43 research outputs found

    Proton Radiography With Timepix Based Time Projection Chambers

    Get PDF
    The development of a proton radiography system to improve the imaging of patients in proton beam therapy is described. The system comprises gridpix based time projection chambers, which are based on the Timepix chip designed by the Medipix collaboration, for tracking the protons. This type of detector was chosen to have minimal impact on the actual determination of the proton tracks by the tracking detectors. To determine the residual energy of the protons, a BaF2 crystal with a photomultiplier tube is used. We present data taken in a feasibility experiment with phantoms that represent tissue equivalent materials found in the human body. The obtained experimental results show a good agreement with the performed simulations

    PROTON RADIOGRAPHY WITH THE PIXEL DETECTOR TIMEPIX

    Get PDF
    This article presents the processing of radiographic data acquired using the position-sensitive hybrid semiconductor pixel detector Timepix. Measurements were made on thin samples at the medical ion-synchrotron HIT [1] in Heidelberg (Germany) with a 221 MeV proton beam. The charge is energy by the particles crossing the sample is registered for generation of image contrast. Experimental data from the detector were processed for derivation of the energy loss of each proton using calibration matrices. The interaction point of the protons on the detector were determined with subpixel resolution by model fitting of the individual signals in the pixelated matrix. Three methods were used for calculation of these coordinates: Hough transformation, 2D Gaussian fitting and estimate the 2D mean. Parameters of calculation accuracy and calculation time are compared for each method. The final image was created by method with best parameters

    R&D Paths of Pixel Detectors for Vertex Tracking and Radiation Imaging

    Full text link
    This report reviews current trends in the R&D of semiconductor pixellated sensors for vertex tracking and radiation imaging. It identifies requirements of future HEP experiments at colliders, needed technological breakthroughs and highlights the relation to radiation detection and imaging applications in other fields of science.Comment: 17 pages, 2 figures, submitted to the European Strategy Preparatory Grou

    Ultrafast Radiographic Imaging and Tracking: An overview of instruments, methods, data, and applications

    Full text link
    Ultrafast radiographic imaging and tracking (U-RadIT) use state-of-the-art ionizing particle and light sources to experimentally study sub-nanosecond dynamic processes in physics, chemistry, biology, geology, materials science and other fields. These processes, fundamental to nuclear fusion energy, advanced manufacturing, green transportation and others, often involve one mole or more atoms, and thus are challenging to compute by using the first principles of quantum physics or other forward models. One of the central problems in U-RadIT is to optimize information yield through, e.g. high-luminosity X-ray and particle sources, efficient imaging and tracking detectors, novel methods to collect data, and large-bandwidth online and offline data processing, regulated by the underlying physics, statistics, and computing power. We review and highlight recent progress in: a.) Detectors; b.) U-RadIT modalities; c.) Data and algorithms; and d.) Applications. Hardware-centric approaches to U-RadIT optimization are constrained by detector material properties, low signal-to-noise ratio, high cost and long development cycles of critical hardware components such as ASICs. Interpretation of experimental data, including comparisons with forward models, is frequently hindered by sparse measurements, model and measurement uncertainties, and noise. Alternatively, U-RadIT makes increasing use of data science and machine learning algorithms, including experimental implementations of compressed sensing. Machine learning and artificial intelligence approaches, refined by physics and materials information, may also contribute significantly to data interpretation, uncertainty quantification and U-RadIT optimization.Comment: 51 pages, 31 figures; Overview of ultrafast radiographic imaging and tracking as a part of ULITIMA 2023 conference, Mar. 13-16,2023, Menlo Park, CA, US

    Characterization of the radiation field in ATLAS using Timepix detectors

    Full text link
    Le travail preĢsenteĢ dans cette theĢ€se porte sur le reĢseau de deĢtecteurs aĢ€ pixels ATLAS-TPX, installeĢ dans lā€™expeĢrience ATLAS afin dā€™eĢtudier lā€™environement radiatif en utilisant la tech- nologie Timepix. Les travaux sont rapporteĢs en deux parties, dā€™une part lā€™analyse des donneĢes recueillies entre 2015 et 2018, dā€™autre part lā€™eĢtude de nouveaux deĢtecteurs pour une mise aĢ€ niveau du reĢseau. Dans la premieĢ€re partie, une meĢthode pour extraire certaines proprieĢteĢs des MIPs (Mini- mum Ionizing Particles) est deĢveloppeĢe, baseĢe sur lā€™eĢtude des traces laisseĢes par ces particules lorsquā€™elles traversent les matrices de pixels des deĢtecteurs ATLAS-TPX. Il est montreĢ que la direction des MIPs et leur perte dā€™eĢnergie (dE/dX) peut eĢ‚tre deĢtermineĢe, permettant dā€™eĢvaluer leur origine. De plus, la meĢthode pour mesurer les champs de neutrons thermiques et neutrons rapides avec ces deĢtecteurs est expliqueĢe, puis appliqueĢe aux donneĢes. Les flux de neutrons thermiques mesureĢs aux diffeĢrentes positions des deĢtecteurs ATLAS-TPX sont preĢsenteĢs, alors que le signal des neutrons rapides ne se distingue pas du bruit de fond. Ces reĢsultats sont deĢcrits dans une publication, et la facĢ§on dont ils peuvent eĢ‚tre utiliseĢs pour valider les simulations de champs de radiation dans ATLAS est discuteĢe. Dans la seconde partie, la theĢ€se preĢsente une eĢtude de deĢtecteurs Timepix utilisant lā€™arseĢniure de gallium (GaAs) et le tellurure de cadmium (CdTe) comme capteur de radia- tion. Ces semiconducteurs offrent des avantages par rapport au silicium et pourraient eĢ‚tre utiliseĢs dans les prochaines mises aĢ€ niveau du reĢseau ATLAS-TPX. Comme ils sont connus pour des probleĢ€mes dā€™instabiliteĢ dans le temps et une efficaciteĢ de collection de charge incompleĢ€te, ils sont testeĢs en utilisant divers types dā€™irradiation. Ceci est deĢcrit dans deux articles, lā€™un portant sur un capteur au GaAs de 500 Ī¼m dā€™eĢpaisseur, lā€™autre sur un capteur au CdTe de 1 mm dā€™eĢpaisseur. MalgreĢ lā€™apparition de pixels bruyants lors des mesures, les deĢtecteurs montrent une bonne stabiliteĢ du signal dans le temps. Par contre, lā€™efficaciteĢ de iv collection de charge est inhomogeĢ€ne aĢ€ travers la surface des deĢtecteurs, avec des fluctuations de produits mobiliteĢ-temps de vie (Ī¼Ļ„) importantes. Ces reĢsultats montrent quā€™il est neĢcessaire dā€™eĢtudier lā€™influence de ces deĢfauts sur les algorithmes de reconnaissance de traces avant lā€™utilisation du GaAs et CdTe dans les mises aĢ€ niveau du reĢseau ATLAS-TPX.The work presented in this thesis focuses on the ATLAS-TPX pixel detector network, in- stalled in the ATLAS experiment for studying the radiation environement using the Timepix technology. The achievements are presented in two parts, on one hand the analysis of data acquired between 2015 and 2018, on another hand the study of new detectors for an upgrade of the network. In the first part, a method to extract properties of MIPs (Minimum Ionizing Particles) is developed, based on the analysis of clusters left by the interaction of these particles in the pixel matrixes of the ATLAS-TPX detectors. It is shown that the direction of MIPs and their energy loss (dE/dX) can be determined, allowing the evaluation of their origin. Moreover, the method for mesuring the thermal and fast neutron fields is explained, and applied to the data. The thermal neutron fluxes at the different detector locations are reported, whereas the fast neutron signal cannot be distingished from the background. Thoses results are described in a publication, and their use for benchmarking simulations of the radiation field in ATLAS is discussed. In the second part, the thesis presents a study of Timepix detectors equipped with gallium arsenide (GaAs) and cadmium telluride (CdTe) sensors. These semiconductors offer some advantages over silicon and could be used for upgrades of the ATLAS- TPX network. Since they are known to suffer from time instabilities and incomplete charge collection efficiency, they are tested using several types of irradiation. This is described in two publications, one focusing on a 500Ī¼m thick GaAs sensor, another focusing on a 1mm thick CdTe sensor. Despite the appearance of noisy pixels during the measurements, the detectors are found to be reasonably stable in time. However, the charge collection efficiency is found to be inhomogeneous across the sensor surfaces, with significant fluctuations of mobility-lifetime (Ī¼Ļ„) products. These results show that vi it is necessary to study the influence of these material defects on the pattern recog- nition algorithms before the integration of such sensors in the ATLAS-TPX upgrades

    Applications of Medical Physics

    Get PDF
    Applications of Medical Physicsā€ is a Special Issue of Applied Sciences that has collected original research manuscripts describing cutting-edge physics developments in medicine and their translational applications. Reviews providing updates on the latest progresses in this field are also included. The collection includes a total of 20 contributions by authors from 9 different countries, which cover several areas of medical physics, spanning from radiation therapy, nuclear medicine, radiology, dosimetry, radiation protection, and radiobiology
    corecore