown in 

publications that can cause a misinterpretation of the actual knowledge reported in EBP.  

On the other hand, Practice-Based Evidence (PBE) utilizes clinical expertise and gathers 

data from individual and routine practice settings (Horn & Gassaway, 2007).  Comparing 

to EBP, PBE is more patient and process-centered.  Hence, PBE interventions can 

overcome the limitation of EBP’s actionable performances.  Nonetheless, PBE can be 

timely and costly since its implementation requires a large amount of data to collect 

enough evidence for its knowledge model (Loane et al., 2000).  Additionally, PBE faces a 

challenge in sharing its finding and integrating new knowledge to its current knowledge 

across many practices (Hudson & Collins, 2015) 

The semantic mapping between EBP and PBE combines both advantages for the 

best-practice knowledge model.  The reusability and exchangeability of knowledge are 

the critical success of semantic mapping, which cannot be achieved without using a 

foundation ontology model.  The purpose of this research is to implement a sharable 

ontology for the best practice in healthcare, with anterior cruciate ligament reconstruction 

(ACLR) as a study domain, presenting the knowledge from both evidence-based practice 
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(EBP) and practice-based evidence (PBE).  First, the study defines how the domain-

specific knowledge model is built using a bottom-up approach with the Toronto Virtual 

Enterprise (TOVE) guideline.  The study then proposes a top-down approach using the 

Open Biological and Biomedical Ontology (OBO) Foundry ontologies that adheres to the 

Basic Formal Ontology (BFO) framework.  In this step, the EBP, PBE, and statistics 

ontologies are developed independently.  Next, the study integrates these individual 

ontologies into the final ACLR Ontology (ACLRO) as a more meaningful model that 

endorses the reusability and the ease of the model-expansion process since the classes can 

grow independently from one another.  Besides, the study employs a use case, and DL 

queries for model validation. 

1.2 Problem Statement 

With the rise of big data and the high demands for leveraging artificial 

intelligence (AI), healthcare requires more knowledge sharing that offers machine-

readable semantic formalization.  Although some applications allow interoperability of 

shared data such as in ICD9/10 and LOINC, they still lack formal machine-readable 

semantics.  With ontology, the further ability to represent the shared conceptualizations is 

possible, similar to SNOMED-CT.  Nevertheless, SNOMED-CT mainly focuses on 

electronic health record (EHR) documenting and evidence-based practice.  Additionally, 

Health Level-7 (HL-7) and ontology are used for information exchange in healthcare.  

HL-7 successfully provides a method for developing standards for the EHR data 

exchange and bridging the gap between EHR systems (Hammond, 1993).  However, the 

only goal of HL-7 is to exchange healthcare data or information, not knowledge 



 

4 

discovered in individual practices that cannot be extended to other non-healthcare 

domains. 

Moreover, due to its independence on data quality, the ontology enhances 

advanced AI technologies, such as machine learning (ML), by providing a reusable 

knowledge framework (Hwang, Park, Lee, Kim, & Lee, 2018).  The development of a 

machine-readable and sharable semantic knowledge model that unites external evidence 

and individual practice’s values will create a new revolution for best practice medicine.  

As now, there is no technology with a complete set of ontology’s functionalities.  These 

functionalities allow the exchangeability of semantic information across various domains 

and are insensitive to the volume, velocity, and variety of big data. 

1.3 Significance of the Study 

Opportunely, with an ontology implementation, the development of a knowledge-

model framework is possible and can be deployed and dispersed rapidly over healthcare 

organizations.  An ontology offers a formal representation and semantic maps of 

knowledge across practices as staying independent from healthcare applications that 

allows individual practices to maintain their workflow and organization requirements 

while exchanging their knowledge (Dang, Hedayati, Hampel, & Toklu, 2008).  Concept 

mapping diagrams and knowledge editors such as Protégé by Stanford University are 

practical tools used in semantic networks representing and implementing knowledge 

models.  Besides, the framework of an upper ontology allows us to build a standard 

model that can be reusable and sharable with the independency of technology (Jarrar, 

2005). 
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For the above reasons, this study implemented the sharable knowledge model 

combining the strengths of both EBP and PBE using a hybrid approach that is a novel 

method of ontology implementation, facilitating both bottom-up and top-down 

approaches (López-Pellicer et al., 2007).  The bottom-up approach emphasized capturing 

domain knowledge in an ontological structure, while the top-down approach adds on the 

foundation framework increasing the reusability and shareability of the domain ontology.  

Another innovation of this study is to present the ontology implementation for best-

practice medicine and demonstrate how it can be applied to a real-world setup with 

semantic information.  The ACLRO simultaneously emphasizes knowledge 

representation in health-intervention, statistics, research design, and external research 

evidence, while constructing the classes of data-driven and patient-focus processes that 

allow knowledge sharing explicit of technology.  Accordingly, the model synthesizes 

multiple related ontologies, which leads to the successful application of best-practice 

medicine. 

1.4 Description of the Chapters 

Chapter 2 includes five literature reviews: (1) Ontology and Upper Ontology.  

This section reviews the definitions of an ontology and presents the roles of ontology and 

upper ontology along with the values they bring, focusing on the most common upper 

ontology used in the biomedical and healthcare domain.  (2) Ontology in Healthcare.  

This review includes the introduction of ontology and presents some successful ontology 

applications in different areas of healthcare: knowledge representation, Electronic 

Medical Record, Standardization and Guidelines, Clinical Decision Support, and 

Qualitative and Predictive Analysis.  (3) Statistics Ontology.  This section starts from 
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reviewing all known existing ontologies related to statistics models.  Then, the 

comparison for usability and maturities are performed.  (4) Practice-Based Evidence 

(PBE).  This sector analyzes the method and roles of PBE along with the review of 

ontologies in clinical researches for domain-specific and local practices.  (5) Evidence-

Based Practice (EBP).  This section reviews the roles of EBP in the patient cares and 

discusses its strengths and weakness, along with the analysis of existing ontologies for 

scientific evidence representation. 

Chapter 3 describes the methodology of the study and the review of an upper-

level ontology, i.e., the Basic Formal Ontology (BFO) along with the middle-level 

ontologies, i.e., Ontology for Biomedical Investigations (OBI) and Information Artifact 

Ontology (IAO), of this dissertation, as well as the methods of Ontology 

implementations. Additionally, Chapter 3 summarizes the dissertation’s aims, 

implementation methods, and outcomes of five individual models: 

• Domain-Specific Ontology 

• Statistics Ontology 

• Evidence-Based Practice (EBP) Ontology 

• Practice-Based Evidence (PBE) Ontology 

• The Best-Practice (BP) ACLRO 

Also, this chapter presents the Random-Forrest case study, its formal 

representation, and its validations. 

Chapter 4 displays the first aim of the study on the implementation of the domain-

specific ontology starting from the bottom-up approach following Toronto Virtual 

Enterprise (TOVE) methods and the American Nurses Association (ANA) guidelines.  
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Additionally, Chapter 4 presents the scopes of the ACLRO and the implementation of 

sharable formal structures with a set of predicates under the BFO framework. 

Chapter 5 describes the Aim 2 of this dissertation. i.e., statistics ontologies.  The 

chapter reviews existing statistical ontologies and compares their reusability and 

structures.  Multiple queries perform for validating the structure and relations between 

statistical models and their criteria. 

Chapter 6 reveals the Aim 3 of the dissertation on the implementation of the 

evidence-based model's formal structure.  This chapter records two publications in the 

return-to-sport possibility after ACLR as two instances of publication classes.  Then, the 

chapter presents the validation and conclusion. 

Chapter 7 exhibits Aim 4, the final aim, of the dissertation on the integration of 

domain-specific, PBE, EBP, and statistics ontology to the final Best Practice ACLRO 

model.  Under the BFO framework, the integration requires no editing in any individual 

models proving the success of ACLRO’s semantic-information shareability. 

Chapter 8 summarizes the dissertation's overall conclusion, the limitation, and 

future works of the study. 

1.5 Study Approval 

The Indiana University Institutional Review Boards (IRBs) reviewed and 

exempted this study. 
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CHAPTER TWO LITERATURE REVIEW 

Due to the dissertation’s aim on the sharable best-practice ontology model, this 

dissertation's background is categorized into five areas: 

• Ontology and Upper Ontology 

• Ontology in Healthcare 

• Statistics Ontology 

• Practice-Based Evidence (PBE) Ontology 

• Evidence-Based Practice (EBP) Ontology 

The Ontology and Upper Ontology literature explain the roles and types of an 

ontology framework that provides a formal structure of a sharable semantic information 

model in various fields.  The Ontology in Healthcare literature presents the various areas 

in healthcare that an ontology had an impact on, like knowledge representation, electronic 

medical record, standardization and guidelines, clinical decision support, qualitative and 

predictive analysis.  The statistic-ontology literature reviews the ontology framework of 

statistical concepts and its applications in the healthcare domain.  The PBE ontology 

literature presents the ontology applications built under the local environment and for a 

practice’s specific aim.  The EBP ontology literature reviews the role of EBP in 

healthcare, and the ontology framework improves its impact on healthcare researches. 

2.1 Ontology and Upper Ontology 

The ‘Ontology’ term was initially considered a branch of philosophy but has 

received more recognition in computer science and informatics.  In modern technology, 

the ‘ontology’ term does not have the exact meaning in all research areas.  Some refer to 

ontology as its philosophical meanings, while some think of ontology as a new area of 
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science used in information systems, databases, and computer science.  Philosophical 

ontology is a type of science about the object-theory of existing entities, their properties, 

and relations in reality.  The theory is represented in the form of hierarchical structures 

called taxonomies connecting entities through the framework of classes and sub-classes.  

Despite the differences in Ontologies’ roles, all sciences accept an ontology as an 

understanding of how things existing in human’s perspectives (Zúñiga, 2001). 

The use of contemporary ontology has involved in various branches of sciences, 

including computer science, medicine, informatics, and life sciences.  In computer 

science, an ontology is a representation of knowledge modeling capturing the semantic 

information of concepts used in a specific domain and making them interpretatively 

exchangeable and shareable (Gruber, 2018).  In an information system, an ontology is an 

explicit description of conceptualization and a structure of a formal description of the 

concepts, attributes, and relations in a specific domain (Guarino, Oberle, & Staab, 2009).  

A conceptualization is an abstract of individuals’ beliefs or perspectives.  In the artificial 

intelligence (AI) field, the term Ontology means the new field of knowledge engineering 

or knowledge representation derived from its original definition in philosophy.  The list 

of known applications with an ontology includes natural language representation, 

decision-support systems, standard terminology, and machine learning.  A unique 

example is a centralized application like service-oriented architecture (SOA), which can 

manage complex and heterogeneity (Mohammadi & Mukhtar, 2013).  The most popular 

ontology applications are the semantic web structuring World Wild Web (WWW)’ meta-

data to a taxonomy framework, which allows web pages to be sharable or linkable to one 

another (Berners-Lee, Hendler, & Lassila, 2001). 
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An upper ontology, referred to as a foundation or top-level ontology, is a high-

level ontology offering a universal and domain-independent formal framework that more 

domain-specific ontologies can be built on (Elmhadhbi, Karray, & Archimède, 2019).  

The primary purpose of upper ontologies to provide universal knowledge and 

terminologies across domains to ensure generality and reusability by offering the level of 

granularity of the model leading to exchangeability (Obrst et al., 2014). A practical upper 

ontology must be small and generalized.  It allows consistency across different domains 

to extend the reusability and shareability by providing a common framework as a bridge 

for integrating heterogeneous ontologies in an automatic way (Degen, Heller, Herre, & 

Smith, 2001).  There are several known upper models used in biomedicine and 

healthcare, such as Suggested Upper Merged Ontology (SUMO), Basic Formal Ontology 

(BFO), and Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) 

(Mascardi, Cordì, & Rosso, 2007).  Nevertheless, each upper ontology has its strengths 

and emphasis in different fields.  For instance, the BFO is more accepted in biomedical, 

medicine, and life sciences.  One of the widely used BFO is a part of the genomic 

domain, as in the Gene Ontology (GO) project.  The GO project offers controlled 

vocabularies and standard structure in molecular and cellular biology domains by 

offering semantic information of the vocabularies and contributed annotations 

(Consortium, 2004).  The BFO is also a big part of cancer researches, such as prostate 

cancer (Overton, Romagnoli, & Chhem, 2011), cervical cancer (Maramis et al., 2013), 

and cancer cell research (Rasmussen & Dolan, 2013).  Another most known BFO 

application is Systematized Nomenclature of Medicine – Clinical Terms (SNOMED-CT) 

that is a comprehensive medical terminology used for standardizing the storage, retrieval, 
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and exchange of electronic health data.  The SNOMED-CT ontology (SCTO) is 

implemented in OWL 2 and has Open Biomedical Ontologies (OBO) Foundry ontologies 

that are under the BFO framework as middle-ontologies for the integration of various 

terminologies (El-Sappagh, Franda, Ali, & Kwak, 2018).  The BFO-is also widespread in 

healthcare applications as presented in the patient safety application using BFO as an 

upper-level ontology to improve the interoperability of patient-safety reporting systems 

(Cornet, 2015). 

SUMO is another standard upper ontology originated by a group of engineers 

from the IEEE standard Upper Ontology Working Group (Pease & Niles, 2002).  The 

goal was to promote data interoperability, information search, automated inference, and 

natural language processing.  A successful SUMO application was presented in the 2007 

IEEE International Conference on Computational Intelligence for Measurement Systems 

and Applications as a framework of general concepts for a universal ontology for sensor 

networks data (Álvez, Lucio, & Rigau, 2019).  The project successfully enhanced the 

interoperability between multiple sensor networks by improving both the precision and 

recall rates.  Another success of SUMO was presented in modeling legal terminology 

(Mitrović, Pease, & Granitzer).  The paper utilized SUMO as a connection to the lexical-

semantic network WordNet in the legal domain.  Similar to SUMO, DOLCE plays a vital 

role in linguistic and cognitive researches.  One of its successful application was the 

LOIS project on multilingual information retrieval from legal databases (Tiscornia, 

2006).  Another success of DOLCE involved in a project on language technology for 

eLearning, using multilingual language technology tools and semantic web techniques for 

improving the retrieval of eLearning material (Monachesi et al., 2006). 
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In conclusion, all three upper ontologies provide the same ability of semantic 

information exchangeability in different applications.  An ontology developer should 

select the upper ontology based on the scope and domain of the study.  For this project, 

the study selected the BFO as its upper-level ontology.  More introductions to the BFO 

and its advantages over other top-level models are addressed in the next chapter. 

2.2 Ontology in Healthcare 

In healthcare, ontologies have been received much attention from different areas, 

from knowledge representation to predictive applications (Alan Jovic, Marin Prcela, & 

Dragan Gamberger, 2007).  These areas include, but not limited to, knowledge 

representation, electronic health records (EHR), standardization and guidelines, clinical 

decision support (CDS), standard terminologies, qualitative and predictive analysis 

(Flouris, Plexousakis, & Antoniou, 2006). 

2.2.1 Knowledge Representation 

One example of the ontology success in knowledge representations was reported 

in the “Even Oriented Representation for Collaborative Activities (EORCA)” paper 

implementing a method covering the observation and the representation of collective 

activities during patients’ management which could be reusable by the team members in 

order to prepare themselves for accreditation (L Pellegrin et al., 2007).  The ontology was 

used to build as a knowledge representation of standard guidelines for task observation 

by the ICU team.  In the study in the cardiology field, the UMLS-based ontology 

supported the cardiology procedures for cognitive support in medical decision making 

allowing different stakeholders and healthcare groups to share knowledge management 

and communication (Biolchini, 2002).  The ontology also allows domain knowledge to be 
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independent of technology so that it can be reused effectively across multiple platforms.  

One example is in the “Clinical Decision Support System for Point of Care” paper 

utilizing an ontology model and reasoning rules in machine learnings, and further proving 

that when the knowledge was changed, only the reasoning was changed without any work 

on the software system (Farion et al., 2009).  As well, Doyle and his team implemented 

an ontological knowledge base for public health surveillance that could be referred to in 

various applications.  Because of its independence from technology, the study concluded 

that ontology was beneficial for information exchange in EHRs (Doyle, Ma, Groseclose, 

& Hopkins, 2005). 

2.2.2 Electronic Health Records (EHR) 

Nowadays, it is impossible to look at healthcare without involving EHRs.  

Formalizing a concept is the first and foremost step in establishing a knowledge-based 

software system of any kind in healthcare.  One of the main struggles of EHRs is a lack 

of standardization.  Without standardization, the concept of sharable and combinable 

EHRs would not be feasible.  The goal of applying Ontology in EHRs is to provide a 

systematic representation of various medical knowledge used for different types of 

reasoning in healthcare activities (A. Jovic, M. Prcela, & D. Gamberger, 2007).  An 

example system using Ontology to enhance EHRs’ semantic functionality is presented in 

the XOntoRank system, the tool for Ontology-aware search of EHRs used to solve the 

problem of facilitation Ontology-aware data extraction for EHR database for XML-based 

documents (Farfan, Hristidis, Ranganathan, & Burke, 2008).  With Ontological 

definitions in Systematized Nomenclature of Medicine (SNOMED), the system could 

perform a semantic search on the XML documents.  There was no need for a perfect 
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match between keywords in a query and words in documents due to the semantic-term 

ontology.  First, the author listed the potential problematic keywords.  Next, he developed 

the semantic concepts for these keywords.  Then, the degree of association between 

ontological concepts and keywords was assigned.  Last, the study calculated and 

evaluated the algorithms to answer ontology-aware keyword queries in EHRs.  As a 

result, the XOntonRank search-engine found more matches.  It found the exact-match 

keywords and the matched concepts with a better precision rate and a recall rate than the 

baseline algorithm for the top-k results.  The study presented that using conceptual 

mapping can be more efficient than terminological mapping.  Peleg also developed 

another Ontology-based mapping tool in EHRs presented in the ‘Mapping Computerized 

Clinical Guidelines to Electronic Medical Records: Knowledge-data Ontological Mapper 

(KDOM)” paper (Peleg M., 2008).  The KDOM was an ontology-mapping framework 

connecting computer-interpretable guidelines (CIGs) to EHRs to create shareability and 

reusability between various institutions.  With the ontology, the solution for an 

incompatible issue was discovered by separating the medical domain knowledge from the 

operational knowledge, making domain assumptions explicit, and developing a bottom-

up ontology.  The classes were divided by properties into two groups: properties 

conceptualizing the abstract knowledge and properties retrieving fields in the EHR tables.  

The slots in the mapping ontology were used to refer to the destination fields in EHR 

databases and to specify how the retrieved value was matched with a constant value.  As 

a result, the ontology framework successfully mapped guidelines to the EHR and bridged 

the gap between the abstractions in a CIG and EHR, which could be further configured 

independently. 



 

15 

2.2.3 Standardization and Guidelines 

There are many uses of ontology as a reference or guideline for healthcare 

organizations.  Each organization or facility requires a set of their own needs and 

preferences, which will not be compatible with the others.  In the “Ontological 

Knowledge Framework for Adaptive Medical Workflow” paper, the study presents an 

ontological knowledge framework that covers tasks from administration to patient care 

by capturing all-important knowledge for complex personalized events, including patient 

care and insurance policies and drug prescriptions (Dang et al., 2008).  While involving 

more of a business perspective, ontology defined concepts in business rules and policies 

along with personalized patient context for machine interpretation to support adaptive 

workflow composition and execution.  The adaptive workflow system had the 

functionalities for users to -control and monitor the patient-process, to manage patient’s 

medical records, to create new tasks from a medical service repository, and to maintain 

historical process data for future use without the need of technical support.  The study 

proposed was to develop an adaptive workflow system that could manage without the 

knowledge of technical parts.  Moreover, the software used ontology’s meta-data to learn 

about the domain’s environment and rules.  It separated the business rules from process 

rules.  This adaptive workflow system was claimed as the first achievement in bridging 

healthcare needs and technology in any hospital environment. 

2.2.4 Clinical Decision Support (CDS) 

For clinical decision support, an ontology enhances its performance as reported in 

the “Even Oriented Representation for Collaborative Activities (EORCA)” paper that 

implemented a method covering the observation and the representation of collective 
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activities during patients’ management which could be reusable by the team members in 

order to prepare themselves for accreditation (L. Pellegrin et al., 2007).  The ontology 

model was built to represent and combine data of ECG signal and heart image for CDSS 

(Chiarugi et al., 2008).  Correspondingly, Jovic, and his team published the paper, the 

ontology for knowledge representation in heart-failure-patient managements, was the 

integration between domain ontology and UMLS terminology ontology (Alan Jovic et al., 

2007).  The study’s outcome showed that the utilization of both OWL and SWRL was a 

successful tool for reasoning in complex medical systems.  The OWL approach with the 

closed work assumption enabled complete, actionable knowledge into the ontology 

framework, which led to the development of CDSS.  In summary, the study concluded 

that Ontology was famous for the standardization of medical terms, knowledge sharing, 

and automatic reasoning. 

The additional use of Ontology in CDS involves statistical methodologies to run 

reasoning rule-base utilities (Montani et al.).  For instance, in the “Surgical Models for 

Computer-Assisted Neurosurgery” paper (P. Jannin, 2007), the ontology was used to 

develop a decision tree helping the surgical CDSS in patient outcomes and correctly 

predicted 76.27% in subgroups and 45.28% in the whole group.  Kim and Choi also 

demonstrated that CDSS for heart disease detection could combine multiple domain 

knowledge (K. Kim, 2007).  Their ontology was built with Protégé, SWRL, and JESS for 

rule creations.  Additionally, the CDSS developed in Mago’s study was implemented 

using a multi-agent system for healthcare practitioners for Indian rural childcare (V. 

Mago, 2007).  The Ontology was used in a user-agent side to understand the illness 

through common vocabulary to diagnose the disease and treatment plans.  Likewise, 
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Panzarara presented in her paper that CDSS with Ontology improved knowledge and 

skills management and coordinated patient care over time (Panzarasa, Madde, Quaglini, 

Pistarini, & Stefanelli, 2002).  All of these studies delivered CDSS’s reasoning directly to 

patients.  Equally, the “Era of Patient Safety Implications for Nursing Informatics 

Curricula” paper concluded that the ontology played the leading role in CDSS, 

integration, and standard for patient safety in a clinical environment (J. Effken, 2002).  In 

summary, modern EHRs require a framework to support their enhanced functionalities 

(S. Mersmann, 2004).  When the demand for using EHRs expands from local to multiple 

institutions, a standard framework is in need.  The ontology can increase EHR’s 

functionalities in standardizing medical terms, knowledge sharing, and support for 

automatic reasoning using in CDSS. 

2.2.5 Standard Terminologies 

One of the most well-known uses of ontology in healthcare is for standard 

terminology systems such as UMLS (Unified Medical Language System), SNOMED, 

and LOINC (Pisanelli, Gangemi, & Steve, 1998).  These systems offer standardized 

communication, documentation, and classification of health/medical vocabularies (Cole, 

2004).  Nonetheless, even these terminology systems are all based on a standard 

structured framework; the concepts among these systems are not entirely consistent nor 

compatibility (B. Bolbel, 2006).  Additionally, ontology has played an essential role in 

linking a study’s domain knowledge to a standard terminology system.  For example, in 

the “Facilitating Pre-operative Assessment Guidelines Representation Using SNOMED 

CT” paper, the authors investigated whether SNOMED CT covers the terms using in pre-

operative assessment guidelines paper (L. Ahmadian, 2009).  They found out that 71% of 
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guidelines were matched with SNOMED, while 69% of 39 non-completely covered 

concepts violated at least one of SNOMED CT formats.  The authors proposed that 

ontology could be a potential solution for formalizing the guidelines in SNOMED CT.  

Another illustration is the “Towards Role-Based Filtering of Disease Outbreak Report” 

paper, using ontology to analyze conceptual classifications of infectious diseases that 

were not presented in any terminology systems (S. Doan, 2009).  Also in the “CardioOP 

data Class (CDC)” paper, the study reported that none of the terminological systems; i.e., 

ICD 10,  SNOMED, UMLS nor MESH provided enough granularity of contents or 

domain completeness for metadata in multimedia data in the Cardio domain (Fried, Klas, 

& Westermann, 2003).  In the study of Elkin, Ontology was used to build terminology 

structure for automated systems providing classification in negation and propagation in 

clinical notes (Elkin et al., 2005).  Accordingly, these existing terminology domains can 

integrate existing definitions and terminologies across different healthcare level (D. 

Pappa, 2006), as presented in the “In the Category Structure for a Terminology System in 

Traditional System in Traditional Medicine, Symptoms, Signs, and their Combination 

Patterns” paper using ontology to develop a standard terminology for different areas and 

countries (Park et al., 2009).  Another example of using ontology in mapping 

terminologies across languages was presented in the “Coupling Indigenous Patient-

Friendly Cultural Communication with Clinical Care Guidelines for Type 2 Diabetic 

Mellitus” paper proposing a standard system to local facilities in order to reduce any 

biases from local medical staffs, possibly influenced by cultures and environments 

(Forbes, Sidhu, & Singh, 2011).  The ontology was a solution offering a mapping model 

between the local Australian clinical taxonomy guidelines and the Aboriginal-English 
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version, solving the issues of individual ambiguity and misinterpretation found in AE 

educational literature Aboriginal English guideline to research-based guidance.  As well, 

Nardarni and the team presented in their “Migrating Existing Clinical Content from ICD-

9 to SNOMED” paper showed how ontology could be used to map the concepts between 

two different systems (Prakash M Nadkarni, 2010).  Likewise, Saunders used ontology to 

pool Anatomical Therapeutic Chemical (ATC) and Critical Term to Australian Drug 

Safety Data, enhancing the association rule methods to explore more rare disease data.  In 

another sample, in the study in “ACR Appropriateness Criteria: Translation to Practice 

and Research” paper, the study was designed to convert the current text-based contents 

into a relational database (Sistrom, 2005).  With the implementation of ontology, the 

study successfully represented a formal structure of a relational database storing the 

master version of the guidelines, which allowed the criteria to be distributed quickly. 

2.2.6 Qualitative and Predictive Analysis 

Another benefit of ontology is to structure a qualitative work.  The traditional 

medical research design involves more quantitative analysis and not much of qualitative 

analysis.  Qualitative research is performed differently from the quantitative study since it 

does not measure quantified outcomes nor answer hypothesis research questions as an 

essential part of the research process (Phillimore & Goodson, 2004).  Ontology offers the 

ability to represent a formal qualitative knowledge model, a challenge in healthcare.  As 

an example, in Shankar's published paper, the ontology was used to understand patient 

perceptions, which could be transformed into a formal structure (Ramakrishnan & 

Vijayan, 2014).  Likewise, Meghani used ontology to acquire knowledge of patient 

attitudes toward pain described by cancer patients (S. Meghani, 2007).  Correspondingly, 
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an ontology was also presented as a tool to acquire knowledge of the language for 

spiritual pain through a research study (McGrath, 2002).  Another ontology application 

was presented in the Waiting for A Liver Transplant paper; the research team used an 

ontology model to understand the nature of the way patients waiting for liver transplant 

(Jill Brown, 2006).  In addition, more advanced use of ontology is in the predictive model 

and reasoning.  With OWL, the utilizations of ontology and semantic web advances to 

new challenging areas like machining learnings and mapping to a relational database 

schema.  Some examples of machine-learning ontologies include Probabilistic Extension 

to OWL (PR-OWL) and Fuzzy Ontology.  PR-OWL overcomes the limitation of 

deterministic classical logic in legacy ontologies by providing a principle of uncertainty 

concept in ontologies (Da Costa, Laskey, & Laskey, 2006).  Similarly, fuzzy ontology 

incorporates fuzzy logic into ontologies to deal with vague, imprecise information, which 

is a common issue in the real-world setting (Calegari & Ciucci, 2007).  Another research 

by Abidi and his team presented that the ontology presented the knowledge structure 

allowing the computerization of a specific clinical pathway for prostate cancer disease (S. 

Abidi, 2009).  Their ontology was based on the concept of branching and merging nodes, 

which were modeled as interclass intersections.  Accordingly, the paper was able to 

merge three different clinical pathways to one.  In the “An Intelligent and Integrated 

Platform for Supporting the Management of Chronic Heart Failure Patient” paper (S 

Colantonio, 2008), the ontology was structured as a formalization of the chronic heart 

failure domain for the knowledge sharing of information across stakeholders and 

facilities. 
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2.3 Statistics Ontology 

Statistics is the science of collecting, analyzing, interpreting, and presentation of 

data.  Biostatistics has played an essential role in medicine and healthcare through 

research designs and experiments.  The results of the studies’ outcomes have been 

reported in publications.  Nevertheless, the reproducibility of the study outcomes was not 

possible in new different environments.  Consequently, the reusability of knowledge 

discovered is unmanageable due to the lack of sharable statistical information.  As an 

example of the solution, an ontology provides a formal metadata structure that describes 

how fuzzy knowledge were captured (Zheng et al., 2016).  There are two accepted 

statistics ontologies in the OBO foundry library: The Ontology of Biological and Clinical 

Statistics (OBCS) and Statistics Ontology (STATO).  An example of the OBCS 

application reported in the study of a meta-analysis of host responses to yellow fever 

vaccines (Zheng, Li, Liu, & He, 2017).  The OBCS and the vaccine ontology (VO) 

structured an ontological model of various components and relations in the study.  The 

study’s result reported a statistical model using OBCS successfully conducted a literature 

meta-analysis to survey yellow fever vaccine response papers and statistical methods.  

Another example was published in the study in gene ontology with statistics.  The study 

reported the prospering implementation of the GoPipe that was a standalone package 

integrating DNA sequences files from various sources to the Gene Ontology (GO) 

annotation with a built-in statistical option (Chen et al., 2005). 

2.4 Practice-Based Evidence (PBE) Ontology 

Domain knowledge commonly originates from experts’ knowledge.  The experts 

extend their knowledge through working experience, education, conferences, and 
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research literature.  The practice-based evidence (PBE) records actual patient outcomes 

specific to local practice and uses the outcome data on all patients to support decision-

making on the treatments.  The PBE can remove the inefficiency of EBP in the re-

productivity of study outcomes.  One of the good examples displaying the impact on an 

ontology on PBE is the study on ontology-driven hypothesis generation to explain 

anomalous patient responses to treatment (Moss et al., 2010).  The study implemented a 

tool to determine how ICU clinicians identify anomalous patient responses.  The high-

level reasoning deployed by the clinicians was structured as a formal ontology model of 

the procedural component.  After the evaluation process, the study reported the success of 

the reproduction of the clinician’s hypotheses in the majority of cases.  Another ontology 

development for PBE was a part of the Type II Diabetes Mellitus (DM) Clinical Support 

System (Chalortham, Buranarach, & Supnithi, 2009).  The study’s goal was to propose an 

ontology-based tool allowing non-experts to advise DM patients for improving life 

quality.  The tool applied suitable criteria for the practice to fit the needs.  In the study 

about personalized treatment, an ontology model provides a framework of retrospective 

and prospective diagnosis and medical knowledge personalization for the care of 

chronically ill patients in the local project (Romero-Tris, Riaño, & Real, 2010).  The 

study reported the successful experiences of the improvement in missing data, wrong 

diagnosis, comorbidities, and prediction of patient outcomes. 

2.5 Evidence-Based Practice (EBP) Ontology 

EBP is an interdisciplinary methodology that has been involved in medicine over 

many decades.  It is derived from a meta-analysis of literature or research studies in 

randomized controlled trials (O. Nee, 2010).  In medicine, EBP is the integration of best 
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external research evidence with clinical expertise and patient values (Robinson, 1997).  

The most common source of external evidence is published in the medical research 

literature (Wright, Swiontkowski, & Heckman, 2003).  Based on its definition, EBP has 

three main components, i.e., external academic or scientific evidence, clinical expertise, 

and individual patient values, providing the best possible individualized recommendation 

based on the available evidence and patient characteristics (Titler, 2008).  The EBP 

exercise integrates the best available external clinical evidence from systematic research 

into individual clinical practices to improve patient outcomes and quality of care.  Then, 

the domain experts analyze the EBP evidence.  Without new external resources, the 

practice is at risk for outdated technologies and being behind in information, such as new 

drug discoveries or surgical tools.  Therefore, two core components of EBP and PBE are 

clinical expertise and external evidence.  The traditional EBP aims to apply external 

evidence to a non-specific local practice but is not intended for direct knowledge 

reusability or the exchange of knowledge across local practices.  In a sense, the 

traditional EBP has a similar limitation to KIF in terms of knowledge transfer. 

Another quality of the EBP is in its performance of information extraction (Zhao 

et al., 2010).  One of the most common challenges in text mining and natural language 

abstraction is transforming natural human language into a computable format like 

classification that cannot be implemented effectively when the meanings of the variables 

are unclear.  Again, the ability to assign classification correctly is essential for 

computerized CDSS because the classification is one of the fundamental keys in 

knowledge models and to calculate probabilistic inference (Anitha & Rajagopalan, 2011).  

Furthermore, EBP excludes the ability to adapt its knowledge to new settings.  It is 
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known among researchers that publishing an article is a long process.  As Morris stated in 

his paper on time lags in translational research, only fourteen percent of original research 

could benefit patient care within seventeen years, causing the information reported in the 

literature to be outdated (Morris, Wooding, & Grant, 2011).  Thus, the outcomes and 

summaries of literature can be inconsistent and changed through time (Cercone, An, Li, 

Gu, & An, 2011).  Without the ability to capture the most recent evidence related to the 

domain, it cannot deliver the best-updated evidence to the practice (Stiwne & Abrandt 

Dahlgren, 2004).  As a consequence, the practices can be lagged behind knowledge by 

several years if they only depend on EBP sources (Kazdin, 2008).  Besides, the EBP 

offers an aggregate analysis of patient demographics, study design, and practice setup but 

is not designed for personalized patient cares (Zhao et al., 2010).  Nevertheless, there are 

unknown or impossible influential confounders in EBP, such as patient life-style, sample 

size, as well as statistics tools (Lucock et al., 2003b).  Thus, to help individual practices 

maintain patient-focused intervention, EBP needs to integrate with local evidence (Patel, 

Vichich, Lang, Lin, & Zheng, 2017). 

Another use case of EBP ontology is the Evidence and Conclusion Ontology 

(ECO) that describes scientific-evidence types collected from laboratory experiments, 

computational methods, and literature within the biological research domain (Chibucos, 

Siegele, Hu, & Giglio, 2017).  Since 2016, ECO implemented development in the Web 

Ontology Language using Protégé for viewing and editing on a small scale, as well as 

ROBOT (http://robot.obolibrary.org) on a large scale.  The ECO also reused and 

collaborated with other ontologies, such as Gene Ontology (GO), Ontology for 

Biomedical Investigations (Robinson), Ontology of Microbial Phenotypes (OMP), and 



 

25 

Synapse Gene Ontology Annotation Initiative (SynGO).  The ECO terms were grouped 

based mainly on the evidence's biological context and the technique used to generate the 

evidence.  Some terms related to both categories.  Therefore, ECO developed logical 

definitions of these terms under technique concepts linked to relevant assay-based OBI 

terms.  As a result, the ECO model reduced the issue of ambiguous classes. 

To sum up, when EBP provides knowledge that might be missing or incomplete 

in practice, PBE can add the practice information to the knowledge base in CDSS (Sim et 

al., 2001) and allow clinicians to evaluate EBP for the most suitable outcomes (Lucock et 

al., 2003a).  Without the evaluation, the adjustment for the best fit of the EBP use in local 

practice setup is impossible; all benefits of EBP to be dismissed in reality.  Therefore, the 

synthesis of EBP and PBE will enhance the quality of patient care in EHR, 

complementing the Meaningful Use’s requirement (McDonald & Viehbeck, 2007). 
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CHAPTER THREE METHODOLOGY 

3.1 BFO Foundation Framework 

A foundation ontology, also known as an upper ontology or top-level ontology, is 

a domain-neutral ontology that comprises of general terms across all domains 

(Hoehndorf, 2010).  There are several top-level ontologies such as Basic Formal 

Ontology (BFO), Descriptive Ontology for Linguistic and Cognitive Engineering 

(DOLCE), General Formal Ontology (GFO), Suggested Upper Merged Ontology 

(SUMO) and Cyc Upper Ontology.  Their primary purposes are to ensure the ability of 

semantic integration and reusability of specific ontologies (Gibson, 2010).  Therefore, the 

critical factor of selecting one top-level ontology over the others is on the level of 

interoperability that a specific domain ontology receives.  For instance, an ontology in 

medicine should select a top-level ontology that is commonly used in the biomedical 

field. 

After thoroughly reviewing the top-level ontologies in biomedicine, this study 

selects the Basic Formal Ontology (BFO) as the foundation ontology.  Barry Smith and 

his team at the Institute developed BFO for Formal Ontology and Medical Information 

Science (IFOMIS) at the University of Leipzig (Grenon, Smith, & Goldberg, 2004).  The 

design of BFO is to support information retrieval, analysis, and integration in scientific 

and biomedical research (Arp & Smith, 2008).  Its primary purpose is to endorse 

semantic information applications' interoperability as a non-domain specific foundation 

ontology (https://basic-formal-ontology.org/).  BFO’s organization is built on entities and 

their relationships under the single framework of time and space consolidation (Galton, 

2018).  Entities are classified in a taxonomy format, comparable to the parent-child class.  
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The relations are categorized based on the level and type of entities to which they 

connect; for example, instance-level, type-level, and instance-type relations.  The entities 

represent both material and immaterial objects that are categorized into two main classes, 

i.e., continuant and continuous. 

The continuant entities continue their existence through time, while concurrent 

entities require temporal parts for their existence, such as events and processes.  For 

instance, a human is a continuant entity, but aging is a process that is a concurrent entity 

(Arp, Smith, & Spear, 2015).  The continuant entities are further categorized into 

dependent and independent.  Dependent entities can represent their entities; whereas, 

independent entities require another entity in order to exist.  For example, “Person” is an 

independent entity, and “Healthy Person” is a subclass of “Person” and is related to the 

“Healthy”-dependent class.  The “Healthy” entity does not have its own identity without 

requiring another entity to create a unique entity at an instance level.  The hierarchy of 

BFO 2 is shown in Figure 1 (B Smith et al., 2015).  The concurrent concept is the top 

parent class of process, process boundary, temporal region, and spatiotemporal region. 

This study selects BFO as the foundation framework of the study, due to its 

multiple advantages as listed below: 

• Small and domain-neutral 

• Used by more than 300 ontologies-driven endeavors worldwide 

• Has active user groups 

• Provides supportive documents and training 

• Actively improves 
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Figure 1 The hierarchy of BFO 2 (B Smith et al., 2015) 

3.1.1 Ontology for Biomedical Investigations (OBI) 

The OBI is the first ontology that provides a single resource for multiple types of 

experiments (Bandrowski et al., 2016).  It follows the formal structure of the BFO 

framework with the ability of knowledge capturing representation that is extended from 

the Open Biological and Biomedical Ontologies (OBO) (Bandrowski et al., 2016).  The 

OBI's primary purpose is to structure all aspects of the investigation process and all 

phases of scientific-investigation processes, including study design, protocols and 

instrumentation, data, and analysis in the biological and medical domains 

(https://www.ebi.ac.uk/ols/ontologies/obi).  Besides, the OBI directly imports many 

formal terms of other prevalent ontologies such as Relations Ontology (RO), Gene 

Ontology (GO), Phenotype Attribute and Trait Ontology (PATO), and Chemical Entities 

of Biological Interest (ChEBI).  Under the ‘Material Entities’ class in the BFO 
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framework, many of OBI child classes are reused of external ontologies; for instance, the 

‘organism’ class from the MCBI taxonomy, the ‘gross anatomical part’ class from the 

Uber Anatomy Ontology (UBERON) (Mungall, Torniai, Gkoutos, Lewis, & Haendel, 

2012) and the Common Anatomy Reference Ontology (CARO) (Haendel et al., 2008).  

The OBI provides more than 2,500 terms, 84 individuals, 40 relations used in scientific-

investigation areas, such as information, objective, planning, execution, and reporting 

process.  Some examples of the OBI’s new classes are processed material, specimen, and 

organization.  The ‘processed material’ class is a parent class of ‘processes specimen’ and 

‘device’ classes.  From the ‘Planned Processes’ concept in the BFO, OBO added many 

time-related concepts like investigation, collection, assay, research enrollment, and 

material maintenance and processing. 

In this dissertation, the reused concepts from the OBI are the ‘Investigation’ and 

‘Data Transformation’ planned processes.  The “Investigation” process has two primary 

relations, “has specified input” and “has specified output’ relation connecting to 

continuous entities (Kong, Liu, & Wang, 2011).  Additionally, the “Investigation” 

process can have a relation with another planned process, such as “Study Design 

Execution” and “Drawing a Conclusion From Data,” as shown in Figure 2.  The ‘data 

transformation’ process is a process with the raw-data input and the ‘analyzed-data’ 

output, which participates in both EBP and PBE ontology models. 
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Figure 2 OBI’s investigation-related process 

3.1.2 Information Artifact Ontology (IAO) 

The IAO is an extension of OBI in the efforts to represent the additional aspect of 

information entities (Barry Smith et al., 2015).  The principal concept of the IAO is the 

information content entity describing all information-related entities in scientific 

domains, including data, investigation process, and the outcomes of data analysis.  The 

information-content entity focuses on data collections and associated representational 

artifacts.  Its subclasses extend to data-item, directive information entity, and document, 

as shown in Figure 3 (Ceusters, 2012).  The information-content entity is a generically 

dependent continuant entity that is about another entity.  Furthermore, the deeper level of 

IAO hierarchical classes include directive information, entity, plan specification, 

algorithm, protocol, and study design.  The document class defines the repository of 

information like publications, articles, and reports. 

Although IAO is a domain-neutral ontology, a domain-specific IAO can be 

further designed for more details for a specific need, such as IAO-Intel.  The IAO-Intel is 

an extended IAO developed to support the needs of the US Army intelligence community 

by structuring formal controlled vocabulary for metadata about documents used in 
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multiple military registries within the framework of the distributed Common Ground 

System (Smith et al., 2013). 

In this dissertation, the information-content entity plays an essential role in data 

collection during the health-intervention and data extraction processes.  Due to its 

domain-neural characteristic, the IAO capably involves in both EBP and PBE ontology 

models. 

 

Figure 3 IAO structure (Hastings, Batchelor, Neuhaus, & Steinbeck, 2012) 

 The high-level structure of data, information and investigation process combining 

from OBI and IAO under the BFO framework as be presented in Figure 4. 
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Figure 4 The high-level structure of OBI and IAO under the BFO framework 

3.2 Methods for Ontology Implementation 

The design of ontology depends on the need and purpose of individual application 

and implementers.  This section presents the guideline steps of the implementation of an 

ontology model.  There are various existing ontology models implemented in healthcare 

using either top-down or bottom-up approaches.  This study implements the domain-

specific ontology model with both approaches in order to combine their strengths.  The 

bottom-up approach allows the domain experts to work closely with the implementation.  

As a result, the ontology explicitly defines the domain terms and their relations.  On the 

other hand, the top-down approach offers the standard framework of the shareability to 

individual domain ontologies.  The implementation steps of both approaches are the same 
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in the beginning stages, such as determining domain scopes and terminologies.  Their 

difference is primarily due to the structure framework: class and sub-class.  At the end of 

this section, the study summarizes how the framework can influence the efficiency of 

ontology models, and what the effective structure the study purposes for the best practice 

setup. 

In this study, the ontology development is a combination of the Toronto Virtual 

Enterprise (TOVE) methodology (Grüninger, Atefi, & Fox, 2000) and the simple 

knowledge-engineering methodologies (Noy & McGuinness, 2001).  The TOVE project 

is a framework of enterprise integration (EI) for high levels of productivity, flexibility, 

and quality (Fox, Chionglo, & Fadel, 1993) which emphasizes on Ontology development 

and can be embedded with the clinical workflow (Jones, Phalakornkule, Fitzpatrick, Iyer, 

& Ombac, 2011).  With TOVE guideline, the knowledge model can (1) define precise 

and unambiguous terms, (2) provide a shared terminology, (3) be able to automate 

answers of underlying questions and (4) define a graph visualization of terms (Fadel, 

Fox, & Gruninger, 1994).  As well, Noy and McGuinness suggested an iterative 

methodology starting with a foundation concept and then be more details and more 

complex through the repetitive processes.  The ontology editor used in the project is 

Portege 5.5 by Stanford University.  This version offers reasoning tools such as DL 

queries, SWRL rule, and HermiT reasoning.  The complete steps of the ontological-

model can be summarized into ten steps, as listed below: 

1. Determine the domain and scope of an ontology model 

2. Define the terminology of the domain 

3. Define the informal definitions of the terminology 
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4. Define the ontological definitions and constraints of the terminology 

5. Consider reusing existing ontologies 

6. Define the class hierarchy 

7. Define the properties of the classes 

• Define the data properties or relations between classes 

• Define the object properties or slots of the classes 

8. Create instances 

9. Develop rules and run reasoning 

10. Test the competency of the ontology through queries 

All four individual ontology models of this dissertation follow the ten-step 

implementation process, even though each model emphasizes each step in different 

weights.  For instance, the first model, the domain-specific ontology in the knee-

treatment specialty, emphasizes on step1 to step 3, but less on step 4 and step 5 because it 

aims to capture and represent the focusing domain.  On the other hand, for Aim 2, the 

implementation of statistics ontology does not involve step 1 to step 4 because the model 

reuses two existing ontologies, i.e., OBCS and STATO.  The reusing of existing 

ontologies belongs to step 5.  Nevertheless, all models in the dissertation apply step 10 to 

test and validate the individual model’s competency and consistency.  The details of the 

dissertation’s aims are explained in the following section. 
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3.3 Aims and Deliverables 

3.3.1 Aim1 Domain-Specific Ontology 

3.3.1.1 Introduction 

The dissertation selects the ACLR area as its specific domain due to the 

involvement in both evidence-based practice and practice-based evidence in ACLR-

related research.  The primary purpose of ontology implementation for a domain-specific 

ontology is to present its formal structure of domain knowledge and define the domain’s 

terminologies, without attention to a broader framework (Shaw, Detwiler, Brinkley, & 

Suciu, 2008).  However, a more significant advantage of ontology is about semantic-

information sharing.  For that reason, the domain ontology for a specific aim can increase 

productivity, reusability, and shareability by using a foundation framework that provides 

general-purpose definitions (Faber, Mairal, & Magaña, 2011).  In Aim 1, both bottom-up 

and top-down approaches are used for the final domain-specific model.  Both approaches 

provide a unique set of advantages that can be merged into a single framework.  The last 

two steps in Aim 1 involves the validating tool of the model’s competency using 

reasoning and DL queries. 

3.3.1.2 Methods 

 The methodology is a combination of Toronto Virtual Enterprise (TOVE) and a 

simple knowledge engineering methodology.  The ontology model’s editing tool is 

Portege 5.5, which was developed by Stanford Center for Biomedical Informatics 

Research, including the Semantic Web Rule Language (SWRL), DL queries, and 

reasoning.  After the domain's scope is well defined, the terminologies are represented in 

both informal and formal definitions.  The formal definitions are defined in the predicate 
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format.  The first approach of the ACLRO domain-specific ontology is bottom-up.  The 

second design applies the top-down approach to the top of the first one to transform the 

model into a sharable sematic-information model under the BFO framework. 

3.3.1.3 Results 

 The efficiency of the domain-specific ontology is validated through two DL 

queries.  Without the top-level framework, the first design with the bottom-up approach 

can merely represent the domain in the formal structure but lacks the shareability and the 

representation of semantic information.  With the BFO framework, the study successfully 

implements a sharable model that is automatically classifying patient groups and 

terminology mapping between the descriptive terms to both ICD9 and ICD10. 

3.3.1.4 Conclusion 

 The domain-specific ACLRO is a proof of concept that demonstrates how the 

ontology can be applied to a real-world setup.  The ACLRO constructs the class of 

health-intervention processes that allow the ontology to share knowledge explicitly from 

technology.  The model successfully defines the knowledge of the specific domain in a 

formal structure with the semantic definition.  With the BFO framework, the ALCRO 

domain ontology is sharable and compatible with other ontologies that make the ACLRO 

more meaningful. 

3.3.2 Aim2 Statistic Ontology 

3.3.2.1 Introduction 

Statistics is the branch of science that uses quantitative or mathematical methods 

to analyze data.  The roles of statistics involve collecting, summarizing, presenting, and 

drawing a conclusion.  With the fast progressing in technologies, the need for statistics is 
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rising along with Big Data.  Due to its growing demand, the implementation of various 

statistics applications and software are offered to statisticians as well as non-statistician 

researchers (Ocaña-Riola, 2016).  However, the description and explanation of statistical 

methods and research processes are not clearly documented, which prevents the 

validation and reproducibility for statistical analysis in clinical research (Strasak, Zaman, 

Pfeiffer, Göbel, & Ulmer, 2007).  Therefore, the majority of publications and external 

evidence are challenging to reapply their methods in a different environment due to the 

lack of information on study design, statistical criteria, and algorithms (Zheng et al., 

2016).  The goal of Aim 2 is to construct a standard statistical ontology for scientific 

research.  After reviewing the existing ontologies, the structure of the statistic ontology 

begins with consolidating existing BFO-based statistical ontologies.  The dissertation’s 

statistics ontology is designed to be universal and sharable in both PBE and EBP studies 

while offering a deeper connection to the statistical theory and research designs. 

3.3.2.2 Methods 

The method in Aim 2 significantly involves in step 5 of the TOVE methodology, 

i.e., reusing exiting ontologies.  The initial step is to search on all existing statistical 

ontologies; then perform a comparison on the popularity, structured framework, and 

maturity of the models.  After reviewing, the two appropriate models are STATO and 

OBCS under the BFO framework and a part of OBO Foundry.  The next step is a gap 

analysis of these two models structure for the similarities and differences.  The 

consolidation of both STATO and OBCS provides a solid structure of the statistics model 

in this study.  The additional statistical terms are added to extend the scope of statistical 

models and mathematics theories, including statistics parameters and assumption criteria.  
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Lastly, the model competency is validated through multiple DL queries across various 

components of statistical concepts. 

3.3.2.3 Results 

The study's statistical vocabularies and concepts are imported from two statistic-

related ontologies, i.e., OBCS and STATO.  Each ontology suits the study needs in 

different aspects.  For instance, STATO offers the ‘hypothesis’ class, which is essential to 

ACLRO, while OBCS only contains the ‘null hypothesis’ subclass.  STATO includes 

more based on research aims and statistics models, such as ‘goodness of fit hypothesis’, 

‘presence of association hypothesis’, and ‘absence of difference hypothesis’.  This study 

reuses multiple terms from OBCS that are not available in STATO.  Some examples are 

terms under ‘statistical model’ and ‘statistical variable’ classes.  In addition to OBCS and 

STATO, ACLRO also develops more specific terms to meet the study’s needs.  For 

instance, the ‘healthcare variable’ subclass is added to the ‘variable’ class. 

3.3.2.4 Conclusion 

Under Aim 2, the statistics ontology model consolidates existing concepts from 

two OBO Foundry ontologies; OBCS and STATO.  Furthermore, the study adds new 

statistical terms to the model and expands to more advanced mathematics like machine 

learning to be compatible with the growth of healthcare AI. 

3.3.3 Aim 3 Evidence-Based Practice Ontology 

3.3.3.1 Introduction 

Evidence-Based Practice (EBP) is an approach that aims to integrate the best 

external scientific evidence into local patient care (Howland, 2007).  The most apparent 

external evidence is derived from research data.  The ultimate objective of EBP is to 
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improve the effectiveness and quality of patient outcomes through new guidelines or 

decision-making (Melnyk, Gallagher‐Ford, Long, & Fineout‐Overholt, 2014).  

Nevertheless, such achievement can be challenging due to a lack of understanding and 

differences in clinical settings between EBP’s source and the local practice. 

Aim 3 purposes the formal structure of EBP ontology under the BFO framework 

providing the semantic-information shareability.  The EBP model's scope includes 

statistical models, variable characteristics, study hypothesis, research methodology, and 

publication information.  Each concept in the EBP model can be further connecting to 

other concepts, including in other ontology models such as the Practice-Based Evidence 

ontology. 

3.3.3.2 Methods 

 Aim 3 also follows the TOVE methodology, which is mentioned in the 

Methodology section.  After defining the scope and reviewing existing ontology models, 

the formal definitions are defined in the predicate format; then, the concept mapping 

diagram is created before transforming to OWL language though the Protégé tool.  Later, 

two instances of publications related to return-to-sport after ACLR surgery are added to 

the EBP model for the validation process.  Lastly, the validation process utilizes DL 

queries to retrieve information related to statistical models and publications in the ACLR 

domain. 

3.3.3.3 Results 

 The DL queries of the EBP models in Aim 3 successfully review the structure and 

relations of the statistical model and the study outcomes in publications.  The knowledge 

gained in both publications can be combined and listed together for the query correctly. 
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3.3.3.4 Conclusion 

The study presents the implementation of an evidence-based evidence ontology in 

the ACLR rehabilitation domain while complying with the shareable semantic 

ontological framework.  The two publications are recorded at the instance level for 

validation purposes.  The DL queries effectively retrieve information presented in the two 

publications along with the surplus information from the statistics model. 

3.3.4 Aim 4 Best-Practice ACLR Ontology (ACLRO) 

3.3.4.1 Introduction 

Both EBP and PBE approaches aim to improve patient outcomes focusing on 

different sources of knowledge.  The EBP approach applies scientific evidence as to its 

guidance and decision support to interpret the best suitable evidence from systematic 

research into clinical expertise and the environment (Sackett, Rosenberg, Gray, Haynes, 

& Richardson, 1996).  Alternatively, the PBE approach is a relatively new procedure for 

gathering good-quality data from routine practices in real-world settings with trial and 

error, initiating innovation and knowledge discovered in healthcare with objective 

support based on community values (Evans, 2000).  The combination of EBP and PBE 

approaches enhances the quality of patient care.  For this reason, the best practice (BP) 

model in Aim 4 integrates the domain-specific knowledge in Aim 1 and the EBP model 

in Aim 3 into one single that represents the reusable and sharable ontology framework, 

obtaining external and internal evidence from both approaches. 

3.3.4.2 Methods 

With the BFO framework, the best-practice ontology model does not have an 

implementation of a new concept.  Consequently, Aim 4 does not follow all steps in the 
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TOVE methodology.  Two main steps in Aim 4 are the merging of the EBP and PBE 

model and the validation of the final BP mode.  Then, the concept diagram of the best 

practice model shows the successful integration between the EBP and PBE models. 

3.3.4.3 Results 

 All sub-models in Aim 1, Aim 2, and Aim 3 are successfully merged into a single 

framework of the best practice ACLRO.  The DL queries in Aim 4 successfully retrieve 

information existing across multiple ontology models, including the domain-specific, 

statistics, EPB, and the case study in the PBE models. 

3.3.4.4 Conclusion 

 Combining the PBE and EBP processes allows an individual practice to 

incorporate their scientific learnings and best external evidence for the most optimal 

outcomes as the best practice approach.  The best-practice ACLRO model proves that 

with the BFO framework, the individual models of the specific domain, statistics, 

practice-based evidence, and evidence-based practice are reusable and sharable with 

sematic information.  Likewise, the study enriches the ontology model’s functionalities, 

allowing knowledge queries across multi-disciplinary areas, such as medical data, 

statistical models, study design, and scientific knowledge. 

3.4 Case Study 

This section presents a case study on transforming a process of statistical data 

analysis process into knowledge discovery that can be queried in ACLRO.  The objective 

of statistical analysis is to measure the relative feature importance of each variable in the 

dataset on the prediction of two-year postoperative knee pain after ACLR.  The selected 

statistics algorithm used in this case study is one of the most popular and influential 
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machine learning models, random forest, which is explained more later in this chapter.  

First, the study introduces the dataset and then explain the random forest algorithm.  

Next, the study presents the formal ontology model representing the complete flow from 

study design to knowledge capture using real patient-care data. 

3.4.1 Dataset 

The dataset contains 927 observations of patients who received ACL 

reconstruction between 1982 and 2018 performed by the same surgeon.  The study would 

exclude patients if they had bilateral ACL tears, undergone revision surgery, or received 

additional surgical treatments on the knee.  The dataset is composed of eight variables as 

described below: 

Pain 

ACLR is an elective procedure.  ACL tear is not life-threatening.  

However, it affects the quality of life due to pain and limitation in 

activities.  Therefore, the patient’s subjective evaluations are critical and 

serve as an indicator for surgery success.  In this study, the subjective pain 

score at the 2-year postoperative period serves as the primary outcomes 

and the study’s dependent variable.  The score is a Likert scale ranging 

from 0 to 10, which is considered as a continuous variable since it belongs 

to the interval scale (Allen & Seaman, 2007). 

Inj_typeInj_type represents the type of knee injuries causing an ACL 

damage.  The injuries were classified as acute if patients had not 

experienced any giving-way episodes after the index injury and before 
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surgery.  The injuries were classified as chronic if patients had any 

additional giving-way episodes after the index injury and before surgery. 

Injsrg_mth 

Injsrg_mth refers to the period between injury and surgery in months.  

This is a continuous variable defining the number of months between 

injury and surgery time. 

Srgage 

Srgage denotes the age of patients at the time of surgery.  It is a 

continuous variable. 

Sex 

Sex defines patients’ biological characteristics as female or male. 

Cartilage 

According to the articular cartilage status at the time of surgery, the 

dataset was categorized into these four primary groups.  The patients were 

grouped as “normal” if they had grade 2 or less articular cartilage damage 

in all compartments; they were grouped as “damaged” if they had grade 3 

or 4 chondromalacia in any compartment. 

Med_rem  

Med_rem indicates the procedure performed on medial meniscus.  The 

patients were categorized into two medial-meniscus groups based on the 

status at the end of the ACLR surgical procedure.  If medial meniscus 

partially or entirely removed, a patient was placed into the removal group; 

otherwise, he or she was added to the intact group. 
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Lat_rem 

Lat_rem represents the procedure performed on lateral meniscus.  The 

patients were categorized into two lateral-meniscus groups based on the 

status at the end of the ACLR surgical procedure.  If lateral meniscus 

partially or entirely removed, a patient was placed into the removal group; 

otherwise, he or she was added to the intact group. 

3.4.2 Random Forest (RF) Model 

RF is one of the most popular ML methods due to its accuracy, robustness, and 

ease of use.  RF is an ensemble-learning algorithm consisting of many decision trees and 

trained with the bagging technique and a supervised learning algorithm that takes a 

known set of input and output datasets to learn the model.  The bagging or bootstrap 

method aggregates performances from multiple machine learning algorithms to the final 

model to improve accuracy.  The model first splits the dataset into train and test datasets.  

The training dataset allows the model to learn the mapping, while the test is used to 

validate the model (Andy Liaw & Wiener, 2002).  The RF can be used for both 

classification and regression problems.  Since the ‘Pain’ score in this study is considered 

as a continuous variable, the regression RF is utilized. 

3.4.3 Modeling in R 

R is a language and environment for statistical computing and graphics developed 

at Bell Laboratories by John Chambers and colleagues (www.r-project.org).  One of the 

great benefits of R is that its functionalities can be extended via packages.  The two main 

packages applied in this case study were caret and randomForest.  The caret package 

allows ML to split data into the train randomly (70%) and test randomly (30%) datasets 
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(Kuhn, 2015).  The randomForest package provides the random forest algorithm and 

visualizations for the predictive model (A Liaw & Wiener, 2018).  The complete R-code 

can be seen in Appendix A. 

Big data's characteristics are large volumes, velocity, and variety, which make big 

data complex and hard to analyze.  Healthcare AI’s primary aim is to reveal patterns, 

discover trends, as well as to identify unknown data behavior and interactions.  RF’s 

feather-importance method is one of the simplified methods for feather selection in big 

data.  In this case study, ACLRO only built a formal representation of feature-importance 

calculations.  The Mean Decrease Accuracy ($incMSE) calculated in the randomForest 

package was used to determine the variable importance.  First, the $incMSE starts with 

calculating the mean squared error (MSE) of the whole model.  Then, the ML permutes 

each variable in the model to calculate the new model MSE according to variable 

permutation.  Next, the difference between the original model MSE and the new model 

MSE is measured and compared.  Last, the ML ranks the variable’s importance in 

agreement with the value of the %incMSE.  The higher value of %incMSE indicates a 

more prominent feature.  

The %incMSE in this case study showed that the number of months between 

injury and surgery (injsrg_mth) turned to be the most important feature contributing to 

the two-year postoperative pain, following by the status medial meniscus removal 

(med_rem), patient sex (SEX), cartilage damage (cartilage), injury type (inj_type), lateral 

meniscus removal (lat_rem) and age at surgery (srgage) as presented in Figure 5.  The 

calculated value of the mean decrease accuracy is listed in Table 1. 
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Feature Mean Decrease Accuracy (%incMSE) 

injsrg_mth 13.84614260 

med_rem 12.07007574 

SEX 8.24495552 

cartilage 6.67335309 

inj_type 4.31484798 

lat_rem -0.07232279 

srgage -0.48011320 

Table 1 Mean decrease accuracy of two-year postoperative pain 

 

 

Figure 5 %incMSE of different variables on two-year postoperative pain 
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3.4.4 Formal Representation 

The formal representation of the research process starts at the ‘investigation’ 

planned  The formal representation of the research process starts at the ‘investigation’ 

planning process, which is defined as a planned process that consists of parts: planning, 

study design execution, documentation, and which produce conclusion(s) 

(http://purl.obolibrary.org/obo/OBI_0000066).  Here, ACLRO only focuses on ‘study 

design execution’ and ‘drawing conclusion’ processes.  The other two processes were 

omitted since it is not a focus of this case study.  The ‘study design execution’ process 

carries out a study design.  The two key components of the study-design process are to 

select a suitable statistics algorithm and to produce statistic outcomes.  The algorithm 

requires a set of various variables.  Each variable has a unique set of attributes.  For 

instance, the attributes can define dependent vs. independent or continuous vs. categorical 

variable types.  The ‘study design execution’ process outputs are the derived data from 

statistical analysis that belongs to the ‘data item’ class.  Here, this statistic outcome is the 

calculated value of increase mean accuracy (%incMSE) reported in RF.  The researchers 

use this information to draw the study conclusion.  The conclusion can be validated and 

denotes the knowledge discovered from the study.  As in the study’s case study, the 

values of %incMSE are injsrg_mth (13.84), med_rem (12.07), SEX (8.25), cartilage 

(6.67), inj_type (4.314), lat_rem (-0.072), and srgage (-0.480).  The conclusion drawing 

from the analysis outcome indicates that out of seven variables, the waiting period for the 

surgery and the removal of medial meniscus variables are the most two factors 

contributing to the 2-year postoperative knee pain.  In contrast, patient age and the 

removal of lateral meniscus do not impact the postoperative knee pain.  Finally, the 
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conclusions denote the knowledge about postoperative knee pain, i.e., 1) the 

postoperative knee pain is impacted by surgery waiting time; 2) the postoperative knee is 

impacted by medial-meniscus removal procedure. 

 The visualization of the overall formal ontology structure is in Figure 6. 
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Figure 6 The visualization of the overall formal ontology structure 
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3.4.5 Validation 

Scenario-test techniques check the model’s consistency and check if the model 

satisfies the study’s purpose.  In detail, the techniques use multiple scenarios that share 

commonalities and differences.  The results should show consistency as it relates to 

common scenarios while differentiating the others.  The study will sample some DL 

queries on the relationship between statistics and research designs to discover and 

represent the relationship, knowledge, and publication.  The DL query allows ACLRO to 

confirm its model structure and class’s definition (Van Der Straeten, Mens, Simmonds, & 

Jonckers, 2003).  Some examples are: 

1. Which response variables have been studies in ACLR using the Random 

Forest model? 

DL query: 'dependent variable' and 'is about' some ACLR_surgery and 

'is modeled by' some 'random forest.' 

Result: All response variables in the random forest for ACLR-surgery 

related studies are selected.  Based on the use case, the study’s pain 

variable was selected. 

2. Which variables were discovered as the top-five influential factors on 

post- ACLR operative pain? 

DL query: 'independent variable' and (is_ranked some xsd:integer[<= 5]) 

and ('is modeled by' some ( 'random forest' and 'is model for' some 

('dependent variable' and 'is about' only 'pain score' and  'is about' some 

ACLR_surgery))) 
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Result: The model can select all predictors as a part of random forest 

models in any ACLR-surgery related studies.  In the use case, the query 

selected all top-5 influential factors: injsrg_mth, med_rem, sex, 

cartilage, and inj_type, as in Figure 7. 

 

 

Figure 7 DL query: the top-five influential factors on ACLR postoperative pain 
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3. Which predictors were discovered at least as the top-five influential to 

post- ACLR operative pain base on the increase mean accuracy 

calculation? 

DL query: 'independent variable' and ('is part of' some( 'derived data 

from statistical analysis' and ('is about' some incNodePurity) )) and 

(is_ranked some xsd:integer[<= 5]) and ('is modeled by' some ( 

'statistical model' and 'is model for' some ('dependent variable' and 'is 

about' only 'pain score' and  'is about' some ACLR_surgery))) 

Result: The model can select the list of all predictors as a part of the 

mean increase accuracy in any ACLR-surgery related studies.  In the 

study’s use case, the query selected all top-5 influential factors: 

injsrg_mth, med_rem, sex, cartilage, and inj_type, as in Figure 8. 
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Figure 8 DL query: the top-five increase mean accuracy factors on ACLR 

postoperative pain 

3.5 Conclusion 

The study proposes the hybrid approach using the bottom-up and top-down 

approach with the foundation ontology to improve the shareability and reusability of the 

ontology model.  The bottom-up approach is easier to use a starter for domain-knowledge 

abstracting, while the top-down approach requires a new understanding of the foundation 

ontologies.  The final best-practice model revealed a unique benefit of ontological 

knowledge engineering that permitted EBP, PBE, domain, and statistic models to be built 

separately and then integrated into the final model without re-work on any existing 



 

54 

models.  This work proved that the ontology model with the foundation structure could 

be reusable and shareable. 
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CHAPTER FOUR AIM 1 DOMAIN-SPECIFIC ONTOLOGY 

4.1 Introduction 

The ACLRO serves as proof of concepts, demonstrates how the ontology can be 

applied to a real-world setup while bringing benefits as claimed.  The study proposes a 

practical technique to represent the patient-focus process that utilizes both bottom-up and 

top-down approaches.  The purpose of the hybrid approach is to apply the standard 

framework of the top-down approach with the specific domain knowledge obtained in the 

bottom-up approach.  The foundation framework helps the domain ontology to define a 

more explicit structure with fewer adding relationships.  As a result, the domain 

ontology's maintenance is more straightforward in expanding and integrating more 

concepts.  The outcome of this work shows the hybrid approach's success that enhances 

the representation of domain knowledge while improving the reusability and semantic 

interoperability of the domain ontology. 

4.2 Existing Ontologies 

Reusable ontologies can be categorized into two main areas: general ontologies 

and domain-specific ontologies.  The examples of general ontologies are DMOZ 

(www.dmoz.org) and WordNet (www.cogsci.princeton.edi).  DMOZ was a multilingual 

open-content directory of World Wide Web links based on a hierarchical ontology 

scheme.  Its purpose was to organize site-directory listings into categories 

(https://en.wikipedia.org/wiki/DMOZ).  WordNet is a lexical database with Ontology 

knowledge structure for the English language (https://wordnet.princeton.edu/).  It acts as 

a combination of dictionary and thesaurus and categorizes nouns, verbs, adjectives, along 

with adverbs using IS-A relationship.  One of the most recognized systems for domain-
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specific ontologies is UMLS, which serves as a centralized resource for medicine, health, 

and biomedical vocabularies and standards for interoperability between different EHR 

systems.  Another well-known domain-specific ontology is Gene Ontology (GO: 

http://www.geneontology.org).  The GO offers the construction of concepts in the 

biology domain to describe gene function and their relationships.  All of these above 

ontologies also offer tools or functions for downloading their terms and annotations. 

There are multiple ways to search smaller existing domain-specific ontologies 

such as Protégé Ontology Library 

(https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library), the semantic-web 

search engine called Swoogle (http://swoogle.umbc.edu), and Ontobee 

(www.ontobee.org). 

Swoogle, developed by the University of Maryland, Baltimore County (UMBC), 

is a search engine for Semantic web ontologies, documents, and terms published on the 

web.  It is a crawler-based indexing and retrieval system for the Semantic Web that 

extracts metadata and analyzes relations between its discovered documents (Ding et al., 

2004).  Swoogle offers the default search string to find relevant semantic web documents 

and metadata of RDF, document, and the basic semantic web.  With the search “knee” 

and “def:knee” terms, Swoogle showed no results.   

The Protégé Ontology Library is a part of the Protégé Wiki site that is organized 

into three groups: OWL ontologies, frame-based ontologies, and ontologies in other 

formats.  The submitted ontologies are listed in alphabetical order.  The search team of 

“knee” was performed with a return of zero results. 

http://swoogle.umbc.edu/
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 Ontobee is the default linked data server for biomedical ontologies in the Open 

Biological Ontology (OBO) Foundry library ontologies with the aims to facilitate 

ontology term dereferencing, data sharing, visualization, query, integration, and analysis 

using the RDF triple store technology (Ong et al., 2017).  The OBO Foundry library 

represents a family of ontologies meeting its requirement on formal structure and 

interoperability (Smith et al., 2007).  With the search term as “knee”, the result showed 

19-matched term IRI from twelve ontologies.  With the exclusion of six ontologies that 

focused on non-human species domains such as a mushroom, mouse, and Hymenoptera, 

the other six ontologies are listed below: 

• BRENDA tissue/enzyme source (BTO) 

• Human Developmental Anatomy, abstracted version (EHDAA) 

• Human Developmental Anatomy, timed version (EHDA) 

• Foundational Model of Anatomy Ontology (FMA) 

• NCI Thesaurus OBO Edition (NCIT) 

• Ontology for MIRNA target (OMIT) 

These six ontologies offer a taxonomy of body anatomy but not the relations nor 

properties of the terms.  After reviewing each ontology’s structures and aims, the study 

imported the ACL-related terms from FMA into the body-anatomy concept of the 

ACLRO, i.e., BodyAnatomy. 

The search for more focused terms like ACL reconstruction, knee surgery, and 

knee rehabilitation did not show any existing ontology.  Consequently, the study designs 

the structure of the domain from the ground up. 
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4.3 Bottom-Up Approach 

 The most advantage of the bottom-up approach is the ability to structure concepts, 

as understood in the domain expert’s perspective.  The bottom-up approach makes the 

implementation flexible and enriches the domain-specific knowledge representations 

(Van Der Vet & Mars, 1998).  The processes also follow the TOVE guideline, starting 

from determining the domain and scope of the model.  There are seven steps listed as a 

part of the bottom-up approach in order to capture and represent the concepts and their 

relations in the ACLR domain, as follows. 

4.3.1 Determine the Domain and Scope of the Ontology 

The ground success of ontology implementation is an ability to represent domain 

knowledge and satisfy the model’s aims.  The goal of our ontology implementation is to 

represent a knowledge structure of the best practice of rehabilitation after an acute 

cruciate ligament reconstruction (ACLR) procedure.  ACLR is a surgical procedure on 

graft replacement of torn ACL in the knee joint.  In this domain, the choice of graft 

replacement is autograft patellar tendon.  Here, patient-care or health intervention events 

are data-driven, influenced by electronic health record systems (EHRs).  The study 

follows the health-intervention process proposed by the American Nurses Association 

(ANA), which includes Assessment, Diagnosis, Outcomes/Planning, Implementation, and 

Evaluation. 

After learning about the domain, the next step is to define the scope of ontology.  

From the experience of this ontology implementation, the most challenging task is in 

maintaining the scope of the domain.  Remember that an ontology model is not capable 

of defining everything in the domain.  A good ontology model is to include only matter 
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factors while excluding the rest.  Stanford recommends using a list of questions to limit 

the scope (Noy & McGuinness).  This method proved successful in developing a 

government budgetary ontology (Brusa, Laura Caliusco, & Chiotti, 2008).  The study 

also found that the technique is helpful because it is simple and can capture the crucial 

factors base on reality and domain experts.  The list will make the model development be 

on track and realize what matters to the model.  The followings are the samples of 

general questions for the project: 

• What is the type of ACL surgery? 

The domain is the patient-focus process of rehabilitation of ipsilateral 

patella-tendon graft ACLR patients. 

• What is the purpose of implementation? The purpose of implementation is 

to construct a knowledge framework for complete care 

• How will the ontology be used? 

The model can be used to share a predictive model's outcome, such as 

influential factors at the time to return to sport. 

• Who will get benefit from ontology, and how? 

Care providers, patients, and researchers, who want to use the predictive 

model to track patient outcome over time and help patients to reduce or 

avoid risks 

4.3.2 Define the Domain Terminology 

Uschold and Gruninger suggested another strategy to capture domain knowledge 

by brainstorming and grouping terminologies (Uschold & Gruninger, 1996).  Also, the 

terminology can be abstracted from the complete set of questions, which are used to form 
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a collection of formal terminologies in this study.  For instance, the terms are patient, 

knee, knee motion, normal knee motion, subjective score, gender, female, male, ACL 

tear, ACLR failure, sport, activity level, ROM, and postoperative time.  Besides, the 

study ranks the importance of the terms by the frequency of term occurrence in these 

questions.  The rank of terms' frequency determines their involvement and the granularity 

level of entities in the model.  Another technique in the study is to list ACLR-related 

terms of patient records and research studies.  The list has later complied with their 

frequency rank in the excel spreadsheet.  Then the list is categorized into groups of 

concepts, in which the study defines their informal and formal definitions in the next two 

steps. 

4.3.3 Define the Informal Definitions of the Terminology 

  The terminology is defined for domain-specific interpretation by domain experts.  

For instance,  

• ‘Patient’ is a person who has a health issue and is under medical care or 

treatment 

• ‘Patient Age’ is a period of patient life from the date of birth to the 

recorded time measured in years. 

• ‘Knee Injury’ is an injury to either or both knees 

 The informal definition of the health-intervention process are described below: 

• History Health-Event 

In this step, a patient is interviewed for health history, demographics, and 

injury-related information. 

• Symptom Health-Event 
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The patient is observed for physical signs and symptoms such as swelling 

and gait.  The health event can be related to multiple body parts, which is 

not a case in the history of health-event. 

• Evaluation Health-Event 

Multiple assessments are recorded for both subjective assessments, such as 

International Knee Documentation Committee (IKDC) subjective and 

Noyes, as well as objective measurements, such as KT-1000 for knee 

laxity; ROM; Cybex, and single-leg hop tests for knee strength.  The data 

can be recorded, either an EHR system or other patient-related files.  The 

raw data gets reviewed and turned to be information in the step.  The 

evaluation can happen either before or after surgery.  When it is a pre-

operative evaluation, the values are used to determine the diagnosis.  On 

the other hand, the postoperative evaluation allows the care providers to 

learn about the treatment outcomes. 

• Diagnosis Health-Event 

The combination of the collected information in the Evaluation process 

and the care provider’s knowledge leads to a conclusion of the patient’s 

primary and secondary diagnosis in this step.  The diagnosis is first 

recorded as the local practice's terms and then mapped to ICD-9 and ICD-

10.  The challenge of ICD-9and ICD-10 mapping is that the ICD-10 is 

more specific that benefits clinical decision making to the payer, for 

instance, the additional information on the body side and level of disease.  

For the ACLR domain, the primary diagnosis is either torn ACL on the 
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left or the right leg: i.e., Diagnosis code ICD-9-CM 844.2 and ICD-10-CM 

S83.509A, S83.511 and S83.512).  In this step, the information starts 

turning into knowledge. 

• Treatment Health-Event 

The Treatment Health-Event is categorized into two types: 1) surgical 

treatment, 2) physical therapy or rehabilitation. All patients with torn ACL 

receive ACL reconstruction surgical procedure using patella-tendon 

autograft (CPT code: 29888).  After the surgery, a rehabilitation program 

assists the patients to recover faster with better evaluations.  The treatment 

can also require more assessments and evaluation afterward, which allows 

the care providers to learn about the patient’s recovery progression.  The 

data in the previous process gets compiled and evaluated for the patient’s 

progress based on the treatments.  The process usually is not a one-time 

process.  The treatment can trigger a new set of signs and symptoms, 

creating a feedback loop to the workflow. 

• Outcomes Health-Event 

The outcome here denotes the final incidents indicating if the patient 

successes the goals or fails the long-term goals.  In this study, the authors 

use the ten-year follow-up as the outcome. 

There are three main timeframes of ACLR: Pre-operative, Operative, and 

Postoperative. 

• Pre-operative 
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After being evaluated with torn ACL, a patient will be enrolled in the pre- 

and postoperative rehabilitation.  The condition of the torn-ACL knee 

before surgery is essential.  The injured knee will be treated for swelling 

and evaluated to a range of motion (ROM) and leg-muscle strength 

comparing to the not-injured knee.  Extension: less than 2 degrees 

difference between injured and not-injured knee. 

• Operative or Surgery 

During the surgical procedure, a surgeon ensures that the ACL knee has a 

full ROM after graft placement and fixation.  All ACLR surgeries used 

auto-graft patella-tendon procedures.  This study is only based on the first 

unilateral ACLR surgery. 

• Postoperative Surgery 

The postoperative periods are divided into one-week, two-week, one-

month, two-month, 6-month, and one-year postoperative times. 

4.3.4 Define the Formal Definitions and a Concept-Mapping Diagram 

In this step, the previous informal definitions are transformed into the first-logic 

knowledge representation of concepts, which is also referred to as predicate logic.  The 

format is developed as a sentence with three components: Subject -> Predicate -> Object 

(Phalakornkule et al., 2013). 

A person-> has role -> Role(s) 

A person-> has part -> Body Parts 

Body Part -> experience -> Histories 

History -> indicate -> Signs and Symptoms. 
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Signs and Symptoms -> assess -> Evaluations 

Evaluation -> generate -> Diagnosis 

Diagnosis -> identify -> Treatments. 

Treatment-> impact -> Signs and Symptoms 

Treatment -> produce -> Outcomes 

The predicate logic can be further transformed into a concept-mapping diagram to 

see the flow of information and relations between concepts (Sowa, 2000).  The concept-

mapping diagram of health-event for ACL reconstruction care base on the ANA 

recommendation for the nursing care process is shown in Figure 9. 

 

Figure 9 Visualization of ACLR health event process 
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4.3.5 Define the Domain Class Taxonomy 

The ‘Health-Event’ concept mentioned in the domain and workflow above is 

transformed into the ‘HealthEvent’ class in the Ontology model.  In the ACLR domain-

specific model, the study categorized the ‘HealthEvent’ class as one main superclass 

having individual steps as its subclasses.  Moreover, other main classes represent 

concepts related to this domain, such as body anatomy, standard terminology, and time as 

shown in Figure 10. 

 

Figure 10 Class hierarchy of the health-event concept in the taxonomy structure 

via Protégé 
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In this domain-specific structure, each root class represents an explicit concept.  

The parent class and its sub-classes have an “is-a” relationship.  The vital key here is to 

define these definite concepts in a way that they could be clustered that is not too broad 

nor too narrow.  Here, the explanation of some crucial concepts that require their classes, 

is represented in this study. 

• Class: Role 

This class represents the healthcare role of individuals for a specific 

healthcare process.  An individual can have multiple healthcare roles, such 

as a female nurse getting sick and having to visit her family doctor.  In 

general, this nurse has a role as a care provider, but when she visits a 

family doctor for her health, her role changes to a patient.  As a result, an 

individual’s characteristics are not enough for the knowledge model since 

the role can change depending on the events. 

• Class: HeatlhEvent_Time 

Most of the healthcare treatments are a multiple-step process.  It starts 

from the first visit that allows the care provider to observe the patient’s 

sign-and-symptoms, determine diagnosis codes, and plan the treatment 

plan.  The treatment plan can involve multiple visits, especially when it is 

a part of drug treatment and rehabilitation.  In the study, ACLR 

rehabilitation is patient-centered, allowing individual patients to control 

their recovering process.  The ‘HealthEvent_Time’ class represents an 

appointment for treatments and evaluations categorized into two sub-

classes: Time_Preop and Time_Postop.  Both classes capture the 
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appointment times of evaluating knee conditions in the rehabilitation 

department, which permits ACLRO to structure its model using the same 

‘Evaluation’ sub-class under the ‘HeathEvent’ class for different visit 

periods.  Otherwise, the model would have to contain ‘Evaluation_Preop', 

‘Evaluation_Postop_1week', ‘Evaluation_Postop_1month', and so on. 

• Class: Terminology 

This class constructs various types of standard terminologies in healthcare 

in the U.S.  For billing, the International Classifications of Diseases, i.e., 

ICD-9 and ICD-10, are used as the standard diagnosis code sets.  In 

contrast, Current Procedural Terminology (CPT) is a standard procedure 

code set.  Notably, the most benefit of the ‘Terminology’ class is to 

reserve the domain’s internal knowledge structure from the external 

change/use of terminologies.  For instance, the ICD9 was changed to 

ICD10 officially in 2015.  In ACLRO, both the ICD version are used.  

With the ‘Terminology’ class, the model can map the list of the domain’s 

internal diagnosis codes to both ICD 9 and ICD 10, without any works on 

individual patient records.  For instance, patient records in the domain 

were documented as ACL – Acute tear and Knee pain, which was 

previously mapped to ICD-9 codes 844.2 and 719.46, respectively. 

• Class: Activity 

Since the rehabilitation is patient-centered, individual patients can define 

recovering satisfaction differently depending on their lifestyles.  A young 

football player would want to gain his knee strength above an average 
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non-injured person, while a 65-year-old person would be happy and 

satisfied with regular daily activities.  Moreover, the level and type of 

sports and activities can be used as one of the predicting factors of an ACL 

tear.  The sports that involve in pivot knees such as basketball and football 

increase the risk of ACL tear than running or swimming.  For the 

predictive analysis, both activity types and levels will be evaluated to 

determine the activity level, which will be used as one score to rate the 

ACL tear risk. 

4.3.6 Define the Properties of the Classes 

In Ontology, there are two types of property: object property and data property. 

• Object Properties 

Object properties represent the relationships between two classes or 

objects.  The most common relationship between the object is the ‘IS-A’ 

relationship between parent and child class.  Protégé allows us to assign 

multiple characteristics to the object properties: functional, inverse 

functional, transition, symmetric, asymmetric, reflexive, and irreflexive.  

The object properties are guided by the predicate sentence mentioned in 

the step (4) Define the ontological definitions and constraints of the 

terminology.  Some of the top-level object properties here are shown in 

Table 2 and Figure 11.  With the object properties, the relationships 

among multiple classes, which allow us to query the knowledge model, as 

shown later in the last step of this domain-specific ontology section. 
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Object Property Domain Range 

hasRole Person Role 

hasBodyPart Person Body Part 

HealthEventBelongTo Health Event Person 

historyToSymptom History Symptom 

symptomToEval Symptom Evaluation 

evalToFinding Evaluation Finding 

findingToDiag Finding Diagnosis 

diagToTreatment Diagnosis Treatment 

treatmentToOutcome Treatment Outcome 

measurementToEvaluation Measurement Evaluation 

healthEventTimePeriod Health Event Health-Event Period 

Table 2 Object properties representing the health-event process in the ACLRO 
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Figure 11 Object property defining the relationship between the patient and 

health-event concepts via Protégé 

• Data Properties 

Data properties are used to describe the characteristics of concepts at the 

individual level.  For instance, every person has the age factor as one of 

the characteristics defining who we are.  Therefore, “hasAge” is an object 

property for the “Person” class.  In Protégé, object properties are required 

to have ‘domain’ and ‘range’ information.  The ‘domain’ determines 

which concept is the object property belongs to, while the ‘range’ explains 

its data type, such as numeric, string, or date-time.  At this step, the core of 
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the ontology model is capture and can be visualized, as shown in Figure 

12.  The next step shows the implementation of instances. 

4.3.7 Develop Constraints Using Axioms, Rules and Reasoning 

Up to the step, the ontology model can present the domain’s concepts and 

relations between them.  Its structure demonstrates how the entities existing in the world, 

and it should be the same structure across practices.  That is why the ontology model 

should be structured as things are without adding an individual’s belief.  Nevertheless, 

the ontology model can represent more than a standard structure.  With rules and 

reasoning, the model can add and customize knowledge.  Rules and reasoning will allow 

the model to add belief and create customizations in concepts’ relations. 

For instance, this ontology can automatically map the practice diagnoses terms to 

multiple standard terminologies such as ICD-9 and ICD10 even both stand terminologies 

are different in coding components, as shown in Figure 13.  The model can also use rules 

to add the knowledge of which combination of sport level and sport types can lead to 

high risk and high level of activity ratings. 
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Figure 12 The implementation of SWRL rule for model constraints, axioms, and 

relation criteria 
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Figure 13 Concept-mapping diagram of ACLRO under the bottom-up approach 
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4.4 Top-Down Approach 

 The top-down approach aims to focus on semantic interoperability rather than 

specific domain-knowledge representation.  Its design focuses on technical points of view 

over domain experts (Klischewski, 2003).  The initial step of the top-down approach is to 

select a suitable foundation ontology in an interesting domain.  The next step is to search 

for existing ontologies under the same foundation framework.  These ontologies are 

called middle-level ontologies.  Last, the study performs a gap analysis of overlapped 

concepts before integrating into the study’s model.  The details of individual steps are 

mentioned in section 4.4.1, 4.4.2, and 4.4.3. 

4.4.1 Select the Foundation Framework 

A foundation ontology, also known as an upper ontology or top-level ontology, is 

a domain-neutral ontology that comprises of general terms across all domains 

(Hoehndorf, 2010).  There are several top-level ontologies such as Basic Formal 

Ontology (BFO), Descriptive Ontology for Linguistic and Cognitive Engineering 

(DOLCE), General Formal Ontology (GFO), Suggested Upper Merged Ontology 

(SUMO), and Cyc Upper Ontology.  Their primary purposes are to ensure semantic 

integration and reusability of specific ontologies (Gibson, 2010).  Therefore, the critical 

factor of selecting one top-level ontology over the others is on the level of 

interoperability that a specific domain ontology receives.  For instance, an ontology in 

medicine should select a top-level ontology commonly used in the biomedical field. 

After thoroughly reviewing the top-level ontologies in biomedicine, this study 

selects the Basic Formal Ontology (BFO) as the foundation ontology.  Barry Smith and 

his team at the Institute developed BFO for Formal Ontology and Medical Information 
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Science (IFOMIS) at the University of Leipzig (Grenon et al., 2004).  The design of BFO 

is to support information retrieval, analysis, and integration in scientific and biomedical 

research (Arp & Smith, 2008).  BFO’s framework represents entities and their 

relationships under a single framework of time and space consolidation, i.e., continuant 

and concurrent (Galton, 2018).  Continuant entities carry on their existence through time, 

while concurrent entities require temporal parts for their existence, such as events and 

processes.  The hierarchy of BFO 2 is shown in Figure 1 (Arp et al., 2015). 

4.4.2 Review Middle-Level Ontologies and Existing Concepts 

The requirement of middle-level ontologies for this study is to be under the BFO 

framework.  Opportunely, there is a group dedicated to ontologies related to the life 

sciences and biomedical domain, named the Open Biological and Biomedical Ontologies 

(OBO) Foundry.  The OBO Foundry principles are for a collection of interoperable 

references ontologies (Smith et al., 2007).  The OBO’s members have to adhere to its 

principles and be reviewed before the official acceptance.  The summary of OBO 

Foundry principles composes of openness, standard format, orthogonality, versioning, 

scope, textual definitions, standardized relations, documentation, a plurality of users, 

exposure to collaborations, local of authority, naming conventions, and maintenance.  

The collection of the OBO foundry can be accessed through its site at obofoundry.org 

and ontogee.org.  Ontobee is a linked data server for referencing ontology terms and has 

been used as the default ontology source for most OBO Foundry library ontologies 

(Smith et al., 2007).  The search on Ontobee sites (ontobee.org) discovered two 

ontologies, i.e., OBI and IAO, that serve as the study’s middle-level ontologies, as 

mentioned in 3.1.1 and 3.1.2. 
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4.4.3 Integrate the Middle-Level Ontologies 

After reviewing the structure of both the OBI and the IAO model, the study 

analyzed the concepts involving the study.  In the ACLRO, the reused concepts from the 

OBI are the ‘Investigation’ and ‘Data Transformation’ planned processes.  The 

“Investigation” process has two primary relations, “has specified input” and “has 

specified output’ relation connecting to continuous entities (Kong et al., 2011).  

Additionally, the “Investigation” process can have a relation with another planned 

process, such as “Study Design Execution” and “Drawing a Conclusion From Data.”  

Figure 14 presents the partial high-level concept map of OBI and IAO under the BFO 

framework: BFO class are shown in green, IAO classes are shown in blue, and OBI 

classes are shown in orange.  The ‘data transformation’ process is a process with the raw-

data input and the ‘analyzed-data’ output, which participates in the research process in 

this study.  Besides, the information-content entity plays an essential role in data 

collection during the health-intervention and data-extraction processes. 
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Figure 14 Partial high-level conceptual-mapping diagram of OBI and IAO under the 

BFO framework 

4.5 Integrate the Domain Ontology to the BFO Framework 

The ACLRO’s concepts are primarily defined in the “Health Intervention” 

process, the same patient-care process as the nursing process described by the American 

Nurses Association (ANA), as mentioned in Step 3.  The health-intervention process 

class has the “exists at” relationship with the temporal region, representing treatment-

time periods, such as pre- and postoperative.  The other key concepts in this study are 

documented data or information content.  However, the information-content entity is not 

part of BFO2.0.  It is an extended entity introduced by a BFO-based Information Artifact 

Ontology (IAO) that focuses on data collections and associates representational artifacts 
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(Ceusters, 2012).  In ACLRO, the information-content class involved data collected 

during the health-intervention process and data extracted from the literature. 

The structure of ACLRO with the bottom-up approach represented in Figure 13 is 

redesigned to fit the OBI and IAO under the BFO framework.  The visualization of the 

new concept-mapping diagram is shown in Figure 15.  With the top-down approach, the 

new ACLRO enhances semantic interoperability with more straightforward, organized 

classes.  Besides, the ACLRO structure is more formal, with fewer relationships.  

Consequently, the new design with the BFO framework enriches the reusability and 

integration of the domain knowledge with another ontology due to its parent-class 

equivalence. 
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Figure 15 Conceptual-mapping diagram of the ACLRO with the hybrid approach under 

the BFO framework 
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4.6 Validation 

One of the recommended methods used to capture essential terminologies is to 

develop multiple scenarios and capture a list of questions from these.  The list-of-

questions method focuses on the validation of domain conceptualization while bypassing 

the formal description language scenarios (Abacha, Da Silveira, & Pruski, 2013).  Along 

with reasoning on instance entities, DL queries transformed natural language questions 

into ontology formal description language.  The DL query’s results are used to validate 

the model by comparing it to the expected answers of the domain experts.  The following 

sections are organized into the creation of instances and competency testing. 

4.6.1 Create Instances 

In this study, the roles of instances demonstrate the design of a domain ontology 

in real-world settings and validate the model’s competency in a scenario-test technique.  

The two scenarios that are implemented for the validation are below. 

• Scenario A: Patient-A is a 19-year-old male.  He injured his left knee 

while playing basketball with friends.  He heard a pop at the time of 

injury.  He had a medial and lateral ACL tear.  He received a contralateral 

ACL reconstruction on the left knee.  He came for pre-op/post-op 

rehabilitation at one-week, two-week, one-month, two-month, four-month, 

and six-month postoperative times.  His knee status got evaluated on 

strength, range of motion, function, and self-assessments during the 

postoperative visit and one-year, five-year, and ten-year follow-up.  He 

received full ROM and excellent on his knee assessment. 



 

81 

• Scenario B: Patient-B was a 26-year-old female.  She had chronic pain on 

the medial side of her right knee.  The pain occurred during full-extension, 

bending the knee, squatting, and daily activities like walking and biking.  

She also heard popping sound from moving her knee.  She received the 

ACLR surgery and attended the rehabilitation program.  Her right ACL 

got tore six years after the surgery again. 

The three instances are in this paper as follows: 

• Patient_1 (Figure 16 and Figure 17) 

• Has birthday on 1/1/1977 

• Is female 

• Injured on right knee 

An example of the development of an instance of the Patient concept with 

the information of sex and birthdate in Protégé is shown in Figure 17. 

• recordDiag_pat1 

• Is a part of encounter of Patient_1 

• Is a diagnosis record of Patient_1 

• Has a primary diagnosis with a local term as (right) Acute ACL 

Tear, i.e., ICD9: 844.2 and ICD10: S83.511A 

• Has a secondary diagnosis with a local term as (right) Knee Pain, 

i.e., ICD9: 719.46 and ICD10: M25.562 

Figure 18 demonstrates an example of the development of an 

instance of the diagnosis-encounter concept in Protégé.  Here, the 

instance, encounter_pat1, is created with the information of 
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primary and secondary diagnosis that can be further mapped to 

standardized terminologies, i.e., ICD 9 and ICD 10. 

• rescordSrg_pat1 (Figure 19) 

• Is a part of the encounter of Patient_1 

• Is a surgery record on Patient_1 

• Is ACLR surgical procedure code (CPT code) 29888 

• With a grafted side on the same knee (Ipsilateral ACLR) 

Figure 19 presents an example of the development of an instance of the 

surgical record via Protégé.  Here, the record instance, recordSrg_pat1, is 

created with the information of surgical details such as graft side and 

procedure code. 

 

Figure 16 DL query for retrieving the female-patient (FemalePatient) concept 
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Figure 17 An instance of the Patient concept with the information of sex and 

birthdate via Protégé 

 

 

 
Figure 18 An instance of the diagnosis-encounter concept (encounter_pat1) with 

the information of primary and secondary diagnosis via Protégé 
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Figure 19 An instance of the surgical-record concept (recordSrg_pat1) with the 

information of sex and birthdate via Protégé 

4.6.2 Competency Testing 

• Verify the model's ability to categorize patients based on their 

demographic information such as age or sex. 

As shown in Figure 16 and Figure 17, the model can categorize all female 

patients under the ‘FemalePatient’ class using a piece of information in the 

‘personGender’ property of the ‘Person’ class.  The model can group and 

identify if a specific patient is grouped into a female or male patient 

without looking at his/her demographic info.  In addition, the patient 

(Person_1) is also simultaneously grouped as ‘AdultPatient’.  This query 

performs the same way as a view in a relational database that selects all 

patients from the patient table where sex is female.  For further benefit, the 

category method can be applied in a decision support tool to identify if the 
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patient could be in any high-risk diseases based on a set of patient’s 

characteristics. 

• Verify the model’s ability to categorize patients into a specific treatment 

type base on the information in their surgery records. 

In this work, the ipsilateral ACLR procedure has a formal definition in the 

ontology model as a surgical surgery for ACL reconstruction that uses an 

auto-graft from the same side of an injured knee.  Besides, the surgical 

records do not have a direct relationship with the ipsilateral-ACLR 

concept.  Nevertheless, the ACLR model successfully selects all ACLR 

surgery using the auto-graft from the same side of the injuries knee into 

the ‘ALCR_Ipsilateral’.  As an instance of the ACLRO, the treatment 

record for a specific patient (recordSrg_pat1) has information about the 

treatment CPT code (treamentCPTcpde) along with the source of graft 

side (ACLR_GraftSide), which led the model to identify the surgery 

record as Ipsilateral ACL Reconstruction (ACLR_Ipsilater), as presented 

in Figure 16. 

• Verify the model’s ability to map local terminologies to various 

standardized terminologies such as ICD 9 to ICD10. 

A standardized terminology offers a classification of common terms that 

are designed to be shared among users (Iroju, Soriyan, Gambo, & Olaleke, 

2013).  The primary purpose is to facilitate interoperability and 

information exchange.  However, standardized terminology requires a 

learning curve and might not be initially recorded in the local 
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documentation.  Additionally, the documenting of patient records typically 

includes only one standardized terminology.  Hence, the additional 

connection to different standardized terminologies is required for the 

information exchange.  In the ACLRO, the local terms can be mapped to 

both ICD 9 and ICD 10 simultaneously through the concept-mapping 

technique.  As seen in Figure 18, the diagnosis record of Patient_1 

(recordDiag_pat1) shows the local primary and secondary diagnosis as 

Acute ACL Tear and Knee Pain, respectively.  On the side note, ICD 10 

requires body-side information in their code, which is not determined in 

either ICD 19 or the local terms.  Nevertheless, the ontology model 

effectively connects the information recorded in the patient encounter to 

the ICD 10 mapping. 

4.7 Conclusion 

The domain ACL-Rehabilitation ontology (ACLRO) serves as a proof of concepts 

that demonstrates how the ontology can be applied to a real-world setup and bring 

benefits as claimed.  The study proposes a practical technique to represent the patient-

focus process that utilizes both bottom-up and top-down approaches.  The purpose of the 

hybrid approach is to apply the standard framework of the top-down approach with the 

specific domain knowledge obtained in the bottom-up approach.  The foundation 

framework helps the domain ontology to define a more explicit structure with fewer 

adding relationships.  As a result, the maintenance of the domain ontology is more 

straightforward in expanding and integrating more concepts.  The outcome of this work 

shows the success of the hybrid approach that enhances the representation of domain 
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knowledge while improving the reusability and semantic interoperability of the domain 

ontology. 

The ACLRO model can construct the class of data-driven, patient-focus process, 

which allows Ontology to share the knowledge explicitly from technology or EHR 

systems.  Additionally, the ACLRO can reuse and remap the internal concepts to various 

external concepts without any edition of the existing structure and relations in the 

domain. 
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CHAPTER FIVE AIM 2 STATISTIC ONTOLOGY 

5.1 Introduction 

Statistics is the branch of science that uses quantitative or mathematical methods 

to analyze data, and play an essential role in medicine and health sciences.  Medical 

statistics and biostatistics are the study of human health, treatment, and disease, ranging 

from epidemiology, public health, health promotion, and clinical research.  Healthcare 

organizations engage statistics in decision-making, continuous quality improvement 

programs, business strategies, health care policy, and financial planning (Deber, 

Kraetschmer, & Irvine, 1996; Plichta & Garzon, 2009; Rice, 1977; Russell, Gold, Siegel, 

Daniels, & Weinstein, 1996).  The roles of statistics involve collecting, summarizing, 

presenting, and drawing a conclusion.  With the fast progressing in technologies and 

growing in Big Data, the need for statistics is rising, along with complex problems that 

require the multidisciplinary team's cooperation from subject-matter experts to advance 

analytics (Murdoch & Detsky, 2013).  With the increasing demand for knowledge 

sharing, more statistics and machine learnings are utilized to analyze healthcare Big Data.  

The various statistics applications are designed for researchers who are not experts in 

statistics fields (Ocaña-Riola, 2016).  Statistical analysis can be done in a single click 

without a supporting document for algorithm selection.  Consequently, healthcare is 

facing a time of “data rich, information poor.”  The lack of high-quality documentation 

prevents researchers from sharing knowledge discovery (Sermeus, 2016).  Furthermore, 

the insufficiency of documenting in statistical methods and processes prevents the 

validation and reproducibility of statistical analysis and a comparison between studies in 

clinical research (Strasak et al., 2007).  It is a known challenge that most publications and 
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external evidence are challenging to reapply their methods to achieve the same outcomes 

due to the lack of information on study design, statistical criteria, and algorithm applied 

(Zheng et al., 2016). 

5.2 Existing Ontologies 

5.2.1 Statistics Ontology (STATO) 

STATO was a standalone project presenting data analysis results as part of the 

community-drive for the International Society of Automation (ISA) in early 2012 

(González-Beltrán, Maguire, Sansone, & Rocca-Serra, 2014).  STATO has BFO as its 

top-level model and OBI as its mid-level ontology.  It is developed with the Web 

Ontology Language and follows OBO Foundry principles (Howland, 2007).  STATO 

provides a general structure around common statistical concepts and properties from 

mathematical terms to statistical-related processes, such as statistical tests, data 

distribution, variables, and outcome representations in a non-specific domain.  The main 

six STATO’s objectives reported on its web page (http://stato-ontology.org) are: 

• Serve as a supporting resource for statistical methods in the 

communications and reporting of scientific results for scientists and 

researchers by providing guideline compliance and standardizing 

annotation of result tables.  

• Structure the fundamental classes for annotating statistical methods and 

their assessments; and connect to the associated hypothesis for better 

representation, interpretation, and review. 

• Provide formal definitions of most common univariate statistical tests 

http://stato-ontology.org/
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• Deliver a formal means of directing and characterizing the criteria of 

standard statistical tests 

• Offer a semantic framework supporting standardized analysis reports 

• Recommend specialized formal terminologies for text mining of statistical 

analysis 

STATO organizes the concepts of statistical theories and their components under 

the information-content class, such as conclusions based on data, data distribution, and 

hypothesis.  The majority of information about statistical-related processes is listed under 

its ‘data transformation’ process.  The process transformed the input data into analyzed or 

calculated outcomes.  Additionally, in this study, ACLRO structure statistical tests as a 

subclass of the statistical model under “data-item” concepts.  STATO also includes 

concepts of experimental design and graphical visualization for results, as presented in 

Figure 20. 
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Figure 20 STATO structure of statistics concepts 

Furthermore, STATO’s web page presents multiple examples of different query 

cases to answer and demonstrate how the ontology model queries an answer through 

description logics expressions (http://stato-ontology.org/queryCases.jsp).  The sample of 

questions is grouped into four categories: statistical tests, statistical measures, statistical 

plots, and study design. 
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5.2.2 Ontology of Biological and Clinical Statistics (OBCS) 

OBCS is a community-based ontology that primarily focuses on statistical 

representation in biological, biomedical, and clinical domains.  It was originated for a 

study of the Analysis of Variance (ANOVA) meta-analysis of vaccine protection assays 

in 2010 (He et al., 2010).  Its areas expanded to survival rate analysis and advanced more 

statistical terms in Ontology for Biomedical Investigation (OBI, 

http://purl.obolibrary.org/obo/obi) (Zheng et al., 2016). 

OBCS is written in the W3C standard web ontology Language (OWL 2, 

http://www.w3.org/TR/owl-guide/), and follows OBO Foundry principles.  The 

development of OBCS is a combination of both top-down and bottom-up approaches.  

The upper ontology for the top-down approach was imported from the OBI class using 

the BFO 2.0 classes-only version (BFO, http://purl.obolibrary.org/obo/bfo).  

Additionally, Information Artifact Ontology (IAO, http://purl.obolibrary.org/obo/iao) was 

applied as its middle-tier model (Zheng et al., 2014).  For that reason, OBCS’s ontology 

structure begins with BFO’s continuant and occurrence concepts.  Then the classes were 

extended into information-content and planned-process imported from IAO and OBI, 

respectively.  In addition, OBCS follows ontology guidance by reusing existing 

terminologies like STATO.  As in Figure 21, IAO offers statistics-related terminologies, 

including probability distribution, statistical variables, and data-collection design, while 

OBI provides the parent class for the planned process relating to data collection, data 

analysis, and data transformation.  The bottom-up approach was generated using cases 

that captured further terms related to the basis of statistics workflows through beyond 
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OBI.  The first two use cases studied the systems biology of influenza vaccination (Lin & 

He, 2012) and clinical outcomes of nursing services data (Needleman et al., 2011). 

 

Figure 21 OBCS’s hierarchical structure and key ontology terms 

OBCS is designed to envision both statistics-mathematics terminologies, such as 

Information Content Entity, and their general workflow processes, such as Planned 

Process.  The semantic representation of OBCS’s statistical concepts is shown in Figure 

22.  The vital statistics concepts are under the ‘information content entity’, including 

‘probability distribution’, ‘testable hypothesis’, ‘value specification’, ‘statistic model’, 
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‘figure’, and ‘conclusion based on data’.  The five core processes are ‘data collection’, 

‘data visualization’, ‘data transformation in statistics’, ‘(descriptive/inferential) statistical 

data analysis’, and ‘drawing a conclusion based on data’. 

As of 2016, OBCS denoted over 800 terms, 20 BFO’s classes, 403 OBI classes, 

229 its classes, and over 100 classes imported from other OBO Ontologies (Zheng, 

Harris, Masci, Lin, et al., 2016).  Bioportal also summarized the ontology metrics of 

OBCS, as in Table 3 (http://bioportal.bioontology.org/ontologies/OBCS). 



 

95 

 

Figure 22 OBCS’s semantic representation of statistics-related concepts 
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5.2.3 APA Statistical Cluster (APASTATISTICAL) 

APASTATISTICAL represents three main classes: 

‘DesignAnalysisInterpretation’, ‘StatisticalReliabilityValidity’ and 

‘VatisticalTheoryExperimentation’.  The model does not have a foundation model nor 

follow a top-down approach.  There is no documentation or user group support.  As of 

December 2019, the project status is in alpha state. 

5.2.4 Ontology of Clinical Research (OCRE) 

OCRE is designed to support a systematic description of, and interoperable 

queries on, human studies and their elements 

(http://boiportal.bioontology.org/ontologies/OCRE).  There is no top-level ontology used 

in its framework.  As of Dec 2019, the project status is in alpha state. 

5.2.5 Mathematical Modelling Ontology (MAMO) 

MAMO is designed to classify the most common mathematical models used in 

the life sciences and other related items, such as variables and relationships 

(http://boiportal.bioontology.org/ontologies/MAMO).  The four main classes are model, 

modeling entity feature, readout, and variable.  There is no top-level ontology used in its 

framework.  As of Dec 2019, the project status is in alpha state. 

5.2.6 Semanticscience Integrated Ontology (SIO) 

SIO is designed to act as a top-level model for knowledge representation in 

physical, processual, and information entities 

(http://boiportal.bioontology.org/ontologies/OCRE).  It aims to offer a vocabulary for 

Bio2RDF (http://bio2rdf.org) and Semantic Automated Discovery and Integration 

(SADI) (http://sadiframework.org) projects. SADI is a framework for interoperability 
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between distribute data and analytical resources.  The three core parent classes are 

‘attribute’, ‘object’, and ‘process’. 

5.3 Model Comparison 

From six statistic-related ontologies, only three are in production and used by 

other projects, i.e., OBCS, STATO, and SIO.  Two out of these three, OBCS and 

STATO, were implemented with the top-level ontology using BFO and follow the OBO 

Foundry principles.  Both OBCS and STATO emphasize on standardizations and 

reusability in science domains with the use of a foundation ontology.  Nevertheless, there 

are some dissimilarities between these two.  First, their scope and focus domain is 

different.  While STATO has a broader scope in science domains, OBCS’s main scope is 

in biological and clinical statistics.  Second, OBCS and STATO are not alike in their 

statistics-related characteristics.  For instance, under the ‘investigation’ process, STATO 

extends the class to more biology-related aspects, i.e., ‘acute toxicity study’, ‘genetic 

association study’, and ‘high throughput screening’ sub-classes).  On the other hand, 

OBCS’s ‘investigation’ process focuses more on research hypothesis parts, as presented 

in Figure 23 and 24. 
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Figure 23 Sub-classes of ‘investigation’ process in STATO 
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Figure 24 Sub-classes of ‘investigation’ process in OBCS 
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As of December 2019, BioPortal reported the summary metrics of the 

statistics-related ontology, indicating the models’ quality and maturity.  The 

“classes with only one subclass” metric reports the number of classes with only 

one subclass in the is-a relation.  The high number of this metric implies that the 

structure is under-specified, or the classification is not appropriate.  In contrast, 

when the classes have many subclasses as measured in the “classes with more 

than 25 subclasses” metric, the measurement indicates that the additional 

distinction might be needed. 

The comparison of the statistics-related ontologies is summarized in Table 5.1. 

Metrics OBCS STATO SIO APA-

STAT 

OCRE MAMO 

Last uploaded 

date 

22/12/15 17/10/15 4/12/18 1/11/15 6/21/13 10/17/15 

Status Prod Prod Prod Alpha Alpha Alpha 

Foundation 

Model 

BFO BFO N/A N/A N/A N/A 

Number of 

Classes 

779 100 1,544 140 389 100 

Number of 

Individuals 

25 0 0 0 39 0 

Number of 

Properties 

48 3 212 0 220 3 

Maximum 

depth 

10 5 10 1 6 5 
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Maximum 

number of 

children 

27 12 118 87 19 12 

Average 

number of 

children 

3 2 3 35 3 2 

Classes with a 

single child 

71 13 174 0 19 13 

Class with 

more than 25 

children 

3 0 1 2 0 0 

Classes with 

number 

definition 

43 1 165 140 68 1 

Table 3 Ontology metrics reported by BioPortal on Dec 2019 

(http://bioportal.bioontology.org) 

5.4 ACLRO’s Statistics-Concept Modeling  

The statistical vocabularies and concepts in the thesis are imported from four 

statistic-related ontologies, i.e., IAO, OBI, OBCS, and STATO.  Each ontology suits the 

study needs in different aspects.  For instance, STATO offers the ‘hypothesis’ class, 

which is essential to ACLRO.  While other ontologies only have the ‘null hypothesis’ 

subclass, STATO includes more based on research aims and statistics models, such as 

‘goodness of fit hypothesis’, ‘presence of association hypothesis’, and ‘absence of 

difference hypothesis’.  The study borrows multiple terms from OBCS that are not 

http://bioportal.bioontology.org/
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available in the others.  Some examples are terms under ‘statistical model’ and ‘statistical 

variable’ classes. 

In addition to the above existing ontologies, ACLRO also developed more 

specific terms to meet the study’s needs.  For instance, the ‘healthcare variable’ subclass 

is added to the ‘variable’ class.  The high-level structure is shown in Figure 25 and Figure 

26. 

 

Figure 25 High level of statistics-related hierarchical structure 
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Figure 26 OntoGraph: High level of statistics-related classes 
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5.5  Consistency Testing 

For consistency testing of the model, ACLRO used the HermiT reasoner.  HemitT 

ran successfully without any error message in 2,919 milliseconds, as shown in Figure 27. 

 

Figure 27 Reasoner log of ontology processing by HemiT 

5.6 Validation 

The study presents various ontology DL queries, aiming to answer questions with 

multi-aspects to demonstrate how the ontology model implements formal representation 

and semantic relationships between statistics and research design.  First, the study 

organizes the questions into three categories: statistics-related features, research design, 

and knowledge discovery.  Then, the study creates a set of questions that captures 

aspect(s) for each category as below.  Note that the answers here are not complete since 

ACLRO is built as a proof of concept.  As the model expands, more information will be 

added. 

 

 



 

105 

5.6.1 Statistic Parameters 

• About statistic parameters, which probability distribution that requires 

both shape and location parameters? 

DL query: 'probability distribution' and 'is denoted by' some ('probability 

distribution shape parameter' and 'probability distribution location 

parameter') 

Result: Weibull probability distribution (Figure 28) 

 

Figure 28 DL query on probability distribution and parameter criteria 

5.6.2 Statistical Test and Parameters 

• Which statistic tests are suitable on a probability distribution that requires 

all shape, scale, and location parameters? 

DL query: 'statistical model' and 'is denoted by' some ('is denoted by' some 

( 'probability distribution location parameter' and 'probability distribution 

scale parameter' and 'probability distribution shape parameter') ) 
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Result: Kruskal Wallis test; Mann-Whitney U-test (Figure 29) 

 

Figure 29 DL query on statistic test and parameters 

5.6.3 Statistical Test and Data Types 

• Which statistical tests can be used for ranking variables? 

DL query: 'statistical model' and 'has part' some ranking 

Result: Kruskal Wallis test; Mann-Whitney U-test; Wilcoxon signed-rank 

test; Non-parametric test (Figure 30) 
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Figure 30 DL query on the statistic model for ranking 

• Which correlation coefficient can be calculated using two ordinal variables? 

DL query: 'correlation coefficient' and 'is about' exactly 2 'ordinal variable' 

Result: Kendall’s correlation coefficient (Figure 31) 

 

Figure 31 DL query on the statistic model for correlation 
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5.6.4 Statistical Test, Distribution and Hypothesis Test 

• Which statistical tests can test for distribution fitting? 

DL query: 'statistical model' and achieves_study_objective some 

'goodness of fit testing objective' 

Result: Exact binomial test, F-test (Figure 32) 

 

Figure 32 DL query on the statistic model for the goodness of fit test 

• Which statistical tests can test for group comparison? 

DL query: 'statistical model' and achieves_study_objective some 'between-

group comparison objective' 

Result: Kruskal Wallis test; Mann-Whitney U test; Non-parametric test; 

ANOVA (Figure 33) 
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Figure 33 DL query on the statistic model for group comparisons 

• Which statistical tests can test for group comparison with F-distribution? 

DL query: 'statistical model' and 'is about' some F-distribution and 

achieves_study_objective some  'between-group comparison objective' 

Result: ANOVA (Figure 34) 
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Figure 34 DL query on the statistic model for group comparison with the F distribution 

5.6.5 Statistics and Research Design 

• Which statistical test is eligible to test the relationship between categories 

variable in a randomized complete block design? 

DL query: 'statistical model' and 'is about' some 'randomized complete 

block design' 

Result: Cochran’s q test for heterogeneity; ANOVA (Figure 35) 
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Figure 35 DL query on the statistic model for randomized complete block design 

studies 

• Which statistical test is suitable for crossover study? 

DL Query: 'statistical model' and 'is about' some 'cross over design’ 

Result: McNeMar’s test; ANOVA (Figure 36) 

 

Figure 36 DL query on the statistic model for cross-over design studies 
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5.7 Conclusion 

After reviewing existing statistics-related ontologies, the study discovered that 

OBCS and STATO are suitable for the ACLRO due to their alignment with BFO and 

OBI, as well as OBO Foundry principles.  OBCS is primarily designed for statistics in 

biological, biomedical, and clinical fields, while STATO provides more statistics terms 

that are common for all domains.  In addition, OBCS offers the terminologies related to 

clinical research, allowing the study to expand more specific terms.  As a result, in the 

validation section, the study presented that the ontology model can be used for 

information queries not only for the statistic model but also for research design.  The 

statistical concepts in ACLRO will continue to expand to more advanced mathematics 

like machine learning and deep learning to be compatible with the growth of Big Data. 
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CHAPTER SIX AIM 3 EVIDENCE-BASED PRACTICE ONTOLOGY 

6.1 Introduction 

Medicine and healthcare are a domain of complex systems due to its dynamic 

relations influencing the changes in the properties of other entities (Boon et al., 2007).  

Therefore, knowledge in medicine not only influences one another but also is evolving 

and adaptive.  Evidence-based practice (EBP) has been considered the most standard 

knowledge-sharing approach in biomedicine and other domains by integrating the best 

external evidence into clinical expertise (Melnyk et al., 2014) that provides the outcomes 

for personalizing treatment (Oman, Duran, & Fink, 2008).  The EBP term was introduced 

in 1991 as a novel approach in problem-solving and clinical decision making with 

scientific, clinically relevant research that replaces “intuition, unsystematic clinical 

experience, and pathophysiologic rationale (Waite & Killian, 2016). 

Regardless of its long-term involvement and potentials, the implementation of 

EBP is not a simple process facing many challenges.  The EBP process can be divided 

into five essential steps: (1) Formulate a clinical research question, (2) Search for the 

relevant evidence for the research question, (3) Evaluate and select the best evidence for 

validity and applicability, (4) Apply the findings to the local environment, and (5) Assess 

the result (Jenson & Howard, 2013).  The first challenge is an inadequate understanding 

of the EBP process.  Each step in the EBP process brings a specific outcome as an input 

of the next step.  Without the right training, the missing actions might cause unsuccessful 

implementation (Rousseau & Gunia, 2016).  The second challenge of EBP depends on 

the efficient information retrieval (IR) strategy, which relies on the clarity of the research 

question and the understanding of search engines.  Additionally, the performance of a 
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complete-article search is not offered in all search engines.  For instance, PubMed and 

Google Scholar offer a search on title and abstract, but not on a full article.  The issue can 

reduce the numbers of retrieved documents, leading to the IR performance in both 

precision and recall rate  (Anders & Evans, 2010; Bramer, Giustini, Kramer, & Anderson, 

2013).  Another challenge is the hidden information of the knowledge of domain criteria, 

research design, and statistics method of the studies is not fully reported (Patrick et al., 

2004), which can reduce the accuracy of the validation process and prevent the success of 

implementing the EBP findings to the local environment (Majid et al., 2011). 

An ontology has been involved in medicine and healthcare, such as standard 

terminologies, such as SNOMED CT (El-Sappagh et al., 2018), and decision-making 

(Ishizu, Gehrmann, Minegishi, & Nagai, 2008).  It offers a formal structure of entities 

and the relationship between them as existing in a specific domain.  Each entity is defined 

with a set of properties representing its existence and characteristics.  The properties also 

allow the integration of entities and concepts across disciplinary domains.  As a result, 

the barriers to EBP can be lifted.  The application of document search and evaluation can 

be embedded in the ontology and make the EBP process seamless and effective by the 

integration of concepts in medicine, research design, and statistic method into one 

framework.  Furthermore, with the upper-level ontology, i.e., BFO, the ontology ensures 

a shareability of semantic information among other ontologies across domains. 

With the BFO framework, the input and output of these two processes are 

considered continuant entities.  Furthermore, the “information content” entity imported 

from the IAO serves as parent concepts of all related data involved in EBP processes. 
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6.2 Existing Ontologies 

6.2.1 Evidence and Conclusion Ontology (ECO) 

The Evidence & Conclusion Ontology (Riaño et al.) describes scientific-evidence 

types collected from laboratory experiments, computational methods, and literature 

within the biological research domain (Chibucos et al., 2017).  ECO was initially 

developed using the Open Biological and Biomedical Ontologies (OBO) edit tool.  Since 

2016, ECO implemented development in the Web Ontology Language (Howland) using 

Protégé for viewing and editing on a small scale and ROBOT 

(http://robot.obolibrary.org) on a large scale.  ECO also reuses and collaborates with 

other ontologies, such as Gene Ontology (GO), Ontology for Biomedical Investigations 

(OBI), Ontology of Microbial Phenotypes (OMP), and Synapse Gene Ontology 

Annotation Initiative (SynGO).  ECO terms are grouped mainly based on (1) the 

biological context of the evidence, and (2) the technique used to generate the evidence. 

Some terms related to both categories.  Therefore, ECO develops logical definitions of 

these terms under technique concepts linked to relevant assay-based OBI terms.  As a 

result, the ECO model reduced the issue of ambiguous classes. ECO’s aim is not abstract, 

nor is our study’s purpose of storing knowledge conclusions for research evidence. See 

Figure 37. 

Currently, the structure of ECO does not apply a foundation ontology in its 

model.  Besides, most of ECO’s terms are in biomedicine, such as generic fields rather 

than healthcare.  Consequently, ECO is not compatible with the aim of this dissertation. 

http://robot.obolibrary.org/
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Figure 37 ECO’s structure of evidence concepts (Chibucos et al., 2017) 

6.2.2 Medical Literature Search Agent (MELISA) 

MELISA is a prototype of an ontology-based information retrieval agent that 

recognizes the IR process's challenge due to the retrieval environment (Abasolo & Gmez, 

2000).  To formulate a well-designed query for IR, a detailed understanding of the 

retrieval environment is necessary.  MELISA implemented an ontology model that 

generates queries and evaluates the results.  It also allows a user to reformulate and 

review the results in the model.  The overview structure of MELISA is shown in Figure 

38. 

Nevertheless, MELISA does not apply a top-level ontology to enhance its 

interoperability.  Besides, the IR process is beyond the scope of this work.  Therefore, 

there is no integration between the dissertation and MELISA at the current stage. 
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Figure 38 Overview structure of MELISA 

6.2.3 EMBRACE Data and Methods (EDAM) 

EDAM is an ontology of common concepts that have been developed in the scope 

(EMBRACE) to represent operations, data types, data identifiers, data formats, topics, 

and applications used in the bioinformatics community (Abasolo & Gmez, 2000).  It 

provides controlled terms as semantic information that bridges the gap between service 

registries and service composition methodologies.  EDAM contains over 3,400 terms and 

is considered the most comprehensive ontology for semantic annotations of web services 

that improve the data exchange between services.  The EDAM structure can be 

categorized into five main concepts: Topic, Operation, Data, Format, and Identifier, as 

presented in Figure 39.  The ‘Topic’ concept represents fields of bioinformatics study.  

The ‘Operation’ concept includes functions and methodologies of tools or services like 

web service operations.  The ‘Data’ concept references to formal definitions of common 
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data entities in the bioinformatics domain.  The ‘Identifier’ concept presents the specific 

identification of bioinformatics entities.  Lastly, the ‘Format’ concept describes data 

format specifications. 

Due to the focus of EDAM in web services, its scope is not the dissertation’s 

application.  However, the structure of the ACLRO is compatible with EDAM and 

suitable for future integration. 

 

Figure 39 The overview concept diagram of EDAM ontology 

6.3 Resource Description (RDF) Triples and Concept Mapping Diagram 

In ACLRO, the EBP concept started at publication and ended at knowledge 

extraction.  This required two processes, which performed extractions: “information 

extraction” and “drawing conclusion from data” processes.  The information-extraction 

process allowed us to link data from the literature and external evidence to the local 

practice data.  Binding these two together, we can develop a formal framework of an 
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evidence-based model.  The other key concepts here are documented data or information 

content.  However, the information-content entity is not part of BFO2.0.  It is an extended 

entity introduced by a BFO-based Information Artifact Ontology (IAO) that focuses on 

data collections and associates representational artifacts (Ceusters, 2012).  In this study, 

the information-content class involved data collected during the health-intervention 

process and data extracted from the literature, as mentioned in Chapter 4. 

6.3.1 Information Extraction Process 

Ontology formal language is structured in Resource Description (RDF) triples 

(https://www.w3.org/TR/2002/WD-rdf-primer-20020319/):  

<subject> -> [predicate] -> <object> 

The RDF triples represent the information-extraction process of EBP can be 

reviewed as below: 

Publication -> [part of] -> Information Extraction Process 

Information Extraction Process -> [is about] -> Study Design 

Study Design -> [declares] -> Objective Specification 

Objective Specification -> [denotes] -> Stat Model 

Stat Model -> [is model for] -> Study Variable 

Study Variable -> [has role] -> Dependent Variable 

Study Variable -> [is about] -> Data Set 

6.3.2 Drawing a Conclusion from the Data Process 

Publication -> [part of] -> Drawing a Conclusion from the Data Process 

Drawing a Conclusion from the Data Process -> [has specified output] -> 

Document Parts 

https://www.w3.org/TR/2002/WD-rdf-primer-20020319/
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Drawing a Conclusion from the Data Process -> [has specified output] -> 

Conclusion Based on Data 

Conclusion Based on Data -> [denotes] -> Knowledge 

6.3.3 EBP Concept-Mapping Diagram 

The concept-mapping diagram presents the overview of EBP components, 

including the entities of publications, research design, research outcomes, and data 

points.  The diagram successfully confirms the capability of the study’s EBP on 

integrating all EBP’s crucial entities into one framework following the structure of BFO, 

as presented in Figure 40. 
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Figure 40 The overview of EBP’s concepts and their relationships in ACLRO 
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EBP’s taxonomy structure under the BFO’s continuant concept and occurrence 

concept is shown in Figure 41 and Figure 42, respectively. 

 

Figure 41 EBP’s taxonomy structure under BFO’s continuant concept 
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Figure 42 EBP’s taxonomy structure under BFO’s occurrent concept 
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6.4 Validation 

6.4.1 Instance Creation 

Instances or individuals are the smallest units of an ontology.  While classes 

represent concepts, individuals are represented by a unique entity in a specific concept.  

The instances usually are not included in the domain representation.  In this study, two 

instances of ACLR-related literature are implemented to support the validation process. 

1. Publication A: Patient Characteristics and Predictors of Return to Sport at 12 

Months After Anterior Cruciate Ligament Reconstruction: The Importance of 

Patient Age and Postoperative Rehabilitation (Edwards et al., 2018). 

Objective: To investigate factors predictive of return to sport 12 months after 

ACLR.  The factors specifically evaluated were strength, hop function, self-

reported knee function, patient age, and quality of postoperative rehabilitation. 

Result: Complete rehabilitation 

OR = 7.95; P-value = 0.009 

 Age <= 25 yr  – OR = 3.84; P-value = 0.024 

 IKDC score – P-value = <0.001 

Conclusion:  

Higher IKDC scores were predictive of return to sports (RTS) 

Younger patients were predictive of RTS 

2. Publication B: Return to Play and Future ACL Injury Risk After ACL 

Reconstruction in Soccer Athletes from the Multicenter Orthopedic Outcomes 

Network (Smucny, Westermann, Group, & Group) Group (Brophy et al., 

2012) 
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Objective: 

a) Test the hypothesis that player’s sex does not influence RTP 

b) Test the hypothesis that player’s age does not influence RTP 

Result: 

a) OR = 0.3; P-value = 0.037 

b) TTEST; P-value = 0.006 

Conclusion: 

a) Females were less likely to RTS than males 

b) Older athletes were less likely to RTS 

Figure 43 shows the Publication-A instance’s formal definition and its attributes 

through Protégé, an open-source ontology editor. 



 

126 

 

Figure 43 Formal structure and attributes of Publication-A 

6.4.2 Competency Testing 

In this step, the study used the list of questions to validate and check for the 

model implementation.  The two questions to be decided should detect relations across 

concepts.  For instance, the two questions below detect whether the publication and 

knowledge extractions are connected and queried as below: 

1. Which publications were researched on predictive risk analysis related to 

return to the sport in ACLR surgery?  

DL query: publication and declares some predictive_risk_analysis and 

is_relevant some ACLR_surgery and is_relevant some return_to_sport_month  
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Result: The model can select the publications that are supportive of the 

criteria.  In this study, Publication A is the only study on the predictive risk 

analysis of RTS after ACLR (Figure 44) 

 

Figure 44 DL query on predictive risk analysis of RTS in ACLR 

2. Which EBP knowledge was discovered in return to sport after ACLR surgery? 

DL query: knowledge and is_relevant some ACLR_surgery and is_relevant 

some return_to_sport_month  

Result: The model can select all knowledge to be reported in the literature 

relevant to RTS after ACLR surgery (Figure 45) 
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Figure 45 DL query for knowledge discovery on RTS in ACLR 

6.5 Conclusion 

The study presented the implementation of an evidence-based knowledge model 

in the ACLR rehabilitation domain to comply with the shareable semantic ontological 

framework.  The model simultaneously emphasized both patient-focus treatment 

processes and external evidence.  With the foundation ontology, individual ontology 

models can be implemented separately and then merged for greater use and a more 

meaningful model later, as shown in this study.  It not only allows the model to be 

exchangeable but also eases the process of expanding and extending both domain 

concepts in the model since the classes can grow independently.  The study also 

enhanced the ontology model’s functionalities, allowing knowledge queries derived from 

both domains.  Further study related to adding a practice-based domain can lead to an 

ideal structure of base practice in medicine.  
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CHAPTER SEVEN AIM 4 SHARABLE BEST-PRACTICE ONTOLOGY 

7.1 Introduction 

The medicine and healthcare domain is a complex system composed of many 

agents and components that interact with one another.  The primary goal of medicine is 

not to build a standardization, but to understand the disease, find a cure, improve 

patients’ health outcomes, and improve healthcare quality (Black, 2013).  Researchers 

profoundly invest in new technology to find more effective drugs and robust devices to 

treat patients.  As a result, there are multiple protocols, medications, and treatments to 

deal with the same disease.  The discovered knowledge might be agreeable or 

disagreeable (Kelley, Moy, Stryer, Burstin, & Clancy, 2005).  With a flush of electronic 

health record data, the healthcare domain is in the world of big data.  The most 

challenging aspect of big data is analyzing it (Labrinidis & Jagadish, 2012).  An ontology 

plays a vital role in organizing big data in an efficient format that can be understood by 

both human and computer systems.  It can also make information interpretatively 

exchangeable and sharable (Gruber, 2018).  An ontology captures the semantic 

information of concepts used in a specific domain.  The critical success of ontology 

implementation depends on its consistency, completeness, and granularity of the model, 

leading to exchangeability (Obrst et al., 2014).  A domain-specific ontology model 

should be implemented based on a formal foundation, i.e., an upper-level or top-level 

model.  The core concepts of upper-level models provide standard terms and formal 

structures across domains.  The sufficient upper-level ontology must be small and 

generalized, allowing for consistency and shareability across different domains (Degen et 
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al., 2001).  The dissertation applies both top-down and bottom-up approaches to enhance 

the domain’s semantic definition and shareability of the ACLRO. 

Another crucial component of the ACLRO is to design an ontology model for the 

best-practice setup.  The best practice approach aims to enrich both EBP and PBE.  EBP 

applies scientific evidence as to its guidance and decision support.  The goal of EBP is to 

interpret the best suitable evidence from systematic research and integrate the results into 

clinical expertise and the environment (Sackett et al., 1996).  Systematic research collects 

and summarizes all reported evidence to answer a defined research question linking to a 

knowledge area.    With the BFO framework, the input and output of these two processes 

are considered continuant entities.  Furthermore, the “information content” entity 

imported from the IAO serves as parent concepts of all related data involved in EBP 

processes.  The predicate of the EBP processes is presented in Chapter 4 - 4.3.2. 

7.2 Practice-Based Evidence (PBE) Ontology 

Some might say the use of EBP is becoming a standard of patient care (Ellis, 

2019).  PBE is defined as a relatively new procedure for gathering good-quality data from 

routine practices in real-word settings with trial and error (Margison et al., 2000).  PBE 

initiates innovation and knowledge discovered in healthcare that has objective support 

based on community values. 

In the study, the core entity of PBE is the “Investigation” process (OBI_0000066) 

imported from OBI.  The investigation process is a planned process that consists of parts: 

planning, study design execution, documentation, and concluding.  Therefore, the 

investigation process is an assembly of sub-processes, contributing to a research study.  

The visualization of the PBE concept diagram is shown in Figure 46. 
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EBP and PBE share some similarities and differences.  The information content 

entities, in place of study design, objective specification, statistical model, and variables, 

are consistent in both models.  Both models contain the “Drawing Conclusion from Data” 

planned process that links to “Study Design.” 

The main difference between both models is where the information initially 

generates.  EBP starts at the “Publication” entity, while PBE begins at the “Investigation” 

process.  Using the upper-level ontology, ACLRO can reuse the entities in similar ways, 

and then merge the differences into one framework. 
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Figure 46 The concept diagram of PBE ontology 
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7.3 Sharable Best Practice (BP) Ontology 

BP is defined through comprehensive existing research studies and experts’ 

experience.  The combination of EBP and PBE increases patient care quality and leads 

healthcare to the “best practice” concept (Melnyk & Fineout-Overholt, 2011).  In general, 

it can be a challenge to directly apply the knowledge gained from EPB to a practice’s 

workflow.  Furthermore, the lack of understanding of individual research environments 

can prevent a consistent outcome with the original study (Perleth, Jakubowski, & Busse, 

2001).  On the other hand, best practices syndicate EBP and PBE by customizing existing 

knowledge and proven evidence to its practice environment and continuing the 

knowledge discovery without requiring meeting the scientific standard.  Hence, best 

practice integrates EBP and PBE knowledge into one single outcome representing the 

reusable and sharable ontology framework, obtaining external and internal evidence from 

both.  The visualization of the syndicated model is presented in Figure 47. 
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Figure 47 The concept diagram of BP ontology with the integration of EBP and PBE 
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7.4 Conclusion  

The study demonstrates that upper-level ontology increases reusability and 

shareability over the button-up approach.  With foundation ontology, individual ontology 

models can be implemented separately and then later was merged for greater use and a 

more meaningful model, as shown in this study.  EBP and PBE have different unique 

characters.  EBP offers knowledge derived from scientific research, while PBE captures 

knowledge gained from practices over time.  Combining PBE and EBP processes allows 

individual practices to customize their scientific learnings for optimal outcomes, called 

the best practice approach.  In addition, the study enhances the ontology model’s 

functionalities, allowing knowledge queries across multi-disciplinary areas, such as 

medical data, statistical models, study design, and scientific knowledge. 
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CHAPTER EIGHT CONCLUSION AND FUTURE WORKS 

8.1 Introduction 

Healthcare is one of the industries impacted by a fast change in technology, as 

shown in a rapid EHRs adoption rate since 2011.  Accordingly, the data and 

information’s availability increase in volume, variety, and velocity are a definition of big 

data.  Big data have been an infamous term in medicine analytics, leading to a demand 

for knowledge extraction and exchange.  There are two main approaches to knowledge 

discovery in medicine: evidence-based practice (EBP) and practice-based evidence 

(PBE).  EBP allows the practices to learn from the best external evidence, whereas PBE 

gains knowledge from its researches.  The semantic mapping between EBP and PBE can 

combine both advantages for the best-practice knowledge model.  The reusability and 

exchangeability of knowledge are the critical success of semantic mapping, which is not a 

simple task due to the variations in healthcare.  The lack of standardization, such as in 

terminologies and patient-intervention protocols, prevents the industry from moving 

forward in knowledge sharing across practices. 

The study implemented ontological engineering for knowledge architecture 

design that provides a sharable best-practice framework and the support of the foundation 

ontology model.  First, the study presents how the traditional knowledge model is built 

for the ACLR domain while discussing the limitations of its design with the bottom-up 

approach.  Then, the study proposes the top-down approach with the foundation ontology 

to improve the shareability and reusability of the ontology model.  Finally, the ACLR-

Rehabilitation Ontology (ACLRO) is implemented to apply both the top-down and 

bottom-up approaches. 



 

137 

8.2 Impact of the Research 

1) The study demonstrated the guidance of knowledge capturing and formal 

representation in a triplet format using a combination of Toronto Virtual 

Enterprise (TOVE) ontologies and the foundation ontology, i.e., Basic Formal 

Ontology (BFO).  

2) The comparison between the bottom-up and top-down approaches evaluated 

the advantages and disadvantages of both approaches.  The bottom-up 

approach is easier to use a starter for domain-knowledge abstracting, while the 

top-down approach requires a new understanding of the foundation 

ontologies.  Some of the domain concepts might not fit in any class definition 

of the foundation ontologies.  However, the shareability requires the formal 

definitions provided in the foundation ontologies. 

3) The study revealed a unique benefit of ontological knowledge engineering that 

permitted EBP, PBE, domain, and statistic models to be built separately and 

integrated into the final model without re-work on existing models.  This work 

proved that the ontology model with the foundation structure could be 

reusable and sharable. 

4) The study proposed the final ACLR ontology (ACLRO) model as a proof-of-

concept prototype to demonstrate how the ontology can be applied to a real-

world setup with the ability to link different types of semantic knowledge 

storing in EBP and PBE for the success of the best-practice model. 
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8.3 Challenges and Limitations 

1) The first challenging is a learning curve of BFO and ontology languages like 

OWL and SWRL.  BFO is very strict on the class definition.  Also, some 

domain entities do not fit well in the BFO framework.  As a result, it is 

challenging to classify domain entities under upper ontology classes correctly. 

2) Due to its popularity, the study selected Protégé as ACLRO’s implementation 

tool.  Whereas Protégé has many useful built-in functions like annotation, 

query, visualization, reasoning, and importing, it also offers some essential 

plugins to the tool such as RDBMS integrating and decision trees.  

Nonetheless, many of these plugins are not reliable and lack of supporting 

documents.  For that reason, the author avoided employing additional plugins. 

3) The study manually created instances in Protégé for the use cases for 

publications and research processes.  The processes were time-consuming and 

caused the model bloated.   

4) The last limitation is that the ACLRO model is designed and implemented by 

a single researcher, and the scope of study involves multiple areas, i.e., ACLR 

protocols, statistics, research designs, and ontology implementation. 

8.4 Future Works 

1) The model can improve its shareability by adding meta-annotations, which 

add semantic information to the model.  This process is significant for the 

semantic web. 

2) As mentioned above, one of the study’s challenges is that the current model 

cannot connect to RDBMS.  A triplestore is a database management system 
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for the RDF data model that can connect the ACLRO model to RDBMS by 

storing the model in the RDF triplet format. 

3) The study will continue adding statistics and machine-learning models into its 

statistic framework. 
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APPENDICES 

Appendix A 

R Code for Random Forest  

--- 

title: "R-Random Forest (Caret)" 

output: 

  html_notebook: default 

  html_document: default 

--- 

 

##### ------------------------------------------------------------------------------- 

##   Load Data:ACL Reconstruction 

 

```{r echo=FALSE, message=FALSE, warning=FALSE, cache=FALSE, 

paged.print=FALSE} 

setwd("I:\\IUPUI\\A Thesis\\R\\Data") 

aclr.imp <- read.csv("aclrNoyes_Dec2019.csv",header=TRUE, sep=",") 

 

``` 

 ##### ------------------------------------------------------------------------------- 

##   Create Train and Test datasets 

 

```{r warning=FALSE} 

if (!require("caret")) install.packages(caret) 

library(caret) 

#if (!require("lattice")) install.packages(lattice) 

#library(lattice) 

 

# Medv is continuous variable 

set.seed(123) 

split <- createDataPartition(y=aclr.imp$pain_2yr, p=0.7, list=FALSE) 

train <- aclr.imp[split,] 

test <- aclr.imp[-split,] 

 

``` 

##### ------------------------------------------------------------------------------- 

##   Decision Tree (Tree) 

 

```{r warning=FALSE} 

library(tree) 

aclrTotal.tree = tree(total_2yr ~ SEX + TYPE + cartilage+srgage+ injsrg_mth + inj_type 

                   + lat_rem + med_rem 

            , data=train) 
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summary(aclrTotal.tree) 

plot(aclrTotal.tree) 

text(aclrTotal.tree, pretty=0) 

 

aclrPain.tree = tree(pain_2yr ~ SEX + TYPE + cartilage+srgage+ injsrg_mth + inj_type 

                   + lat_rem + med_rem 

            , data=train) 

summary(aclrPain.tree) 

plot(aclrPain.tree) 

text(aclrPain.tree, pretty=0) 

 

aclrStability.tree = tree(stability_2yr ~ SEX + TYPE + cartilage+srgage+ injsrg_mth + 

inj_type 

                   + lat_rem + med_rem 

            , data=train) 

summary(aclrStability.tree) 

plot(aclrStability.tree) 

text(aclrStability.tree, pretty=0) 

 

``` 

##   Decision Tree (RPART) 

 

```{r warning=FALSE} 

 

library(rpart) 

aclrTotal.rpart = rpart(total_2yr ~ SEX + TYPE + cartilage+srgage+ injsrg_mth + 

inj_type 

                   + lat_rem + med_rem 

                       , data=train, method = "anova") 

summary(aclrTotal.rpart) 

plot(aclrTotal.rpart) 

text(aclrTotal.rpart) 

printcp(aclrTotal.rpart) 

plotcp(aclrTotal.rpart) 

 

aclrPain.rpart = rpart(pain_2yr ~ SEX + TYPE + cartilage+srgage+ injsrg_mth + 

inj_type 

                   + lat_rem + med_rem 

                       , data=train, method = "anova") 

summary(aclrPain.rpart) 

plot(aclrPain.rpart) 

text(aclrPain.rpart) 

printcp(aclrPain.rpart) 

plotcp(aclrPain.rpart) 
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aclrStability.rpart = rpart(stability_2yr ~ SEX + TYPE + cartilage+srgage+ injsrg_mth + 

inj_type 

                   + lat_rem + med_rem 

                       , data=train, method = "anova") 

summary(aclrStability.rpart) 

#plot(aclrStability.rpart) 

#text(aclrStability.rpart) 

printcp(aclrStability.rpart) 

plotcp(aclrStability.rpart) 

 

``` 

##### ------------------------------------------------------------------------------- 

##   RANDOM FOREST  

#####  RandomForest (Package: randomForest) 

##### (1) Build Random Forest Trees 

#####   Note: mtry = the number of parameters used in each split.  The recommedation 

is p/3 for regression trees, and sqrt(p) for classification trees 

#####   In this example, we set mtry=4 

#####  (2) Calculate the Yhat value 

#####  (3) Calculate the residuals (=error rate) 

#####  (4) View the importance of each variable 

#####   %IncMSE is based on the mean decrease in accuracy in predictions on the out of 

bag samples, when the given variable was excluded from the model. 

#####   IncNodePurity is a measure of the total decrease in node impurity that results 

from splits over that variable, averaged over all trees. f 

#####  (5) Plot the importance  

 

Total 

```{r warning=FALSE} 

if (!require("randomForest")) install.packages(randomForest) 

library(randomForest) 

# (1) Build Random Forest Trees  

aclrpain.rf <- randomForest(pain_2yr ~ SEX + injsrg_mth + cartilage+srgage+ inj_type 

                   + lat_rem + med_rem 

                   , data=train, mtry=4, importance=TRUE,na.action = na.omit) 

# (2) Calculate the Yhat value 

yhat <- predict(aclrpain.rf,test) 

# (3) Calculate the means of errors (=error rate) 

mean((yhat-test$total_2yr)^2) 

# (4) View the importance of each variable (Note:if the importance=TRUE is omitted, 

the %IncMSE will not be shown in importance() 

importance(aclrpain.rf) 

# (5) Plot the importance 

varImpPlot(aclrpain.rf) 

 

plot(aclrpain.rf) 
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summary(aclrpain.rf) 

 

``` 

 

```{r} 

######### 

 

aclrTotal.lm <- lm(total_2yr ~ SEX + injsrg_mth  + cartilage+srgage+ inj_type 

                   + lat_rem + med_rem 

                   , data=train) 

 

summary(aclrTotal.lm) 

``` 

 

Stability 

```{r warning=FALSE} 

if (!require("randomForest")) install.packages(randomForest) 

library(randomForest) 

# (1) Build Random Forest Trees  

aclrStability.rf <- randomForest(stability_2yr ~ SEX + TYPE + cartilage+srgage+ 

inj_type 

                   + lat_rem + med_rem 

                   , data=train, mtry=4, importance=TRUE,na.action = na.omit) 

# (2) Calculate the Yhat value 

yhat <- predict(aclrStability.rf,test) 

# (3) Calculate the means of errors (=error rate) 

mean((yhat-test$stability_2yr)^2) 

# (4) View the importance of each variable (Note:if the importance=TRUE is omitted, 

the %IncMSE will not be shown in importance() 

importance(aclrStability.rf) 

# (5) Plot the importance 

varImpPlot(aclrStability.rf) 

 

plot(aclrStability.rf) 

 

summary(aclrStability.rf) 

 

``` 

Pain 

```{r warning=FALSE} 

if (!require("randomForest")) install.packages(randomForest) 

library(randomForest) 

# (1) Build Random Forest Trees  

aclrPain.rf <- randomForest(pain_2yr ~ SEX + TYPE + cartilage+srgage+ inj_type 

                   + lat_rem + med_rem 
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                   , data=train, mtry=4, importance=TRUE,na.action = na.omit) 

# (2) Calculate the Yhat value 

yhat <- predict(aclrPain.rf,test) 

# (3) Calculate the means of errors (=error rate) 

mean((yhat-test$pain_2yr)^2) 

# (4) View the importance of each variable (Note:if the importance=TRUE is omitted, 

the %IncMSE will not be shown in importance() 

importance(aclrPain.rf) 

# (5) Plot the importance 

varImpPlot(aclrPain.rf) 

 

plot(aclrPain.rf) 

 

``` 

##### ------------------------------------------------------------------------------- 

###  RandomForest (Package: caret) 

##### (1) Build Random Forest Trees 

#####  "caret" package will figure the best mtry  

#####  (2) Calculate the Yhat value 

##### (3) Calculate the means of errors (=error rate) 

#####  (4) View the importance of each variable (Note:if the importance=TRUE is 

omitted, the %IncMSE will not be shown in importance() 

#####  (5) Plot the importance  

##### (6) Use Package "doMC" to calculate final model (Best mtry) 

 

```{r warning=FALSE} 

if (!require("caret")) install.packages(caret) 

library(caret) 

# (1) Build Random Forest 

 

rf.caret <- train(total_2yr ~ SEX + TYPE + cartilage+srgage+ injsrg_mth + inj_type 

                   + lat_rem + med_rem 

                , train, method='rf',preProc = c('center','scale'),importance=TRUE, 

na.action=na.omit) 

# (2) Calculate the Yhat value 

yhat.caret <- predict(rf.caret,test) 

# (3) Calculate the means of errors (=error rate) 

mean((yhat.caret-test$medv)^2) 

# (4) View the importance of each variable (Note:if the importance=TRUE is omitted, 

the %IncMSE will not be shown in importance() 

importance(rf.caret$finalModel) 

# (5) Plot the importance 

varImpPlot(rf.caret$finalModel) 

# (6) Use Package "doMC" to calculate final model (Best mtry) 

if (!require("doMC")) install.packages("doMC", repos="http://R-Forge.R-project.org") 

library(doMC) 
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registerDoMC(6) 

rf.caret <- train(total_2yr ~ SEX + TYPE + cartilage+srgage+ inj_type 

                   + lat_rem + med_rem 

                    , train, preProc = c('center','scale'),method='rf',importance=TRUE, 

na.action=na.omit) 

rf.caret 

# (7)  

library(randomForest) 

rf.caret.best = randomForest(total_2yr ~ SEX + TYPE + BILAT +cartilage+srgage+ 

injsrg_mth + inj_type 

                   + lat_rem + med_rem 

            , data=train, mtry=2,importance=TRUE,na.action = na.omit) 

rf.caret.best 

# (2) Calculate the Yhat value 

yhat.rf.caret.best <- predict(rf.caret.best,test) 

# (3) Calculate the means of errors (=error rate) 

mean((yhat.rf.caret.best-test$diffext_1mth)^2) 

# (4) View the importance of each variable (Note:if the importance=TRUE is omitted, 

the %IncMSE will not be shown in importance() 

importance(rf.caret.best) 

# (5) Plot the importance 

varImpPlot(rf.caret.best) 

 

plot(rf.caret.best) 

summary(rf.caret.best) 

``` 

##### ------------------------------------------------------------ 

##   BOOSTING 

##### (1) For boosting, the gmb package and gbm() function is used to fit a boosted 

regression tree.  

#####    - distribution='gaussian' is used for regression tree, while 

distribution='bernoulli' is used for binary classification 

#####     - n.trees= . indicates the number of trees  

#####     - interaction.depth limits the depth of each tree 

##### (2) we can plot  'partial depedence' for the top variables, which illustrates the 

marginal effect of the selected variables on the response after integrating out the other 

variables.   

#####     - Here, we can see that the median house prices increase with 'rm, and decrease 

with 'lstat' 

##### (3) Calculate the MSE 

##### (4) Tune parameters (The best model with maxdepth and nstop) 

##### (5) Re-calculate MSE from the new tunned boost model 

##### (6) Summary the R-Squared Variable Importance 

 

```{r warning=FALSE} 
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if (!require("gbm")) install.paclages(gbm) 

### (1) For boosting, the gmb package and gbm() function is used to fit a boosted 

regression tree. 

boost1mth <- gbm(total_2yr ~ SEX + TYPE + cartilage+srgage+ inj_type 

                   + lat_rem + med_rem 

              , data=train, distribution='gaussian',n.trees=5000,interaction.depth=4) 

summary(boost1mth) 

 

### (2) we can plot  'partial depedence' for the top variables, which illustrates the 

marginal effect of the selected variables on the response after integrating out the other 

variables.  

par(mfrow=c(1,2)) ## to put the two plots below side-by-side 

plot.gbm(boost1mth,i="srgage",n.trees = boost1mth$n.trees) 

#?plot.gbm ## plot marginal effect 

 

### (3) Calculate the MSE  

boost1mth.pred <- predict(boost1mth,test,n.trees=500) 

mean((boost1mth.pred - test$diffext_1mth)^2) 

 

### (4) Tune parameters (The best model with maxdepth and nstop) 

if (!require("e1071")) install.packages(e1071) 

library(e1071) 

if (!require("bst")) install.packages(bst) 

library(bst) 

if (!require("plyr")) install.packages(plyr) 

library(plyr) 

 

ctr <- trainControl(method = "cv", number=10) 

 

boost1mth.caret <- train(total_2yr ~ SEX + TYPE + cartilage+srgage+ inj_type 

                   + lat_rem + med_rem 

                      , train, method='bstTree',preProc=c('center','scale'),trControl=ctr, 

na.action=na.omit) 

boost1mth.caret 

 

### Plot 

plot(boost1mth.caret) 

 

### (5) Re-calculate MSE from the new tunned boost model 

boost1mth.caret.pred <- predict(boost1mth.caret,test,n.trees=100) 

mean((boost1mth.caret.pred - test$diffext_1mth)^2) 

 

### (6) Summary the R-Squared Variable Importance 

varImp(boost1mth.caret) 
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