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Abstract

The development of complex systems ensembles that operate in uncertain environments is a major chal-
lenge. The reason for this is that system designers are not able to fully specify the system during specifi-
cation and development and before it is being deployed. Natural swarm systems enjoy similar
characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial
emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it
comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain
real world application. In this article, we present a comprehensive overview over state-of-the-art solu-
tions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches
in the light of a framework for multi-robot systems and identify similarities, differences missing links
and open gaps that have to be addressed in order to make this framework possible.

1 Introduction

Software systems and combined hardware and software systems are becoming more and more complex,
even more if they are directly interacting with the real world. Visions and evolving paradigms like the
Internet of Things, Precision Farming, Smart Grids, Industry 4.0, or Smart Cities are high-level concepts,
which are based on large, distributed, and loosely coupled system architectures that are executed in
dynamic environments. Practical examples for such applications are autonomous vehicle fleets that—one
day or another—will coin the picture of our transportation network or the application of mobile robots in
our everyday life.

Due to this uncertainty arising from dynamic environments with limited availability of information and
complex interactions between the system entities, it becomes difficult for designers and engineers to
anticipate all conditions, interactions, and side-effects a system will have to deal with, when the system is
specified and developed. As a consequence, the systems requirements are incompletely expressed (Bon-
jean et al., 2014), which in turn creates a demand for systems, especially in the field of multi-robot
applications, that put emphasis on robustness and adaptivity rather than on behaving in an optimal fashion.
Being able to adapt during runtime to uncertainty with unforeseen changes in the environment, altered
requirements or malicious system components themselves allows dealing with this inevitable under-
specification (Noël & Zambonelli, 2015). Furthermore, it is possible that such large system ensembles are
exhibiting unforeseen, complex behaviour that cannot be observed in single system entities. Such beha-
viour is commonly referred to as emergent behaviour. It can be either beneficial or malicious, hence
control, monitoring, and validation is indispensably required in order to keep the system stable.
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The aim of this article is to identify ways, mechanisms, and approaches that can help to gear emergent
behaviour of mobile multi-robot systems towards their designated purpose and thus to profit from a goal-
oriented autonomous system that features a high level of robustness and adaptability.

To approach this aim, we survey existing work and compare approaches from fields that are dealing
with the above-mentioned challenges. In particular we analyze concepts and approaches from the areas of
self-adaptation, self-organization, emergent systems, and robotics. We especially broaden our view on
non-robotic system because robotics shares common goals with the multi-agent software community
(Kaminka, 2012), which features various contributions in self-adaptation and self-organization. In doing
so, we aim to identify similarities, differences, missing links, and open gaps. We put particular emphasis
on identifying ways to derive low level behaviour from the global system’s perspective and have a closer
look on how bottom-up and top-down approaches are related to each other. Finally, we put everything into
the relation of a multi-robot system application and the integration with higher-level decision-making and
planning. However, the presented analysis and the drawn conclusion are also valid beyond pure robotic
systems, which we are focused on.

The remainder of the article is structured as follows: in Section 2, we elaborate on concepts that we
briefly and informally introduce, namely: emergence, self-adaptation, self-organization, and swarm
robotics. In doing so, we identify and detail on characteristics and challenges that can be found in each of
the presented concepts. In Section 3, we distinguish our own survey from existing ones that were done in
related or similar fields, in order to emphasize the requirement of this work. In Section 4, we have a closer
look into general engineering processes and methodologies and in Section 5 we present practical reali-
zations that were done by means of existing middleware frameworks that support the development of any
kind of adaptive or self-organizing system. Subsequently, in Section 6, we take a detailed look into
mechanism design and implementation. The analysis in above listed sections lists common strategies and
does further consider if the solution is domain specific or independent, if it is a centralized or decentralized
approach, if the approach has a specific application focus, like improving certain quality measures, or if it
is developed with a multi-purpose perspective. Moreover, it is determined if an approach allows for the
development of solutions from a top-down or bottom-up perspective. In Section 7, we forge the link to our
particular application domain, namely robotics. In doing so, we focus on how identified mechanisms can
be integrated into domain-specific planning and decision-making concepts. In Section 8, we highlight
common characteristics, open challenges, and point out future research directions, before, in Section 9, we
conclude our work.

2 Concepts

In this section, we briefly explain frequently used terms and their mutual dependencies to and relationships
with the targeted problem domain.

2.1 Emergence

A beneficial utilization of arising global behaviours from distributed entities can be found in nature, where
they are rather common. As an example, consider the collective intelligence of social insects, like ants and
termites, which is used to find shortest paths, foraging, or to build temperature-balancing hives (Deneu-
bourg et al., 1990; Bonabeau et al., 1999). Other higher developed animals are as well showing similar
kind of collective intelligence, a popular example are fish schools, which increase the protection from
predators for the individual (Viscido et al., 2004). Such collective intelligence does not rely on individuals
that control or co-ordinate the group.

This phenomenon is commonly referred to as emergence, with global (macro level) behaviour, patterns
and properties arising from the interactions between local parts of the system (micro level). This is
commonly constraint in the way that the macro-level structure needs to be novel. This implies that on
micro level, there is no knowledge about the global or macro-level goal nor there are intentions to control
the global behaviour of the entire system. Similar definition can be found in the literature, see Ali et al.
(1998), Goldstein (1999), Camazine et al. (2003), De Wolf and Holvoet (2005).
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The research about emergence has a long history and has diverse scientific roots, for instance, in
cybernetics, solid state or condensed matter physics, evolutionary biology, artificial intelligence, and
artificial life. Its aim is to develop tools, methodologies, and solutions that allow to understand and to
reproduce processes which lead to emergence (Serugendo et al., 2006).

De Wolf and Holvoet (2005) classifies the research into four schools of research, namely complex
adaptive systems theory (Kauffman, 1995), nonlinear dynamical systems theory (Newman, 1996),
synergetics (Haken, 1984), and far-from-equilibrium thermodynamics (Nicolis, 1989). A compiled history
as well as analysis of different definitions can also be found in Serugendo et al. (2006).

The fascination of emergence derives from nature of the concept itself. Emergence can be characterized
as simple, robust, and adaptive. Emergence is simple, because the individual entity or agent needs only a
straightforward behaviour algorithm in order to play its part in a global system. The latter can be excep-
tionally complex. Emergence is robust, since the solution does not depend on a central single point of
failure and agents can usually be replaced, removed, or added without changing the global behaviour.
Finally, emergence is adaptive due to the several independent entities that can flexibly adapt and thus
easily master changes that occur in an uncertain environment. However, the agent’s behaviour algorithm is
static and not supposed to be adapted.

2.2 Swarm robotics

In Section 1, we argued that simplicity, robustness, and adaptability are characteristics that are particularly
interesting for the domain of (mobile) multi-robot systems—after all, multi-robot systems are supposed to
operate in extremely dynamic and highly uncertain environments. Practical examples for challenging
application areas are, for example, precision farming, traffic surveillance, nature conservation, and disaster
rescue operations. All of these environments have one thing in common, that is: multi-robot systems have
to achieve their goals autonomously, in a timely manner. In doing so, robot systems have to adapt to ever-
changing conditions. The concept of emergence can significantly contribute to more effective multi-robot
systems, especially in terms of scalability, robustness, and flexibility.

Furthermore, a system of several probably simpler robots can be easier adjusted to varying problem
complexities, for example, by simply adding or removing agents. Multi-robot systems, which implement
or adapt the concept of emergent behaviour, are commonly referred to as swarm robotic systems (Şahin,
2005). Another definition from Dorigo et al. (2004) is Swarm robotics consists in the application of swarm
intelligence to the control of robotic swarms, emphasizing decentralization of the control, limited com-
munication abilities among robots, use of local information, emergence of global behaviour, and robust-
ness. Commonly, swarm robotic systems are classified as multi-robot systems consisting of simple robot
individuals. A disaster rescue system with several aerial and ground robots capable to execute complex
tasks individually is usually considered a multi-robot systems, whereas several simple robots with limited
individual capabilities, for example, the robots are only able to move around and execute one primitive
task, are understand as swarm robotic system. Nevertheless, the transition in between swarm robotics and
multi-robot systems is fluent and not always consistent in the literature.

The concept of a ‘swarm’ is significantly based on the idea of homogeneity (Şahin, 2005). Never-
theless, concepts of ‘heterogeneous swarms’ can be found as well. Existing examples commonly employ
different specialized entities (Ducatelle et al., 2010; Dorigo et al., 2013).

Swarm engineering is a subdiscipline of swarm robotics that deals with ‘the design of predictable,
controllable swarms with well-defined global goals and provable minimal conditions’ (Kazadi, 2000).
Swarm engineering was first formally defined by Winfield et al., (2004) as a combination of swarm
intelligence and dependable systems. In particular, this includes procedures for modelling, designing,
realizing, verifying, validating, operating, and maintaining swarm robotics systems (Brambilla et al., 2013).

The particular domain of controlling robot swarms has gained much attention over the last years.
One rather popular sub-branch of this domain is human–robot swarm interaction (Naghsh et al., 2008).
Human–robot swarm interaction is commonly understood as a direct steering of, or influencing the
swarm directly, in order to control its motions. This can be done by controlling special leader or
predator entities directly, either being virtual or real, which are influencing the remaining swarm members
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(Bashyal & Venayagamoorthy, 2008; Goodrich et al., 2011). One refers to ‘assistive swarming’ (Penders
et al., 2011), whenever the human being is integrated into the swarm as the steering leader or predator.
Although these approaches are beneficial for a direct interaction during a mission, they are not directly
supporting the application’s goals during design and development. Furthermore, these approaches mostly
rely on behaviour rules that are specified at design time in a bottom-up approach, see, for example, Krupke
et al. (2015).

Kloetzer and Belta (2006) argue that, in contrast to single robot system, the behaviour of swarm robots
has to be specified more qualitatively. Following Kloetzer and Belta (2006), a swarm is naturally described
by features like shape, size, and position of the region that is occupied, while the exact position or
trajectory of each robot is not important.

2.3 Self-organization and self-adaptation

Very close to biologically inspired concepts of emergence and swarm intelligence is the idea of self-
organization. The terms emergence and self-organization are frequently confused. The history of the term
as well as the distinction between both concepts was comprehensively discussed by De Wolf and Holvoet
(2005), who define the concept of self-organization as follows:

Self-organization is a dynamical and adaptive process where systems acquire and maintain structure
themselves, without external control (De Wolf & Holvoet, 2005: 7).

Nevertheless, the term self-organization is also used as the process that leads to the state of emergence
(Goldstein, 1999; Noël & Zambonelli, 2015).

Additionally, Serugendo et al. (2005) distinguish between strong self-organizing systems that do not
have central explicit external or internal control, and weak self-organizing systems that might have some
internal central control instance.

Considering self-organising and emergent systems as distinct concept they still have one thing in
common, that is: there is no explicit external control whatsoever. Although the external influence on self-
organized systems is more explicitly researched in the domain of guided self-organization (Prokopenko,
2009). In this context the external influence is distinguished in specific and non-specific, referring to a
specific influence for a direct control on the spatial, temporal, or functional structure and to non-specific
influence if the system still decides on its own how it reacts upon the external stimulus. In consequence
Prokopenko (2009) defines the guidance of self-organization as possible limitation of the scope or extent
of the structures/functions, or specification of the rate of internal dynamics, or selection of a subset of
possible options that the dynamics may take. Furthermore, Ay et al. (2012) proposes external rewards,
problem-specific error functions and assumptions about the symmetrics of the desired behaviour as pos-
sible strategies for guided self-organization.

Following De Wolf and Holvoet (2005) the main difference between self-organization and emergence
is that in the case of the former, individual entities can be aware of the system’s intended global behaviour.
In consequence self-organization can be seen as a weak form of emergence. The intuitive and regularly
used approach to realize self-organization is applying the concept of feedback loops. Here, parts of the
system are monitoring the state, analyzing it in reference to the intended behaviour and triggering
appropriate responses. This approach is also used for ‘single entity systems’. In this case the concept is
referred to as self-adaptation (Brun et al., 2009; de Lemos et al., 2013). However, if a decentralized system
containing several entities exhibits adaptive behaviour to external changes this is as well considered self-
adaptation. Self-adaptation in relation to software in general is defined as follows.

Self-adaptive software modifies its own behaviour in response to changes in its operating environment.
By operating environment, we mean anything observable by the software system, such as end-user input,
external hardware devices and sensors, or program instrumentation. (Oreizy et al., 1999: 55).

2.4 Common characteristics

While the particular characteristics of emergence, swarms, self-adaptation, and self-organization may
differ, the general objective of all of these concepts is exceptionally coherent, that is, having ensembles of
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robust systems that maintain their structure and feature a high level of adaptation. Here, structure can either
be understood in the organizational sense in case of multiple systems or as the integrity of a single agent.

A system, which enjoys these characteristics, for example, appropriate adaptation capabilities that
remain within predefined bounds (also referred to as ‘controlled autonomy’), would lead to a simplified
design, because not all possible states and state transitions have to be specified in advance. In fact, these
ideas are in compliance with the visions of the promoters of autonomic (Kephart & Chess, 2003) and
organic computing (Schmeck, 2005), respectively. Both concepts consider systems that promote self-
adaptation as major property, facilitating the development of software that can manage itself at runtime.
Furthermore, self-adaptation is considered to be the foundation of other envisioned self-properties, such as
self-configuration, self-optimization, self-healing, and self-protection (Kephart & Chess, 2003).

Continuing this thought, it would no longer be necessary to exactly specify the low-level system
behaviour in all possible situations that might occur, but rather, leaving the system with a certain degree of
freedom to allow for autonomous reaction and adaptation to new situations in an intelligent way.

Still not answered are the questions, how such systems can be developed from a goal-driven per-
spective, especially how this can be integrated into more sophisticated agents that exhibit a high level of
autonomy with advanced decision-making and planning capabilities.

In the following sections, we present and analyze available works that aim to answer the above-listed
questions. In doing so, we discuss limitations of these approaches but also elaborate on their advantages
and disadvantages. Our goal is to identify problems, opportunities, and challenges that have to be
addressed in the future.

3 Related surveys

The field of emergence, self-organization and self-adaptation has already been surveyed from different
perspectives. In the following we summarize the existing literature. In the course of this, we put emphasis
on the limitations of these surveys in order to substantiate the need of this article.

The survey from de Lemos et al. (2013) presents state-of-the-art methods for engineering self-adaptive
systems. de Lemos et al. (2013) distinguish between design space, processes, centralized and decentralized
control, and practical runtime verification and validation. de Lemos et al. (2013) understand design space as
which developers need to decide during the development of a self-adaptive system and see themain challenge
of creating a systematic understanding of the options for self-adaptive control during the design process. The
concept ofProcesses refers to influences of self-adaptive systems to the software system life cycle. Following
de Lemos et al. (2013), activities are not bound to the traditional development-time, but are shifted to runtime.
In the area of control architectures different possibilities with advantages and disadvantages are presented. It
is emphasized that adaptation control is always realized with feedback loops, which comprises: monitor
analyze plan execute (MAPE) in different combinations. Planning is albeit only considered regarding the
control of the adaptation process and not in respect to the goal-oriented behaviour of the system.

The formulated question in this context is under what circumstances and for what systems the different
patterns or architectures of control are applicable. For verification and validation, the open challenge is to
design and deploy certifiable methods that are able to deal with the explosion of the state-space. Since they
are focusing on very general aspects of engineering, their perspective is more on the abstract process of
developing self-adaptive systems and less on how such systems can be realized in practice, for example, in
the context of multi-robot systems.

Another survey paper focuses on the importance of feedback-loops in self-adaptive systems (Brun
et al., 2009). Brun et al. (2009) present several existing approaches from different fields like control
theory, nature, and software—like the autonomic computing initiative. A generic feedback loop is pro-
posed as well. This feedback loop acts as a refinement of the sense-plan-act mechanism and highlights that
software engineering needs to develop an own understanding of feedback loops. Moreover, they introduce
some specific challenges regarding the concepts of modelling, maintenance, middleware support and
verification, and validation. In particular, Brun et al. (2009) substantiate the need to create reference
libraries and architectures of control-loop types and mechanisms of control-loop interactions as well as to
create appropriate middleware solutions with possibilities of validation and verification. It is also
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underlined that the impact on software maintenance of self-adaptive systems and the detection of mal-
icious or unintended behaviour has not yet been addressed sufficiently. We generally agree with this
argumentation and see similar requirements for self-organizing multi-robot systems, for example, pro-
viding middleware support for fostering code reuse. We discuss existing frameworks and approaches in
Sections 5 and 7.

The survey from Serugendo et al. (2006) is about self-organization and emergence and the differences
and relations of these concepts and the arising challenges. The paper is focused on mechanisms and
definitions rather than on particular engineering techniques or frameworks. Focusing on multi-agent
systems the authors classified existing mechanisms of realizing self-organization into five classes:

∙ Using direct interactions between agents using basic principles such as broadcast and localization;
∙ using indirect interactions between agents using the environment (stigmergy);
∙ using reinforcement of agent behaviours;
∙ using co-operation behaviour of individual agents;
∙ using a generic architecture.

Furthermore, Serugendo et al. (2006) formulate the central question, how individual agents can be
programmed to exhibit self-organized behaviour as a whole. For this reason their highlighted major
challenge is developing means to define global goals, and to design local behaviours so that the global
behaviour emerges. The field of swarm engineering is surveyed by (Brambilla et al., 2013). The authors
review on the one hand side methods for designing and analysis and on the other hand collective beha-
viours that have been studied using swarm robots. It is argumented that the most studied fields are design
and realization as well as verification and validation, which are still not sufficiently solved. Moreover,
Brambilla et al. (2013) claim that other topics, such as requirements analysis, maintenance, and perfor-
mance measurement have not yet gained much attention. The authors are also coming to the conclusion
that there is still no formal or precise method to design individual level behaviours that produce the desired
collective behaviour. The existing automatic design methods are further classified into the categories of
evolutionary robotics and multi-robot reinforcement learning. However, the authors do not link to the
problem of developing systems that are pursuing their goals and exhibiting self-organized behaviour at the
same time.

In the work of Ye et al. (2017) a specific focus lies on self-organization mechanisms used in multi-agent
systems. Specifically, the authors analyze existing literature from a objective-based perspective and focus
on the research issues task/resource allocation, relation adaptation, organizational design, reinforcement
learning, enhancing software quality, and collective decision-making. The authors explicitly elaborate
about specific self-organization mechanisms that are used in above mentioned research issues rather than
on general approaches, methodologies, or tools that foster the realization of self-organized systems.
However, Ye et al. (2017) are also arguing that most research is theoretical and real applications are still in
an early stage.

This paper continues the foundation of the existing surveys. In contrast to the recited surveys, this paper
is starting from a common perspective, revisiting self-adaptation and self-organization architectures and
methodologies in the different related fields. It also focuses on existing frameworks and middleware
frameworks, and details on how the actual adaptive self-organizing mechanism is going to be realized in
practice and how it could be integrated into the decision-making and planning capabilities of state-of-the-
art robotic systems.

4 Methodologies

In addition to the presented results of the survey from de Lemos et al. (2013) about software engineering
and self-adaptation in general, other authors have developed different concepts.

The software engineering process PosoMAS is introduced and compared to other existing agent-oriented
software engineering methodologies in Steghöfer et al. (2014). The process practices are embedded into the
risk-value life cycle of the Open Unified Process (OpenUP). It is targeting open, self-organizing systems and
contains different practices for the design of agent architecture, agent organization, agent interaction, system
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architecture. The core practices are goal-driven requirements determination, pattern-driven multi-agent
system (MAS) design, using existing architectural, behavioural, and interaction patterns from reference
architectures, an iterative evolutionary agent design, model-driven observer synthesis, trust-based interaction
design, and agent organization design. The organization design as well as the lifecycle phase design system
dynamics are the aspects where self-organization and its consequences have to be considered by the user of
the process. Unfortunately, there are no details about how this has to be done. The process only provides
placeholders for the consideration of self-organization during system design.

In contrast to PosoMAS, more support is provided by the earlier and continuously developed agent-
oriented methodology Atelier de Développement de Logiciels à Fonctionnalité Emergente (ADELFE) that
provides a model-driven software development process for developing adaptive co-operative multi-agent
systems (Picard & Gleizes, 2004; Bonjean et al., 2014). The process is supported by a special notation
AUML (Agent Unified Modelling Language), which is based on UML2 (Unified Modelling Language) as
well as some tools and libraries. The process itself is separated into the stages of preliminary requirements,
final requirements, analysis, design, implementation, and tests.

The authors propose that global behaviour is determined with testing and simulation but the metho-
dology is not bound to this approach. ADELFE has still a very coarse view on the problem of developing
self-adaptive and self-organizing systems, since the actual complexity of how to create the required
behaviours, mechanisms, and algorithms is not addressed, even though the process provides more gui-
dance than the PosoMAS approach.

Ideas from ADELFE are also integrated into the TROPOS4AS extension (Morandini et al., 2009) of the
agent-oriented software engineering methodology TROPOS (Bresciani et al., 2004). TROPOS focuses on
requirement analysis and models the system top-down in several analysis steps. The entire design process
is supported with the TROPOS modelling language. Of particular interest are goals and how they are
decomposed and delegated to the individual agents. TROPOS4AS extends TROPOS goal models to allow
for the description of self-adaptive systems. This is achieved by additional annotations that allow to
express environment specific conditions, goal creation and failure handling. TROPOS4AS incorporates
ideas from ADELFE to model agent organizations with co-operation rules.

Gershenson (2007) presents a self-organization engineering methodology introducing themediator as a
central concept. The mediator is understood as an adaptation controller that is reducing the friction
between parts of the system in order to fulfil the overall system goals. Reducing friction means increasing
positive synergies and reducing inhibitions between the system parts. The mediator or adaptation controller
is supposed to adjust the behaviours of parts leading to the global goal. The controller could be using
methods like evolutionary algorithms or reinforcement learning. Furthermore, the author proposes a process
consisting of the stages representation, modelling, simulation, application, and evaluation with iterative
cycles between adjacent stages. The author states that this approach is neither top-down nor bottom-up.
Based on the additional degrees of freedom of self-organizing systems, the author declares that they cannot
be tightly controlled since they have own goals, instead they should be steered. In contrast to the above-
presented approaches, the methodology of Gershenson (2007) is providing guidance for a suitable archi-
tecture of self-organizing systems. However, the support is still on a high level of abstraction, plus, it remains
unclear how the user could determine or select appropriate mechanisms, mediators, or controllers.

Another high-level architecture is presented in the context of the Organic Computing initiative Branke
et al. (2006). The proposed abstract observer–controller architecture is created for the realization of
systems with self-properties. The observer collects data from the system and computes some indicators
characterizing the global state and the dynamics of the system. It may use methods like classification in
order to characterize the situation. The controller compares situation parameters with the goal, which was
defined by the user, and decides whether an intervention is required and what action would be most
appropriate. The controller is able to influence the local decision rules of the system agents, the system
structure, the number of agents, or the environment. The controller interferes only when necessary and
affects only some system parameters, it does not control single agents in detail. Decisions (mapping from
situation to action) are based on learning. Learning can be facilitated by simulation. The presented
architecture is actually only defining a centralized feedback loop for the system and abstracts from the
intended behaviour, but how to define the behaviour is still an open issue. Moreover, the proposed learning
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approach requires the occurrence of errors. These can be problematic in cases where errors would affect
the operability of a system.

In Noël and Zambonelli (2015) the authors propose an abstract approach based on component
decomposition for engineering application-specific self-organizing systems. The authors argument that the
identification of elements and the assignment to roles builds a design bridge between the problem and the
emergent behaviour, because the selected decomposition limits possible macro-level behaviours that can
be executed during runtime.

Contrary to the surveys we presented in Section 3, which have highlighted the importance of formal
methods with validation and verification and contrary to the software engineering approaches that we
discussed above, Edmonds (2005) argues that in order to create adaptive, self-organizing systems,
experimental methods—as used in classic science—are required. The reason for this is that a traditional
engineering approach supposedly cannot deal with unexpected changes during future runtime. In fact, the
author argues that there is no general systematic or effective method that can generate or find a program to
meet a given formal specification and determine whether it meets that specification. Instead Edmonds
argues that systems should be accompanied with an open hypothesis database, which collects hypotheses
that already have been tested—including all relevant test-conditions. Albeit, it is not mentioned how such a
system could be realized in practical applications.

De Wolf and Holvoet (2007) focus more on the mechanisms themselves and describe the properties of
some core self-organization mechanisms as design patterns and provide a guide when they can be applied
and how they should be selected to reach a targeted goal. In particular they mention digital pheromones,
gradient fields, market-based control, tags and tokens. However, only gradient fields and market-based
control are discussed in more detail. Although, the paper is a helpful guide for developers of self-
organizing systems, it leaves open how the actual implementation or class design could be realized.

In Fernandez-Marquez et al. (2012) the work of DeWolf and Holvoet (2007) is continued by analyzing,
classifying and describing a set of bio-inspired self-organizing mechanisms. Here, the authors classified
mechanisms and their relations into three layers of basic, composed and higher-level patterns. In that
sense, the composed layer is created by a combination of basic mechanisms and the higher-level patterns
show different options of exploiting the basic and composed mechanisms. On the basic level they iden-
tified the basic patterns of spreading, aggregation, evaporation, and repulsion that build the foundation for
a realization of all composed and higher-level mechanisms. The created catalogue of patterns is intended to
be used as a base for a more modular design and implementation of self-organizing systems.

The idea of reusable design patterns is also incorporated by Reina et al. (2014), who first introduced
cognitive design patterns. However, cognitive design patterns are not focused on self-organization or self-
adaptation. Instead, the concept considers mechanisms for collective cognition in distributed multi-agent
system in general. In Reina et al. (2014) the authors present a in-depth study of a collective decision-
making mechanism in order to use it as a cognitive design pattern independent of its application in future.

The review of existing methodologies shows that many approaches tackle the problem of designing
self-adaptive or self-organizing systems on a very coarse process and architecture level and only identify
the particular points where the designer would have to integrate related considerations. Albeit this is
providing some support for system designers and developers, this seems not sufficient. On the other hand,
Edmonds (2005), De Wolf and Holvoet (2007), and Fernandez-Marquez et al. (2012) are more specific
regarding the actual challenges of guiding the development of such systems in practice. Edmonds (2005)
supports a general paradigm shift that focuses on experimental methods instead of concentrating on
provable correctness. Contrary, De Wolf and Holvoet (2007) and Fernandez-Marquez et al. (2012) pro-
vide reusable design patterns that can be applied to new applications. The support of an actual imple-
mentation in a more specific and application-oriented perspective is reviewed in the next section, where we
discuss specific middleware solutions and frameworks.

5 Middleware solutions and frameworks

Several middleware solutions, frameworks, and infrastructures for the development of self-adaptive and
self-organizing systems with different perspectives have been proposed. All have in mind to foster and
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support the development of adaptive systems that are able to deal with uncertainty either for single systems
or multiple system entities. The specialities and similarities are discussed in the following.

Hernandez-Sosa et al. (2005) present an adaptation framework inside their component-based robotic
framework with the focus on resources used by modules. Thus, their focus is purely adaptive quality of
service (QoS) in order to keep the system robust and stable even in high load situations and not the general
behaviour of the system under normal execution conditions.

Another self-adaptation framework with focus on resource usage is ReFrESH, which targets all kinds of
embedded systems. This includes hardware and software (like robotic system) and is realized with an
embedded virtual machine running on real time operating system (Cui et al., 2014). Different to
Hernandez-Sosa et al. (2005) the focus is especially on self-adaptation mechanism for fault detection and
not QoS. The goal of the framework is an automatic reconfiguration of the system with other or additional
components. The evaluation of the current state is tailored to the detection of abnormal resource usage. The
adaptation does not include learning and is strongly focused on the described problem domain.

Rainbow is a more general architecture framework for self-adaptive systems (Garlan et al., 2004) that is
not limited to resource usage adaptation like former approaches. It focuses on single systems and does not
consider multi-agent system environments. The core idea is the separation of the adaptation layer in order
to foster reuse of adaptation mechanisms. Furthermore, their approach requires a definition of the adap-
tation mechanisms during design time based on preprogrammed adaptation operators and strategies. This
seems feasible for very simple adaptations like parameter tuning, but does not satisfy the vision of systems
adapting autonomously in complex versatile environments.

Differing from the resource focused frameworks and rather inspired by Rainbow, SodekoVS is a more
general architecture framework, supporting software engineering of self-organizing systems (Sudeikat
et al., 2009). The SodekoVS library provides a catalogue of mechanism patterns as reusable components
that provide systematic problem-oriented descriptions of mechanisms in an abstract, reusable format. This
facilitates the selection and combination of mechanisms. Their multi-layer architecture consists of a top
most application layer including standard application functionalities and may be linked to agent imple-
mentations for application-specific parts. The co-ordination layer placed below consists of the agents as
well as a substrate, which can contain one or more co-ordination media. Mechanism instances are
encapsulated in distinct co-ordination media and are interfaced by co-ordination components that allow to
modify agent states. The presented architecture does not mention, how decision-making and planning
could be combined with the self-organization mechanisms.

The application-independent description of (inter-)agent co-ordination patterns is supported by the
domain-specific language MASDynamics that allows to map interrelations of agent activity to detailed
agent design models (Sudeikat & Renz, 2009). However, the language describes the intended macroscopic
behaviour only on a very abstract level, it is just defined by group count, roles and group membership
count. The co-ordination pattern can be parameterized and configured based on agent events and internal
state representations that can be passed through the co-ordination media. Nevertheless, it is still required to
determine the actual mechanism manually. Furthermore, the authors propose a process for self-
organization engineering with the stages of requirements, analysis, design, implementation, and test (using
simulation), similar to the approach of Gershenson (2007) (see Section 4), but without explicit iterations.
The focus of the framework lies on the engineering structure without considering the development of co-
ordination mechanisms themselves nor the explicit integration with other higher-level decision-making
and planning capabilities.

In analogy to the Rainbow and SodekoVS frameworks Preisler et al. (2013) developed a framework
that separates the co-ordination of self-organizing MAS from the application logic. Similar to SodekoVS,
the so called co-ordination space represents a separate and explicit layer in the architecture. Their goal was
improving the reuse and exchange of co-ordination mechanisms. The co-ordination itself can be dis-
tributed over several nodes by using information forwarding with mechanisms like publish and subscribe.
Further, the co-ordination is written in a external co-ordination model using also the domain-specific
language MASDynamics (Sudeikat & Renz, 2009) with mechanism described in declarative fashion. This
language allows for a more structured description of co-ordination using concepts of roles and links
between agents. Nevertheless, the presented framework does not provide a mechanism for deducing or
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selecting the mechanism itself from given goals. Additionally, the authors are not linking the co-ordination
components with the agent’s decision-making and planning, like Sudeikat et al. (2009).

jSwarm is a middleware for cyber physical systems in general with an explicit focus on swarm robotics
(Graff et al., 2013, 2014). It allows for centralized sequential programming with spatial-temporal constraints
with concentration on the motion in space of robot systems. The application code is analyzed, scheduled, and
distributed according to a centrally computed dependency graph among the system entities. This enables the
replacement of individual robot motion by an application migration between different robots for increasing
the system performance, while considering spatial-temporal constraints. The used service-oriented archi-
tecture hides heterogeneity and diversity and abstracts from the particular resources. How the specific swarm
behaviour based on the constraints for individual entities is designed is not further considered. In fact,
jSwarm provides an abstract infrastructure for a centralized controlled distributed swarm robot system. Even
though it fosters adaptability by reassigning robot applications to other robots, the focus is more on a
performance optimization and less on enabling more robust and adaptable distributed systems.

The framework TOTA (Tuples on the Air) particularly focuses on the aspect of information propaga-
tion in a decentralized self-organizing system (Mamei et al., 2005). Their approach from the field of sensor
networks is inspired from biological morphogen gradients (cells react based on thresholds that change
while propagating) and does not need global perception, distance, and direction sensing. TOTA provides
abstractions and mechanism to support the creation of distributed overlay data structures spread across a
mobile network. It is composed by a dynamic ad hoc wireless network of possibly mobile nodes, each
capable of locally storing tuples of information and letting them diffuse through the network. The con-
sideration on how influences propagate is important for large scale real-life applications and not con-
sidered by most of the other frameworks.

Another more application specific work comes from the field of modular robotics, describing robots
consisting of several independent modules. The paper shows how distributed constraints can be used to
build adaptive modular robots (Yu & Nagpal, 2009). Their framework abstracts from simple sensors
and actuators and uses distributed constraints combined with neighbourhood sensing for distributed
adaptation. Open questions are how the required constraints or control laws (sensor feedback functions)
can be developed to achieve the entire system goal, how several goals are going to be addressed in
parallel, and how these distributed constraints can be combined with the robots’ decision-making and
planning.

TuCSoN is a platform for the development of self-organizing systems (Viroli et al., 2009). It is based on
the linda tuple-space model and provides Java agents with tuple centres (tuple spaces enhanced with a
reactive, rule-based programming model), which can be used to implement probabilistic and timed co-
ordination rules in a declarative style. It is designed around the formulated requirements for self-organized
co-ordination. In particular, topology describes that each agent is directly connected to a small set of
neighbourhood locations. Locality defines the local interaction between agents and the co-ordination
media and between two co-ordination media. The requirement Online character says that co-ordination is
triggered by interaction or by elapsed time. Time ensures that co-ordination rules generally timed. The last
requirement probability defines that co-ordination is always non-deterministic.

The rules in TuCSoN are represented with templates as identifiers for the matching mechanisms. In case
of several matching templates the selection is randomized. The reactivity is realized with reaction tuples
that are triggered through formulated conditions of source, target, status, time, and goals.

Altogether, TuCSoN has a much stronger focus on the co-ordination mechanisms themselves and allows
for the implementation of data-centred self-organization co-ordination algorithms. Nevertheless, it does not
include support for reaching the goal of the system developer. In consequence the developer still needs to
figure out on its own, how to move, transform, or copy data in order to achieve a certain pattern. Moreover,
the authors do not combine their approach with other application-specific decision-making and planning.

A subset of the described patterns in Fernandez-Marquez et al. (2012), see Section 4, is implemented in
the execution model BIO-CORE (Fernandez-Marquez et al., 2011), which provides basic bio-inspired
services, namely the basic patterns evaporation, aggregation, and spreading as well as the gradient pattern.
BIO-CORE consists of three main parts: a shared data space that allows to exchange data, basic bio-
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inspired services implementing basic bio-inspired mechanisms, and interfaces providing primitives for the
agents to interact with the core.

Buzz is a domain-specific language that provides a middleware for the simplified implementation of
swarm robot applications (Pinciroli & Beltrame, 2016). In Buzz a set of robots (swarm) is a first level
object that can be used for group task assignment and set operations (intersection, union, difference, and
negation). Furthermore, Buzz has capabilities for neighbourhood operations (queries, filtering, virtual
stigmergy) and information sharing. The language runs on an own virtual machine. Nevertheless, the
realized mixed bottom-up and top-down approach does only provide an environment for developers
wherein self-organization and cognitive algorithms can be implemented. A disadvantage of Buzz is that
developers need to leave their well-known ecosystem with tools and programming languages for learning
a new language that is limited in expressiveness.

The work presented in this section shows various directions, the approaches are either very specific to a
particular domain or problem, like resource sharing or information propagation, or are general frameworks
that simplify the implementation of abstract concepts, like presented in Section 4. The important problem of
implementing the actual mechanisms and algorithms in general is only addressed in TuCSoN (Viroli et al.,
2009; Fernandez-Marquez et al., 2011). However, it is still open how a developer could solve a particular
problem from a goal-oriented perspective, and how the co-ordination and adaptation part can be linked with
the agents’ decision-making and planning. In the next section we go into detail and analyze works that
explicitly focus on the support of designing and implementing the required mechanisms for adaptive systems.

6 Mechanism design and implementation

We already highlighted that, besides the architecture and the engineering process, the mechanism itself
plays a key role for self-organization or self-adaptation. The challenge of implementing these mechanisms
is also raised in several above-mentioned references (Kephart & Chess, 2003; Schmeck, 2005; Serugendo
et al., 2006). Facilitating the development of these mechanisms is a crucial requirement for a suitable
framework. Thus, in this section we focus on existing means of development.

The power and simplicity of co-ordination mechanisms is proven in nature and existing phenomenons
are extensively studied in the field of swarm intelligence (Bonabeau et al., 1999). Using similar approa-
ches led to a number of promising results especially for swarm robotics. For instance, Masar (2013)
created an algorithm for swarm exploration and surveillance based on a combination of a swarm particle
algorithm, using the popular force field paradigm with ant colony algorithms. Other concepts are based on
behaviour descriptions (Balch & Arkin, 1998), rigid virtual structures (Ren & Beard, 2004), and graphs
(Desai et al., 2001). In comparison to the numerous force field approaches, the latter methods are less
flexible and are computationally more expensive.

Unfortunately all these approaches have the disadvantage that they are inherently problem and appli-
cation specific and that they were created in bottom-up manner by means of trial and error testing. None of
the approaches was inferred or selected from a goal description, respectively using top-down engineering.

We classified existing work that deals with design and implementation of self-organization and self-
adaptation mechanisms into the categories of evolution, learning and simulation approaches, functional
languages, declarative, and application-specific approaches. These classes are discussed in the following
subsections and completed with a consideration of the mechanisms analysis, verification, and validation.

6.1 Evolution, learning, and simulation

Some attempts of determining mechanisms of self-adaptation and self-organization are in consensus with
the biological inspiration and are based on the concepts of evolution and learning. They are either
implemented in a simulation or directly shaping the agents’ behaviour online during execution.

Das et al. (1995) have used genetic algorithms to automatically generate application-specific syn-
chronization strategies. Even though the presented approach is still depending on a centralized timer for
the calculation of updates in the distributed entities it defines a promising direction. The particular
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challenge is the formulation of an adequate utility function and evaluation environment for a general
application of this approach.

Matarić (1995) describes an approach of controlling group behaviour of robots by synthesizing a
particular complex behaviour based on a set of primitive behaviours. On that account unsupervised
reinforcement learning was used on a basic behaviour set to hide low-level control details to steer the
global group behaviour towards the global goal. The authors also shaped the reinforcement function by
partitioning the goal into subgoals for providing more immediate feedback. In experiments the authors
have been able to implement a foraging task based on the empirically derived set of basic behaviour of
avoidance, following, aggregation, dispersion, homing, and wandering. Open questions are, how the
initial behaviour set is going to be selected, how such a system would be initialized in order to avoid
possible harmful state conditions in the early stages of the reinforcement learning process, how the goals
are partitioned, and how this might be combined with individual tasks of the robots.

Evolutionary robotics (Nolfi & Floreano, 2000) is a special domain of robotics that especially resear-
ches how to automatically design robot controllers. The evolutionary idea is as well applied in swarm
robotics (Kernbach et al., 2008). Depending on the particular approach the researchers use algorithms
from machine learning, like artificial neural networks (Dorigo et al., 2004; Groß et al., 2006), combined
with evolutionary-programming, genetic programming (Groß et al., 2006) combined with physics simu-
lations, before generated controllers are deployed to the real robots.

Francesca et al. (2015) are working on a general purpose solution that generate the individual con-
trollers of robots in a swarm, therefore the authors evaluated the performance of different approaches to
design distributed control software for robot swarms in two empirical studies including several tasks. The
evaluation of manual, manual with constraints and three automated control generation approaches is done
using simple e-puck robots. The solution vanilla is using F-Race optimization, chocolate is using an
iterated F-Race optimization, and for comparison EvoStick uses an artificial neural network approach
without hidden layers that directly connects sensors and actors. The simulation environment ARGoS is
applied to determine the fitness of particular configurations against a utility function. The AutoMoDe
approaches vanilla and chocolate are generating a probabilistic finite state machine by combining and fine-
tuning preexisting parametric modules. In Francesca et al. (2015) these approaches are compared against
human designers, which are allowed to freely design the control algorithms as well as in another setting
designing controllers constraint with the same limitations as the AutoMoDe approaches. The final results
show that chocolate was able to outperform the human designers in the given controlled experimental
environment. The presented result is promising, but it is still not clear if it can be generalized and applied to
more complex scenarios. Especially the definition of a suitable utility function can be challenging task.

6.2 Functional languages

The approaches presented in this section have developed different functional languages in order to pro-
gram the behaviour of distributed systems. Broadly stated, using formalized functional languages has the
advantage that it is simpler to prove the correctness of the program.

An early attempt is presented by Klavins (2004) with a functional language CCL for distributed systems
based on predicates. The language is formalized and could be generally proven for determining the
correctness of a program, but this is not yet developed. Furthermore, there is no functionality that would
allow to deduce single entity behaviour from a global mission description, requiring an individual
implementation of each agent.

The functional language of Beal and Bachrach (2006) allows for programming sensor networks in a
top-down fashion. Here the meta-code is compiled to bytecode that is going to be executed on a platform-
specific virtual machine on the nodes. They are able to compile the global behaviour description, which is
written in Proto language, into locally executed code that produces the intended emergent phenomena. The
validation of the result is accomplished with simulation. Nevertheless, the focus seems more on aggre-
gation features for abstracting communication between the nodes, the actual required rules still need to be
developed in a manual way and bottom-up fashion.
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The programming language Protoswarm is an extension of Proto. It allows to program robot swarms
moving in space as single continuous spatial computer (Bachrach et al., 2008). This approach provides an
abstraction that enables global programming of a decentralized system. A disadvantage of this approach is,
that it requires homogeneous swarms with all agents exhibiting the same behaviour. This makes it very
difficult to combine these behaviours with other individual tasks of the agent. Furthermore, Protoswarm
has no explicit support for verification and validation.

6.3 Application-specific approaches

A simplification of the problem domain can be achieved by concentrating on the application specific
requirements. Existing approaches are discussed in the following paragraphs.

The origami-inspired programming language (Origami Shape Language) is able to translate its
instructions into gradient rules that lead to self-assembly of the programmed geometric structure for a large
set of identical agents (Nagpal, 2002). It relies on a set of simple primitives that are all related to gradient
diffusion and neighbourhood gradient sensing. It is difficult to apply the folding language to real life
problems, since it is hard to imagine how to fold the geometric structure in order to reach a desired shape.
Furthermore, the approach also requires some kind of global knowledge, because each agent needs to
know if it belongs to a certain area.

Similar to the previous paper, Joshi et al. (2014) are also addressing the specific application of self-
assembly. They present a robotic system that allows to build a desired structure in a decentralized fashion
with automatically generated rules for the single agents. The agents perform independent local sensing and
co-ordinate their activity through stigmergy of the perceived structure. In their solution all robots have a
representation of the intended global target and use qualitative stigmergy, meaning actions are triggered by
qualitatively different stimuli, such as distinct arrangements of building material. In order to derive the
local rules (movement guidelines) for the single robots an offline compilation step is recursively searching
through the state space to identify structpaths without cycles that are meeting the requirements. This is
possible, since the state space is reduced by using some global constraints, like all robots are starting from
the same start point, a fixed movement direction and a fixed robot behaviour routine.

Another work focused on modular robots, consisting of several independent agents, shows a general-
ized distributed consensus framework that allows for collective self-adaptation by using simplified local
constraints (Yu & Nagpal, 2011). The authors mathematically proofed the convergence to the intended
goal state from all initial states and determined factors that are influencing the convergence speed, namely
number of agents, task complexity, agent failure, and agent reactivity. The authors used their framework to
implement different self-adaptive modular robots, for instance, a gripper and an automatically balancing
bridge. In their discussion they stated several limitations and future research directions. In particular, their
approach is only working for a single-consensus state, thus, fulfilling a goal state of two independent
sensory information would not be possible. Furthermore, tasks are assigned in advance and dynamic task
selection is not available. Another difficulty is the determination of the local constraints from the global
objective function that could be addressed in future research by implementing a task compiling framework
for automatic constraint generation. Finally, the authors propose that future research could benefit from a
mixed strategy of decentralized and centralized control.

6.4 Declarative approaches

A different and more general direction is taken from other researchers investigating the applicability of
declarative approaches. In this context logic programming is used to describe global goals and restrictions
of the system and allow to deduce the rule set of individual agents.

Kloetzer and Belta (2006) developed a hierarchical framework for defining swarm motion behaviour. It
is based on linear temporal logic, constraints, and predicates. The authors abstract a large continuous
geometric state space that needs to be fulfilled by the swarm entities. The abstraction is achieved by
describing control constraints with mean and variance. The linear temporal logic formulas are
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automatically mapped to provably correct robot control laws. A disadvantage of this approach is that it
requires a global knowledge of the system state.

In the field of modular-robots there is a promising programming language called Meld (Ashley-Roll-
man et al., 2007). In the fashion of logical programming languages, Meld uses a collection of facts and a
set of production rules for combining existing facts. Execution facts are combined to satisfy given rules
and to produce new facts that—in turn—can satisfy additional rules. This forward chaining process is
executed until all provable facts were proven. However, the rules meeting the application goals have to be
determined manually by the developer.

An additional perspective is given by another paper presenting the LDP (locally distributed predicates)
language. LDP was designed to develop distributed modules in a robot ensemble, so called modular robot
programming, from a global perspective (De Rosa et al., 2008). A LDP program is a collection of LDP
with associated actions that are triggered on any agent that matches the predicate. Their reactive pro-
gramming approach does not consider even simple control structures and parallelization. As a con-
sequence the realization of more complex tasks becomes very challenging. Furthermore, their approach
has not been evaluated with regard to self-organization.

A property-driven design approach for swarm engineering is introduced by Brambilla et al. (2012). In
this iterative top-down process the requirements of the system are defined with logic formulas in the
language PRISM. Based on the formal description a macroscopic model is generated and verified with a
model checker. Next, the verified model is used to guide the implementation of the system using a
simulator. Finally, the system is tested on real robot hardware. While this approach can help to create and
implement a model of a swarm with desired properties, it becomes problematic to create more complex
models with robot-to-robot interaction, time, and spatial aspects that cannot be easily expressed with logic
formulas.

Montagna et al. (2013) presents a domain specific solution addressing the field of pervasive services.
The introduced framework for self-organizing and self-adaptive systems is based on live semantic anno-
tations (LSA). LSA are actually predicates with local predicates for individual agents as well as for the
environment. Predicates are applied in inspiration from chemical formulas, a specific input leads to certain
output. The global behaviour is enacted by defining rules in the LSA-space that are called eco-laws. All
LSA in a distributed space are updated based on the context and the eco-laws, which are defined and
represented as the set of LSA stored in a given locality. They identified a set of basic rules to model
mechanisms: evolution, decay, diffusion, contextualization, composition, synthesis. This set is not com-
plete, but in their opinion is sufficient for supporting low-level patterns. Furthermore, the authors devel-
oped resource description framework (RDF) as language for structuring LSAs and coding eco-laws. RDF
relies on the SPARQL/SPARUL query languages. The whole approach is tailored to service domain with a
comparable less complex environment that is less prone to uncertainty and noise. Applying this solution
for instance to the field of multi-robot systems would require to model the complex real-world environ-
ment with LSAs, which seems to be a very challenging task.

SCEL (Service Component Ensemble Language) is a formal language based on knowledge stored in
tuple spaces (Nicola et al., 2015). The interaction (behaviours) with the tuple space can be guarded with
policies. The language itself is minimal and does not included higher level control constructs, but allows
for semantic verification using model checking. The extensions Policed-SCEL adds direct support for the
policy language FACPL and StocS enables SCEL semantics. Due to its minimal characteristic the
expressiveness of SCEL and its extensions is limited, but decision-making can be integrated using external
reasoners but this is not part of the formal language yet.

6.5 Analysis, verification, and validation

In connection with the question of how we can develop appropriate adaptation or self-organization
mechanisms is the challenge of analyzing, verifying, and validating the created results. Due to the emer-
gent characteristics and additional degrees of freedom it needs to be ensured that the solution does not
exhibit undesired, malicious, or dangerous behaviour. This is particularly important to make adaptive
systems widely acceptable for users (Schmeck, 2005).
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The best option of generating respective guarantees is using mathematical proofs as they are achievable
with logic programming and formal languages, like Meld (Ashley-Rollman et al., 2007) and SCEL (De
Nicola et al., 2013), shown in Section 6.

In the discussed paper of DeRosa et al. (2008) the authors refer to logic programming languages for
distributed systems like Meld. They argue that these tools are powerful, because programs written in them
have certain provable properties, but this provability limits the expressive range of the languages. A
similar perspective is described by Edmonds and Bryson (2004), who state that self-organization perfor-
mance cannot be evaluated by purely formal methods. This argumentation is based on the assumption that
reasoning alone cannot process all the information required to predict the behaviour of a complex system
(see Section 4). Edmonds and Bryson (2004) argued that verification of code, as a pure design metho-
dology, is only suitable for very simple problems and does not work for larger problems. This is proven
with the halting problem of Turing. They propose that especially because of the large amount of time
spend on debugging application, we should better spend time on validation through experimentation. This
is called experimental methodology, like it is done in classical science like chemistry. In fact they
recommend that modules like agents should be accompanied with a set of testable hypothesis and data sets
which have been tested with the modules.

Even the authors of Meld argue that representing the state space can be problematic. Moreover, dealing
with a continuous state space including probabilities and temporal constraints can be difficult. For
example, expressing a behaviour that is able to react to perception of a fuzzy sensor, like a computer vision
system, and expressing a response with a certain intensity or speed cannot easily be expressed with logic
programming.

A different perspective is taken by De Wolf et al. (2005). They show an analysis of self-organizing
emergent application behaviour based on numerical analysis. It is executed on discrete simulation steps
instead of mathematical equations. This allows for more reliable and valuable results in comparison to just
observing simulation results. A critical point is how to identify the important macroscopic properties and
their related variables that quantify the property, because these properties are specific for each application.
Furthermore, DeWolf et al. (2005) are referencing Wegner (1997), who showed that pure formal
descriptions of the macroscopic behaviour of complex interacting systems are impossible in general.

To sum up, a pure formal verification of correctness is only partly applicable, since it relies on a
complete description of the state space and hence is less useful for unknown uncertain conditions. Other
approaches using simulations and experimental results are limited as well, but could possibly complement
a formal verification.

7 Planning and decision-making in robotics

Self-organization is often applied in swarm robotic systems to model collective behaviour, such as col-
lective decision-making and task allocation (Brambilla et al., 2013). However, existing approaches
entirely focus on the global perspective of the system without considering how this it integrated with the
individual obligations of a robot, which might not be directly related to the global collective behaviour. In
order to incorporate self-adaptation and self-organization into the individual behaviour control of
mobile robots in order to benefit from the advantages of those concepts it is necessary to integrate and
combine them with existing approaches for individual decision-making and planning. This is necessary
since especially more sophisticated intelligent robots still have to pursue their mission of solving particular
problems while they need further capabilities for self-adaptation and self-organization in dynamic envir-
onments. In the following we evaluate existing works regarding the applicability and support of dynamic
environments.

As discussed in Hrabia et al. (2015), adaptability in general, and fast and flexible decision-making and
planning in particular, are crucial capabilities for autonomous robots. The widely applied Robot Operating
System (ROS) proposed by Quigley et al. (2009a) and the many existing third-party packages illustrate the
current state-of-the-art in applied robotics research. In the ROS community the most commonly used
approaches for task-level or behaviour control are rule-based and reactive. A popular package is SMACH
that allows the user to build hierarchical and concurrent state machines (Bohren & Cousins, 2010). All
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kind of state machine based approaches have the problem that a decision or reaction can only be given if a
state transition was already modelled in advance. The more task-oriented behaviour trees, available in the
pi_trees package (Goebel, 2013), are another popular alternative. Even though behaviour trees allow for
more reusable behaviour implementations and some higher-level abstractions, by using special operators
like sequencer and selector, the path of execution is still preprogrammed and is likely to fail in dynamic
environments. The reason is that it is difficult to design such system without missing possible useful
dynamic transitions.

More flexible is the belief desire intention-based implementation CogniTAO (CogniTeam Ltd, 2015)
available in the decision-making package that also includes modules for the creation of finite and hier-
archical state machines. CogniTAO is targeting high-level control of multi-robot systems in dynamic
environments. In CogniTAO the user defines behaviours, called plans, as decision-graphs with start and
end conditions. Behaviours are executed and selected by protocols. The selection and decision process is
synchronized through a team of robots. The concept is more suitable for uncertain environments because
the execution sequence is not fixed and the selection of behaviours (plans) is based on conditions.
Nevertheless, it is still difficult to define mission or maintenance goals and there exist only simple pro-
tocols for plan selection.

Outside of the ROS community we can find other reactive approaches, for instance, the subsumption
architecture (Brooks, 1986) that is using a hierarchy of controllers. The controllers are generating output
signals and are able to suppress or influence the signals of lower levels. Finally, signals are combined and
mapped to particular actions. The system is able to deal with uncertain situations since it always creates
reactions, but it is still hard-wired and neither can address dynamic goals nor sequential task dependencies.

Influenced by the concept of artificial neural networks is the behaviour network architecture (Maes,
1989). Here, the behaviours are connected with each other based on their preconditions and effects, which
enables dynamic state transitions, receptively a stateless action model. The executed behaviour is dynami-
cally selected based on a utility function. The utility function is calculating the positive influence on a goal for
each behaviour, called activation that is spread through the network. Different extensions of this approach
introduce learning capabilities and multi-robot application (Jung, 1998) or concurrency and non-binary
preconditions (Allgeuer & Behnke, 2013). The hierarchical version of Allgeuer is available as a ROS
package, but simplified in the way that it only relies on pre-computed static inhibitions of conflicting
behaviours. A general issue is that network parameters need to be properly tuned towards a specific appli-
cation to avoid the risk of getting stuck in cycles, since it is difficult to express a required execution order.

Symbolic planners in the tradition of STRIPS (Fikes & Nilsson, 1972), like hierarchical task networks
(Breuer et al., 2012) or further advanced implementations, like graph-based approaches (Blum & Furst,
1997) or heuristic planners (Bonet & Geffner, 2001; Hoffmann, 2001) are very good in directing towards a
goal and determining a possible execution order. However, they have problems under uncertain conditions
because of high computational costs and calculating alternative decisions in case of unreachable goals.

In order to combine the advantages of both, reactive behaviour approaches, being fast and more
flexible, and classical planning, being more goal-directed, some researchers have proposed hybrid archi-
tectures. An early attempt was given by Hertzberg et al. (1998), who proposed a low level behaviour
controller using two differential equations, one for creating the actuator control signal and one controlling
the activation. The integration of a special term in the activation equation enabled external influences from
an operator like a human or a classical planner. Here, the reactive behaviour layer is still operational on its
own and the model for the planner has to be provided independently.

A more recent hybrid approach (Lee & Cho, 2014) models each high-level task as an independent
behaviour network that is selected by a planner. This architecture is strongly goal-directed, but loses
flexibility for dynamic adaptation since behaviours of different networks cannot be combined with
each other.

In our opinion hybrid approaches that combine behaviour networks with symbolic planning are the
most promising concept to create robots that are adaptive and goal-driven at the same time. The support of
dynamic state transitions as well as relying on a reactive agent model provides a good foundation for the
future integration of self-adaptation and self-organization capabilities in a multi-robot setting. The pre-
sented literature includes many fruitful ideas (Maes, 1989; Hertzberg et al., 1998; Jung, 1998; Allgeuer &
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Behnke, 2013; Lee & Cho, 2014), even though they are not yet integrated into one solution, and even
though not all of them are available for the ROS community.

8 Opportunities and challenges

Despite the fact that there is some progress and interesting work done in the community, there are still many
questions that remain open. Table 1 allows for an aggregated comparison of all approaches that were
mentioned in this article. The comparison shows that existing approaches become increasingly specific (that
is domain-specific and application-specific) the closer one looks into the actual mechanisms and algorithms
that are required to exhibit adaptive and co-operative behaviour. Hence, we observe that—on a methodical
level—all solutions are domain independent. Methodologies that can be classified as ‘more specific’ are
very close to the evolutionary emerged natural role models of self-organizing systems that have been
developed with trial and error, respectively, in a bottom-up manner, over centuries. For instance they apply
learning, simulation, and experimentation or put existing natural algorithms into reusable patterns.

All mechanism designs and implemented solutions that do not apply mechanisms in an ad hoc and
bottom-up manner are confined to a specific domain and sometimes even centralistic. The complete
centralization is exceptionally cumbersome whenever the system scales up. This is mainly due to possible
communication and computation bottlenecks as well as having a single point of failures that limits per-
formance and robustness for larger systems.

Available middleware solutions and frameworks are also often limited by their rather centralized or
abstract approach or focus on particular problems, like system performance or resource management.
Furthermore, none of the more concrete approaches tries to address the problem of creating an adaptive,
self-organizing system in a goal-oriented manner. A general purpose approach to develop the required
mechanisms is still missing, even though some promising solutions for simple robot swarms with
limited capabilities exists (Francesca et al., 2015). We do not know yet, how such kind of system can be
designed and developed from a goal-oriented perspective in a way that an intended global behaviour is
deduced to individual agent behaviours. Furthermore, as yet, it is unclear how the required self-
organization mechanisms can be automatically determined from the application’s perspective. Even
though declarative approaches such as Ashley-Rollman et al. (2007), Brambilla et al. (2012), Montagna
et al. (2013), Nicola et al. (2015) allow for some deduction and validation of the mechanisms, they lack of
expressiveness and cannot be used to model uncertain complex environments.

Existing architectures dictate that the engineer is implementing the actual agent behaviours from a
bottom-up perspective or the approach is very limited to a particular use-case and limited in its expres-
siveness. A framework architecture that allows for a goal-driven approach using a top-down, or mixed
bottom-up and top-down process is not yet available.

Moreover, when it comes to multi-robot systems, our target domain, existing solutions are either
focused on a particular application (e.g. as robot self-assembly), thus, modular robots are centralized and
inflexible or their capability is limited to encompass the conceptualization of the motion of a swarm
system.

We were not able to find works that deal with the problem on how self-organization and self-adaptation
can be combined with existing and indispensably required decision-making and planning of more
sophisticated robotic systems that are not just focusing on the self-organization task itself.

Nevertheless, the analyzed literature shows a number of common ideas and concepts in order to further
the spirit of more reusable code and simplified development of adaptive single- or multi-component
systems. The most important ideas and concepts are:

1. The implementation of co-ordination and adaptation are separated from the application behaviour and
has been made explicit forming own layers or components in the architecture.

2. Adaptability is realized with feedback loops that can be integrated on different levels into the
architecture, for instance, providing global, local, or group feedback.

3. Feedback loops require to monitor and influence the system state, commonly realized in accordance
with the MAPE paradigm.
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Table 1 Comparison of the properties of reviewed approaches from self-adaptation, self-organization and swarm robotics

Reference [solution name] Domain
Centralized/
decentralized Specific focus

Top-down/bottom-
up Approach

Methodologies
Steghöfer et al. (2014) [PosoMAS] General Not specified No n/a Software engineering process, simulation
Bonjean et al. (2014) [ADELFE] General Not specified No Bottom-up Software engineering process, simulation, testing
Morandini et al. (2009) [TROPOS4AS] General Not specified No Mixed Software engineering process, requirement analysis
Gershenson (2007) General Not specified No n/a Software engineering process
Branke et al. (2006) [Organic Computing] General Hybrid No n/a Learning, feedback-loop architecture, simulation
Edmonds (2005) General Not specified No n/a Software engineering process, experimental methods
De Wolf and Holvoet (2007) General Not specified No n/a Self-organization algorithm guide
Fernandez-Marquez et al. (2012) General Not specified No n/a Self-organization algorithm guide, including

combinations
Noël and Zambonelli (2015) General Not specified No n/a Component decomposition

Middlewares and frameworks
Hernandez-Sosa et al. (2005) [CoolBot] Robots Centralized QoS n/a Component-based framework
Cui et al. (2014) [ReFrESH] Embedded

systems
Centralized Fault-detection n/a Special reconfiguration layer, built into RTOS

Garlan et al. (2004) [Rainbow] General Centralized No n/a Separated adaption layer
Sudeikat et al. (2009) [SodekoVS] General Decentralized No n/a Separated adaption layer, domain specific language
Preisler et al. (2013) [Jadex] General Decentralized No n/a Separated adaption layer, domain specific language
Graff et al. (2014) [jSwarm] Robot swarms Centralized Performance,

scheduling
Mixed Precomputed dependency graph spatial-temporal

constraints
Mamei et al. (2005) [TOTA] Sensor networks Decentralized Information

propagation
Bottom-up Biological morphogen gradients

Yu and Nagpal (2009) Modular robots Centralized No Bottom-up Control laws
Viroli et al. (2009) [TuCSoN] General Decentralized No Bottom-up Probabilistic and timed co-ordination rules on tuples
Fernandez-Marquez et al. (2011) [BIO-
CORE]

General Decentralized Information
propagation

Mixed Shared data space, pattern services

Pinciroli and Beltrame (2016) [BUZZ] Robot swarms Centralized No Mixed Domain specific language, task assignment
Mechanism design and implementation
Das et al. (1995) Cellular automata Centralized Synchronization Top-down Genetic algorithms
Matarić (1995) Robot teams Decentralized Motion Mixed Set of primitive behaviours, reinforcement function
Klavins (2004) [CCL] General Decentralized No Bottom-up Predicate-based functional language
Beal and Bachrach (2006) Sensor-networks Decentralized No Bottom-up Functional language, simulation, VM abstraction
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Table 1: (Continued )

Reference [solution name] Domain
Centralized/
decentralized Specific focus

Top-down/bottom-
up Approach

Bachrach et al. (2008) [Protoswarm] Robot swarms Decentralized Motion Top-down Functional language, homogenous swarms
Nicola et al. (2015) [SCEL] General Centralized General Top-down Formal language, tuple space, model checking
Nagpal (2002) [OSL] Robot self-

assembly
Centralized Assembly Top-down Special origami-inspired language, gradient rules

Joshi et al. (2014) Robot self-
assembly

Decentralized Assembly Top-down Offline compilation, special application constraints

Yu and Nagpal (2011) Modular robots Decentralized No Bottom-up Generalized distributed consensus
Kloetzer and Belta (2006) Robot swarms Centralized Motion Top-down Mean and variance of geometric state
Ashley-Rollman et al. (2007) [Meld] Modular robots Decentralized No Top-down Logic programming language
De Rosa et al. (2008) [LDP] Modular robots Centralized No Top-down Reactive predicate language
Brambilla et al. (2012) [PRISM] Robot swarms Centralized No Top-down Property-driven design, formal language
Montagna et al. (2013) [LSA] Pervasive services Decentralized No Mixed Predicate rules, basic rules to model mechanisms
Francesca et al. (2015) [AutoMoDe] Robot swarms Centralized No Top-down Evolutionary programming, simulation, optimization

QoS= quality of service; SCEL= Service Component Ensemble Language; OSL=Origami Shape Language; LDP= locally distributed predicates; LSA= live semantic annotations;
RTOS= real time operating system; VM= virtual machine.
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4. The development of actual co-ordination mechanisms is only supported on an infrastructure level and
specialized solutions using evolutionary approaches, logic or predicate programming having
limitations in expressiveness and modelling of the dynamic world.

5. Verification and validation is crucial, but existing solutions that either use logic proofs or simulation
have limitations in terms of expressiveness or applicability.
In that sense, we still face the following open challenges:
∙ Automatically selecting or determining adaptation or organization mechanisms based on the
mission goals;

∙ maintaining complex runtime behaviour with regards to given boundaries and application scope;
∙ integrating and combining the mechanisms with higher-level decision-making and planning
components.

In order to foster the application of adaptive systems, we see numerous opportunities to combine and to
extend existing ideas into an applicable framework, leading to new valuable insights.

To make this work, formal methods are beneficial and required in the first stages—this was, for
example, demonstrated by Gershenson (2007). Following this spirit, a high-level declarative programming
layer can be used for describing the general behaviour of the system and its goals, allowing to deduce
certain guarantees, the generation of initial individual behaviour rule sets, and co-ordination patterns.
Since such an approach is limited in its expressiveness, it is going to be accompanied with a layer
implementing the low-level behaviours that are able to deal with dynamic environment, temporal con-
straints, and probabilities. A suitable behaviour representation can be realized with a hybrid approach
combining behaviour networks with symbolic planning, allowing to decouple goal-directedness and
flexible dynamic state transitions, as discussed in Section 7. The configuration of the behaviour sets can be
determined through meta heuristic, like evolutionary algorithms, learning, and simulation, like it is applied
in evolutionary robotics. This could also be simplified by automatically applying expert knowledge about
the application and combination of existing mechanisms as presented in De Wolf and Holvoet (2007) and
Fernandez-Marquez et al. (2012). An initial setup selected from such an expert knowledge library
could avoid unstable initial states. Such an initial setup can be further refined by a learning component,
which adjusts the behaviour and mechanisms through reinforcement in order to deal with new situations in
accordance with the goal description.

Another additional extension could help to integrate indicators for unintended behaviour describing the
boundaries besides a general goal description. This would enable extended control and avoid malicious
behaviour.

Driven by our background and our particular interest in multi-robot systems it is necessary to equip the
framework with the capability to integrate with existing infrastructures as well as with a convenient
abstraction from common sensor and actuator interfaces. For this reason the integration into a widespread
framework, like the ROS (Quigley et al., 2009b) appears to be a promising approach.

9 Conclusion

In this work we analyzed and compared existing ideas and approaches in the field of self-adaptation, self-
organization, emergent systems, and robotics. The aim of this survey was to find ways, mechanisms, and
approaches that simplify the development of systems that comprise large numbers of constituting entities
or agents in complex and uncertain environments and to make these systems more robust and to increase
their ability to adapt. In this work, we explicitly focused on one particular application domain, namely
multi-robot systems. We highlighted unsolved challenges, like an application-independent determination
of the self-organization mechanism, validation and control of the system, as well as the integration into the
existing decision-making and planning capabilities of intelligent robots. Nevertheless, the presented
challenges are also relevant beyond the field of multi-robot systems because, especially creating a link
between macro and mirco levels is also important in the multi-agent, self-organizing software and complex
systems communities.
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In order to accomplish the open challenges, we describe initial draft of a combination of approaches
from literature, blended with further extensions and new ideas.

In the future we aim to further detail and expand this draft, for example, by explicitly considering
information propagation among the agents. Moreover, we continue the work on a particular framework
implementation that directly addresses the future application domain of mobile multi-robots.
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