6,954 research outputs found

    CORBYS cognitive control architecture for robotic follower

    Get PDF
    In this paper the novel generic cognitive robot control architecture CORBYS is presented. The objective of the CORBYS architecture is the integration of high-level cognitive modules to support robot functioning in dynamic environments including interacting with humans. This paper presents the preliminary integration of the CORBYS architecture to support a robotic follower. Experimental results on high-level empowerment-based trajectory planning have demonstrated the effectiveness of ROS-based communication between distributed modules developed in a multi-site research environment as typical for distributed collaborative projects such as CORBYS

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    A Survey of Brain Inspired Technologies for Engineering

    Full text link
    Cognitive engineering is a multi-disciplinary field and hence it is difficult to find a review article consolidating the leading developments in the field. The in-credible pace at which technology is advancing pushes the boundaries of what is achievable in cognitive engineering. There are also differing approaches to cognitive engineering brought about from the multi-disciplinary nature of the field and the vastness of possible applications. Thus research communities require more frequent reviews to keep up to date with the latest trends. In this paper we shall dis-cuss some of the approaches to cognitive engineering holistically to clarify the reasoning behind the different approaches and to highlight their strengths and weaknesses. We shall then show how developments from seemingly disjointed views could be integrated to achieve the same goal of creating cognitive machines. By reviewing the major contributions in the different fields and showing the potential for a combined approach, this work intends to assist the research community in devising more unified methods and techniques for developing cognitive machines

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    A layered architecture using schematic plans for controlling mobile robots

    Get PDF
    Robotic soccer is a way of putting different developments in intelligent agents into practice, including not only problems such as multi-agent planning and coordination, but also physical problems related to vision and communication subsystems. In this work, we present the design used as the basis for a multi-agent system, implemented for controlling a team of robots, having as main goal to facilitate the testing of new theories developed on reasoning, knowledge representation, planning, agent communication, among others Artificial Intelligence techniques. The implementation of the system was carried out following a three-layer architecture which consists of a reactive layer, an executive layer and a deliberative layer, each of which is associated with a different level of abstraction. This layered design allows to construct a functional system with basic services that can be tested and refined progressively. We will focus our explanation on the executive layer, responsible for sensorial processing and the execution of schematic plans.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Residual Reactive Navigation: Combining Classical and Learned Navigation Strategies For Deployment in Unknown Environments

    Full text link
    In this work we focus on improving the efficiency and generalisation of learned navigation strategies when transferred from its training environment to previously unseen ones. We present an extension of the residual reinforcement learning framework from the robotic manipulation literature and adapt it to the vast and unstructured environments that mobile robots can operate in. The concept is based on learning a residual control effect to add to a typical sub-optimal classical controller in order to close the performance gap, whilst guiding the exploration process during training for improved data efficiency. We exploit this tight coupling and propose a novel deployment strategy, switching Residual Reactive Navigation (sRRN), which yields efficient trajectories whilst probabilistically switching to a classical controller in cases of high policy uncertainty. Our approach achieves improved performance over end-to-end alternatives and can be incorporated as part of a complete navigation stack for cluttered indoor navigation tasks in the real world. The code and training environment for this project is made publicly available at https://sites.google.com/view/srrn/home.Comment: Accepted as a conference paper at ICRA2020. Project site available at https://sites.google.com/view/srrn/hom
    • …
    corecore