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Abstract

Cyber security, also known as information technology security or simply as in-
formation security, aims to protect government organizations, companies and
individuals by defending their computers, servers, electronic systems, networks,
and data from malicious attacks. With the advancement of client-side on the
fly web content generation techniques, it becomes easier for attackers to modify
the content of a website dynamically and gain access to valuable information.
The impact of cybercrime to the global economy is now more than ever, and it
is growing day by day. Among various types of cybercrimes, financial attacks
are widely spread and the financial sector is among most targeted. Both cor-
porations and individuals are losing a huge amount of money each year. The
majority portion of financial attacks is carried out by banking malware and
web-based attacks. The end users are not always skilled enough to differen-
tiate between injected content and actual contents of a webpage. Designing
a real-time security system for ensuring a safe browsing experience is a chal-
lenging task. Some of the existing solutions are designed for client side and
all the users have to install it in their system, which is very difficult to imple-
ment. In addition, various platforms and tools are used by organizations and
individuals, therefore, different solutions are needed to be designed.

The existing server-side solution often focuses on sanitizing and filtering
the inputs. It will fail to detect obfuscated and hidden scripts. This is a real-
time security system and any significant delay will hamper user experience.
Therefore, finding the most optimized and efficient solution is very important.
To ensure an easy installation and integration capabilities of any solution with
the existing system is also a critical factor to consider. If the solution is efficient
but difficult to integrate, then it may not be a feasible solution for practical
use.

Unsupervised and supervised data classification techniques have been widely
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applied to design algorithms for solving cyber security problems. The perfor-
mance of these algorithms varies depending on types of cyber security problems
and size of datasets. To date, existing algorithms do not achieve high accuracy
in detecting malware activities.

Datasets in cyber security and, especially those from financial sectors, are
predominantly imbalanced datasets as the number of malware activities is sig-
nificantly less than the number of normal activities. This means that classifiers
for imbalanced datasets can be used to develop supervised data classification
algorithms to detect malware activities.

Development of classifiers for imbalanced data sets has been subject of re-
search over the last decade. Most of these classifiers are based on oversampling
and undersampling techniques and are not efficient in many situations as such
techniques are applied globally. In this thesis, we develop two new algorithms
for solving supervised data classification problems in imbalanced datasets and
then apply them to solve malware detection problems.

The first algorithm is designed using the piecewise linear classifiers by for-
mulating this problem as an optimization problem and by applying the penalty
function method. More specifically, we add more penalty to the objective func-
tion for misclassified points from minority classes. The second method is based
on the combination of the supervised and unsupervised (clustering) algorithms.
Such an approach allows one to identify areas in the input space where minor-
ity classes are located and to apply local oversampling or undersampling. This
approach leads to the design of more efficient and accurate classifiers.

The proposed algorithms are tested using real-world datasets. Results
clearly demonstrate superiority of newly introduced algorithms. Then we ap-
ply these algorithms to design classifiers to detect malwares.
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Chapter 1

Introduction

Cybercrime is a crime that involves a computer and a network. This type
of crime may threaten, in particular, individuals, countries security, financial
sector, banks and healthcare systems. Cyber security, also known as infor-
mation technology security, aims to protect organizations and individuals by
defending their computers, electronic systems, networks, and data from mali-
cious attacks. Among cybercrimes, financial attacks are widely spread and the
majority of these attacks is carried out by banking malware.

In this chapter, we present an introduction to various types of malware
and their impacts on individuals and organizations. We discuss the working
principles of some common malware and present our research objective on
designing an efficient solution against cyber threats. Finally, we will provide
a short description of the organization of the thesis.

1.1 What is malware?

The word malware comes from the words ”malicious software”. Malware con-
tains code that causes damage to a target, access personal and valuable infor-
mation or gain unauthorized access to the system. There are generic malware
that can attack any individuals or organization and there are custom designed
malware to attack specific target. Malware nowadays are used to gain financial
benefits by directly stealing money or by gaining access to banking credentials.
Malware are used against government or organization to affect their operation
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and sometimes it gains access to sensitive information and demands money in
exchange for it.

In early days, the main focus of designing malware was not to do harm.
People designed malware as an experiment or pranks and sometimes to find
a loophole in a system. The first malware for personal computer (PC) was
a virus, known as Brain.A developed by two Pakistani brothers named Basit
and Amjad [1]. This harmless malware was designed to show the vulnerability
of PC. It simply infects boot sector of a floppy drive and spread it to other
floppy drive connected to the infected PC.

Recent malware are more sophisticated and can destroy file-system or op-
erating system of infected devices. Although these type of malware may not
cause direct financial damage but it causes a problem for users by damaging
data and hardware as well. Valuable resources and efforts are needed to recover
from this kind of damage. Instead of individuals, if an organization becomes
the victim, the impact of damage becomes significantly large.

1.2 Types of malware

There are various types of malware. They are categorized based on their be-
haviour, working mechanism, self-execution and self-distribution capabilities.
The major types of malware are listed below:

• Adware: Adware is the most common and least harmful malware.
It automatically delivers an advertisement to the infected computers.
Sometimes users may agree on adware while using some free software.
In most of the cases, it is a pop-up and does not do any real damage,
but it may contain links to a malicious websites and download malicious
software which may result into greater damage for infected devices.

• Spyware: This type of malware collects personalized information,
such as network traffic, keystrokes, surfing behaviour silently from the
infected machine. One can get spyware in their system in various ways,
such as: drive-by download, piggybacked software, browser add-ons etc.
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Sometimes it can be disguised as anti-spyware software and trick peo-
ple to download it. Often Adware and Spyware are combined to show
customized advertisement.

• Virus: A virus is a malicious code which attaches itself to a host pro-
gram and executes automatically when users execute or launches those
infected programs. Every virus has two basic capabilities. It can create
a copy of itself automatically and it can self-execute. Virus is unable to
spread automatically, human assistance is needed to transfer the infected
host file from one machine to another. Virus can harm infected device by
deleting files, damaging operating system and other programs, flooding
network with unnecessary traffic and hamper the performance.

• Worm: Worm is a malicious program which has self-reproduction and
self-execution capabilities like virus but it can spread without human
assistance. It can spread within infected machine and sometimes it can
infect the whole network. Worms often consume a lot of resources from
infected machine and slows down their performance. Sometimes worms
contain a payload, which is a piece of code programmed to perform
specific malicious activity including stealing data, deleting files, creating
botnets etc.

• Trojan: Trojan is a malicious program disguised as a legitimate soft-
ware. Trojan can spread over email and also it can spread when someone
install software from an unreliable source. Trojan can be used to gain
access to infected computers and allows attacker to steal data and other
information. It can destroy files and install other malwares as well. Tro-
jan containing a worm as payload can cause huge damage to all devices
in an infected network.

• Bot: Bot, in general, cannot be considered as malware. The bot is
a program that automates some process, that usually requires human
involvement. The bot can be used for many good purposes (i.e software
testing, online help service etc). Cyber criminals use a bot to infect
a group of computers and form a ”botnet”. A botnet is connected to
Command and Control (C&C) centre. Attackers give instruction to bot
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from C&C and can perform a large-scale attack such as DDoS, scraping
server data, creating spambot to distribute spam emails etc.

• Ransomware: Ransomware is a malware that uses encryption to lock
down files or disable access to the system and demands ransom to re-
move the restriction. In recent time, the attacker demands the payment
via cryptocurrency to remain anonymous. Sometimes various gift cards
(i.e. iTunes, Amagon, Google play) are used as payment as well. Mal-
icous spam (malspam) is one of the most common ways of spreading
ransomware. The email body may contain infected pdf or word docu-
ment or a link to a malicious website. Once infected by ransomware,
users will be locked out of their system and will be provided with a noti-
fication about being infected and instructions on payment of demanding
ransom.

1.3 How does malware spread?

Cybercriminals use various technique to spread malware onto victim’s com-
puter. Each attacker devise their own way to deliver the malware to user’s
device. There are various ways a device can get infected. Some of the popular
methods of spreading malware are:

• Social Engineering: Social engineering use psychological manipulation
to lure users to give up confidential information or download malicious
content embedded with malware. Attackers try to find the interest of
the certain user and attract them with similar contents that they might
get interested in. Several techniques are used to trick a user, such as:
asking for urgent help, declaring you as a winner, responding to a help
request that you never asked, posing as other person etc. Sometimes they
use fake social media profiles to fool the users as well. Self awareness is
the key to be safe from social engineering attack. No security mechanism
works if the users make mistakes by themselves. We always have to verify
the email address and be cautious about opening email from unknown
source.

• Phishing: Phishing is one of the oldest tricks to spread malware. Users
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often receive emails that seem to be coming from a legitimate source.
Even for the technical users sometimes it becomes difficult to distinguish
between a real and a phishing email. People with less knowledge and lit-
tle experience about technology get easily fooled by those emails.These
people follow the instruction received in phishing email and easily end
up getting infected. Common features of phishing emails are: too good
to be true, contains attachment or hyperlinks with misspelled websites,
requires urgent action, out of context email from unusual sender. Spear
phishing is a phishing technique combined with social engineering to at-
tack specific target. It is very difficult to detect even for the experienced
user, as the part of the email contains true information which makes it
look like a valid email from a trusted source.

• Drive-by downloads: A drive-by-download is an involuntary download
of a virus or malware to someones computing device. By this method
victim’s computer can get infected in two different ways, authorized and
fully unauthorized download. In case of authorized download, user know-
ingly downloads and install an application which claims to be some useful
tools, but they contain the malicious code inside and infect the devices
without their knowledge. In case of unauthorized download device get
infected without any action needed from the user. This type of attacks
exploit the vulnerabilities and take advantage of out of date applica-
tion or operating system. These downloads may be placed on a hijacked
website or fake websites pretending to be some legitimate source.

• Malvertising: Malvertising is malicious advertisement for transmit-
ting malware and for breaching networks. Unwanted malicious codes
are attached to the advertisement for creating the advertising content.
JavaScript is often used to create malvertisement. Attackers pay le-
gitimate advertising network to display their ads. Either intentionally
or unintentionally users click those advertisement get infected. Malver-
tisement have a significant difference to addware which is another form
of spreading malicious advertisement. Adware is deployed on victim’s
computer and mavertising uses a publisher’s website and their malicious
content is deployed there.
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• Using infected hardware: Self-executing malware like viruses and
worms can spread via portable memory devices or networks. One of the
most common ways of getting infected is using infected USB memory
sticks while transferring files from one device to another. Worms can
spread over the network and infects other computers in the same network.
One should always scan a portable device before using it and be cautious
about plugging it into other devices.

1.4 Financial damage by malware

Although the journey of malware began without the intention of doing any
real damage to target devices, soon after realizing the possibilities of gain-
ing financial benefits from malware, attackers started to design malware that
causes direct financial damage. Sometimes malware was used to steal money
from someone’s account, sometimes they gained control over sensitive data
and demand ransomware in exchange for getting those data back. In 2013,
6.2% of overall malware were considered to be financial malware [2]. Still, this
small percentage causes big financial damage. From the year 2007 to 2010 only
the Zeus malware stole more than 100 million US dollars from different bank
accounts [3].

Among various types of financial malware, almost 70% are banking malware
[2]. The global cost for cybercrime reached close to $600 billion dollar in 2017
[5]. This cost is calculated considering direct financial damage, wasted time,
recovering lost data, lost productivity etc. The amount will reach up to $6
trillion dollar by 2021 [6]. Figure 1.1 shows the growth of financial cost for cy-
bercrime in five years between 2013 and 2017. This graph clear demonstrated
that the growth in last two years 2016 and 2017 is more than that of for the
first three years.

Figure 1.2 shows the annual cost due to cyber attacks on top targeted in-
dustries. We can see that financial services are the prime sector as a target
for the attackers. Utility and energy services also suffer from a huge damage
from the cyber attacks. Sometimes one country may perform secret cyber
attacks on other countries important facilities and installations to get secret
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Figure 1.1: Growth in cybercrime cost in last five years
Source: [4]

information. Aerospace and defense systems are among such facilities. This is
targeted by terrorist groups as well. Nowadays almost every sector uses tech-
nology to ease their functionality. Transport, healthcare, communication, life
science are some examples where online services and digitization is introduces.
As a result, they are also becoming a target for cybercriminals. Figure 1.2
shows the annual cost due to a cyber attack on top targetted industry.

Among various types of attacks, malware and web-based attacks are the
most used one. With the increasing number of internet based services the
online activity is increased by a lot in recent times. A large proportion of
online service users are unaware of cybercrime activities. They are getting
tricked in various ways and becoming a victim of the cybercriminals.

Figure 1.3 shows the annual cost percentage categorized by different attack
types among 254 organization. Organizations are divided into two categories.
Light orange color represents the larger organization having seats of above
median seats and dark color represents smaller organization having below me-
dian seats. We can observe that malware and web-based attacks causes highest
damage for both small and big organizations. Bigger organizations are vul-
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Figure 1.2: Average annual cost of different types of organization
Source: [4]

nerable to denail of services (DDOS) attack, whereas small organization are
vulnerable to phishing and social engineering.

1.5 How banking malware works

Banking malware often steals the confidential information from the user and
sends it to the attackers. The information harvesting malware started working
in practice during mid-2014 [7]. They start working when the user has an active
internet connection and visits the certain website that matches the filter of the
malware. They use different techniques for collecting information, such as
form grabbing, keylogging, screenshot, video capture etc. Using screengrabber
they also collect information even when the user uses the virtual on-screen
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keyboard. Sometimes user saves their important information in some files
into their computer. Some malware looks into the file system and search for
the keywords and collects information from the matching files. The collected
information is then sent to attackers and this information is used to transfer
money from victim’s account.

JavaScript has become one of the most effective and common tools use by
the attackers due to its flexibility and dynamic characteristics [8]. Banking
malware is often custom designed and focused on a specific bank. There are
underground markets where one can buy a ready to use malware or order a
custom one.

In the infected computer, the malware puts a configuration file which con-
tains the target URL information, the place where the code will be injected and
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the injection code, which is usually a JavaScript or HTML [9]. The malware
evolves over the time to bypass new defence mechanisms. The recent malware
has the capabilities of bypassing Transaction Authentication Number (TAN)
and some of the malware from Beatrix family can temper computer’s memory
to alter the destination bank account [10]. Cross-Site Scripting (XSS) is also
a popular method to attack a client-side page. Similar to SQL injection, XSS
also exploits the hole in the web page that was introduced due to improper
form validation and lack of sanitizing data before executing on the server side
[11].

In broad sense there are three categories of XSS attacks: Non-persistent/re-
flective XSS, persistent/stored XSS and DOM-based XSS [12, 13]. In case of
a reflective attack, the malicious code is reflected back from the server as a
response (i.e. error message, welcome message, search result etc). In case of a
stored XSS attack, the malicious code is saved in the server and when a client
visits that infected web page, the malicious code is executed. Client-side script
is modified and the payload is executed in case of the DOM-based attack.

JavaScript is not limited to client-side development only. For example,
NoSQL and Node.js are now being used to design JavaScript-based web servers.
The various kind of server-side JavaScript injections include denial of service,
file system access, execution of binary files, NoSQL injection and much more
[14].

Many banking malware performs Man-in-the-Browser attacks using JavaScript.
It works like a Man-in-the-Middle attack but it works from inside of the actual
client’s computer. The effectiveness of Man-in-the-middle attack is reduced
by raising public awareness about fake look-alike websites and device authen-
tication mechanisms [15]. Man-in-the-Browser lets the malware to change the
content what user sees by hijacking user’s machine not only the web session.
Therefore, device authentication mechanism is unable to detect this. This
malware can automatically transfer the money by altering the content before
sending the request to server and displays.
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1.6 An Example of Banking Malware

In 2012 a variant of Zeus malware named ”Eurograbber” stole 36 million Euros
from more than 30 thousand customers from various banks [16]. This malware
used JavaScript to inject content and fool the user to provide sensitive infor-
mation. There is also a mobile variant of Zeus called ”Zeus in the mobile”
(ZITMO) to bypass two-factor authentication.

Malware is 

downloaded into 

user’s system

Inject 

JavaScript 

content

Infects the linked 

mobile phone

Send money to 

mule account

Bypass TAN 

SMS

Steal a 

percentage of 

user’s money

User visits certain page

User Login

Collects mobile phone

information

Figure 1.4: Eurograbber working method

Figure 1.4 demonstrates how Eurograbber works. In the first step, a trojan
is downloaded into customer’s computer via a malicious link. After that, for
the first time when a customer visits the desired website, the malware injects
JavaScript code showing false alert convince users to provide their mobile
number and related information. Then ZITMO is installed into the user’s
mobile by providing a link to their phone. This ZIMTO has the capability of
intercepting SMS containing Transaction Authentication Number and redirects
it to attackers. Next time when user login in their account the malware steals
a percentage of their money and send it to mule accounts.

1.7 Research Objectives

The end users are not always skilled enough to separate injected content from
actual contents of a webpage. Ensuring a safe browsing experience for everyone
is a challenging task. Even though web server is always protected with the
high level of security measures, but individuals are not always have proper



24

security system for their devices. They often get infected by various ways,
i.e. malicious email, phishing websites, contagious web link and sometimes via
physical devices. It is very difficult to install the defensive solution to every
single user.

Another challenge is to deal with various implementation methods of mal-
ware. Implementation of two malware might differ heavily but their behaviour
might be very similar. So we will need different solutions for them. Because of
a large volume of malware, it is not a practical approach to design a different
solution for each of individual malware. Finally, we need a solution that can
deal with unknown and new malware. Moreover, the existing malware might
make changes in their source code and use obfuscation technique to hide. Ma-
chine learning techniques have been widely applied to solve cyber security
problems. Data classification problems in cyber security are predominantly
imbalanced data classification problems as the number of malware activities
is significantly less than that of normal activities. Our research focuses on
developing a machine learning based cyber threat detection technique, which
will address the above-mentioned issues. The main research question is:

Q: How can we design an efficient solution for detecting cyber threats?

This question can be answered by answering the following sub-questions:

Q1: How can we make a robust system that can detect new and unexplored
threats?

Q2: How to design an efficient classifying method suitable for internet secu-
rity?

Q3: How to select an optimized Machine Learning model to ensure a good
user experience?

Q4: How to integrate our solution with the existing application by minimum
effort?

We will try to answer our main research question by proposing a new
architecture for detecting cyber threat using machine learning. Our method
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will find anomalies created by cyber attacks. Rather than focusing on a client-
side solution, our method will work on the server side. This will ensure the
solution to reach for every client.

Our first sub-question is about how we can develop a security system that
will work on obfuscated code and unknown attacks. Using behaviour-based
feature extraction and Machine Learning technique will address these issue.
Because WebInject will surely modify the document object model (DOM) and
if we select a good feature set we will be able to detect obfuscated and as well
as unknown new attacks.

Our feature extractor will not reside on client’s computer. It will be sent
along with the web page to collect the features and send it for analysis. So it
is a challenging task to transfer the code securely to the users without getting
noticed. Second sub-questions demand some mechanism to hide our solution
code so that attackers can not intercept it.

Feature extraction and classification process will add time overhead. This
delay should be minimized as much as possible to give a better user experience.
Our third sub research question demands a system that will perform well but
without adding too much overhead. Selecting an optimal number of features
to obtain the best result is a challenging task. We will focus on improving the
accuracy of the proposed approach and reducing our execution time by select-
ing an optimal number of features and finding the most suitable classification
technique that suits best for our feature set.

The fourth sub-question is about deploying the system in practical life. We
have to come up with the solution which will assist the developers to integrate
this solution while developing a new system. We might have to think about
how to integrate the solution with the existing websites with minimum effort.

1.8 Organization of the thesis

The document is organized into the following chapters. Chapter 2 provides
a literature review discussing some popular cyber attacks. Different meth-
ods to detect those attacks are presented with their shortcoming. Elements
of machine learning and various types of machine learning techniques are dis-
cussed. Imbalanced data classification and its application in detection of cyber
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security are presented later on this chapter. Chapter 3 discuss about popular
cyber threats and our motivation for machine learning based threat detection
mechanism. We present our preliminary findings and discuss the necessity of
designing imbalanced data classfication technique to address cyber attacks. We
also present a general architecture of our proposed model. Chapter 4 discusses
our first proposed method, a cost sensitive piecewise linear classifier to deal
with imbalacned data classification. We propose a modification of an existing
classifier named ”piecewise linear classifier” by introducing penalty parameter
for separating lines. We defined minority classes and based on their imbal-
anced ratio, a penalty parameter is calculated. That penalty value changes
the value of error function which pushes the separating lines towards minor-
ity classes to increase the accuracy of detecting minority polints. Chapter 5
discusses our second proposed method about hybrid classifier for imbalanced
data. We combined supervised and unsupervised classification technique to
overcome some drawbacks of our first method. We used an incremental clus-
tering algorithm to find the groups of similar data points. We further apply
restricted undersampling among those groups where the data is imbalanced.
This technique increases the accuracy of minority classes without sacrificing
too much accuracy from majority classes. Experimental setup and numerical
resutls are presented in chapter 6. We used imbalanced dataset from python
library and compared the results from both of our methods with four main-
stream classifiers. Application of our proposed method in cyber security is
discussed in chapter 7. We used four cyber security datasets including net-
work traffic, credit card fraud, mobile malware and spam emails to test our
proposed method in cyber security. We also used our own generated dataset
by simulating web inject in google chrome browser. Chapter 8 presents a
concluding remark and future research direction.



Chapter 2

Literature Review

In this chapter we discuss some common cyber attacks and review the ex-
isting methodology to address them. We also provide a literature review on
supervised data classification algorithms for imbalanced datasets. We find the
shortcomings of the existing methods and justify the necessity of developing
new techniques to deal with cyber threats.

2.1 Introduction

With the advancement of internet based services and digital communication,
individuals, government and organization are becoming the target for various
cyber attacks. These attacks are causing damage by directly stealing money or
valuable information and also by wasting resources and man power to prevent
and recover from attacks.

2.1.1 Some popular cyber attacks

Some of the most common cyber threats are: denial of service (DoS), man
in the middle (MitM), cross-site-scripting(XSS), SQL injection, malware, ran-
somware. As the prevention techniques for these attacks are getting better,
the threats are also evolving to bypass the detection mechanisms.

Denial of Service (DoS). A denial of service is a coordinated attack to
prevent actual users from using the service. A distributed denial of service
(DDoS) attack is performed by a group of compromised computers. These

27
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compromised computers are used to exhaust the resources and bandwidth of
the target computer. The target computers are called ”primary victim” and
the compromised computers are called ”secondary victims” [17]. Unlike most of
the cyber attacks DDoS attackers does not get benefited directly. This attack
can be used to get edge over competitors by disrupting their services. There
are few methods to prevent and mitigate the effects of DDoS attacks. Using
configured firewall, increasing the connection queue size, decreasing timeout
period, applying black hole filtering and others are some popular methods to
deal with the DDoS attack.

Man in The Middle. Man in the middle attack is performed by eavesdrop-
ping between the communication of two parties. This attack has the capability
of listening to the conversation between communicating hosts and able to steal
the data. There are various techniques for man in the middle attack, such as:
sniffing, packet injection, session hijacking, SSL stripping [18]. Man in the
middle attack is very hard to detect and they remain unnoticed until the last
moment. Using precautionary methods, we can minimize the chance of be-
coming victims of the man in the middle attack. Some of these techniques are:
being aware of connecting to open network, using strong encryption on access
points, using https to ensure public-private key encryption, using VPN.

SQL injection. SQL injection is carried out by injecting SQL query code as
user input data. Attacker gains unauthorized access to the database and may
steal sensitive information. It can damage or alter the content of the database
as well. SQL injection can be done by injecting content through user input,
cookies, server variables and second order injection [19]. The target of this
attack is to identify injectable parameters, database finger-printing, determine
database schema, extract data, add or modify data, bypass authentication
and execute remote commands. The detection of SQL injection is difficult but
some prevention measures can be taken to stop some of this attack. Input
validation is one of the most straightforward solution to address this problem.
Input validation can be done by checking input type, pattern matching and
encoding inputsc.
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Ransomware. By ransomware attacks, the attacker gains access to the data
of target device and locks the data applying the encryption. The demand
money in exchange for unlocking the data. Ransomware was first introduced
in 1980 and evolving over time to bypass new defence methods [20]. Coun-
termeasures of ransomware broadly categorized in three categories. They are:
prevention, detection and prediction [20]. Prevention techniques are applied
to stop the target from being infected. There are several detection techniques,
such as: event-based detection, anomaly based detection and statistical based
detection.

XSS. With the increasing availability of internet, web application became
the standard to provide services and representing data over World Wide Web.
These services became the target for attackers to exploit the vulnerabilities
and execute malicious scripts on the victim’s web browser. Using cross site
scripting the attackers can steal data, browser cookies, passwords, credit card
details etc. Several client-side and server-side solution for detecting XSS have
been proposed. Our research focus is to design a machine learning based server
side solution.

2.2 Detecting cyber threats

Cyber security is the technology and method to protect digital contents, com-
puters, networks, programs and data from attack, unauthorized access or de-
struction [21]. The components of cyber security systems are network security
systems and host security systems. Network security system works by mon-
itoring network traffic and host based system works by monitoring software
environment, processes and file activities. Depending on working method, cy-
ber security can be divided in three categories. They are: signature-based
techniques, anomaly-based techniques and hybrid techniques [21].

2.2.1 Signature based detection technique

Signature based techniques can detect known threats by comparing against set
of known rules and signature database. The main benefit of signature based
detection technique is very low false positive rates. It identifies an activity as
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threat, if it matches with a already known set of rules and signatures. The
signature based techniques fails to detect new and unexplored threats.

One of the earlier work on signature based detection technique is network
security monitor (NSM) [22]. They designed a lan monitoring system by de-
veloping profile of network resource uses. By comparing current usage pattern
with earlier profile they attacks are identified. NetRanger [23], a commercial
network monitoring system is built based on this approach. Snort is a open
source lightweight signature based network monitoring tool [24] It is a cross
platform tool which is easy to deploy without disrupting the operation of the
system and suitable for small sized network. Snort sniffs real-time network
traffic and logs the misuses based on matching the content with predefined
features rules. It also have the capability of generating real-time alert if an
attack is detected.

Kirda et al. [25] proposed a custom firewall system for the client side which
will decide whether a web page request from the browser is secured or not
based on some rules. The user can make their own custom rule depending
on their needs. A.K. Dalai et al. [12] proposed a server-side solution which
will filter the data before executing based on some criteria. They tested using
230 attack vectors. Some of them is not functioning due to the change of
browser policy and functions. The authors of [12] tested using five different
browsers. Their solution introduces a little overhead in terms of execution
time. The papers [13, 26] used a genetic algorithm to generate suitable XSS
from an initial random XSS by applying crossover and mutation and tries to
find whether any path in the webpage executes that code.

2.2.2 Anomaly based detection technique

Anomaly based detection techniques work by generating a model with normal
behaviour. It identifies an activity as threat if it differs from the normal
behaviour. This method is capable of detecting new and unexplored threats,
but it has higher false positive rate as this method consider any previously
unseen behaviour as a threat.
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Malware codes are very often obfuscated and their implementation strat-
egy changes frequently over time. There are several obfuscation technique and
packing is one of the most common technique. The availability of various types
of packers makes it difficult for traditional signature based packer identifiers to
identify malware. A packer classification framework using pattern recognition
is designed by Sun et al. [27]. Various malware, having similar behaviour,
can be written in different programming languages or developed using differ-
ent platforms. The signature based solution for one might not be applicable
to others. But the behaviour of malware remains similar regardless of their
development environment. This is the reason why behaviour-based malware
analysis brought the attention of researchers in recent time.

Most of the malware adds additional forms or messages on the fly inside the
document object model (DOM) a web page. Criscione et al. [28] proposed a
method for extracting WebInject signatures from a DOM. They used a java
library to automatically visit a list of URLs from several virtual machines
to collect the DOM and compare them to find the benign differences. They
also collected one DOM from infected virtual machine visiting the same URLs
and finds the differences between clean and infected DOMs. A graph based
framework combined with anomaly detection is applied to detect insider threat
[29]. Their proposed framework contains two main units, ”Graphical Process-
ing Unit” (GPU) and ”Anomaly Detection Unit” (ADU). Enterprise network
data is fed into GPU to form graph representing interrelation between entities
and the graph information is passed to ADU. Output of ADU determines the
anomaly score for each user, which is used to identify the threat inside an
organization.

Continella et al. [30] also used the DOM comparison to find the changes
done by malware. Another client-side approach is to integrate the solution
into the browser done by Lekies et al. [31]. They modified the source code for
Chromium browser to use it for identifying DOMbased XSS issues. Stock et al.
[32] worked on top Alexa websites and based on their defined matrices (Number
of operations, number of involved functions, number of involved contexts etc)
they find the website that contains at least one XSS vulnerabilities. System-
centric behaviour-based malware detector is becoming popular because of its
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effectiveness against new and unexplored malware. Fattori et al. [33] used the
general interactions between benign programs with the operating system to
make a behavioural model. The advantage of their system is that they did not
need any malware samples to train their model.

Sandboxing mechanism is used to ensure secure browsing experience by lim-
iting permission of JavaScript and other processes. The same-origin policy
also restricts instances of one process to use resources of its own origin only
[25]. Even with the presence of this technique, XSS can still attack user and
steal valuable information. This can be done by tricking the user to click the
malicious link and downloads malicious JavaScript code into the trusted site
and execute the code. This allows that malicious code to use the resources of
the trusted site and collect the valuable information.

2.2.3 Hybrid detection technique

This technique may combine two or more detection techniques. A signature-
based and anomaly-based detection method can be combined to create a hybrid
method too. Anomaly based method can detect unknown attacks but comes at
a cost of high false positive rates. The goal of hybrid method is to increase the
detection rate of unknown attacks without generating too many false positive
results.

Neural network combined with keyword selection are used for intrusion de-
tection [34]. This hybrid method combines a signature based method (key-
word selection) with anomaly based detection (neural network). The authors
counted the word frequency of a telnet session to a network and this keyword
statics are forwarded to a neural network for classification. A hybrid network
security system is proposed by Aydin et al. [35] which combined snort (a signa-
ture based intrusion detection system) with packet header anomaly detection
(PHAD) and network traffic anomaly detection (NETAD). Another hybrid
intrusion detection system (HIDS) is proposed by Saleh et al. [36]. They com-
bined three different techniques to design their method. A Naïve Bayes feature
selection is used to reduce the dimension of the train data. Using optimized
support vector machine outlier data is reduced. Finally Prioritized K-Nearest
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Neighbour classifier is applied to detect the attack.

2.3 Elements of Machine Learning

Machine learning is a method of designing a computer system that can auto-
matically learn from sample data and past experience without using explicit
programming. Before machine learning was introduced, the knowledge-based
system was used to make a decision by computers. A knowledge base is com-
prised of rules defining each and every possible scenario and corresponding
actions, usually, in the form of if-then rules [37]. A large number of rules
are needed to create a knowledge base which is a very challenging task and
sometimes frustrating too.

Machine learning can be categorized into three main categories [38]:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

There is another type of learning called ”Ensemble Learning” which combines
multiple learning techniques to solve the problem and combined results are
used to create the final result.

2.3.1 Supervised Learning

In supervised learning, the machine tries to find a model that maps from an
input (which is usually a vector) to an output (which contains two or more
labels). Given a sample set of training data machine builds a model that can be
used to differentiate between those labels. Classification is a type of supervised
learning where a group of training data are assigned a label and given a new
input without providing the labels, the machine will predict its class.

Some of the examples of supervised learning algorithms are Support Vector
Machine (SVM) [39], Decision Tree, Adaboost [40, 41], Naive Bayes, Random
Forest [42] etc. Supervised learning is used in many practical fields, such as
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Face recognition, Optical Character Recognition (OCR), Spam filtering, Voice
recognition, Medical diagnosis etc. In this study, we use two classification
methods for classifying cyber threats.

Regression is another type of supervised learning where a probabilistic out-
put value is estimated based on correlation between input and output values of
training data. Linear regression is one of the most popular regression method.
Linear regression is used where the prediction values are continious (i.e salary
prediction, house price prediction etc). This method finds a best fit line to
establish a relation between output variable and input variable(s). Logistic
regression is applied when the output label is categorical or contains discrete
values. Logistic regression is used in fraud detection, loan payback scoring or
any other situation where the outcome is a binary value. Multivariate Regres-
sion algorithm is used when more than one prediction values are dependant on
more than one input values. One the popular multivariate regression method
is Multivariate adaptive regression splines (MARS) [43].

2.3.2 Unsupervised Learning

In unsupervised learning, it is, in general, assumed that a prior information
about the data is not available and input data is provided without any known
labels. The goal is to categorize the data into different groups based on similari-
ties of instances. Sometimes the number of desired groups or cluster is provided
and sometimes not. K-means clustering, Mean-shift clustering, Expectation-
maximisation (EM) Algorithm, Fuzzy C-means (FCM) clustering, DBSCAN
[44], MGKM [45] are some of the examples of unsupervised learning.

Some of the real-life application of unsupervised learning are Document clus-
tering (Digital forensics), Outliers detection, Customer segmentation, Group-
ing peoples based on their age or gender. Sometimes unsupervised learning is
used with supervised learning for practical use. Another unsupervised learning
called Isolation forest is used to detect abnormal behaviour [46] and raising
alert for the system administrator.
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2.3.3 Reinforcement Learning

In some problems, only a single action may not be helpful. To reach the goal
a sequence of actions is needed. An example might be playing chess, where
a sequence of moves determines the final outcome. Because of limited per-
ception capabilities based on partial observation the decision has to be made.
Reinforcement learning has two main components: agent and environment.
Provided the current state, the agent performs an action on the environment.
Environment then provides the feedback with a pair containing next state and
reward values. Based on the reward the agent adjust its next action. The goal
of the system is to maximize the rewards.

Model-based reinforcement learning dynamically create an internal model of
the transition and calculate transition probability, which is used to make an
optimal decision. But it is not suitable for world with large number of states
and action space. A model-free reinforcement learning is trained with trial-
and-error. The benefit of model-free learning is that, it does not need to store
the intermediate transition state-action pair. Reinforcement learning can be
used to train computer to play games, training robots, resource management
in computer cluster [47], traffic signal control [48], web system configuration
[49].

2.3.4 Semi-supervised Learning

Semi-supervised learning is a special type of machine learning technique which
is halfway between supervised and unsupervised learning models. It is suitable
when training data has small number of labelled data and a large number of
unlabelled data. Sometimes labelling data needs a lot of human effort and
time, which may not be ideal for many applications. Semi-supervised learn-
ing can be applied to solve those problems. Based on prediction behaviour,
semi-supervised learning can be divided into two categories: Inductive learn-
ing and Transductive learning. When a semi-supervised learning predicts the
label of some test data points, it is called inductive learning. The goal of
Transductive learning model is to use both labeled and unlabeled instances for
training algorithms. Semi-supervised learning is applied to solve many real life
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problems, such as video surveillance, spam filtering, speech recognition, person
identification [50], activity recognition [51], expression classification [52] etc.

2.4 Machine Learning in Cyber Security

There are various practical life application of machine learning, for example,
self-driving car, chess playing robots, self-learning chatbots, natural language
processing, image manipulating tools etc. A multiple instance learning is a kind
of machine learning technique, where instead of labelling individual training
points, a set of points also known as bags are assigned a label. This labelled
bags are used to train the model. Multiple instance learning is used to solve
several real life problems, such as image classification [53, 54], Melanoma de-
tection [55].

Machine learning algorithms have been also applied in the field of computer
or information security. Some widely used machine learning techniques in
cyber-security area are discussed below:

Artificial Neural Network. A neural network consists of several layers,
input layer, hidden layers and output layer. Each layer has some nodes also
called as neuron. The node performs computation based on provided inputs
and pass the output to the next layer. Deep learning is a type of neural network
with multiple hidden layers. Neural networks are used in cyber security area.

A profit driven artificial neural network is proposed for fraud detection [56].
Instead of data driven approach they used profit driven model, where they
assigned various penalty for misclassification of instances depending on their
importance and the goal of their Artificial Neural Network is to minimize
the overall penalty value. They used a cost matrix where different penalty
values are assigned for false negative and false positive classification and no
penalties are applied for true negative or true positive. Instead of focusing on
percentage of correctly identifying instances their Neural Network adjusts its
load to maximize the overall profit gain.

Several types of classifying methods are used to detect Android malware in
[57]. They installed 200 goodware and 115 malware application in a controlled
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environment and collected data is applied to train a machine learning model
which is used to detect malware. The network traffic is applied to detect mobile
malware in [58]. They compared various methods including combination of
SMOTE and SVM, cost-sensitive SVM and cost-sensitive C4.5S.

A misuse detection system is proposed by Cannady [59], where KNN is used
as the multi-category classifier. A network monitor named RealSecure is used
to simulate three thousands attacks and seven thousand normal events. Data
collected from this simulation is used in testing of their system.

Naïve Bayes. This classifier is a probabilistic classifier which works on the
principle of Bayes theorem. Naive Bayes classifier assumes the feature variables
of the dataset are independent and not correlated to each other. It is a highly
scalable classifier with a linear training time. It is suitable for classification
with small training dataset. A simple form of Bayesian network is used to
design a framework for anomaly detection [60].

In the paper [61], the authors used Naive Bayes to detect spam email in-
stead of using the rule-based system. Still, nowadays this is one of the main
approaches for detecting spam emails. An intrusion detection system with
feature reduction was proposed Saurabh Mukherjee and Dr.Neelam Sharma
[62]. Using three different feature selection methods, the authors first elimi-
nated redundant or irrelevant features. Then the reduced featured dataset was
classified using Naive Bayes classifier.

Decision Tree. A decision tree is a tree-like predictive model. The internal
nodes of the tree works as a test based on input feature and the leaves rep-
resents classes. Features are preferred to be categorical value for building a
decision tree. If not, then the values are converted into discrete values before
creating the model. A test sample is classified by testing each feature against
the internal nodes of decision tree. Decision tree can be used to solve both
regression and classification. ID3 [63] and C4.5 [64] are the most popular de-
cision tree classifiers. These are greedy algorithm and use top-down approach
to create a tree iteratively.
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A random forest is an ensemble classifier which is a collection of decision
trees. A random forest classifier is used to detect spam email. A bag of words is
constructed from email body and feature vectors are created using that. Then
the system is trained with sample emails containing both spam and normal
emails. They used random forest classifier for training the model. Once the
model is trained, the system predicts the class of new incoming email. This
technique is used to develop a custom firewall system for detecting targeted
malicious emails for a particular company [65]. They mainly focus on the
custom data set with exclusive features. These features are collected not only
from the email body but also from the company and employee’s personal infor-
mation. Combining this information they make a powerful feature descriptor
and a good feature always leads to better classification.

Support Vector Machine. Support Vector Machine (SVM) is a supervised
machine learning technique that analyze data and recognize patterns, used for
classification and regression analysis. An SVM training algorithm works on
some training data. It creates a hyperplane for dividing train samples into
two separate groups so that the distance from the hyperplane to the closest
element in each group is maximized. Testing data are mapped into the same
space and its class is predicted based on which side of separating plane it falls.

Given a set of labeled training data:

D =
{
(Xi, yi) | Xi ∈ RP , yi ∈ {−1, 1}

}n
i=1

Here Xi is a p-dimensional vector for representing the yi labeled data. A
hyperplane is derived for a set of points X so that W.X − b = 0 is satisfied.
Here W is a normal vector along with the plane. For any testing point for
positive class W.X − b ≥ 0 and for negative class W.X − b ≤ 0 .

SVM is primarily designed for binary class separation. But it can be used
for multiclass problem as well. Traditional methods for multiclass problems
are one-vs-rest and pairwise approaches. Recently simultaneous classification
and various loss functions are used for multiclass classification. One-vs-rest
which is also known as one-vs-all (OVA) solves K different binary problems
that classifies “class k” versus “the rest classes” for k = 1, . . . , K. It assigns
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a test sample to the class giving the most positive value for the solution from
the kth problem. Pairwise approach solves

(
K
2

)
different binary problems that

classifies “class k” versus “class j” for all j 6= k. For prediction at a point,
each classifier is queried once and issues a vote. The class with the maximum
number of votes is the winner.

TF-IDF method is used by [66] for extracting features and they used Support
Vector Machine (SVM) for classification method for spam filtering. A support
vector machine combined with unsupervised intrusion detection system is used
by Ghanem et al. [67] for intrusion and cyber-attack detection. A variant of
SVM called least square support vector machine (LS-SVM) is used for intrusion
detection system [68]. SVM is used to detect malicious socket address by
Chandrapal et al. [69].

Bayesian Network. A Bayesian network is a type of probabilistic graph
which aim to model the variables and the relationships between them. It is a
directed acyclic graph (DAG) where nodes represent a unique random variable
and the edges are used to present the relationship between them. Bayesian
network is useful to visualize the structure of the model and provides insight
about the relationship between the random variables.

A bayesian network along with other classifiers are used to detect spam email
[70]. They used Local Binary Pattern (LBP) for feature extraction. LBP is
a very popular method for extracting a feature from the image. It is used for
various purposes, like expression recognition, face detection, gender classifica-
tion etc. Similar to LBP, shifted binary pattern is used for extracting a feature
from text data [70]. LBP extracts a feature from an image by comparing cen-
tre pixel with 8 directional surrounding neighbour pixels. This shifted binary
patterns method uses two directional neighbours (left and right) for text data.
From a centre character, it checks the PL number of left neighbours and PR

neighbours in right. They used PL + PR = 8. For each comparison, if the
value is more or equal than the centre they assign 1, otherwise 0. Finally, the
feature value is obtained by converting the 8 bits into a decimal value. They
calculated values for nine variants of picking (PL, PR) value pairs (i.e (0,8),
(1,7), (2,6) and so on). Combined all of them they found a feature histogram
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that used in training and test.

Association Rules and Fuzzy Association Rules. Association rule is
presented as A → B, where A is a set of items and B is usually a single
item. Association rules suffers from a hard boundary problem as it provides a
binary decision. It either completely accepts or rejects ”then” part of the rules
depending on the conditional part being satisfied or not. Fuzzy association
allows to assign probabilistic measure to each possible outcomes of B. Brahmi
[71] used association rules to find the relation between TCP/IP parameters
and attack types in DARPA 1998 dataset.

Clustering. There are different types of clustering: hierarchical clustering,
partitional clustering, density-based clustering, fuzzy clustering and model-
based clustering. Various algorithms have been developed to solve each of
these clustering problems. Nonsmooth optimization problem appears in many
applied fields, such as: image denoising, optimal control, data mining, eco-
nomics, computational physics and chemistry etc. Five clustering algorithm
combining local search optimization algorithm and incremental approach are
presented by Bagirov et al. [72] to address those problems.

Clustering algorithms have been applied significantly less than the super-
vised data classification algorithms to solve internet security problems. Density-
based clustering algorithms were applied in network traffic monitoring. The
DBSCAN clustering algorithm is applied by Blower and Williams in [73] for
anomaly detection. A novel kNN clustering method is proposed by Xie et al.
[74] for anomaly detection in wireless sensor network. An optimization based
incremental clustering algorithm is proposed for intrusion detection system by
Taheri et al. [75]. The goal was to reduce false alert with high detection rate.
They divided clusters into two subsets (normal and stable) and calculated the
distance between centroids of normal clusters. The outliers, which represents
the cyberattack is detected among stable clusters using the distance calculated
earlier. Authorship analysis of phishing email is done using multiple clustering
algorithms [76]. At first features are extracted from email by counting frequen-
cies of word. Inverse document frequency weights are applied to give weights
to features based on frequency of the word in the document. Finally four clus-
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tering algorithms (k-means, MS-MGKM, INCA and DCClust) are applied to
find groups of similar phishing emails.

Ensemble Learning. A machine learning algorithm maybe suitable for very
specific type of data. One good classifying technique for one dataset may not
perform well for another dataset. Ensemble learning combines multiple train-
ing algorithm to get a better prediction. It often combines several weak learn-
ers to make a strong one. Adaboost is one of the popular ensemble learning
technique. A hybrid approach for intrusion detection is proposed by Zhang et
al. [77]. They used a rule based system to filter out previously seen attacks.
Then outlier analysis is done by random-forest classifier and if the test sample
belongs to an attack, then the classification rule is applied to find the type of
the attack. They also used oversampling technique to generate more sample
for the type off attacks containing less training points.

Evolutionary Algorithm. Evolutionary computation is inspired by biolog-
ical evolution. An initial solution is selected and by iterating through multiple
generation the solution is improved. The genetic algorithm is an example of
evolutionary computation. Basic operation in genetic algorithms are: selec-
tion, crossover and mutation. In the genetic algorithm usually a randomly
generation population is selected at the initial step. By applying a fitness test
the feasibility of the population is measured and the population with higher
fitness values are used for crossover and mutation operation to obtain the next
generation. A crossover is done between two samples and mutation is per-
formed to change one sample. Li [78] used the genetic algorithm for intrusion
detection. They used DARPA dataset to test their proposed method.

Hidden Markov Models. A markov process is a mathematical system that
represents transition between some states following some probabilistic rules.
The probability of the transition depends on the current state only, it does
not depend on how the process arrived to the current state. Markov chain
assigns probability on observable events but in many cases some events are
not observable. Hidden markov model assigns probability of transition with
unknown parameters.
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Hidden Markov Models (HMM) is used to predict multi-step attack and gen-
erate alert by Sendi et al. [79]. To extract the interaction between attackers
and network HMM is used. Several works are done in detecting fraud using
HMM. Tang et al. [80] proposed a data driven hidden markov model to de-
tect fraudulent medical claims. Hmm is applied in intrusion detection system
[81, 82]. The author of [82] used HMM for a host-based intrusion detection
system. The authors used a data preprocessing method to reduce the data
and decrease the training time. A HMM based credit card fraud detection
system is proposed by Iyer et al. [83]. They trained a HMM with normal card
transaction and if an incoming transaction is flagged as fraud by their system
with high probability, the transaction is consider to be fraudulent. HMM is
used for malware detection as well. The work done by Annachhatre et al. [84],
Austin et al. [85], Gharacheh et al. [86] and Imran et al. [87] are some of the
example using HMM for detecting malware.

Inductive Learning. Deductive and inductive learning are two major tech-
niques for inferring information. Deductive learning is a top-down approach
where it goes from general rule to specific example. Inductive learning is a
bottom up approach where it goes from specific example to general rules and
learners discover rules by observing specific examples. Inductive learning starts
with a specific observation and formulates the general conclusion theory. C4.5
and AQ are two examples of popular inductive learning algorithm.

Sequential Pattern Mining. A sequence is an ordered list of elements or
events. Given a sequential input data, sequential pattern mining finds the
relevant pattern between provided examples. Sequence pattern mining is used
to detect database intrusion by analyzing the sequence of patterns in a dataset.

2.5 Imbalanced data classification

The performance of machine learning based solution mostly depends on an
efficient and accurate classification technique which is suitable for the problem
domain. In cyber security area, the number of instances of normal activity is
significantly high compared to the number of instances of malicious activity.
This creates an imbalanced training data.
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Figure 2.1: Categories of class imbalanced learning

Imbalanced data classification method has drawn attention of a lot of re-
searchers due to its application in many practical scenarios. Various methods
are proposed to deal with imbalanced data classification. These methods can
be categorized as data level techniques or algorithmic level techniques [88].
Each of them can be further divided into sub categories. We summarize the
categories in Figure 2.1. Some researchers considered cost-sensitive algorithms
as a combination of both data level and algorithmic level technique [89, 90].

EUSBoost, which is a combination of image processing and machine learn-
ing is proposed in [91]. They used a combination of undersampling method
with boosting. This method is similar to RUSBoost. The key difference is in-
stead of using random undersmapling, they used evolutionary undersampling
(EUS) before boosting and obtained a better result.

The performance of several classifier methods that deals with class imbal-
anced data are compared in [92]. They also categorized the approaches to deal
with imbalanced datasets based on their working principle.

Data level techniques balance the cardinality of different classes in a dataset
by either adding more synthetic points into minority classes or removing points
from majority classes. Undersampling and oversampling are two main variants
of data level techniques. A lot of variants of these methods are proposed by
various researchers to deal with imbalanced data classification.

The oversampling method duplicates the samples in the minority classes
in order to enhance their cardinality [93]. Several techniques are proposed
for oversampling. The simplest oversampling method is random oversampling
(ROS), which duplicates randomly selected minority objects.

Figure 2.2 demonstrates general idea of oversampling method. The draw-
back of this approach is that minority objects are grouped together in small
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Figure 2.2: Oversampling Method

areas from where the seed for oversampling is selected. This will cause problem
for the classifiers with over-fitting problem [94]. The informed oversampling
approach like synthetic minority over-sampling techniques (SMOTE) gener-
ates synthetic minority class samples to balance the class distribution [95]
which eliminates the problem of ROS. It has received a lot of admiration and
has the extensive range of practical applications. Many variants of SMOTE
have been proposed like adaptive synthetic sampling approach (AdaSyn) [96],
Borderline-SMOTE [97], Majority weighted minority oversampling technique
and weighted kernel based SMOTE. The drawbacks of oversampling method is
that it adds time and memory overhead [98], can cause over-fitting and some
features can not be synthetically generated or lose its property in synthetic
data.

Undersampling method reduces the number of points from majority classes
to make a balance training set. The simplest undersampling method is ran-
dom undersampling, which randomely removes points from majority classes to
balance the data.

Figure 2.3 shows general working methodology of undersampling method.
The main problem of undersampling is removing points may remove significant
information from dataset which will lead to a poor classification. Instead of
removing points, EasyEnsemble and BalanceCascade algorithms [99] create a
subset of majority points and a classifier is trained for each subset and all
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Figure 2.3: Undersampling Method

minority points. All individual classifiers for subsets are combined to get the
final decision. BalanceCascade’s working method is similar to EasyEnsemble.
The main difference is the subset selection. EasyEnsemble randomly selects
a subset from majority points in every step, whereas in BalanceCascade the
points in majority classes that are correctly classified are not included in the
next step. In our experiment we used the EasyEnsemble classifier to detect
malicious activities.

Algorithmic level methods deal with class imbalance learning by modifying
the classifier design. There are both supervised and unsupervised classifica-
tion methods to deal with imbalanced data classification. Some methods are
designed by combining both supervised and unsupervised method. Nguyen et
al. [100] prposed such a hybrid method where they create clusters of the data
and used the cluster centre to represent all the points that belongs to that
cluster. After that a modified feedforward neural network is used to classify
the data. A machine learning model called extreme learning machine (ELM)
is proposed by Huang et al. [101] for general classification. Several variants of
this method is proposed by assigning different weights to the training sample
for better classification results with imbalanced data. Weighted ELM (WELM)
is proposed by Zong et al. , [102] which assigns different weights for training
sample according to the user need. This can be generalized as cost sensitive
learning. Boosting weighted ELM (BWELM) is a variants of WELM, where
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adaboost framework is used with WELM for quick execution [103]. EWELM,
proposed by Zhang et al. , where ensemble approach is used on WELM to
improve classification performance by combining several learners [104].

Algorithmic level methods modify a classifier to address the imbalance
learning task. A significant subclass of these methods is the class of cost-
sensitive methods. Most mainstream classifiers assume that the misclassifica-
tion costs are the same. Unlike them, the cost-sensitive methods assign more
penalty for misclassifying the minority class samples than misclassifying the
majority class samples, that is, misclassification of minority class samples is
much more costly. WELM [102] and WSVM [105] are two representatives of
these methods.

WELM minimizes the weighted cumulative error with respect to each sam-
ple. It uses two weighting schemes to assign class-wise weights to the samples.
These weighting schemes assign more weight to increase the impact of the mi-
nority class while diminishing the relative impact of the majority class. WSVM
also minimizes the weighted cumulative error and applies the SVM as the base
classifier.

The cost-sensitive methods can also be designed by combining both the
algorithmic level and data level approaches [92]. Algorithms based on this ap-
proach try to address the imbalance of the data by adjusting weights and mod-
ifying probabilities in classic algorithms [89]. In the paper [106], the authors
introduce the cost-sensitive learning algorithm by assigning different costs for
various predictions and try to create a model with the minimum cost.

A random forest quantile classifier (RFQ) is proposed in [107] to address
the class imbalance problem. The proposed q∗-classifier is an extension of a
previously designed quantile classifier, called q-classifier. The quantile classifier
classifies a sample as a member of a certain class if it exceeds a certain threshold
0 < q < 1. For the median classifier this value is q = 0.5. The q∗-classifier
simultaneously maximizes the sum of true positive and negative rates and
minimizes the weighted risk.

Different algorithms based on the combination of the algorithmic and data
level approaches are proposed in [108, ?, 109, 110]. These algorithms include
the generalized class-specific kernelized extreme learning machine (GSKELM),
UnderBagging based kernelized ELM (UBKELM), UnderBagging based re-
duced Kernelized WELM (UBRK-WELM).
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The cost-sensitive methods assign more penalty for misclassifying the mi-
nority class samples with respect to the majority class samples, that is, mis-
classification of minority class samples is much more costly.

2.5.1 Application of imbalanced data classification.

Imbalanced learning have been used for solving several real life problems. The
paper [111] discusses the impact of imbalanced dataset on cancer diagnosis
and experiments with 18 different data balancing techniques from both under-
sampling and oversampling strategies. They used four different classifiers to
observe the performance of those techniques. The automated detection for
fault in wind turbine is proposed in [112]. The authors addressed the problem
and proposed a solution using deep learning. They also contributed towards
feature extraction method for better fault detection.

Dynamic detection of banking fraud using machine learning is a very chal-
lenging task. Fraudulent behaviour is dynamic and heavily diversified from
person to person. Fraud-related incidents occurred in a limited number of
times and create a highly imbalanced dataset. A faster detection mechanism
is also very crucial for a real-time detection.

The authors in [113] proposed a new method called ContrastMiner. It
integrates multiple data mining models such as: costsensitive neural network,
contrast pattern mining, and decision forest. Their approach is to find unusual
behaviour from transactions. From a single online banking a session of series
of events are captured with a set of features to describe each event. Contrast
are calculated and depending on the finding it either categorized as fraudulent
activity to raise an alert or considered as a safe event.

Artificial Neural Network based solution is proposed for fraud detection
by Zakaryazad Duman [56]. Instead of data driven approach they used profit
driven model, where they assigned various penalty for misclassification of in-
stances depending on their importance and the goal of their Artificial Neural
Network is to minimize the overall penalty value. They used a cost matrix
where different penalty values are assigned for false negative and false positive
classification and no penalties are applied for true negative or true positive.
Instead of focusing on percentage of correctly identifying instances their Neural
Network adjusts its load to maximize the overall profit gain.
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Wang et al. [114] used two undersampling and two ensemble methods to
predict software defect. Their goal is to predict the defect prone module of
a large software. This will eliminate the need of thorough testing of whole
software. This will helpful for a small company which does not have resources
for such thorough testing.

Machine learning based approaches are used to solve many real life prob-
lems. A class imbalance learning model is proposed to predict software defect
in [114]. To eliminate the need of thorough testing of a software, their model
predicts defect prone module of large software. The authors in [91] used an
undersampling method to detect breast cancer.

2.6 Conclusion

In this chapter we discussed several methods to detect various types of cyber
attacks and found signature based detection methods are only effective de-
tecting previously explored threats. It has a very low false positive rate as it
identifies threats based on signature database. It fails to detect new threats
until their signature is discovered and updated in the database. It is very diffi-
cult to define proper rules in anomaly based detection engines. Each protocol
being analyzed, implemented and tested for accuracy which is not always an
easy task. If malicious activity resembles normal activity then this method fails
to detect threat. Anomaly based detection requires more hardware compared
to signature based detection method.

A machine learning based server side solution will resolve limitations of many
signature based and anomaly based detection methods. It will be able to detect
new an unexplored threat. Main drawback of machine learning based method
is to train a good model for detection. Finding a good training data and
suitable classification method is always challenging task. False positive rate
for machine learning based detection is also high compared to the signature
based method.

The accuracy of a machine learning based detection method heavily de-
pends on the training data; and the dataset in cyber security domain is imbal-
anced. So finding a suitable classifying method that can deal with imbalanced



49

data plays a crucial role in machine learning based detection. Undersampling
method removes a large number of training points which leads poor classifi-
cation rate for majority class. This will have bad impact in many real life
problems. Oversampling adds synthetic training points to the dataset, which
creates over-fitting problem and in some cases it is not feasible to generate
synthetic data.

To obtain a better classification results on imbalanced data we proposed
two different classifying methods and also applied into cyber threat detection.
Further research can be done focusing on keeping the solution secure and easy
integration to the existing system.

To make the solution available for user is also a challenging task. Client side
solution needed to be deployed in all of the client’s machine. Not all the clients
are able to follow the instruction which makes it hard to safeguard everyone
by a client side solution. A server side solution will be easy to deploy for all
the clients.



Chapter 3

Machine Learning based Cyber
Threat Detection: Motivation

In this chapter we discuss few popular cyber threats, their working method-
ologies and the general machine learning based framework to detect them. We
also review some of the existing works with their strengths and drawbacks,
which motivated us to develop a machine learning based server side solution
for detecting cyber threats.

3.1 Introduction

With the advancement of technology and ease of access to the internet, a lot
of individuals and organizations are becoming the target for various cyber at-
tacks such as malware, ransomware, spyware, SQL-injection, web-inject etc.
The target of these attacks is to steal money or valuable information from the
victims. Spyware collects personalized information silently from the infected
machine. It can be used to collect network traffic, keystrokes and other in-
formation from the target. Often Adware and Spyware are combined to show
customized advertisement. Ransomware restricts the user from using certain
functionality or locks down files of the target user. It demands money to
remove the restriction. Various types of web-injects are used to target individ-
uals and organizations. SQL injection and cross-site scripting (XSS) are two
most popular methods of web-inject.

A majority portion of online attacks is now done by WebInject. On the fly

50
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client-side web content generation techniques make it easier for attackers to
modify the content of a website dynamically and gain access to valuable infor-
mation. The end users are not always skilled enough to differentiate between
injected content and actual contents of a webpage.

In broad category there are three types of XSS attacks: Non-persistent or
reflective, persistent or stored and DOM-based [12, 13]. A document object
model (DOM) represents a webpage as nodes and objects. By interacting with
DOM a program can change the document structure, style and content. It is an
object oriented structure of the webpage and can be modified using scripting
language. To detect the attack, we need to identify these changes inside the
DOM caused by the malware.

3.2 A sample of WebInjection

A sample WebInject is simulated by designing a Google Chrome extension,
which checks for a list of target URLs and inject some contents into the web-
page if target is found. This extension does not perform any real malicious
activity, but there are some malicious browser extension that can cause harm
to the infected machine.

$('document').ready(function(){ 

    var new_item = document.createElement("LI"); 

    var textnode = document.createTextNode("For Security Reason, Enter Password Again"); 

    new_item.style.fontSize = "21px"; 

    new_item.appendChild(textnode); 

    var list = document.getElementById("cssParsedBox"); 

    list.insertBefore(new_item, list.childNodes[2]); 

    var table = $('.LoginTextBold').parents('table').first(); 

    var row = table.find('input[type=password]').parents('tr').first(); 

    row.after('<tr><td class="LoginTextBold">Confirm Password:</td><td align="left" 

colspan="1"><input type="password" value="" onpaste="return false;" oncopy="return false;" 

name="fldPassword" style="width:262px;" class=""></td></tr>'); 

}); 

Figure 3.1: Sample of Injection code

A chrome extension named ”HTTP Request Headers”, that had more than
500,000 downloads contained malicious code in it. It secretively visited ad-
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Figure 3.2: Sample login page without WebInject

vertising URLs generating a huge network traffic for the victims [115]. Bank-
ing malware can also be designed using Chrome extension. One example is
”Interface Online”, which was used by Brazilian attackers to collect banking
credentials from corporate users [116].

Figure 3.1 shows a sample injection code. This code is custom designed
for our sample login page. The injection code is a part of source code of a
Google Chrome browser extension. The extension is configured in such a way
that it only reacts when our desired webpage is visited. The page appears as
it is when the extension is not enabled. Figure 3.2 shows the screenshot of the
page without any injection.

When the extension is enabled it adds few component to the page and to
users it appears to be coming from the actual server. Figure 3.3 shows the
screenshot of the page after the injection. As we have mentioned earlier this
extension does not perform any malicious activity except adding additional
content to the page.

Malware codes are often obfuscated so that it becomes hard for the anti-
malware solutions. Although the obfuscated appears to be very difficult to
analyze, the outcome of the code remains same. Sample obfuscated code is
shown in Figure 3.4 and Figure 3.5, that performs the same task as the code
shown in Figure 3.1.
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Figure 3.3: Sample login page with WebInject

eval(function(p,a,c,k,e,d){e=function(c){return(c<a?'':e(parseInt(c/a)))+((c=c%a)>35?String.fr

omCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c--

){d[e(c)]=k[c]||e(c)}k=[function(e){return d[e]}];e=function(){return'\\w+'};c=1};while(c--

){if(k[c]){p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c])}}return p}('$(\'3\').u(t(){0 

5=3.s("v");0 c=3.w("z y x, r 9 n");5.j.q="o";5.p(c);0 8=3.A("M");8.L(5,8.K[2]);0 

7=$(\'.b\').d(\'7\').g();0 f=7.O(\'a[e=l]\').d(\'6\').g();f.I(\'<6><4 k="b">C 9:</4><4 F="H" 

G="1"><a e="l" E="" D="h i;" J="h i;" P="N" j="B:m;" 

k=""></4></6>\')});',52,52,'var|||document|td|new_item|tr|table|list|Password|input|Lo

ginTextBold|textnode|parents|type|row|first|return|false|style|class|password|262px|A

gain|21px|appendChild|fontSize|Enter|createElement|function|ready|LI|createTextNode

|Reason|Security|For|getElementById|width|Confirm|onpaste|value|align|colspan|left|a

fter|oncopy|childNodes|insertBefore|cssParsedBox|fldPassword|find|name'.split('|'),0,{})) 

Figure 3.4: Sample obfuscated code 1

3.3 Existing methods

As we can see from the example of malware explained above, the malware
codes are very often obfuscated and their implementation strategy changes
frequently over time but the behavior of malware remains similar regardless of
their development environment. That is why behavior based malware analysis
brought the attention of recent researchers. In DOM based XSS, malware
injects additional contents on the fly inside the DOM of a web page. Criscione
et al. [28] proposed a method for extracting WebInject signatures by inspecting
DOM.
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var _0xc7ab = 

["\x4C\x49","\x63\x72\x65\x61\x74\x65\x45\x6C\x65\x6D\x65\x6E\x74","\x46\x6F\x72\x2

0\x53\x65\x63\x75\x72\x69\x74\x79\x20\x52\x65\x61\x73\x6F\x6E\x2C\x20\x45\x6E\x74\

x65\x72\x20\x50\x61\x73\x73\x77\x6F\x72\x64\x20\x41\x67\x61\x69\x6E","\x63\x72\x65

\x61\x74\x65\x54\x65\x78\x74\x4E\x6F\x64\x65","\x66\x6F\x6E\x74\x53\x69\x7A\x65","\

x73\x74\x79\x6C\x65","\x32\x31\x70\x78","\x61\x70\x70\x65\x6E\x64\x43\x68\x69\x6C\x

64","\x63\x73\x73\x50\x61\x72\x73\x65\x64\x42\x6F\x78","\x67\x65\x74\x45\x6C\x65\x6

D\x65\x6E\x74\x42\x79\x49\x64","\x63\x68\x69\x6C\x64\x4E\x6F\x64\x65\x73","\x69\x6E

\x73\x65\x72\x74\x42\x65\x66\x6F\x72\x65","\x66\x69\x72\x73\x74","\x74\x61\x62\x6C\

x65","\x70\x61\x72\x65\x6E\x74\x73","\x2E\x4C\x6F\x67\x69\x6E\x54\x65\x78\x74\x42\x

6F\x6C\x64","\x74\x72","\x69\x6E\x70\x75\x74\x5B\x74\x79\x70\x65\x3D\x70\x61\x73\x7

3\x77\x6F\x72\x64\x5D","\x66\x69\x6E\x64","\x3C\x74\x72\x3E\x3C\x74\x64\x20\x63\x6C

\x61\x73\x73\x3D\x22\x4C\x6F\x67\x69\x6E\x54\x65\x78\x74\x42\x6F\x6C\x64\x22\x3E\x

43\x6F\x6E\x66\x69\x72\x6D\x20\x50\x61\x73\x73\x77\x6F\x72\x64\x3A\x3C\x2F\x74\x6

4\x3E\x3C\x74\x64\x20\x61\x6C\x69\x67\x6E\x3D\x22\x6C\x65\x66\x74\x22\x20\x63\x6F

\x6C\x73\x70\x61\x6E\x3D\x22\x31\x22\x3E\x3C\x69\x6E\x70\x75\x74\x20\x74\x79\x70\x

65\x3D\x22\x70\x61\x73\x73\x77\x6F\x72\x64\x22\x20\x76\x61\x6C\x75\x65\x3D\x22\x2

2\x20\x6F\x6E\x70\x61\x73\x74\x65\x3D\x22\x72\x65\x74\x75\x72\x6E\x20\x66\x61\x6C\

x73\x65\x3B\x22\x20\x6F\x6E\x63\x6F\x70\x79\x3D\x22\x72\x65\x74\x75\x72\x6E\x20\x

66\x61\x6C\x73\x65\x3B\x22\x20\x6E\x61\x6D\x65\x3D\x22\x66\x6C\x64\x50\x61\x73\x7

3\x77\x6F\x72\x64\x22\x20\x73\x74\x79\x6C\x65\x3D\x22\x77\x69\x64\x74\x68\x3A\x32

\x36\x32\x70\x78\x3B\x22\x20\x63\x6C\x61\x73\x73\x3D\x22\x22\x3E\x3C\x2F\x74\x64\

x3E\x3C\x2F\x74\x72\x3E","\x61\x66\x74\x65\x72","\x72\x65\x61\x64\x79","\x64\x6F\x63

\x75\x6D\x65\x6E\x74"];$(_0xc7ab[22])[_0xc7ab[21]](function(){var 

_0xd50dx1=document[_0xc7ab[1]](_0xc7ab[0]);var 

_0xd50dx2=document[_0xc7ab[3]](_0xc7ab[2]);_0xd50dx1[_0xc7ab[5]][_0xc7ab[4]]= 

_0xc7ab[6];_0xd50dx1[_0xc7ab[7]](_0xd50dx2);var 

_0xd50dx3=document[_0xc7ab[9]](_0xc7ab[8]);_0xd50dx3[_0xc7ab[11]](_0xd50dx1,_0xd50

dx3[_0xc7ab[10]][2]);var 

_0xd50dx4=$(_0xc7ab[15])[_0xc7ab[14]](_0xc7ab[13])[_0xc7ab[12]]();var 

_0xd50dx5=_0xd50dx4[_0xc7ab[18]](_0xc7ab[17])[_0xc7ab[14]](_0xc7ab[16])[_0xc7ab[12]]

();_0xd50dx5[_0xc7ab[20]](_0xc7ab[19])}) 

Figure 3.5: Sample obfuscated code 2

Continella et al. [30] also used the DOM comparison to find the changes
done by malware. Another client-side solution is to integrate the solution to the
browser [31]. Sebastian et al. modified the source code for Chromium browser
to use it for identifying DOMbased XSS issues. Stock et al. [32] worked on top
Alexa websites and based on their defined matrices, they find the website that
contains at least one XSS vulnerabilities. Fattori et al. [33] used the general
interactions between benign programs with the operating system to make a
behavioral model.
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Sandboxing mechanism is used to ensure secure browsing experience by lim-
iting permission of JavaScript and other processes. Same-origin policy also
restricts instances of one process to use resources of its own origin only [25].
Even with the presence of these techniques, XSS can still attack user and steal
valuable information. This can be done by tricking user to click malicious link
and downloads malicious JavaScript code into trusted site and execute it inside
it. Which allows that malicious code to use the resources of the trusted site
and collect the valuable information.

A custom firewall system was proposed by Kirda et al. [25] for the client
side which will decide whether a web page request from browser is secured
or not based on some rules. User can make their own custom rule depending
on their needs. A.K. Dalai et al. [12] proposed a server side solution based
on some predefined criteria which will filter the data before executing. They
tested using 230 attack vectors. Some of them are not functioning due to
the change of browser policy and functions. They tested the algorithm using
five different browsers. Their solution introduces a little overhead in terms of
execution time. The papers [13, 26] used the genetic algorithm to generate
suitable XSS from an initial random XSS by applying crossover and mutation
and tried to find whether any path in the webpage executes that code.

3.4 Challenges

Ensuring a safe browsing experience for everyone is a challenging task. Not
every computers or networks is always very secured and often get infected
in various ways, i.e malicious emails, phishing websites, contagious web links
and sometimes via physical devices. Another challenge is to deal with various
implementation methods of malware and also to identify new and unknown
malware. A machine learning based server side solution will resolve this prob-
lem.

The performance of a machine learning based solution is highly dependent
on a good training model. A model is trained with an existing labelled dataset.
Cyber threats detection data sets are imbalanced as the number of malicious
activities in a certain domain is significantly low compared to the number of
normal activities. Consider the dataset information presented in the table 3.1,
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Table 3.1: Dataset information

Datset Name Clean samples Infected samples Imbalance Ratio
Drebin 123453 5560 22.20

Credit card 284315 492 577.88
NSL-KDD (subset) 77054 737 104.55

Abalone 19 4142 32 129.44

which shows the number of clean and infected samples in some datasets. NSL-
KDD dataset listed several types of attacks. We used a subset of this dataset
by selecting all samples from one target attack and all normal samples. To
train a good model with imbalanced dataset we need to design classifiers which
can perform well with imbalanced dataset.

Various techniques are used to deal with imbalanced data classification. Two
most popular data level methods are undersampling and oversampling. Un-
dersampling technique removes a large portion of data from majority classes
which causes loss of information and results in poor classification for majority
class. Oversampling creates synthetic data for minority classes which cause
over-fitting problem and in some cases it is not suitable to generate synthetic
data. We need to design classifying technique for imbalanced data, that will
overcome some of the problems of existing technique and provide better clas-
sification.

3.5 Proposed approach

Signature-based detection methods fail to keep up with the constantly evolving
new threats. Machine learning based detection has drawn more attention of
researchers due to its capability of detecting new and modified attacks based
on previous attack’s behaviour. Some of the existing solutions are designed for
client side and all the users have to install it in their system, which is a chal-
lenging task. In addition, various platforms and tools are used by individuals,
so different solutions needed to be designed.

Existing server side solution often focuses on sanitizing and filtering the in-
puts. It will fail to detect obfuscated and hidden scripts. We propose a server-
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Figure 3.6: Basic architecture of our proposed system

side solution using a machine learning approach to detect threats caused by
various cyber attacks. Unlike other techniques, our method collects features
of a Document Object Model (DOM) and classifies it with the help of a pre-
trained model. We experiment with both real and simulated banking environ-
ment. After analyzing the DOM in the client’s browser of a website to find the
features and send it back to the server. A pre-trained machine learning model
will help to classify the page based on the collected features.

Figure 3.6 shows basic architecture of our proposed system. A feature collector
using JavaScript is designed and it will be sent along with the actual webpage
to collect features. We designed feature extractor as a browser extension for
google chrome which analyzes the DOM to collect features. We have collected
following information from the DOM of a webpage: total number of forms in
the page, total number of anchors, number of saved cookies, character encoding
method, server domain name, count of embedded elements, last modified date,
total number of images, total number of links and total number of scripts.

Two google chrome extensions are designed for our experiment. One exten-
sion is used to inject some contents into the DOM of a webpage simulating the
injection of a malware attack. Another extension is used to collect the above-
mentioned features. The feature collector uses library functions JavaScript to
collect the information. If the user’s browser supports JavaScript execution,
the feature collector does not need any further permission from the client to
collect the features for our experiment.

After receiving the feature response, server classifies the current page. If
server detects unusual content in the web page then it will send a negative
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response to the client, otherwise it will give a positive response indicating that
the page is safe to browse.

Our proposed approach is designed for server side and it will be easily reachable
to all the users. Irrespective of which platform is used, our approach will still
be able to perform well as it doesn’t need to be deployed in client’s device. Our
proposed method will be able to deal with different implementation of malware
also, as it does not analyze the source code, rather than it looks for behaviour
or the features that have been introduced by an injection. The activities of
an WebInject remains almost similar no matter how they are implemented.
Selecting the features carefully and designing a good behavioral model will
ensure higher detection rate.

3.6 Preliminary results

We implemented the proposed approach by simulating a local client server
setup. A simulated banking environment is created resembling a real life
banking website. We also used three different banks’ live webpage to collect
features.

A customized browser extension is used to simulate web injection. We
collected features from 793 web-pages and among them 693 pages were clean
and rest 100 pages contain injection. Like the real world situation, we tested
our system with imbalanced dataset where number of infected instances are
lower than number of clean instances. We also evaluated our system with a
reduced dataset containing 307 clean and 100 infected instances. Classifiers
based on different approaches are used to identify the one suitable for our
dataset. Classification accuracy of classifiers are computed using 10-fold cross
validation technique. We apply several mainstream classifiers implemented in
WEKA. The classifiers are:

• LibSVM: We used Support Vector Machines (SVM) with two kernel
variation (radial and polynomial).

• Random Forest classifier: Random forest classifier is a combination
of several decision tree classifiers
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• Bayes Network: Two Bayesian network based classifiers (BayesNet
and NaiveBayes) are used in our experiment.

• Bagging: Bagging works by combining multiple predictors. Bagging can
be used for both regression and classification. In case of classification,
majority voting is used to determine final outcome.

• IBK. This is an instance based K-nearest neighbour classifier.

• K-star: This is also an instance based classifier which use entropy-based
distance function for similarity measurement.

Results of our experiment are summarized in Tables 3.3 to table 3.5.
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Figure 3.7: Accuracy of various classifiers

Figure 3.7 shows the accuracy of the classifiers for both full and reduced
dataset. We observe that the Random Forest provided highest accuracy for the
full dataset and Bayes Net provided highest accuracy for the reduced dataset.
There is scope to work on the feature selection and that will impact on the
classification process.

Although overall accuracy of all the classification method obtains a satis-
factory result, but the accuracy of minority class is low when the imbalanced
ratio is high. Table 3.2 shows the classwise and overall accuracy for both full
and reduced datasets. In full dataset where imbalance ratio is high, the accu-
racy of minority class is low. The imbalance ratio of reduced datasets is low
and the performance on minority class is improved for all the classifiers. In
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Table 3.2: Classwise and overall accuracy

Classifier Full Dataset Reduced Dataset
Majority Minority Overall Majority Minority Overall

BayesNet 97.84 44.00 91.04 96.09 80.00 92.13
Random Forest 98.70 83.00 96.72 97.72 96.00 97.29

Bagging 98.70 78.00 96.09 95.76 89.00 94.10
Naive Bayes 100.00 0.00 87.34 100.00 0.00 75.43
SVM Radial 99.86 23.00 90.16 99.35 26.00 81.32

SVM Polynomial 94.23 76.00 91.93 96.09 89.00 94.35
Kstar 96.97 79.00 94.70 97.72 94.00 96.80
IBK 97.84 82.00 95.84 98.04 91.00 96.31

cyber security domain, the imbalance ratio will be very high as the number of
samples for threat will be very low compared to the number of normal sam-
ples. The preliminary results indicate that the mainstream classifier will not
be suitable for detection of threats. We need to design a classification method
for the imbalanced dataset to apply in cyber threat detection.

Table 3.3: Precision, Recall and F-Measure for clean and infected pages

Classifier Clean Page Infected Page
Precision Recall F-Measure Precision Recall F-Measure

BayesNet 0.924 0.978 0.950 0.746 0.440 0.553
Random Forest 0.976 0.987 0.981 0.902 0.830 0.865

Bagging 0.969 0.987 0.978 0.897 0.780 0.834
Naive Bayes 0.874 1.000 0.933 0.000 0.000 0.000
SVM Radial 0.900 0.999 0.947 0.958 0.230 0.371

SVM Polynomial 0.965 0.942 0.953 0.655 0.760 0.704
Kstar 0.970 0.970 0.970 0.790 0.790 0.790
IBK 0.845 0.820 0.832 0.974 0.978 0.976

Table 3.3 presents the precision, recall and F-measure for the clean and
infected webpages.

We calculated cost of our classification using cost matrix shown in Table
3.4. As the dataset is imbalanced and one class have more signifance over

Table 3.4: Cost matrix

prediction y = 1 prediction y = 0

label h(x) = 1 C1,1 = 0 C0,1 = 5

label h(x) = 0 C1,0 = 1 C0,0 = 0
*0 = Clean Page and 1 = Infected Page
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Table 3.5: Weighted measure

Classifier Cost (Full dataset) Cost (Reduced dataset)
BayesNet 295 112

Random Forest 94 27
Bagging 119 68

Naive Bayes 500 500
SVM Radial 386 372

SVM Polynomial 160 67
Kstar 126 37
IBK 105 51

another one so we assigned different costs for various prediction. We assumed
right prediction for both clean and infected data does not add any cost and
false prediction of an infected page is assigned five times more cost than false
prediction of a clean page. Table 3.5 shows the cost of our prediction for
both datasets. As we can see even though some of the classifiers show better
accuracy than others, but their cost is higher. Therefore, depending on the
need we have to find the most suitable classifier for imbalanced data.

3.7 Conclusion

As we discussed in this chapter that, malware codes can be very obfuscated and
hidden. Various implementation methods are also used to design these attacks,
which makes it difficult for a signature based detection method to identify new
and unexplored malware, so machine learning based server-side solution is very
suitable for this problem domain and overcomes many limitations of signature
based solutions. We also emphasized on designing a server side solution rather
than a client side solution, which is a one stop solution for all the users of a
certain organization.

As the number of malicious activity is significantly low compared to the
normal activities which creates imbalanced data for our training model. We
observed that mainstream classification methods failed to provide good accu-
racy for the minority classes, which is critical in cyber threat detection. To
obtain a better detection model we propose two different supervised data clas-
sification techniques that can deal with imbalanced data. Next two chapters
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present those classification methods.



Chapter 4

Piecewise linear classifier for
imbalanced data

In this chapter we introduce a cost-sensitive piecewise linear classifier to solve
the supervised data classification problems in imbalanced datasets. We define
the imbalance ratio for a given dataset and then depending on this ratio assign
a cost to each class in the dataset. Finally, using costs for each class we
formulate the problem of finding piecewise linear boundaries between classes as
a constrained optimization problem. We also discuss an algorithm for solving
the optimization problems.

4.1 Introduction

The success of the supervised learning heavily depends on the class distribution
of the training set. A training set with balanced classes leads into a good
performance of a classification algorithm in the testing step. However, if in
a training set classes are not balanced then large classes may dominate the
learning model resulting in poor classification accuracy for small classes. A
dataset is categorized as imbalanced when the number of instances in some
classes is significantly larger than that of in some other classes. In such datasets
mainstream classifiers fail to accurately classify observations from minority
classes. This is due to the fact that for these classifiers in the training step
large classes dominate the learning model which results in poor classification
accuracy for minority classes. Therefore, special approaches are needed to

63
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design classifiers to solve the supervised classification problems in imbalanced
datasets.

The development of classifiers for learning from datasets with imbalanced
class distributions have attracted increasing attention over the last decade.
In most real-world datasets class distributions are not uniform and in many
such datasets some classes have significantly less data points than others. In
some applications such classes were considered as outliers and they removed
from the training set to design a better classification model. However, there
are many other applications where such classes cannot be ignored. Supervised
and unsupervised classification problems for fraud detection and detection of
malicious emails are among such applications. Fraud-related incidents and
malicious emails occur in a limited number of times. For these reasons such
incidents and emails constitute minority classes and their detection becomes
a classification problem in imbalanced datasets. Mainstream classifiers are
heavily biased by the majority classes and they are not performing well in
classifying minority classes in such datasets.

In this chapter, a new piecewise linear classifier, PWLCI, is introduced
to solve supervised classification problems in imbalanced datasets. A new
classifier is an extension of a piecewise linear classifier for general datasets.
This classifier constructs a boundary between classes incrementally starting
from one linear function (hyperplane) and adds more linear functions (hyper-
planes) at each iteration of the incremental algorithm. The problem of finding
of boundaries between classes is modeled as an optimization problem where
the objective function is the misclassification error function and constraints
are formulated using classification errors for minority classes. The optimiza-
tion problem is solved applying the penalty function method. The proposed
classifier is tested using real-world imbalanced datasets and compared with
several mainstream classifiers as well as with classifiers developed specifically
for imbalanced data sets.

4.2 Piecewise linear classifier

In this section we describe the piecewise linear classifier for the general super-
vised data classification problems. First we introduce some notions which will
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be used in the rest of the thesis.
In what follows Rn is the n-dimensional space of vectors u = (u1, . . . , un),

〈u, v〉 =
n∑

i=1

uivi is the inner product of vectors u, v ∈ Rn and ‖u‖ = (
n∑

i=1

u2i )
1/2

is the associated Euclidean norm in Rn. For given a ∈ Rn and b ∈ R a
hyperplane H(a, b) is defined as follows:

H(a, b) =
{
x ∈ Rn : 〈a, x〉+ b = 0

}
.

The hyperplane is the line in the 2-dimensional case and it is the plane in the
3-dimensional case.

Let A and B be given disjoint sets containing m ≥ 1 and n ≥ 1 number of
d-dimensional vectors, respectively:

A = {a1, . . . , am}, ai ∈ Rd, i = 1, . . . ,m,

B = {b1, . . . , bn}, bj ∈ Rd, j = 1, . . . , n.

Assume that these sets can be represented as a union of the finite number of
sets such that

A =

p⋃
i=1

Ai, B =

q⋃
j=1

Bj (4.2.1)

and
convAi ∩ convBj = ∅, i = 1, . . . , p, j = 1, . . . , q. (4.2.2)

Here “conv” stands for a convex hull of a set. Let I = {1, . . . , p} and J =

{1, . . . , q}.
Note that any finite points set has the representation (4.2.1) and any two

finite point disjoint sets satisfy the condition (4.2.2). Indeed, if each sets Ai

and Bj are singletons containing only one point from corresponding sets then
we will have these representations. However, we expect that p� m and q � n.

One possible representation of the sets A and B is illustrated in Figure
4.1. Here both sets A and B are represented as the union of three subsets and
convex hulls of all pairs of subsets from opposite classes are disjoint.

Since convAi ∩ convBj = ∅ for sets Ai and Bj, i ∈ I, j ∈ J , there exists
a hyperplane (xij, yij) with xij ∈ Rd, yij ∈ R separating these two sets. This
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Figure 4.1: Representation of sets A and B and their piecewise linear separa-
tion.

means that
〈xij, a〉+ yij < 0 ∀a ∈ Ai, (4.2.3)

and
〈xij, b〉+ yij > 0 ∀b ∈ Bj. (4.2.4)

Using some transformations and keeping the same notations one can rewrite
(4.2.3) and (4.2.4), respectively, as

〈xij, a〉+ yij ≤ −1 ∀a ∈ Ai,

and
〈xij, b〉+ yij ≥ 1 ∀b ∈ Bj.

This is proved in the next proposition.

Definition 1. Let A and B be sets in Rn both containing finite number of
points. These sets are piecewise linearly separable if there exist hyperplanes
{(xij, yij)}, j ∈ Ji, i ∈ I such that:

min
j∈Ji

{
〈xij, a〉 − yij

}
< 0 for all i ∈ Iand a ∈ A
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and for each b ∈ B there exists at least one i ∈ I such that

min
j∈Ji

{
〈xij, b〉 − yij

}
> 0.

Proposition 1. The sets A and B are piecewise linearly separable if and only
if there exists a set of hyperplanes {xj, yj} with xj ∈ Rn, yj ∈ R1, j ∈ J and
a partition Jr = {J1, . . . , Jr} of the set J such that

1)
min
j∈Ji

{
〈xj, a〉 − yj

}
≤ −1 for all i ∈ I and a ∈ A;

2) for any b ∈ B there exists at least one i ∈ I such that

min
j∈Ji

{
〈xj, b〉 − yj

}
≥ 1.

Proof: Sufficiency is straightforward.
Necessity. Since A and B are piecewise linearly separable there exists a set of
hyperplanes {x̄j, ȳj} with x̄j ∈ Rn, ȳj ∈ R1, j ∈ J, a partition Jr of the set J
and numbers δ1 > 0, δ2 > 0 such that

max
a∈A

max
i∈I

min
j∈Ji

{
〈x̄j, a〉 − ȳj

}
= −δ1

and
min
b∈B

max
i∈I

min
j∈Ji

{
〈x̄j, b〉 − ȳj

}
= δ2.

We put δ = min{δ1, δ2} > 0. Then we have

max
i∈I

min
j∈Ji

{
〈x̄j, a〉 − ȳj

}
≤ −δ, ∀a ∈ A, (4.2.5)

max
i∈I

min
j∈Ji

{
〈x̄j, b〉 − ȳj

}
≥ δ, ∀b ∈ B. (4.2.6)

We consider the new set of hyperplanes {xj, yj} with xj ∈ Rn, yj ∈ R1, j ∈ J,

defined as follows:
xj = x̄j/δ, j ∈ J,

yj = ȳj/δ, j ∈ J.
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Figure 4.2: Linear separation of two sets.

Then it follows from (4.2.5) and (4.2.6) that

max
i∈I

min
j∈Ji

{
〈xj, a〉 − yj

}
≤ −1, ∀a ∈ A,

max
i∈I

min
j∈Ji

{
〈xj, b〉 − yj

}
≥ 1, ∀b ∈ B,

which completes the proof.
We obtain that the function

ϕ(xij, yij, c) = 〈xij, c〉+ yij

separates the sets Ai and Bj. The linear separation of two finite point sets is
depicted in Figure 4.2.

Take any set Bj, j ∈ J. Then the following function separates the set A
from the set Bj:

ψ(xj, yj, c) = min
i∈I

ϕ(xij, yij, c).

Here xj = (x1j, . . . , xpj) ∈ Rdp, yj = (y1j, . . . , ypj) ∈ Rp. It is clear that

ψ(xj, yj, a) ≤ −1 ∀a ∈ A

and
ψ(xj, yj, b) ≥ 1 ∀b ∈ Bj.
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Figure 4.3: Max-min separation of two sets.

Figure 4.4: Max-min separation of two sets.

Then the piecewise linear function

f(x, y, c) = max
j∈J

ψ(xj, yj, c) = max
j∈J

min
i∈I

ϕ(xij, yij, c) (4.2.7)

separates the sets A and B. Here x = (x1, . . . , xp) ∈ Rdpq, y = (y1, . . . , yq) ∈
Rpq. One example of piecewise linear separation of two finite point sets is
illustrated in Figure 4.1.

Figure 4.3 presents a more complex max-min separation for two classes.
Separation of three classes are illustrated in the Figure 4.4. It is proved in
[117] that the sets A and B are piecewise linearly separable if and only if they
are disjoint: A ∩B = ∅.
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4.2.1 Error function

The error function is defined as

Fpq(x, y) =
1

|A|
∑
a∈A

max
{
0, f(x, y, a) + 1

}
+

1

|B|
∑
b∈B

max
{
0,−f(x, y, b) + 1

}
.

(4.2.8)
Equivalently, it can be rewritten as follows

Fpq(x, y) = F 1
pq(x, y) + F 2

pq(x, y), (4.2.9)

where

F 1
pq(x, y) =

1

|A|
∑
a∈A

max

{
0,max

j∈J
min
i∈I

[
〈xij, a〉 − yij

]
+ 1

}
, (4.2.10)

F 2
pq(x, y) =

1

|B|
∑
b∈B

max

{
0,−max

j∈J
min
i∈I

[
〈xij, b〉 − yij

]
+ 1

}
. (4.2.11)

It is proved in [117] that the sets A and B are piecewise linearly separable
if and only if there exists a set of hyperplanes {xij, yij}, j ∈ J, i ∈ I such that
Fpq(x, y) = 0. Moreover, x = 0 ∈ Rdpq cannot be an optimal solution. The
error function (4.2.8) is nonconvex and if the sets A andB are piecewise linearly
separable with the given number of hyperplanes, then the global minimum of
this function is Fpq(x

∗, y∗) = 0 and the global minimizer is not always unique.
One can see that the error function Fpq(x, y) is represented as the sum

of two nonconvex piecewise linear functions. Therefore, this function is also
nonconvex piecewise linear. The error function has many local minimizers
and the number of its local minimizers increases drastically as the number of
hyperplanes increases. The function Fpq(x, y) is nonsmooth and it is locally
Lipschitz function. The problem of minimization of this function is a global op-
timization problem. However, global optimization methods cannot be applied
to solve this problem since it has many decision variables.

The problem of the piecewise linear separability is reduced to the following
minimization problem:

minimize Fpq(x, y) subject to (x, y) ∈ Rdpq ×Rpq. (4.2.12)
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Algorithms for solving Problem (4.2.12) are developed in [117, 118, 119]. Al-
gorithms introduced in [118, 119] construct piecewise linear boundary between
classes (sets) incrementally starting from one linear function that is starting
with the linear separation. At each iteration, the subset of data points which
do not contribute to boundaries between classes are identified and removed
from further consideration. Such an approach allows one to significantly re-
duce the training time and solve the problem (4.2.12) efficiently. Furthermore,
the incremental approach allows to calculate as many hyperplanes as necessary
for the separation of classes. However, the maximum number of hyperplanes
should be restricted to avoid the overfitting problem.

When there are two classes in the dataset it is sufficient to calculate only
one piecewise linear function separating these two classes. To classify the
new observation we compute the value of the piecewise linear function for this
observation. If its value is negative then this observation is classified to the
set a and it is classified to the set B otherwise.

The problem (4.2.12) can be applied to solve the supervised data classi-
fication problems in datasets containing more than two classes. In this case
applying “the one versus others” strategy we consider K > 2 different sepa-
ration problems. For each of them we solve the problem (4.2.12) and find the
piecewise linear function f , defined in (4.2.7), separating the k-th class from
all other classes. We will denote this function by fk where the superscript k
shows that this function separates the k-th class from the rest of the dataset
where k = 1, . . . , K. This means that for each class we find one piecewise
linear function separating this class from other classes. To classify the new
observation we calculate values of each of these piecewise linear functions for
this observation and then we calculate the minimum of these values. The ob-
servation is classified to the class whose piecewise linear function provides this
minimum.

4.3 Piecewise linear classifier for imbalanced
datasets

In this section we modify the piecewise linear classifier described in the previous
subsection to solve the supervised data classification problems in imbalanced
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datasets. To design such a classifier we reformulate the problem (4.2.12) by
adding constraints defined using misclassification errors for points from mi-
nority classes. Then the constrained optimization problem is reduced to the
unconstrained problem by applying the penalty function method. The discrete
gradient method from nonsmooth optimization is applied to solve the uncon-
strained optimization problem and to find parameters of the piecewise linear
classifier.

Let D be a data set containing K classes: C1, . . . , CK :

D =
K⋃
k=1

Ck.

Without loss of generality assume that the first K0, 1 ≤ K0 < K of these
classes C1, . . . , CK0 are majority and the rest K − K0 classes CK0+1, . . . , CK

are minority classes. We consider the case when K0 < K, that is the data set
A contains minority class(es).

General purposed classifiers fail to solve the supervised data classification
problems in such data sets. These classifiers assign most of new observations
into one of the majority classes and in this way achieve high overall classifi-
cation accuracy, however they fail to classify new observations belonging to
minority classes.

As mentioned above we compute the piecewise linear functions fk, k =

1, . . . , K for each class by solving the problem (4.2.12). However, in imbal-
anced datasets we propose to compute these functions by solving different
optimization problems for majority and minority classes. For majority classes
we solve the unconstrained minimization problem (4.2.12) to find the function
fk. For minority classes k = K0 + 1, . . . , K this problem is replaced by the
constrained optimization problem by adding constraints defined using misclas-
sification errors for points from minority classes. More precisely, this problem
is


minimize Fpq(x, y)

subject to fk(x, y) ≤ 0,

(x, y) ∈ R(n+1)pq.

(4.3.1)
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The constraint fk(x, y) ≤ 0 in problem (4.3.1) plays crucial role to increase
importance of minority classes. Unconstrained minimization of the error func-
tion does not lead to finding of balanced boundaries between large and small
classes. This leads to the perfect classification of instances from large classes
and to failure in classification of instances from minority classes. The use of
constraints for minority classes helps to find balanced piecewise linear bound-
aries between large and minority classes and to improve classification accuracy
for minority classes.

Using the penalty function this problem is replaced by the following prob-
lem:

minimize F̄pq(x, y) subject to (x, y) ∈ R(n+1)pq. (4.3.2)

where

F̄pq(x, y) = Fpq(x, y) + τ
K∑

k=K0+1

max
{
0, fk(x, y)

}
.

Here τ > 0 is the penalty parameter.
The objective functions Fpq and F̄pq are nonconvex nonsmooth. More pre-

cisely, both functions are nonconvex piecewise linear functions. Usually, the
Clarke subdifferential is used to design algorithms for minimizing such func-
tions (see, for example, [120] for the definition of the Clarke subdifferential).
However, the calculation of subgradients of these functions is not always an
easy task as the calculus exists only in the form of inclusions. Therefore,
we apply the discrete gradient method [121] to solve problems (4.2.12) and
(4.3.1). This method uses the values of the objective function to approximate
its subgradients.

4.3.1 Discrete gradient method

In this subsection we briefly describe the discrete gradient method (DGM)
which is applied to solve problems (4.2.12) and (4.3.1). More details can be
found in [121] (see, also [122, 120, 123]). The DGM can be considered as a ver-
sion of bundle methods. In contrast with the bundle methods, which require
the computation of a single subgradient of the objective function at each trial
point, the DGM approximates subgradients by discrete gradients using func-
tion values only. Similarly to bundle methods, discrete gradients computed at
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a given point are gathered into a bundle to compute search directions.
Let

G =
{
e ∈ Rn : e = (e1, . . . , en), |ej| = 1, j = 1, . . . , n

}
be a set of all vertices of the unit hypercube in Rn. For e ∈ G and α ∈ (0, 1]

define the sequence of n vectors

ej = ej(α) = (αe1, α
2e2, . . . , α

jej, 0, . . . , 0), j = 1, . . . , n.

Take any d ∈ Rn such that ‖d‖ = 1 and compute i ≡ i(d) = argmax{|dj|, j =
1, . . . , n}. Note that the index i depends on the direction d. For x ∈ Rn and
λ > 0, consider the points

x0 = x+ λd, xj = x0 + λej(α), j = 1, . . . , n.

Definition 2. The discrete gradient of a function f : Rn → R at x ∈ Rn is
the vector Γi(x, d, e, λ, α) = (Γi

1, . . . ,Γ
i
n) ∈ Rn with the following coordinates:

Γi
j = [λαjej)]

−1
[
f(xj)− f(xj−1)

]
, j = 1, . . . , n, j 6= i,

Γi
i = (λdi)

−1
[
f(x+ λd)− f(x)− λ

n∑
j=1,j 6=i

Γi
jdj

]
.

It is proved in [122], under semismoothness and quasidifferentiability assump-
tions on the function f , that the set

D0(x, λ) = cl conv
{
v ∈ Rn : v = Γi(x, d, e, λ, α), ‖d‖ = 1, e ∈ G, α ∈ (0, 1]

}
is an approximation to the subdifferential ∂◦f(x) for sufficiently small λ > 0 in
the sense of the Hausdorff distance. The computation of the whole set D0(x, λ)

is not easy, and therefore, in the DGM only a few discrete gradients are used
to calculate the search direction.

Next we describe the direction finding procedure. Let us denote by l the
index of the subiteration, by k the index of the outer iteration and by s the
index of the inner iteration in the direction finding procedure. In what follows
we use only the iteration counter l whenever possible without confusion. At
every iteration ks, we first compute the discrete gradient v1 = Γi(x, d1, e, λ, α)
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with respect to an initial direction ‖d1‖ = 1, set D1(x) = {v1} and l = 1.
Then we compute the vector

wl = argmin
w∈Dl(x)

‖w‖2.

If ‖wl‖ < δ for a given tolerance δ > 0 then the point x is accepted as an
approximate stationary point and we go to the next outer iteration of the
DGM. Otherwise, we compute another search direction dl+1 = −‖wl‖−1wl. If
dl+1 is the descent direction satisfying the condition

f(x+ λdl+1)− f(x) ≤ −c1λ‖wl‖,

with the given numbers c1 ∈ (0, 1) and λ > 0, then we set dks = dl+1, vks = wl

and stop the direction finding procedure. Otherwise, we compute another
discrete gradient vl+1 = Γi(x, dl+1, e, z, λ, α) in the direction dl+1, update the
bundle of discrete gradients D̄l+1(x) = conv{D̄l(x) ∪ {vl+1}} and continue
the direction finding procedure with l = l + 1. It is proved in [121] that the
direction finding procedure finitely converges.

When the descent direction dks has been found, we compute the next (inner)
iteration point xks+1 = xks + tksdks , where the step size tks is defined as

tks = argmax {t ≥ 0 : f(xks + tdks)− f(xks) ≤ −c2t‖vks‖} ,

with given c2 ∈ (0, c1].
DGM is globally convergent for locally Lipschitz continuous functions un-

der assumption that the set of discrete gradients uniformly approximate the
subdifferential [122, 121].

4.3.2 The classification algorithm

The proposed classification algorithm constructs boundary between classes in-
crementally and it starts with one linear function that is with the linear sepa-
ration. This algorithm is a modification of the piecewise linear classifier intro-
duced [118]. Here we consider the case when the number of linear functions
under each minimum function is the same. Such a choice of the number of
linear functions is justified according to the definition piecewise linear separa-
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bility given above.

Algorithm 1 Piecewise linear classifier for imbalanced data.

Input: Data set D with two classes A and B. The maximum number mM

of minimum functions under maximum, the maximum number mL of linear
functions under each minimum, the tolerances ε1, ε2 > 0.
Output: A piecewise linear boundary between classes.

Step 1: Select x11 ∈ Rn, y11 ∈ R. Calculate the value of the objective
function f 1, defined in (4.2.7) when k = 1, at the point (x̄11, ȳ11). Set
I = {1}, J = {1} and k := 1.

Step 2: Solve the problem (4.3.2) starting from the point (xij, yij), i ∈ I, j ∈
J . Assume that x̄ij, ȳij, i ∈ I, j ∈ J is the solution.

Step 3: Calculate the value of the objective fk+1 defined in (4.2.7) at the
point (x̄ij, ȳij), i ∈ I, j ∈ J

Step 4: (The first stopping criterion). If fk+1 ≤ ε1 then STOP. The point
(x̄ij, ȳij), i ∈ I, j ∈ J is the solution.

Step 5: (The second stopping criterion). If fk − fk+1 ≤ ε2 and |I| > 1 then
STOP. The point (x̄ij, ȳij), i ∈ I, j ∈ J is the solution.

Step 6: If |J | < mL, then set J = {J} ∪ {j + 1} and

xtp = x̄tp, ytp = ȳtp, t = 1, . . . , i, p = 1, . . . , j, xi,j+1 = x̄ij, yi,j+1 = ȳij.

Go to Step 2. Otherwise go to Step 7.
Step 7: If |I| < mM , then set I = {I} ∪ {i+ 1} and

xtp = x̄tp, ytp = ȳtp, t = 1, . . . , i, p = 1, . . . , j,

xi+1,j = x̄ij, yi+1,j = ȳij, j = 1, . . . ,mL.

Go to Step 2. Otherwise go to Step 8.
Step 8: (The third stopping criterion). If |I| = mM and |J | = mL, then

STOP. The point (x̄ij, ȳij), i ∈ I, j ∈ J is accepted as the solution.

The necessary explanation on Algorithm 1 follows. This algorithm com-
putes the piecewise linear boundary between classes A and B withmM andmL

number of linear functions. This piecewise linear boundary is represented as a
maximum of minimum of linear functions and the number minimum functions
under maximum function ismM and the number of linear under each minimum
function is mL. The algorithm selects any starting point and in Step 2 solves
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the linear separability problem. This problem is convex optimization problem
and the algorithm finds its global minimum.

If the sets A and B are not linearly separable then we first compute one
minimum function to separate these sets. This function is computed in Steps 2
and 6. In these steps we add one linear function under minimum function until
the number of linear functions reaches the number mL. The starting point to
find this minimum function is defined using the solution from the previous
iteration of the algorithm.

If the sets A and B are not separable with one minimum function then
in Step 6 we add one minimum function under the maximum. This step
is repeated until the number of minimum functions under maximum reaches
the number mM . The starting point for finding piecewise linear functions is
updated using the solution from the previous iteration of the algorithm. Such
definition of the starting points allows one to address nonconvexity of the
problem (4.3.2).

Algorithm 1 has three stopping criteria. The first stopping criterion is given
in Step 4. This condition means that the sets A and B are separable with
current number of linear functions. The second stopping criterion is described
in Step 5. This criterion means that adding more linear functions does not
significantly improve the separation of the sets A and B and adding more linear
functions will lead overfitting problem. The third criterion is given in Step 8.
This condition means that the algorithm uses the maximum number of linear
functions. Such a condition is important as it allows to avoid the overfitting
problem.

4.3.3 Implementation of the algorithm

Algorithm 1 contains several parameters and tolerances to be defined before
its execution. Main parameter is the number mL of linear functions under each
minimum and the number mM of minimum functions under each maximum.
We take mL = 2 in all cases. The maximum number of minimum functions is
mM = 4, however the algorithm may stop before reaching this number. This
happens when one of stopping criteria in Steps 4 and 5 satisfies.

We select the tolerances as ε1, ε2 = 0.001. The problem (4.3.2) is solved
by applying the discrete gradient method. Details of implementation of this
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method can be found in [121].
In case of binary classification problem only one piecewise linear function

separating two classes is computed. For multi-class classification problem one
vs all others approach is applied. It means that in this case we calculate
one piecewise linear function separating each class from all others that is in
the multi-class case the number of piecewise linear functions is the number of
classes.

Different classification rules are applied for binary and multi-class classi-
fication problems. In the binary classification problems one piecewise linear
function is used to separate classes and any new observation is classified ac-
cording to the sign of the value of the piecewise linear function. In the multi-
class case the number m of piecewise linear functions equals to the number of
classes that is for any new observations we get m values and this observations
is assigned to the class with smallest value.

The proposed algorithm has been implemented in Fortran 95 using gfortran
compiler, and numerical experiments have been executed on a 2.7 GHz Intel
Core i5 computer with RAM 8GB working under Windows 10.

4.4 Conclusion

In this chapter, a new classifier is introduced to solve the supervised data clas-
sification problems in imbalanced datasets. It is designed using the piecewise
linear classifier. The problem of calculating of piecewise linear boundaries be-
tween classes is formulated as a constrained optimization problem where the
objective function is the classification error function and constraints are formu-
lated using misclassification errors of points from minority classes. The discrete
gradient method is applied to solve the constrained optimization problem and
to find piecewise linear functions separating classes. The proposed classifier
belongs to the class of cost-sensitive classifiers for imbalanced datasets.



Chapter 5

Hybrid classifiers for
imbalanced data

In this chapter, the problem of the supervised data classification in imbalanced
datasets is discussed and an algorithm based on the combination of the cluster-
ing, undersampling and supervised data classification techniques is developed
to solve it. The algorithm consists of three phases. In the first phase, we
apply a clustering algorithm to find groups of similar points. In the second
phase we apply an undersampling technique only to those clusters where data
is imbalanced among classes. Such an undersampling is called the partial un-
dersampling. Finally, in the third phase, we apply a classification algorithm to
solve classification problems in clusters containing points both from majority
and minority classes.

5.1 Introduction

In many applications minority classes in imbalanced datasets are considered
as outliers and they are removed from the datasets before application of the
supervised data classification algorithms. Different approaches have been de-
veloped to design algorithms to detect outliers. Clustering techniques have
been widely applied to design such algorithms.

As mentioned above most classifiers for imbalanced datasets in one or an-
other way apply oversampling or undersampling techniques. The use of these
techniques allows one to improve balance majority and minority classes which

79
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leads to better classification accuracy for minority classes. However, in all
these classifiers oversampling or undersampling techniques are applied to the
whole datasets. The use of the oversampling techniques may lead to the de-
crease of importance of majority classes. On the other side the application of
undersampling techniques may lead to the loss of significant information on
majority classes. This means that in both cases any improvement on minority
classes is achieved on expense of majority classes, that is improvement in clas-
sification accuracy over minority classes leads to worsening of the classification
accuracy over majority classes.

Therefore, it is important to develop an approach which applies oversam-
pling or undersampling techniques only to some parts of majority and/or mi-
nority classes. Such an approach allows to prevent the loss of important in-
formation on majority classes. This aim can be achieved, in particular, by
applying clustering algorithms. Applying clustering algorithms one can get
some cluster distribution and then oversampling or undersampling techniques
can be applied only to those clusters which contain elements from both ma-
jority and minority classes.

We develop a new classifier for imbalanced datasets which is based on this
approach. In this chapter, the problem of the supervised data classification in
imbalanced datasets is discussed and an algorithm based on the combination
of the clustering, undersampling and supervised data classification techniques
is developed to solve it. The algorithm consists of three phases. In the first
phase, called the clustering phase, we apply a clustering algorithm to find
groups of similar points. Several stopping criteria are designed to terminate
the clustering algorithm. In the second phase, called partial undersampling,
we apply an undersampling technique only to those clusters where data is
imbalanced among classes. Such an undersampling is called the partial under-
sampling. Finally, in the third phase, called the supervised data classification
phase, we apply a classification algorithm to solve classification problems in
mixed clusters containing points both from majority and minority classes. A
classification rule is designed to classify new observations.

The rest of the chapter is organized as follows. Section 5.4 discusses an in-
cremental clustering algorithm which is used in our hybrid method. A brief de-
scription of some mainstream classifiers are given in Section 5.5. The proposed
algorithm is introduced in Section 5.3. Section 5.6 provides some concluding
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remarks.

5.2 Majority, minority and very minority classes

We start with the definition of majority and minority classes. Note that in the
literature there is no a unique approach to define such classes. This definition
depends on the size of a dataset and in some cases on an application area.

Let A ⊂ Rn be a dataset containing p classes: A1, . . . , Ap. In addition, let
ni be a number of points in the class Ai:

ni = |Ai|, i = 1, . . . , p.

Then the total number N of points in the dataset A is:

N =

p∑
i=1

ni

and the average number N̄ of points per class is:

N̄ = N/p.

Define the following threshold:

NT = αN̄

where α ∈ (0, 1). In this thesis we take α = 0.5.

A class Aj, j ∈ {1, . . . , p} is called a majority class if nj ≥ NT , otherwise
it is called a minority class. We further divide the set of minority classes into
two subsets: minority classes and very minority classes. A class Aj is called a
very minority class if

nj ≤ max{n̄, βN̄}, (5.2.1)

where n̄ > 0 is sufficiently small integer and β ∈ (0, 0.5α). In large datasets β
usually is sufficiently small. In this thesis we take n̄ = 5 and β = 0.001.

Consider the set of indices I = {1, . . . , p}. We can divide this set into three
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subsets Imaj, Imin and Ivm such that

I = Imaj ∪ Imin ∪ Ivm,

Imaj ∩ Imin = Imaj ∩ Ivm = Imin ∩ Ivm = ∅

and the set Imaj contains indices of all majority classes, the set Imin contains
indices of minority classes and the set Ivm contains indices of all very minority
classes.

5.3 The proposed classification algorithm

In this section we introduce a new algorithm for solving the supervised data
classification problems. The description of this algorithm will be presented by
explaining its each phase in detail. The proposed algorithm consists of the
following distinct phases:

Phase 1. In this phase all very minority classes are identified and removed
from the data set.

Phase 2. In this phase we apply the incremental clustering algorithm to cal-
culate clusters in the data set after removing very minority classes.

Phase 3. In this phase a undersampling technique is applied to clusters con-
taining data points from both majority and minority classes.

Phase 4. Using outcomes of Phase 3 in this phase we apply a supervised data
classification algorithm to separate majority classes as well as majority
and minority classes in balanced clusters.

After these four steps we apply the classification rule in order to classify
new observations. Next we will explain each phase in detail.

Phase 1. Identifying the very minority classes. Very minority classes
are not used both in clustering and supervised classification phases of the
algorithm. Such classes are identified by applying the formula (5.2.1) where
n̄ = 5 and β = 0.001. They do not contain sufficient number of data points to
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get any reasonable separation of these classes from other classes or to apply
oversampling techniques to them. Therefore, these classes are removed from
the dataset before training of the clustering and classification algorithms.

However, the very minority classes will be used in the prediction step. We
propose two different approaches to use these points in prediction. We first
define some threshold number MT and if the number of points in the very
minority class is less than this number then we define some neighborhood of
individual points from these classes. The number MT is defined as MT = 2n̄.

If the number of points is more than this threshold then we calculate their
representative. In particular, this representative can be the centroid of the
very minor class.

In the first case, neighborhoods of training points from the very minority
classes are defined as follows. First we find the distance between points from
these very minor classes and those from other classes. Then we take minimum
of distances and the radius of the neighborhood is set to be half of the minimum
distance. Assume that a point a belongs to one of the very minor classes, say
Aj where j ∈ Ivm. Define the set Ī = Imaj ∪ Imin ∪ {Ivm \ {j}} and consider

dmin = min
b∈Aj , j∈Ī

‖a− b‖. (5.3.1)

Here ‖ · ‖ is the Euclidean norm. Then we compute the neighborhood of the
point a by selecting any γ ∈ (0, 0.5] and defining the radius ra = γdmin. We
set γ = 0.5.

Let us consider the second case. Assume the class Aj, j ∈ Ivm satisfies the
second condition, that nj > MT . First, we compute the centroid of Aj:

cj =
1

nj

∑
a∈Aj

a

and then the radius of Aj:

rj = max
a∈Aj

‖cj − a‖.

Then we approximate the very minority class Aj with the ball centered at
cj with the radius rj. It is possible that approximation balls for two very
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minor classes have overlaps. We will address this problem when we formulate
classification rules.

Phase 2. Clustering. In this phase we remove all very minority classes
from the dataset and apply the incremental clustering algorithm to find clusters
using the rest of the dataset. Clusters found at each iteration of the incremental
algorithm belong to one of these types of clusters:

Type 1: clusters containing only points from majority classes;

Type 2: clusters where majority of points are from majority classes with very
few points from minority classes;

Type 3: clusters where majority classes are dominating however, the ratio
of minority classes to majority is higher than that of for the original
dataset;

Type 4: clusters where minority and majority classes are balanced;

Type 5: clusters where minority classes are dominating;

Type 6: clusters containing only minority classes.

It is important to formulate stopping criteria for the clustering algorithm.
The first criterion is formulated by selecting the maximum number kmax of
clusters which is allowed to calculate. This number is usually large, it is
defined using the number of classes as follows kmax = lnc where we set l = 3

and nc is the number of classes in the dataset.

The second stopping criterion is that the algorithm stops when there is no
any cluster in the cluster distribution that is of Type 3.

Next, we explain types of clusters which are obtained at each iteration of
the incremental clustering algorithm:

1. If any cluster in the cluster distribution belongs to Type 1 we do not store
any information about this cluster as the aim of the proposed algorithm
is to identify regions of the input space which are used to approximate
minority classes and the rest of the input space is used to approximate
majority classes.
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2. For any cluster C̄ belonging to Type 2 we apply the technique similar
to that applied to very minority classes with two exceptions. We do not
apply the second rule and the neighborhood of these are defined so that
they are subset of the cluster. Take any point a ∈ C̄ which from minority
class. In this case the distance d̄min is computed as follows:

d̄min = min
b∈Aj∩C̄, j∈Ī

‖a− b‖. (5.3.2)

Let r̄ be a radius of the cluster C̄ and x̄ is its center. Define d̂ = ‖x̄−a‖.
Then the radius of the neighborhood of a is defined as

ra = min
{
γd̄min, r̄ − d̂

}
.

The outcome of any cluster belonging to Type 2 contains the list of points
from minority classes and radii of their neighborhoods.

3. If any cluster belongs to Type 3 then we continue to compute more clus-
ters by adding one cluster at each iteration until the maximum number
of clusters allowed. If still some clusters belong to this type we treat
them similar to clusters belonging to Type 4.

4. Outcomes from clusters belonging to Type 4 are the list of points from
both majority and minority classes as well as cluster centers and their
radii. This outcome is passed to the next phase.

5. Clusters belonging Type 5 are treated similar to those belonging Type
2. However, in this case we compute neighborhood radii of data points
from majority classes. Here the outcome includes not only the list of
majority points and neighborhoods but also the center of the cluster and
its radius.

6. Outcomes from clusters belonging to Type 6 are the list of data points
from minority classes assigning to these clusters, centers of clusters and
their radii.

As a whole outcome of Phase 2, we get a reduced dataset which is passed
to Phase 3. Points from very minority classes are removed from the dataset
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after Phase 1. All data points from clusters of Type 2 removed after Phase 2.
We also remove all points from majority classes belonging to clusters of Type
5. Summarizing, we pass to Phase 3 the following subsets of the dataset:

1) Subset 1 which contains data points from clusters of Type 1;

1) Subset 2 which contains data points from clusters of Types 3 and 4;

2) Subset 3 which contains all data points from clusters of Types 5 and 6
by removing all points from .

Phase 3: Undersampling. In order to deal with clusters of Type 3 ob-
tained using the incremental clustering algorithm we, in principle, can apply
undersampling techniques to balance majority and minority classes in these
clusters. This type undersampling is applied only to very few clusters not to
the whole dataset. Applying these techniques to clusters of Type 3 we trans-
form them into clusters of Type 4. If in some iteration of the incremental
clustering algorithm there is no any cluster of Type 3, then the algorithm
terminates and the undersampling technique is not applied in this case.

Phase 4: Supervised data classification. A classification algorithm is
applied to data points in Subset 1, Subset 2 and Subset 3 separately.

• Subset 1 contains only points from majority classes. If there is only
one majority class then the classification is not required. Otherwise a
classification algorithm is applied to separate these classes. Note that
this separation is computed for the whole input space.

• After application of the undersampling technique Subset 2 contains only
clusters of Type 4 and in these clusters majority and minority classes
are balanced. We apply the classification algorithm to separate majority
classes from minority classes.

• Subset 3 contains only points from minority classes and the classification
in this subset is carried out using only points belonging to clusters of
Types 5 and 6.
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Outcomes of this phase are boundaries between majority classes from Sub-
set 1, boundaries between majority and minority classes in Subset 2 and bound-
aries between minority classes in Subset 3.

All outcomes of the algorithm. Summarizing, outcomes from all these
four phases are as follows:

1. Points from very minority classes with radii of their neighborhoods;

2. Subset of points from minority classes with radii of their neighborhoods;

3. Subset of points from majority classes with radii of their neighborhoods;

4. Clusters of points from minority classes with their centers and radii;

5. Clusters of points from both majority and minority classes with their
centers, radii and boundaries between classes

6. Boundaries between majority classes.

Classification rules. Assume that we have a new observation. The clas-
sification rule is defined according to the list of outcomes of all four phases
formulated above and this rule consists of the following steps:

Step 1. Check whether this observation belongs to the neighborhood of any
points from very minority classes. If yes, the observation is assigned to
the corresponding class and stop. Otherwise go to Step 2.

Step 2. Check whether this observation belongs to the neighborhood of any
points from the subset of points from minority classes. If yes, the obser-
vation is assigned to the corresponding class and stop. Otherwise go to
Step 3.

Step 3. Check whether this observation belongs to neighborhood of any points
from the subset of points from majority classes. If yes, the observations
is assigned to the corresponding class and stop. Otherwise go to Step 4.

Step 4. Check whether this observation belongs to any cluster of Types 5 or
6. If yes, the observation is assigned to the corresponding class and stop.
Otherwise go to Step 5.
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Step 5. Check whether this observation belongs to any cluster of Types 3 or
4. If yes, using boundaries assign the observation to one of the classes
and stop. Otherwise go to Step 6.

Step 6. Using boundaries between majority classes assign the observation to
one of the majority classes.

5.4 Clustering

In this section we describe a clustering algorithm used in Phase 2 of the pro-
posed classification algorithm.

1) Aj 6= ∅, j = 1, . . . , k;

2) Aj
⋂
Al = ∅, j, l = 1, . . . , k, j 6= l;

3) A =
k⋃

j=1

Aj;

Let A = {a1, . . . , am} be a given finite point set in the n-dimensional space
Rn. For a given k > 0 the clustering aims to find k groups (called also clusters)
of points of the set A using predefined similarity measure. It is assumed that
points from the same cluster are similar and points from different clusters
are dissimilar to each other. In order to model the clustering problem it is
important to formulate the similarity measure. Here we will use the squared
Euclidean distance to define this measure:

d(x, y) =
n∑

i=1

(xi − yi)
2, x, y ∈ Rn.

Denote by A1, . . . , Ak the cluster distribution of the set A for a given k. Each
cluster Aj is represented by its center which is denoted by xj, j = 1, . . . , k.
Then the clustering problem is formulated as follows:

minimize f(x1, . . . , xk) subject to xj ∈ Rn, j = 1, . . . , k, (5.4.1)

where the objective function is defined as

f(x1, . . . , xk) =
1

m

m∑
i=1

min
j=1,...,k

d(xj, ai). (5.4.2)
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The model (5.4.1) is called the nonconvex nonsmooth optimization model of
the clustering problem [124, 125].

The most popular algorithm for solving the clustering problem is the k-
means algorithm. However, this algorithm is very sensitive to the choice of
starting cluster centers. Therefore, we apply the incremental clustering algo-
rithm - the modified global k-means algorithm (MGKM) introduced in [125]
and modified in [45]. This algorithm computes clusters gradually starting from
one cluster, which is the whole dataset, and adds one cluster center at each
iteration.

The most important component of the MGKM algorithm is the procedure
for finding starting cluster centers. These points are found by minimizing the
so-called auxiliary clustering function ([125]). The MGKM algorithm proceeds
as follows.

Algorithm 2 The modified global k-means algorithm.
Input: Data set A, the number k > 0 the number of clusters to be calculated,
the tolerances ε > 0.
Output: l-partitions of the dataset A, l = 2, . . . , k.
Step 1: (Initialization). Select a tolerance ε > 0. Compute the center x1 ∈

Rn of the set A. Let f 1 be the corresponding value of the objective function
(5.4.2). Set k := 1.

Step 2: (Computation of the next cluster center). Set k = k + 1. Let
x1, . . . , xk−1 be the cluster centers for (k − 1)-partition problem. Solve
the auxiliary clustering problem to find a starting point ȳ ∈ Rn for the
k-th cluster center.

Step 3: (Refinement of all cluster centers). Select (x1, . . . , xk−1, ȳ) as a new
starting point, apply k-means algorithm to solve k-partition problem. Let
y1, . . . , yk be a solution to this problem and fk be the corresponding value
of the objective function (5.4.2).

Step 4: (Stopping criterion). If

fk−1 − fk

f 1
< ε

then stop, otherwise set xi = yi, i = 1, . . . , k and go to Step 2.

In its first step the MGKM algorithm calculates the center of the whole
dataset. Assume that we have already calculated k cluster centers, that is
solved the k-clustering problem. In order to solve the (k+1)-clustering problem
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we first formulate the k-th auxiliary clustering problem and solve it to find the
set of starting cluster centers for the (k+1)-th cluster center. Then each point
from this set is used as a starting cluster center together with other k cluster
centers to solve the clustering problem itself. Both the clustering and the
auxiliary clustering problems are solved by applying the k-means algorithm.

5.5 Mainstream classifiers

In this chapters, we briefly discuss some mainstream classifiers for general
data classification problems applied in Phase 4 of the proposed classification
algorithm.

5.5.1 Random Forest

A decision tree is a tree-like structure. The internal nodes of the tree works as
a test based on input feature and the leaves represents classes. A test sample
is classified by testing each feature against the internal nodes of decision tree.
A random forest is an ensemble classifier, which is a group of decision trees
proposed by Leo Breiman [42]. A number of decision tree is made from the
training data and each individual tree makes a prediction for a given test point.
The highest number of votes determines the class label of test point.

Figure 5.1: Random Forest classifier
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5.5.2 K-NN

The k-nearest neighbours (K-NN) is a supervised machine learning technique
which is capable of solving regression and classification problems. It calculates
the distance from the testing point to all other points and k points are selected
with the smallest distance. In case of regression the mean value of these k
points are returned as result and in case of classification the majority votes
are considered for the label of test point. The selection of k have big impact
on performance of this algorithm. A suitable value of k can be selected by
iterating through multiple value of k and select the one which has minimum
error.

5.5.3 Adaboost

Adaboost which is short for “Adaptive Boosting” is an ensemble machine learn-
ing technique which creates a strong classifier by combining a set of weak clas-
sifiers. It fits a sequence of weak learners on different weighted training data.
It starts by predicting original data set and gives equal weight to each obser-
vation. If prediction is incorrect using the first learner, then it gives higher
weight to observation which have been predicted incorrectly. Being an iter-
ative process, it continues to add learners until a limit is reached or all the
training points are correctly identified.

Figure 5.2: Working principle of Adaboost
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5.5.4 SVM

Support Vector Machine (SVM) is a supervised machine learning technique
that analyze data and recognize patterns, used for classification and regression
analysis. An SVM training algorithm works on some train data. Consider a
training set (ai, bi), i = 1, . . . ,m, ai ∈ Rn, bi ∈ {−1, 1}. Assume that there
is a hyperplane (x, y), where x ∈ Rn, y ∈ R, that separates positive elements
from negative elements. This can be formulated as follows:

〈x, ai〉+ y ≥ 1 for bi = 1

and
〈x, ai〉+ y ≤ −1 for bi = −1

The linear SVM aims to maximize the margin, the distance between parallel
supporting hyperplanes of positive and negative samples. Using kernels SVM
is modified to find nonlinear functions separating these two sets of samples.

SVM is primarily designed for binary class separation. But it can be used
for multiclass problem as well. Traditional methods for multiclass problems
are one-vs-rest and pairwise approaches. Recently simultaneous classification
and various loss functions are used for multiclass classification. One-vs-rest
which is also known as one-vs-all (OVA) solves k different binary classification
problems. For prediction of a new observation, each classifier is queried once
and issues a vote. The class with the maximum number of votes is the winner.

5.6 Conclusion

The mainstream classifiers fail to reach high accuracy for minority classes in
imbalanced datasets. Undersampling method (RUS) and oversampling method
(SMOTE) are developed to improve classification accuracy for such classes.
But in some cases this improvement is achieved in the expense of the majority
class. Therefore, it is imperative to develop supervised data classification
algorithms which are able to obtain high accuracy in the minority classes
without sacrificing too much on the classification accuracy of the majority
class. One such method is developed in this chapter. The new method is based
on the combination of clustering and supervised data classification algorithms.
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The clustering algorithms are applied to identify regions in the input space
where minority classes are located and then the supervised data classification
algorithms are applied to separate classes in these regions.



Chapter 6

Numerical results

In this chapter we describe the datasets used in our experiments and present
numerical results from the experiment with both of our proposed methods
discussed in the Chapter 4 and Chapter 5.

6.1 Datasets

In this subsection we first define imbalanced datasets and then provide the
description of datasets used in numerical experiments.

6.1.1 Definition of minority classes

We define the minority classes in imbalanced datasets as follows. Let a dataset
A with N classes Ci, i = 1, . . . , N be given. Set ni = |Ci|. Compute the
following number

navg =

(
N∑
i=1

|ni|

)/
N (6.1.1)

which is the average number of data points per class. Using navg we define the
number nth = cnavg, where c ∈ (0, 1). This number is used as a threshold to
determine minority classes. In this paper we use c = 0.5. Then we get

i− th class is minortiy =

{
true, ni ≤ nth

false, otherwise.
(6.1.2)

94
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6.1.2 Description of datasets

The performance of the proposed algorithms is demonstrated using both bi-
nary class and multi-class imbalanced datasets. The binary datasets cre-
ated by the authors of [126] are obtained from the python library named
”imbalanced-learn“ [127]. Note that some of these datasets are originally multi-
class datasets and the authors transformed these dataset into binary class by
selecting one target class and labelling it as positive class and rest of classes
are considered as a nontarget and labelled as negative class.

Binary class dataset information

We picked twenty four datasets out of twenty seven datasets from the library.
The brief description of binary class imbalanced datasets is given in Table 6.1
where we include the number of features, instances as well as the ratio of the
number of instances in the large class to that in the small class.

Multiclass dataset information

The multiclass imbalanced datasets used in our experiments are from the Keel
dataset repository [128]. The brief description of these datasets are given in
Table 6.2 where we include the number of features, instances, number of classes
and imbalance ratio.

6.2 Numerical results for piecewise linear clas-
sifier

In this section we present results obtained by our first proposed algorithm
presented in Chapter 5, using both the binary class and multi-class imbalanced
data sets. Before presenting these results we discuss two main issues related
to the application of the proposed algorithm. The first one is the choice of
the penalty parameter and the second one is the choice of the number of
hyperplanes and their distribution to separate classes.
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Table 6.1: Information on selected binary class datasets from Python library

Name Number of Features Number of Instances Imbalance Ratio
Ecoli 7 336 8.6 : 1

Optical_digits 64 5620 9.1 : 1
Satimage 36 6435 9.3 : 1

Pen_digits 16 10992 9.4 : 1
Abalone 10 4177 9.7 : 1

Sick_euthyroid 42 3163 9.8 : 1
Spectrometer 93 531 11 : 1
Car_eval_34 21 1728 12 : 1

Isolet 617 7797 12 : 1
Us_crime 100 1994 12 : 1
Yeast_ml8 103 2417 13 : 1

Scene 294 2407 13 : 1
Libras_move 90 360 14 : 1
Thyroid_sick 52 3772 15 : 1

Coil_2000 85 9822 16 : 1
Arrhythmia 278 452 17 : 1

Solar_flare_m0 32 1398 19 : 1
Oil 49 937 22 : 1

Car_eval_4 21 1728 26 : 1
Wine_quality 11 4898 26 : 1

letter_img 16 20000 26 : 1
yeast_me2 8 1484 28 : 1
ozone_level 72 2536 34 : 1

mammography 6 11183 42 : 1

Table 6.2: Description of multi-class imbalanced datasets

Dataset Number of Instances Number of Features Number of classes Imbalance Ratio
Ecoli 336 7 8 71.50
Arrhythmia 452 279 13 122.50
Balance 625 4 3 5.88
Yeast 1484 8 10 92.60
Car_eval_34 1728 6 4 18.62
Shuttle control 2175 9 5 853.00

6.2.1 The choice of the number of hyperplanes

The seperation of piecewise linear classifier depends on the pair (mx,mn),
where mx is the number of minimum functions under each maximum and mn

is the number of linear functions under each minimum. In the implementation
of normal piecewise linear classifer we restrict ourselves with the following set
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of hyperplane structure

{(1, 1), (2, 1), (3, 1), (4, 2)}.

This choice is reasonable as the larger number of linear functions may lead to
overfitting in most datasets. The use of the different number of linear functions
leads to the design of the different piecewise linear classifiers. In order to select
the right classifier for each dataset we use the validation set which constitute
20% of the training set.

6.2.2 The choice of the penalty parameter

First, we discuss how to select the penalty parameter in finding boundaries
between classes. For this purpose we consider Balance, Yeast, Ecoli and Ar-
rhythmia datasets. We select these datasets because the number of minority
classes in these datasets is different and this number varies from 1 to 8.

The choice of the penalty parameter may affect the final result. In this
paper, we consider two different approaches to choose this parameter. In the
first approach all minority classes have the same penalty parameter whereas
in the second approach this parameter depends on the number of points in
minority classes. In the case of the first approach we choose cp = 0, 1 and
5. In the second case we identify the minority class with smallest number of
points and assign to this class the penalty cp = 5. For other minority classes
the penalty parameter is defined as follows:

cjp = max

{
ns

nj

cp, 1

}
where ns is the number of points in the smallest minority class and nj is the
number of points in the j-th class. All results with the penalty parameter with
first approach are labeled as {(mx,mn), cp} and second approach are labeled
as {(mx,mn), cpf}. For example the configuration ((3,1),5) indicates that the
penalty parameter is 5 with mx and mn values are 3 and 1 respectively. The
configuration ((3,1),5f) indicates the similar setup as the previous configuration
with the exception of calculating penalty values. In this case, the smallest class
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is assigned the penalty value 5 and rest of the minority classes are assigned
fraction of this penalty value based on the number of instances for that class.

6.2.3 Results for binary class imbalanced datasets

We evaluate the performance of the proposed algorithm using above described
binary and multi-class real-world imbalanced datasets and compare its per-
formance with that of several mainstream classifiers such as k-NN, Random
Forest, SVM and Adaboost as well as with the Easy-Ensemble classifier devel-
oped specifically for solving supervised data classification problems in imbal-
anced datasets. Python implementations of k-NN, Random Forest, SVM and
Adaboost algorithms, available from [129], are used in experiments. The Easy-
Ensemble classifier is available from [127]. All these algorithms are applied by
default.

Table 6.3: Results for overall classification accuracy

Dataset Name KNN Random Forest SVM Adaboost PWL (1,1) PWL (2,1)
Ecoli 89.87 92.84 89.58 86.59 89.07 88.11

Optical_digits 99.41 97.10 90.14 97.46 94.16 96.49
Satimage 92.29 92.79 90.27 91.24 59.49 60.91

Pen_digits 99.79 99.30 90.40 98.37 93.32 98.75
Abalone 88.91 89.87 90.64 90.23 68.85 73.11

Sick_euthyroid 90.10 96.90 91.43 96.74 88.50 89.16
Spectrometer 96.99 97.74 91.53 97.18 97.00 96.80
Car_eval_34 90.80 86.26 80.46 93.46 92.36 90.74

Isolet 98.27 95.78 97.76 96.79 96.79 97.06
Us_crime 92.83 93.68 92.58 93.38 86.82 88.57
Yeast_ml8 92.47 92.59 92.64 91.11 65.21 72.53

Scene 92.52 92.40 92.65 90.40 77.77 83.71
Libras_move 91.44 92.40 93.34 94.72 93.78 93.78
Thyroid_sick 93.40 97.88 94.04 97.43 87.12 91.99

Coil_2000 93.58 92.86 94.02 93.87 68.87 71.12
Arrhythmia 94.25 94.91 94.47 96.46 86.79 86.79

Solar_flare_m0 94.39 91.09 95.10 90.95 69.91 73.33
Oil 95.52 92.20 95.63 94.66 73.43 86.02

Car_eval_4 96.41 95.66 91.43 95.08 92.36 90.74
Wine_quality 95.73 95.94 96.20 95.71 74.82 79.84
Letter_img 99.82 95.58 99.82 99.24 94.22 95.51
Yeast_me2 96.43 96.43 96.56 95.69 84.22 85.09
Ozone_level 97.04 96.89 97.12 96.53 85.88 87.98

Mammography 98.57 98.62 98.51 98.50 90.24 93.48

Table 6.3 presents the overall accuracy on selected binary datasets using
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four mainstream classifers and two configurations [(1,1) and (2,1)] of the piece-
wise linear classifiers. We observe that the overall accuracy is very good for
all the datasets and results are similar across different classifiers as well.

Table 6.4: Results on classification accuracy for minority class in binary class
datasets

Dataset Name KNN Random Forest SVM Adaboost PWL (1,1) PWL (2,1)
Ecoli 45.71 40.00 0.00 34.29 75.00 75.00

Optical Digits 95.31 70.40 0.00 82.49 92.07 92.43
Satimage 56.87 43.77 0.00 47.60 83.81 82.38

Pen Digits 98.96 93.46 0.00 88.25 92.64 97.92
Abalone 18.93 9.21 0.00 2.56 88.10 84.56

Sick Euthyroid 16.04 74.74 9.56 82.94 87.83 88.97
Spectrometer 71.11 80.00 0.00 73.33 68.00 68.00

Car Evaluation34 24.63 52.99 40.30 84.33 97.04 88.15
Isolet 90.17 48.17 75.83 75.83 83.15 81.98

Us Crime 28.67 30.00 1.33 43.33 70.97 58.06
Yeast ml8 2.25 0.00 0.00 2.25 42.22 28.89

Scene 6.21 5.08 0.00 11.30 34.44 22.22
Libras Movement 37.50 29.17 0.00 50.00 93.23 93.23

Thyroid Sick 12.99 71.00 3.46 77.49 85.96 87.23
COIL 2000 2.05 5.63 0.00 1.37 64.07 63.22
Arrythmia 0.00 8.00 0.00 68.00 43.33 43.33
Solar Flare 8.82 11.76 0.00 13.24 55.71 51.43

Oil 2.44 19.51 0.00 46.34 60.00 44.44
Car Evaluation 4 20.00 18.46 20.00 55.38 75.71 62.86

Wine quality 1.64 7.10 1.64 15.85 65.40 70.27
Letter Image 97.41 90.05 96.19 87.06 96.33 96.73
yeast_me2 13.73 11.76 0.00 21.57 70.91 70.91

Ozone Level 0.00 1.37 0.00 17.81 68.00 54.67
Mammography 53.08 53.46 46.54 51.15 83.40 84.15

As we observe in Table 6.4, the accuracy of minority classes for all main-
stream classifiers are significantly low compared to the overall accuracy. This
happens because of the trained model being biased towards the majority
classes. The results of the piecewise linear classifiers are comparatively better
than others.

The mainstream classifiers obtains a overall high accuracy by classifying
most of the test points into majority classes, leading into higher accuracy for
majority classes. This is reflected by the results presented on Table 6.5. This
table presents the accuracy of majority classes on the same datasets as the
previous results. We observe that accuracy of majority class is very high, due
to the bias of trained model towards majority classes.
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Table 6.5: Results on classification accuracy for majority class in binary class
datasets

Dataset Name KNN Random Forest SVM Adaboost PWL (1,1) PWL (2,1)
Ecoli 95.02 97.34 100 92.69 87.87 86.89

Optical Digits 99.86 99.88 100 99.09 94.30 96.84
Satimage 96.11 98.69 100 95.94 56.80 58.52

Pen Digits 99.88 99.96 100 99.45 93.32 98.76
Abalone 96.14 97.49 100 99.29 88.10 84.56

Sick Euthyroid 97.67 99.30 99.79 98.15 91.86 88.81
Spectrometer 99.38 99.38 100.00 99.18 98.16 97.96

Car Evaluation34 96.36 90.72 83.88 94.23 91.85 90.85
Isolet 98.94 99.71 99.58 98.54 97.83 98.22

Us Crime 98.05 98.64 100.00 97.45 87.86 90.84
Yeast ml8 99.64 99.87 100.00 97.95 66.96 75.94

Scene 99.37 99.69 100.00 96.68 80.98 88.37
Libras Movement 95.24 97.92 100.00 97.92 93.23 93.23

Thyroid Sick 98.64 99.72 99.94 98.73 86.99 92.10
COIL 2000 99.38 98.30 99.99 99.74 69.11 71.56
Arrythmia 99.77 100 100.00 98.13 88.14 88.14
Solar Flare 98.79 95.46 100.00 94.93 70.26 74.11

Oil 99.78 98.44 100.00 96.88 73.22 87.22
Car Evaluation 4 99.40 98.08 94.23 96.63 93.61 93.87

Wine quality 99.38 99.38 99.87 98.81 75.06 80.08
Letter Image 99.91 99.97 99.96 99.70 94.06 95.44
yeast_me2 99.37 99.72 100.00 98.33 84.39 85.29

Ozone Level 99.92 99.80 100.00 98.86 86.29 88.84
Mammography 99.65 99.82 99.74 99.62 90.35 93.65

Tables 6.6, 6.7 and 6.8 present precision, recall and F-measure for Ran-
dom forest, KNN, and Naive Bayes, respectively. As we saw higher accuracy
of majority classes and lower accuracy for minority classes which results in
high precision values and low recall values for these mainstream classifiers. Al-
though we obtain good overall accuracy, the poor precision value leads to poor
F-measure values, which shows the drawbacks of these mainstream classifiers.

In cyber security, minority classes are the representative of malicious ac-
tivities and success rate of detecting minority classes are critical in this area.
We improve the accuracy of minority classes by introducing penalty values
to push the separating hyperplane towards minority classes to include more
points from minority classes. This increases the accuracy of minority classes.

We apply our proposed method with several configurations on seven se-
lected datasets from the python library and the results are presented in Table
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Table 6.6: Accuracy, Precision, Recall and F-measure for Random Forest al-
gorithms

Dataset name Accuracy Precision Recall F-Measure
ecoli 92.86% 0.62 0.62 0.62

optical_digits 97.65% 0.97 0.78 0.87
satimage 93.29% 0.78 0.45 0.57

pen_digits 99.53% 1.00 0.95 0.97
abalone 88.42% 0.31 0.10 0.15

sick_euthyroid 97.09% 0.90 0.80 0.85
spectrometer 97.74% 0.75 1.00 0.86
car_eval_34 97.22% 0.95 0.66 0.78

isolet 95.44% 0.96 0.47 0.63
us_crime 93.59% 0.50 0.28 0.36
yeast_ml8 92.40% 0.00 0.00 0.00

scene 92.36% 0.00 0.00 0.00
libras_move 95.56% 1.00 0.43 0.60
thyroid_sick 97.77% 0.93 0.70 0.80

coil_2000 92.71% 0.17 0.05 0.08
arrhythmia 94.69% 0.00 0.00 0.00

solar_flare_m0 95.69% 0.20 0.08 0.12
oil 95.32% 0.29 0.25 0.27

car_eval_4 98.84% 0.88 0.64 0.74
wine_quality 96.57% 0.54 0.16 0.25
letter_img 99.70% 1.00 0.91 0.95
yeast_me2 97.57% 0.33 0.12 0.18
webpage 98.62% 0.81 0.66 0.73

ozone_level 95.90% 0.00 0.00 0.00
mammography 98.35% 0.82 0.41 0.55

6.9. We can see that adding penalty parameters to the minority classes im-
prove the accuracy for minority classes by a big margin. This is obtained by
sacrificing the accuracy of majority class accuracy, which results in decrease
in overall accuracy.

We summarize our results in the table 6.10. We can see that our proposed
method performs significantly better compared to the mainstream classifiers
and the conventional piecewise linear classifier. We also compared our results
with EasyEnsemble classifier, which a special classification method to deal
with imbalanced data. In some cases our method provides better results for
minority class accuracy than EasyEnsemble but our proposed method obtains
better accuracy in majority classes for all but except one dataset.
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Table 6.7: Accuracy, Precision, Recall and F-measure for KNN algorithms

Dataset name Accuracy Precision Recall F-Measure
ecoli 90.48% 0.50 0.62 0.56

optical_digits 99.57% 0.99 0.97 0.98
satimage 92.98% 0.65 0.62 0.63

pen_digits 99.89% 1.00 0.99 0.99
abalone 87.27% 0.29 0.16 0.20

sick_euthyroid 88.75% 0.35 0.14 0.20
spectrometer 98.50% 0.89 0.89 0.89
car_eval_34 96.76% 0.88 0.66 0.75

isolet 97.74% 0.89 0.83 0.86
us_crime 92.99% 0.43 0.31 0.36
yeast_ml8 92.73% 0.67 0.04 0.08

scene 92.52% 0.33 0.02 0.04
libras_move 96.67% 1.00 0.57 0.73
thyroid_sick 93.11% 0.41 0.15 0.22

coil_2000 93.32% 0.14 0.02 0.04
arrhythmia 94.69% 0.00 0.00 0.00

solar_flare_m0 96.55% 0.00 0.00 0.00
oil 94.89% 0.17 0.12 0.14

car_eval_4 98.38% 0.83 0.45 0.59
wine_quality 96.41% 0.44 0.09 0.15
letter_img 99.88% 0.98 0.98 0.98
yeast_me2 97.57% 0.33 0.12 0.18
webpage 98.45% 0.87 0.52 0.65

ozone_level 96.06% 0.00 0.00 0.00
mammography 98.35% 0.74 0.50 0.60

6.2.4 Results for multi-class imbalanced datasets

We tested four mainstream classifiers using six different multi-class datasets
and the results are presented in Table 6.11. Similar to binary class datasets,
in multiclass datasets mainstream classifers suffer from the same problem,
where the classifer’s training model becomes heavily biased towards majority
class and obtains accuracy for overall class by assigning most of the points
to majority classes. This leads to very low accuracy for minority classes. We
observe that the classes containing least number of points suffers most in terms
off accuracy. We also calculated the weighted overall accuracy by assigning
weights for minority classes. The low weighted overall accuracy indicates the
failure of mainstream classifiers detecting minority classes.
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Table 6.8: Accuracy, Precision, Recall and F-measure for Naive Bayes algo-
rithms

Dataset name Accuracy Precision Recall F-Measure
ecoli 69.05% 0.24 1.00 0.38

optical_digits 27.40% 0.12 0.98 0.21
satimage 81.73% 0.32 0.79 0.46

pen_digits 92.98% 0.67 0.54 0.60
abalone 73.68% 0.26 0.87 0.41

sick_euthyroid 38.69% 0.14 0.99 0.25
spectrometer 89.47% 0.37 0.78 0.50
car_eval_34 91.67% 0.47 1.00 0.64

isolet 88.15% 0.41 0.93 0.56
us_crime 86.77% 0.31 0.88 0.46
yeast_ml8 73.06% 0.07 0.22 0.11

scene 68.44% 0.16 0.77 0.26
libras_move 93.33% 0.57 0.57 0.57
thyroid_sick 39.87% 0.09 0.89 0.16

coil_2000 16.16% 0.07 0.97 0.12
arrhythmia 47.79% 0.07 0.67 0.12

solar_flare_m0 82.76% 0.14 0.75 0.23
oil 88.94% 0.15 0.50 0.24

car_eval_4 98.38% 0.61 1.00 0.76
wine_quality 94.78% 0.27 0.28 0.27
letter_img 96.06% 0.43 0.76 0.55
yeast_me2 19.41% 0.03 1.00 0.05
webpage 74.19% 0.10 0.98 0.17

ozone_level 66.88% 0.09 0.80 0.16
mammography 95.24% 0.30 0.69 0.41

We applied our proposed method with eight different configuration on the
same multiclass dataset. Results are presnted in Table 6.12 and 6.13. Our
method demonstrates significant improvement on accuracy for minority class.
Similar to binary datasets this is achieved by sacrificing accuracy in majority
classes. That is why although we got improvement on minority class accuracy,
the weighted overall accuracy remains similar as mainstream classifers. We
address this issue with our second proposed method.
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Table 6.9: Results on classification accuracy obtained by the piecewise linear
classifier in binary class datasets

Class Label Instances ((1,1),0) ((1,1),1) ((1,1),5) ((1,1),5f) ((2,1),0) ((2,1),1) ((2,1),5) ((2,1),5f)
Ecoli

Class 1 301 87.19 87.19 87.19 87.19 87.19 87.19 87.19 87.19
Class 2 35 85.71 85.71 85.71 85.71 88.57 88.57 88.57 88.57
Average 336 87.02 87.02 87.02 87.02 87.32 87.32 87.32 87.32

Abalone
Class 1 3786 66.67 66.67 66.67 66.67 71.87 71.87 71.87 71.87
Class 2 391 88.95 88.95 88.95 88.95 86.13 86.13 86.13 86.13
Average 4177 68.76 68.76 68.76 68.76 73.21 73.21 73.21 73.21

Spectrometer
Class 1 486 98.13 98.13 98.13 98.13 98.13 98.13 98.13 98.13
Class 2 45 75.56 75.56 75.56 75.56 80.00 80.00 80.00 80.00
Average 531 96.20 96.20 96.20 96.20 96.58 96.58 96.58 96.58

Us Crime
Class 1 1844 87.85 87.85 87.85 87.85 90.13 90.13 90.13 90.13
Class 2 150 73.33 73.33 73.33 73.33 57.33 57.33 57.33 57.33
Average 1994 86.76 86.76 86.76 86.76 87.66 87.66 87.66 87.66

Yeast_me2
Class 1 1433 84.15 84.15 84.15 84.15 84.78 84.78 84.78 84.78
Class 2 51 77.14 77.14 77.14 77.14 74.29 74.29 74.29 74.29
Average 1484 83.88 83.88 83.88 83.88 84.41 84.41 84.41 84.41

Mammography
Class 1 10923 90.44 90.44 90.44 90.44 93.77 93.77 93.77 93.77
Class 2 260 84.23 84.23 84.23 84.23 85.38 85.38 85.38 85.38
Average 11183 90.30 90.30 90.30 90.30 93.57 93.57 93.57 93.57

Isolet
Class 1 600 84.00 95.50 97.50 97.50 82.33 94.00 96.83 96.83
Class 2 7197 97.79 92.82 85.59 85.59 98.37 96.90 93.68 93.68
Average 7797 96.73 93.02 86.51 86.51 97.14 96.68 93.92 93.92
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Table 6.10: Classification accuracy for binary class datasets
Dataset Name KNN Random Forest SVM Adaboost Piecewise 1:1 Piecewise 2:1 Easy Ensemble

(Cross
Validation)

Easy Ensemble
(One Train-Test)

Piecewise (With Cost)

Minority Class Accuracy
Ecoli 45.71 40.00 0.00 34.29 75.00 75.00 91.43 87.50 87.19

Abalone 18.93 9.21 0.00 2.56 88.10 84.56 86.45 89.81 71.87
Spectrometer 71.11 80.00 0.00 73.33 68.00 68.00 93.33 100.00 98.13

Isolet 90.17 48.17 75.83 75.83 83.15 81.98 96.67 94.41 90.13
Us Crime 28.67 30.00 1.33 43.33 70.97 58.06 86.00 90.62 84.78

Yeast_me2 13.73 11.76 0.00 21.57 70.91 70.91 82.35 50.00 93.77
Mammography 53.08 53.46 46.54 51.15 83.40 84.15 86.92 89.71 96.83

Overall Accuracy
Ecoli 89.87 92.84 89.58 86.59 89.07 88.11 85.07 78.57 87.32

Abalone 88.91 89.87 90.64 90.23 68.85 73.11 73.09 73.01 73.21
Spectrometer 96.99 97.74 91.53 97.18 97.00 96.80 93.79 91.73 96.58

Isolet 98.27 95.78 97.76 96.79 96.79 97.06 93.74 94.36 87.66
Us_crime 92.83 93.68 92.58 93.38 86.82 88.57 82.30 81.56 84.41

Yeast_me2 96.43 96.43 96.56 95.69 84.22 85.09 81.47 74.12 93.57
Mammography 98.57 98.62 98.51 98.50 90.24 93.48 88.17 87.63 93.92

6.3 Numerical results for hybrid method

This section presents and discusses the results of our experiment applying
the second classifier - the hybrid method. We assigned variable penalties
for false-negative and false-positive results and calculated overall cost for the
classification. The failure to detect threats (False-negative) is assigned more
penalty than misclassifying a benign sample (False-positive). True-negative
and true-positive results do not add any cost. A higher penalty is assigned
for false-negative prediction. This value can be set based on the importance
of a particular classes in a specific problem domain and will be reflected in
the overall cost. For example if we consider failing to detect a threat is ten
times more harmful than failing to detect a normal activity, then we can set
the penalty (P ) to 10. For our experiment we used P = 10 and P = 50. Table
6.14 shows the cost matrix used in our experiment.

Classification accuracy of conventional classifiers is presented in Table 6.15.
Results show that the four mainstream classifiers have very high accuracy for
the majority classes and achieve a good overall accuracy. But the performance
of classifiers on minority classes is very poor compared to the performance
of classifier on majority classes. Support Vector Machine (SVM) classifier
provides comparatively better results among these four mainstream classifiers.

Table 6.16 shows the accuracy of SMOTE, RUS and our proposed methods
combined with the previously mentioned four classifiers. RUS obtains higher
accuracy for minority classes in many cases, but it has a lower accuracy rate
for majority class. As majority class has large number of points, so small drop
in the majority class. Our proposed method has higher accuracy for majority
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Table 6.11: Results on classification accuracy by other algorithms in multi-
class datasets

Class Label #Instances Weight KNN Random Forest SVM Adaboost
Data set: balance

Class: 0 49 5.0 10.2 6.12 0.0 24.49
Class: 1 288 1.0 86.11 84.03 95.49 91.32
Class: 2 288 1.0 84.38 80.9 95.83 93.06
Average 625 N/A 79.36 76.48 88.16 86.88

Weighted Average 625 N/A 62.85 59.68 67.11 71.99
Data set: yeast

Class: 0 463 1.0 60.69 58.1 88.34 79.05
Class: 1 5 5.0 100.0 20.0 0.0 60.0
Class: 2 35 5.0 54.29 57.14 0.0 57.14
Class: 3 44 5.0 72.73 65.91 0.0 63.64
Class: 4 51 5.0 27.45 21.57 0.0 9.8
Class: 5 163 1.0 72.39 80.37 3.07 72.39
Class: 6 244 1.0 53.69 51.64 49.18 2.87
Class: 7 429 1.0 44.29 53.15 20.05 17.72
Class: 8 20 5.0 55.0 20.0 15.0 20.0
Class: 9 30 5.0 0.0 3.33 0.0 0.0
Average 1484 N/A 53.98 55.26 41.98 42.25

Weighted Average 1484 N/A 50.58 48.74 28.55 38.98
Data set: car_eval_34

Class: 0 384 1.0 34.38 53.12 48.96 63.54
Class: 1 69 5.0 15.94 55.07 31.88 40.58
Class: 2 1210 1.0 78.76 88.1 88.26 79.26
Class: 3 65 5.0 23.08 76.92 80.0 40.0
Average 1728 N/A 64.29 78.59 76.97 72.74

Weighted Average 1728 N/A 53.67 75.53 71.82 65.06
Data set: ecoli

Class: 0 143 1.0 98.6 98.6 100.0 54.55
Class: 1 77 1.0 77.92 84.42 89.61 85.71
Class: 2 2 5.0 0.0 0.0 0.0 0.0
Class: 3 2 5.0 0.0 0.0 0.0 0.0
Class: 4 35 1.0 48.57 37.14 0.0 0.0
Class: 5 20 5.0 80.0 70.0 0.0 40.0
Class: 6 5 5.0 80.0 80.0 0.0 20.0
Class: 7 52 1.0 88.46 84.62 46.15 44.23
Average 336 N/A 84.52 83.63 70.24 52.38

Weighted Average 336 N/A 80.53 78.1 52.21 46.9
Data set: shuttle

Class: 1 1706 1.0 99.71 100.0 100.0 92.15
Class: 2 2 5.0 0.0 50.0 0.0 0.0
Class: 3 6 5.0 0.0 50.0 0.0 100.0
Class: 4 338 1.0 97.63 99.41 12.72 99.11
Class: 5 123 5.0 97.56 100.0 4.07 100.0
Average 2175 N/A 98.9 99.72 80.64 93.61

Weighted Average 2175 N/A 97.48 99.18 65.73 94.55
Data set: arrhythmia

Class: 1 245 1.0 98.37 95.51 100.0 98.37
Class: 2 44 1.0 15.91 50.0 0.0 0.0
Class: 3 15 5.0 40.0 66.67 0.0 0.0
Class: 4 15 5.0 6.67 26.67 0.0 0.0
Class: 5 13 5.0 0.0 15.38 0.0 0.0
Class: 6 25 1.0 0.0 0.0 0.0 0.0
Class: 7 3 5.0 0.0 0.0 0.0 0.0
Class: 8 2 5.0 0.0 0.0 0.0 0.0
Class: 9 9 5.0 0.0 55.56 0.0 44.44
Class: 10 50 1.0 12.0 40.0 0.0 46.0
Class: 14 4 5.0 0.0 0.0 0.0 0.0
Class: 15 5 5.0 0.0 0.0 0.0 0.0
Class: 16 22 1.0 0.0 0.0 0.0 0.0
Average 452 N/A 57.74 65.71 54.2 59.29

Weighted Average 452 N/A 40.36 53.21 34.22 39.66
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Table 6.12: Results on classification accuracy obtained by the piecewise linear
classifier in multi-class datasets

Class Label Instances ((1,1),0) ((1,1),1) ((1,1),5) ((1,1),5f) ((2,1),0) ((2,1),1) ((2,1),5) ((2,1),5f)
Balance

Class 1 49 55.11 73.56 92.00 92.00 90.00 92.00 92.00 92.00
Class 2 288 92.70 91.66 90.96 90.96 90.63 90.97 90.63 90.63
Class 3 288 91.69 91.69 91.33 91.33 91.69 91.69 91.69 91.69
Average 625 89.29 90.25 91.20 91.20 91.06 91.38 91.22 91.22

Weighted Average 821 81.13 86.26 91.38 91.38 90.79 91.51 91.39 91.39
Yeast

Class 1 244 59.40 59.40 56.93 59.40 63.87 62.24 54.87 59.79
Class 2 429 42.68 41.51 39.42 41.51 46.65 46.88 43.62 46.65
Class 3 463 42.33 39.09 24.62 39.09 40.84 35.43 26.37 34.13
Class 4 44 72.50 72.50 63.33 72.50 65.83 68.33 63.61 68.33
Class 5 35 60.00 57.14 54.29 57.14 65.71 57.14 68.57 57.14
Class 6 51 36.62 43.12 42.08 43.12 42.86 47.53 41.30 47.53
Class 7 163 81.62 79.77 74.92 79.77 81.02 79.20 73.02 79.84
Class 8 30 20.00 20.00 36.67 20.00 16.67 16.67 23.33 16.67
Class 9 20 55.00 55.00 55.00 55.00 55.00 55.00 50.00 45.00
Class 10 5 60.00 40.00 60.00 60.00 60.00 40.00 60.00 60.00
Average 1484 50.48 48.99 43.00 49.06 51.97 49.81 44.16 48.94

Weighted Average 2224 50.22 49.38 45.58 49.62 51.57 49.94 46.20 49.20
Car_Eval_34

Class 1 1210 50.83 47.77 36.61 36.61 35.70 25.95 30.25 30.25
Class 2 384 15.68 8.87 0.00 0.00 59.86 51.17 36.72 36.72
Class 3 65 75.38 75.38 73.85 73.85 40.00 20.00 46.15 46.15
Class 4 69 25.93 61.10 95.71 95.71 27.14 44.07 54.40 54.40
Average 1728 42.95 40.69 32.24 32.24 40.92 32.04 33.28 33.28

Weighted Average 2264 44.63 47.15 44.76 44.76 39.21 32.06 37.42 37.42
ecoli

Class 1 143 93.04 93.04 93.04 93.04 93.05 93.05 93.74 93.74
Class 2 77 68.79 68.79 68.79 68.79 60.90 60.90 62.18 62.18
Class 3 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 4 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 5 35 68.46 68.46 68.46 68.46 74.35 74.35 74.35 74.35
Class 6 20 80.00 80.00 80.00 80.00 75.00 75.00 75.00 75.00
Class 7 5 83.33 83.33 100.00 100.00 66.67 66.67 100.00 100.00
Class 8 52 88.46 88.46 88.46 88.46 84.62 84.62 84.62 84.62
Average 336 82.13 82.13 82.43 82.43 79.75 79.75 80.93 80.93

Weighted Average 452 78.73 78.73 79.82 79.82 75.22 75.22 77.83 77.83
shuttle

Class 1 1706 97.60 97.54 97.54 97.54 98.89 98.89 98.89 98.89
Class 2 338 96.15 95.86 96.15 96.15 99.70 99.70 99.70 99.70
Class 3 123 95.94 89.38 82.83 88.56 98.37 99.18 98.36 98.36
Class 4 6 83.33 83.33 50.00 83.33 83.33 83.33 50.00 83.33
Class 5 2 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00
Average 2175 97.20 96.74 96.32 96.74 98.90 98.94 98.80 98.90

Weighted Average 2699 96.70 95.14 93.33 94.99 98.52 98.70 98.15 98.52
arrhythmia

Class 1 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 2 25 8.33 8.33 8.33 8.33 8.33 8.33 8.33 8.33
Class 3 50 58.00 58.00 58.00 58.00 58.00 58.00 58.00 58.00
Class 4 245 66.94 65.71 67.34 66.11 66.94 65.71 67.34 66.11
Class 5 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 6 4 50.00 50.00 50.00 25.00 50.00 50.00 50.00 25.00
Class 7 15 80.36 80.36 45.54 74.11 80.36 80.36 45.54 74.11
Class 8 22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 9 44 34.09 36.36 38.64 36.36 34.09 36.36 38.64 36.36
Class 10 15 75.00 67.86 67.86 67.86 75.00 67.86 67.86 67.86
Class 11 13 33.33 25.00 39.29 25.00 33.33 25.00 39.29 25.00
Class 12 9 42.50 32.50 62.50 45.00 42.50 32.50 62.50 45.00
Class 13 5 0.00 16.67 0.00 16.67 0.00 16.67 0.00 16.67
Average 452 53.81 52.90 53.76 52.91 53.81 52.90 53.76 52.91

Weighted Average 716 52.65 50.89 50.67 50.42 52.65 50.89 50.67 50.42
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Table 6.13: Results on classification accuracy obtained by the piecewise linear
classifier in multi-class datasets (cont.)

Class Label Instances ((3,1),0) ((3,1),1) ((3,1),5) ((3,1),5f) ((4,2),0) ((4,2),1) ((4,2),5) ((4,2),5f)
Balance

Class 1 49 74.00 88.00 88.00 88.00 92.00 92.00 92.00 92.00
Class 2 288 92.01 90.63 89.59 89.59 97.56 97.56 96.87 96.87
Class 3 288 92.03 92.03 92.03 92.03 92.71 91.33 92.38 92.38
Average 625 90.58 91.06 90.58 90.58 94.88 94.25 94.41 94.41

Weighted Average 821 86.57 90.31 89.94 89.94 94.18 93.69 93.82 93.82
yeast

Class 1 244 57.35 55.71 51.60 55.31 63.89 61.42 58.15 60.19
Class 2 429 48.98 48.51 46.87 48.75 46.88 45.72 43.62 45.95
Class 3 463 42.75 40.79 27.39 41.01 46.45 43.89 35.42 41.96
Class 4 44 63.61 59.17 61.39 59.17 72.78 68.06 61.11 68.06
Class 5 35 62.86 62.86 60.00 62.86 57.14 60.00 60.00 62.86
Class 6 51 46.75 46.75 50.65 46.75 45.71 42.08 38.44 42.08
Class 7 163 79.73 79.16 73.02 79.80 77.30 74.88 71.09 74.88
Class 8 30 10.00 16.67 23.33 16.67 20.00 20.00 6.67 20.00
Class 9 20 55.00 55.00 45.00 50.00 40.00 40.00 45.00 40.00
Class 10 5 60.00 40.00 80.00 60.00 80.00 80.00 80.00 80.00
Average 1484 51.82 50.67 44.87 50.82 53.38 51.38 46.64 50.71

Weighted Average 2224 50.93 49.99 46.68 50.10 52.50 50.66 46.04 50.39
car_eval_34

Class 1 1210 39.50 37.44 37.69 36.20 45.21 44.96 37.85 45.12
Class 2 384 72.61 76.49 54.41 62.46 64.03 62.20 43.23 50.24
Class 3 65 29.23 20.00 40.00 38.46 20.00 26.15 58.46 56.92
Class 4 69 62.86 69.89 69.89 71.43 49.23 63.74 54.62 57.47
Average 1728 47.39 46.75 42.77 43.52 48.62 48.85 40.52 47.23

Weighted Average 2264 47.16 46.49 45.74 46.31 45.44 48.09 44.37 49.66
ecoli

Class 1 143 93.74 93.74 94.43 94.43 91.61 90.91 90.91 90.22
Class 2 77 63.53 63.53 64.81 64.81 67.48 70.04 68.76 70.04
Class 3 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 4 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 5 35 62.58 62.58 62.58 62.58 56.86 56.86 59.64 59.64
Class 6 20 75.00 75.00 75.00 75.00 75.00 85.00 80.00 85.00
Class 7 5 100.00 100.00 100.00 100.00 66.67 66.67 66.67 66.67
Class 8 52 86.54 82.69 84.62 84.62 82.69 80.77 82.69 80.77
Average 336 80.33 79.73 80.61 80.61 78.53 79.13 79.13 79.13

Weighted Average 452 77.38 76.94 77.59 77.59 74.30 76.55 75.65 76.55
shuttle

Class 1 1706 99.53 99.53 99.47 99.53 99.71 99.65 99.71 99.65
Class 2 338 99.70 99.70 99.70 99.70 99.70 100.00 99.70 100.00
Class 3 123 98.37 99.18 98.36 98.36 97.55 97.55 97.55 97.55
Class 4 6 83.33 83.33 50.00 83.33 50.00 66.67 50.00 66.67
Class 5 2 50.00 50.00 50.00 50.00 0.00 0.00 0.00 0.00
Average 2175 99.40 99.45 99.26 99.40 99.36 99.40 99.36 99.40

Weighted Average 2699 98.92 99.11 98.52 98.92 98.30 98.48 98.30 98.48
arrhythmia

Class 1 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 2 25 8.33 8.33 8.33 8.33 4.17 4.17 4.17 4.17
Class 3 50 58.00 58.00 58.00 58.00 52.00 50.00 54.00 50.00
Class 4 245 66.94 65.71 67.34 66.11 74.70 75.10 75.51 75.92
Class 5 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Class 6 4 50.00 50.00 50.00 25.00 50.00 50.00 50.00 50.00
Class 7 15 80.36 80.36 45.54 74.11 79.46 93.75 93.75 93.75
Class 8 22 0.00 0.00 0.00 0.00 4.55 9.09 4.55 9.09
Class 9 44 34.09 36.36 38.64 36.36 40.91 43.18 40.91 38.64
Class 10 15 75.00 67.86 67.86 67.86 74.11 66.96 60.71 66.96
Class 11 13 33.33 25.00 39.29 25.00 39.29 33.33 33.33 33.33
Class 12 9 42.50 32.50 62.50 45.00 70.00 22.50 55.00 22.50
Class 13 5 0.00 16.67 0.00 16.67 16.67 0.00 0.00 0.00
Average 452 53.81 52.90 53.76 52.91 58.87 58.20 58.87 58.21

Weighted Average 716 52.65 50.89 50.67 50.42 57.96 54.81 56.36 54.82
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Table 6.14: Cost matrix

prediction y = 1 prediction y = 0

label h(x) = 1 C1,1 = 0 C0,1 = P

label h(x) = 0 C1,0 = 1 C0,0 = 0
*0 = Clean Sample and 1 = Infected Sample

Table 6.15: Classification accuracy of mainstream classifiers

Dataset Class Rnd. Forest KNN Adaboost SVM

Us-
Crime

Majority 98.92 98.92 97.29 99.19
Minority 30.00 26.67 43.33 36.67
Overall 93.73 93.48 93.23 94.49

Ecoli
Majority 98.36 96.72 96.72 96.72
Minority 14.29 85.71 28.57 85.71
Overall 89.71 95.59 89.71 95.59

Libras
Move

Majority 100.00 100.00 100.00 100.00
Minority 20.00 40.00 80.00 80.00
Overall 94.44 95.83 98.61 98.61

classes than RUS in most of the cases and it improves the accuracy on minority
classes compared to conventional classifying methods. SMOTE provides better
accuracy for the majority class but the performance on minority class is worse
than both of RUS and our proposed method.

We calculated costs for all our experiment for both P = 10 and P = 50

and the results are presented in Table 6.17. For all of the cases penalty of
misclassifying majority class is set to 1. From the results we can observe that,
the cost for mainstream classifier is significantly high for most of the cases.
The hybrid method achieved lowest cost for some of the cases and for other
cases it provides a competitive results but not the lowest of all. The hybrid
method obtains a better accuracy for minority classes for those cases, but the
classifying accuracy of majority suffers more than other methods resulting in
a higher cost. This suggests the scope of improvement of our proposed hybrid
method to obtain a better classifying accuracy for minority classes without
sacrificing too much in majority classes.
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Table 6.16: Classification accuracy with RUS, SMOTE and the proposed hy-
brid method

Dataset Class Rnd. Forest KNN Adaboost SVM
Applying Random Undersampling (RUS)

Us
Crime

Majority 81.30 80.22 80.49 82.38
Minority 86.67 93.33 83.33 93.33
Overall 81.70 81.20 80.70 83.21

Ecoli
Majority 83.61 78.69 83.61 85.25
Minority 57.14 100.00 71.43 85.71
Overall 80.88 80.88 82.35 85.29

Libras
Move

Majority 88.06 91.04 71.64 95.52
Minority 100.00 100.00 80.00 100.00
Overall 94.44 91.67 72.22 95.83

Applying SMOTE

Us-
Crime

Majority 94.04 82.11 91.06 90.24
Minority 63.33 80.00 60.00 83.33
Overall 91.73 81.95 88.72 89.72

Ecoli
Majority 95.08 91.80 93.44 90.16
Minority 85.71 85.71 71.43 85.71
Overall 94.12 91.18 91.18 89.71

Libras
Move

Majority 100.00 95.52 100.00 97.01
Minority 60.00 100.00 80.00 80.00
Overall 97.22 95.83 98.61 95.83

Applying the hybrid method

Us-
Crime

Majority 89.70 87.26 83.74 87.80
Minority 73.33 76.67 83.33 90.00
Overall 88.47 86.47 83.71 87.97

Ecoli
Majority 95.08 91.80 86.89 93.44
Minority 71.43 85.71 57.14 85.71
Overall 92.65 91.18 83.82 92.65

Libras
Move

Majority 94.03 86.57 85.07 92.54
Minority 80.00 100.00 100.00 100.00
Overall 93.06 87.50 98.61 93.06
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Table 6.17: Cost for various classification methods including the proposed
hybrid method

Dataset Penalty Rnd. Forest KNN Adaboost SVM
Cost for conventional methods

Us-
Crime

P = 10 214 224 180 193
P = 50 1054 1104 860 953

Ecoli P = 10 61 12 52 12
P = 50 301 52 252 52

Libras
Move

P = 10 40 30 10 10
P = 50 200 150 50 50

Cost for RUS
Us-
Crime

P = 10 109 93 122 85
P = 50 269 173 322 165

Ecoli P = 10 40 13 30 19
P = 50 160 13 110 59

Libras
Move

P = 10 8 6 29 3
P = 50 8 6 69 3

Cost for SMOTE
Us-
Crime

P = 10 132 126 153 86
P = 50 572 366 633 286

Ecoli P = 10 13 15 24 16
P = 50 53 55 104 56

Libras
Move

P = 10 20 3 10 12
P = 50 100 3 50 52

Cost for the hybrid method
Us-
Crime

P = 10 118 117 110 75
P = 50 438 397 310 195

Ecoli P = 10 23 15 38 14
P = 50 103 55 158 54

Libras
Move

P = 10 14 9 10 5
P = 50 54 9 10 5
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6.4 Conclusion

In this chapter we presented results from both of our proposed methods using
several publicly available dataset. The results prove superiority of our methods
over mainstream classifier in terms of achieving higher accuracy for minority
classes in an imbalanced dataset. Our first method obtains these results by
sacrificing accuracy of majority classes. We overcome this limitation in our
second method using restricted undersampling. This method obtains better
accuracy in minority classes over mainstream classes without sacrificing too
much accuracy in majority classes.



Chapter 7

Application of proposed
methods in internet security

In this chapter we discuss the importance of machine learning in cyber security
and present general architecture for implementing both of our proposed classi-
fication method introduced in Chapter 4 and Chapter 5. We also present some
numerical results applying our proposed methods using our own generated
dataset and five publicly available datasets related to cyber security.

7.1 Introduction

Machine learning techniques are used in various areas of cybersecurity. These
techniques have been applied for malware detection, anomaly detection, net-
work traffic monitoring, generating security alert and many more. Cyber se-
curity landscape is heavily influenced by machine learning in recent years.
Thousands of new variants of cyber attacks are being introduced every hour
and traditional signature based detection solution are unable keep up with
the increasing number of attacks. With the help of advanced sophisticated
technique, some of the new malware can bypass end-user’s detection mecha-
nism. Machine learning based solutions are becoming more effective as it has
the capability of detecting new samples based on analyzing previously trained
patterns.

113
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We developed two classification methods in earlier chapters which can deal
with imbalanced datasets. As real-world security datasets are often imbalanced
due to having a smaller number of infected samples compared to clean samples,
these methods can be applied in cyber security domain.

7.2 Architecture for implementing proposed al-
gorithms

We propose a one-stop solution by implementing our classification algorithms
at server side. This approach allows the solution to be available for every user
of a particular organization. To apply a machine learning based algorithm,
a training model is generated using training data and saved in the server. A
new observation is tested using the previously trained model and based on
the prediction a decision is made. We propose two different architectures for
our proposed classification algorithms to apply them to solve cyber security
problems.
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Figure 7.1: Implementation architecture with one training model.

7.2.1 Architecture for the first proposed method

Our first method is implemented with a single trained model. First, a clas-
sification model is trained with our proposed piecewise linear classifier for
imbalanced data and stored in the server.

In the first phase of testing, we extract similar features as the training
dataset from the input sample and the collection of features are sent back
to the server for classification. The server then used previously trained model
to predict the nature of the input sample. If the provided sample is classified
as clean sample, then the content is allowed to execute further, otherwise it is
blocked and warning signal is generated. Figure 7.1 presents the flow chart of
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our implementation architecture for the first method.

7.2.2 Architecture for second proposed method

For our second method, we train multiple models for one training data. In the
training phase, the input dataset is categorized into multiple clusters and a
training model is generated for each clusters.

Similar to our first architecture, the features from test input is extracted
and sent back to the server. The distance between the testing point and
the centres for each cluster is calculated and the closest cluster is selected
for classifying the input sample. Depending on the cluster type, appropriate
classification method is applied using the training model for the representative
cluster. Figure 7.2 presents the proposed architecture for our second method.
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Figure 7.2: Implementation architecture with multiple training model.

7.3 Dataset description

We applied our proposed methods on six datasets in the cybersecurity domain.
Five of these datasets are publicly available dataset including the categories of
internet traffic analysis, mobile malware, fraudulent credit card transfer and
spam emails. We also tested the methods with our own generated dataset,
that was created by simulating web inject using google chrome extension.
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7.3.1 NSL-KDD dataset

This dataset contains the information about internet traffic observed by an
intrusion detection network. This is an improvement over and older dataset
named KDD’99. This dataset removed the redundant records from the train-
ing and test sets. Each sample points in the dataset contains 41 traffic input
features, one label and one last feature indicating the difficulty level of predic-
tion for that input sample. The class label is a text file containing the name
of the attack or the word ”normal” for a clean sample. We converted the class
label into numeric value as well by encoding the label. There are four classes
of attacks are listed in the dataset, they are: Denial of Service (DoS), Probe,
User to Root(U2R), and Remote to Local (R2L).

There are four sub data sets:

• KDDTest+

• KDDTest-21 (subset of KDDTest+)

• KDDTrain+

• KDDTrain+_20Percent (subsets of the KDDTrain+)

KDDTrain+ is the main train dataset and KDDTest+ is the main test dataset.
The subset KDDTest-21 is obtained by removing the most difficult traffic
records from the main test dataset. The KDDTrain+_20Percent is obtained
by selecting 20% of the entire train dataset. These two subsets do not contain
any points that are not present in main train and test datasets. We conduct
our experiment by selecting one target attack sample and all normal sam-
ples from both train and test datasets, which makes it a binary imbalanced
dataset. This subset contains 77054 clean samples and 737 attack samples,
with an imbalanced ratio of 104.55.

Although this dataset is widely used by researchers, it is not a perfect rep-
resentative of real network scenario. As network traffic, operating system,
applications and attack behaviour has changed over time, this old dataset be-
came outdated in modern era. To protect the integrity and continuity of a
business, an enterprise often does not want to disclose their network data,
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which makes it difficult to create a real-world dataset for intrusion detection
system (IDS). To overcome these limitation, a synthetic realistic dataset is
proposed by Haider et al. [130]. They evaluated the realism of existing IDS
dataset using fuzzy logic system based metric and the dataset was generated
based on this metric.

7.3.2 Credit card dataset

This dataset is obtained by collecting credit card transaction information oc-
curred in two days in September 2013 by European cardholders. Among all the
transactions, 492 were fraudulent transaction and 284315 normal transaction.
The dataset is highly imbalanced with imbalance ratio of 577.88.

The dataset is processed so that all input variables contain numeric values.
PCA transformation is used on all features except two, (Time and Amount) to
convert all inputs into numeric values. There are thirty features for each data
point. The features are labelled as V1,V2 …V28, Time, and Ammount. Actual
feature labels and background information about the data is not provided
with the dataset due to privacy concern. These information is not relevant for
classification process. There are two labels for the class: 0 and 1. The fraud
transaction are labelled as 1 and normal transaction is represented with 0.

7.3.3 Drebin

The Drebin dataset is designed to experiment with android malware [131, 132].
The dataset is created by collecting samples in the period of August 2010 to
October 2012 and it was made public for both academia and industry upon
requesting the access to the authors. We used Drebin dataset for malware de-
tection which can be collected by requesting the access from the authors. The
Drebin dataset features are generated from 129013 Android apk files. Among
these samples 123453 are benign applications and 5560 samples are malware
of different families, which makes this an imbalanced dataset. Eight different
types of information is collected from each samples. The categories are: Hard-
ware components, Requested permissions, App components, Filtered intents,
Restricted API calls, Used permissions, Suspicious API calls and Network ad-
dresses. App components have four sub categories (activities, services, content
providers and broadcast receivers). There are around 545,000 unique values
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for these 11 categories and the original authors used each value as a feature,
which creates a very high dimensional dataset, which is not suitable for real
time detection. Instead of these unique values, we used the categories as fea-
tures and counted each one’s number of occurrences as the feature value. This
reduces the number of features to 11.

7.3.4 Spambase

For spam detection we used Spambase dataset, which is available at UCI repos-
itory. Spambase dataset contains 2788 clean and 1813 spam email samples.
To create a more imbalanced situation we used all normal emails and a first
200 spam samples. The collection of spam e-mails came from our postmaster
and individuals who had filed spam. The collection of non-spam e-mails came
from filed work and personal e-mails.

7.3.5 NB-15

The raw network packets of the UNSW-NB 15 dataset was created by the IXIA
PerfectStorm tool in the Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) for generating a hybrid of real modern normal activities and
synthetic contemporary attack behaviours.

Tcpdump tool is utilised to capture 100 GB of the raw traffic (e.g., Pcap
files). This dataset has nine types of attacks, namely, Fuzzers, Analysis, Back-
doors, DoS, Exploits, Generic, Reconnaissance, Shellcode and Worms. The
Argus, Bro-IDS tools are used and twelve algorithms are developed to gen-
erate totally 49 features with the class label. The number of records in the
training set is 175,341 records and the testing set is 82,332 records from the
different types of attacks and normal activities.

NB-15 is a relatively modern dataset compared to other datasets used in
our experiment. It uses nine modern attack types and realistic normal traffic
to generate the dataset. One of the problem of this dataset is that, it does
not contain any attack related to cloud computing, which is an essential part
of the most web based solution now-a-days. It also contains a large number of
duplicate records in training set [133].
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7.3.6 User generated dataset

We created one dataset by simulating web injection using developed a cus-
tomized google chrome extension. In practical scenario, number of infected
instances are very low compared to the number of clean instances. This cre-
ates an imbalanced dataset for training the machine learning techniques. We
generated an imbalanced dataset by collecting features from 793 web pages and
among them 693 pages were clean, and rest 100 pages contains injection. A
reduced size dataset was generated which contains 307 clean and 100 infected
samples.

7.4 Experimental setup

In this section we present the numerical results of our first method on the
datasets described above. The results prove the consistency of our proposed
algorithms. We observe significant improvements of minority class accuracy
by adding the penalty parameter. For obtaining the optimal results for second
proposed algorithm various parameters are needed to be set and it varies from
dataset to dataset. Finding the optimal parameters are challenging task and
further research can be done to select the proper parameters.

We compared the performance of four mainstream classifiers with our pro-
posed methods. A python machine learning library named “scikit-learn” is
used to implement the mainstream classification models. The proposed piece-
wise linear classifier for imbalanced datasets is implemented in Fortran 77 and
compiled using freely available “gfortran” compiler. The second algorithm, the
hybrid algorithm, is implemented in python. We used one training and one
test sets to calculate accuracy of different methods. 20% of each class is used
for testing and rest is used for training purpose. Various penalty parameters
are used for our first method and we present results of three different penalty
values applying on two datasets.
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7.5 Numerical results

We applied the piecewise linear classifier with various penalty parameter to
obtain higher accuracy for minority class. Higher penalty value results in
higher accuracy for minority classes. It comes at a price of sacrificing accuracy
in majority class. Table 7.1 shows the results with various penalty values on
creditcard and spambase dataset.

Table 7.1: Classification accuracy for the piecewise linear classier

Dataset Class No penalty Penalty=1 Penalty=2 Penalty=3

Creditcard
Minority 83.84 88.89 91.92 89.90
Majority 99.17 96.22 91.82 93.68
Overall 99.14 96.21 91.82 93.67

Spambase
Minority 85.15 94.06 95.05 92.08
Majority 84.77 72.94 63.44 54.30
Overall 84.83 76.18 68.29 60.09

The results show that increasing the penalty values leads to increase of ac-
curacy for minority class. Applying higher penalty value pushes the separating
boundary of the minority class further apart to include more minority points
inside it. This results in acquiring majority points inside the minority area
and decrease the accuracy of the majority class. Our second proposed method
address this issue.

Table 7.2 compares the results of our proposed method with four other
mainstream classifiers. We can observe that in all cases the proposed piecewise
obtains a higher accuracy for minority classes. The cost for achieving this
is a drop in accuracy of majority classes which is reflected in the results.
The subset of NSL-KDD dataset that we used in our experiment has a very
clear separating boundary and there was no room to improve the classification
accuracy. Performance of mainstream classifiers and our proposed methods
are very similar for this dataset. For our own generated dataset the results
obtained by our method was not the best suitable solution. We obtain the
highest classification accuracy in minority class, but it suffers the classification
accuracy of majority classes by a big margin.

Table 7.3 presents results obtained using the hybrid classification algorithm
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Table 7.2: Comparison of mainstream classifiers with our first proposed
method

Dataset Class KNN Rnd. Forest SVM Adaboost Proposed

Creditcard
Minority 7.14 80.61 4.08 69.39 91.92
Majority 100.0 99.99 100.0 99.96 91.82
Overall 99.84 99.95 99.83 99.91 91.82

Spambase
Minority 36.0 74.0 28.0 72.0 94.06
Majority 95.52 99.46 99.28 98.03 72.94
Overall 86.47 95.59 88.45 94.07 76.18

Drebin
Minority 77.07 80.04 67.81 35.88 86.94
Majority 99.18 99.71 99.81 99.33 86.68
Overall 98.23 98.86 98.43 96.6 86.47

NB-15
Minority 75.82 58.46 71.37 59.83 80.78
Majority 97.78 94.47 97.25 95.11 88.48
Overall 87.91 78.28 85.62 75.69 88.27

NSL-KDD*
Minority 92.52 100.0 55.78 100.0 99.32
Majority 99.96 100.0 100.0 100.0 99.81
Overall 99.89 100.0 99.58 100.0 99.80

Generated
Minority 20.0 75.0 25.0 75.0 85.71
Majority 97.12 98.56 99.28 94.96 23.74
Overall 99.89 100.0 99.58 100.0 99.80
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introduced in Chapter 5. Note that any general purposed classifier can be
used as a part of this algorithm. We use k-NN, Random Forest, SVM and
Adaboost classifiers. The use of the hybrid algorithm allows to apply these
classifiers locally, not globally to the whole dataset. This way we can improve
the classification accuracy for minority classes without sacrificing too much on
classification accuracy for majority classes.

Here we present results with only Spambase dataset as results with other
datasets demonstrate the similar trend.

One can see from results given in Table 7.3 that in all cases the use of the
hybrid algorithm significantly improves classification accuracy for the minority
class. However, this improvement in the case of Random Forest and Adaboost
algorithms does not lead to much worsening of the classification accuracy for
the majority class.

Table 7.3: Comparison of mainstream classifiers with and without applying
the hybrid method on Spambase dataset

Class KNN Rnd. Forest SVM Adaboost
Without applying hybrid method

Minority 36.0 74.0 28.0 72.0
Majority 95.52 99.46 99.28 98.03
Overall 86.47 95.59 88.45 94.07

After applying hybrid method
Minority 68.90 88.81 65.89 83.36
Majority 66.00 85.50 62.50 91.00
Overall 68.71 88.59 65.66 83.87

7.6 Conclusion

In this chapter we presented general architecture for implementing our pro-
posed methods in detection of cyber threats. Both of our approach focuses
on server-side implementation using pre-trained model. Our first method uses
one training model and second method uses multiple training model for clas-
sifying the input sample. The performance of our systems heavily depend on
the training dataset and selected features.
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Numerical results presented in this chapter demonstrate that both pro-
posed algorithms: the piecewise linear and the hybrid algorithms significantly
improve the classification accuracy for minority classes. This means that they
are accurate algorithms for detecting malware activities. Furthermore, in the
case of the hybrid algorithm this accuracy is not achieved on the expense of
the majority classes.



Chapter 8

Conclusion

In this chapter we present a summary of our thesis, provide a concluding
remarks, discuss the limitation of our study and possible directions for future
research.

8.1 Summary

In this digital world online security is a major concern. Various types of
attacks are emerging everyday causing huge financial damage to business and
individuals. Researchers are developing new techniques to fight against those
attacks. Machine learning based detection methods have gained popularity in
recent times due to its capability of detecting unexplored threats.

Various type of cyber attacks and their working principles are discussed
in Chapter 1. Some attacks spread automatically and some needs a carrier to
spread. Banking malwares are specialized attacks targeting particular banking
organization. A banking malware named Zeus, caused huge financial damage
in 2009. Many of its versions were introduced later. The objective of our
research is to design an effective solution to detect cyber threats.

Chapter 2 discusses various methods of detecting cyber attacks and their
shortcomings. In broad sense, the detection methdos are divided into three
categories. They are: signaturebased techniques, anomaly-based techniques
and hybrid techniques. Signature based methods works on some pre-defined
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rules based on explored threats. It cannot detect new and unknown attacks,
but it has higher detection rate for known attacks and has a very less false
positive rate. Anomaly based detection methods work by generating model
based on behaviours of known malwares. These trained models are used to
detect attacks including new and unexplored threats. Machine learning based
techniques are examples of anomaly based detection methods. There are four
main categories of machine learning techniques, namely supervised learning,
unsupervised learning, regression analysis and reinforcement learning. Our
research involves supervised and unsupervised learning techniques.

In Chapter 3 we explored the use of machine learning techniques in cyber
security area. We simulated a web inject by designing a google chrome ex-
tension and applied various supervised learning models to detect the attack.
Our initial finding guides us to design more sophisticated machine learning
techniques to deal with imbalanced data in cyber security domain.

Chapter 4 discusses our first proposed method which is a modification of
piecewise linear classifier fro imbalanced datasets. In cyber security area de-
tecting minority classes have higher priority as minority classes indicate threats
and failing to detect a threat causes high damage and in particular, the huge
financial damage. We designed a cost sensitive piecewise linear classifier by
applying penalty for minority classes in the dataset which shifts the separating
lines to include more minority points which results in increasing classification
accuracy of minority classes.

Our second proposed method was discussed in Chapter 5. This method is
a partial undersampling technique which combines both supervised and unsu-
pervised learning. This method is an improvement over previous method. Our
first method obtains higher accuracy in minority class by sacrificing a lot in
majority class. This second method improves the accuracy of minority classes
without sacrificing too much in classification accuracy of majority classes. Nu-
merical results from both of these methods are presented in Chapter 6.

In Chapter 7 we discuss application of machine learning in cybersecurity. We
present two general architectures for implementing our proposed algorithms.
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We also discuss 5 publicly available dataset in cybersecurity area and present
numerical results of the experiments performing on them.

8.1.1 Summary of cost-sensitive piecewise linear classi-
fier

We defined minority classes by calculating imbalance ratio between different
classes. We applied higher penalty value for the most smallest class and as-
signed fraction of that penalty values to other minority classes based on the ra-
tio between their numbers. We compared our method with 4 other mainstream
classifier namely KNN, Random Forest, SVM and Adaboost and in most of
the cases we obtained higher classification accuracy in minority classes.

8.1.2 Summary of partial undersampling

For this method we used a clustering method, the modified global k-means
algorithm (MGKM), and isolated the pure clusters. For the mixed clusters we
train a model using several classification techniques. These results in improve-
ment in minority class accuracy, as the imbalance ratio in mixed clusters are
less than the imbalanced ratio of the original dataset.

8.2 Conclusion

We found from our experiment that mainstream classifiers provide poor per-
formance in achieving higher classification accuracy in minority classes in im-
balanced data, which is crucial in cyber security area as minority classes rep-
resent the threat. The cost sensitive piecewise linear classifier partially solves
the problem but comes with a price of big sacrifice in majority classes. The
undersampling method (RUS) and oversampling method (SMOTE) provide
comparatively better solutions. These methods modify the dataset by adding
or removing points. But in some cases the solution provided by these methods
is achieved in the expense of the majority classes. The objective is to obtain
higher classification accuracy in the minority classes without sacrificing too
much in the majority classes. Our second proposed method obtains relatively
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higher classification accuracy in minority classes without sacrificing too much
in majority classes.

8.3 Limitations and future work

The main drawback of our first proposed method is sacrificing a big accuracy
percentage in majority classes in order to achieve higher accuracy in minority
class. We tried to overcome this drawback in our second method, and there
is still room for improvement. The selection of penalty parameter for each
dataset is different and chosen manually by iterating through different values.
A future research can be done on how to find the best penalty parameter
for a particular dataset. Our second method reduces the drop of accuracy
in majority classes by using clustering algorithm on dataset before applying
classification algorithms. Depending on points distribution inside each clusters
we divided them in three categories, which are: only majority clusters, only
minority clusters and mixed clusters. In future work clusters can be divided
into more sub categories based on imbalance ratio and different classification
rules can be applied depending on cluster types.

Combining the cost-sensitive approach with partial undersampling may lead
to a better solution. We believe that an approach based on the combination
of clustering, supervised data classification, undersampling and oversampling
techniques will lead to the design of more efficient and accurate algorithms for
solving the supervised data classification problems in imbalanced datasets. In
turn, this direction of research will lead to the design of accurate algorithms
to detect malware activities.

Feature extraction plays important role in data classification, as the per-
formance of a classification algorithm will vary depending on selection of ap-
propriate features. Developing a good feature extractor is another part of the
research, which is not addressed in our study. Future works can be done on
feature selection to increase the efficiency of the classification algorithm and
improving the classification results.
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