2,438 research outputs found

    Multiplicative Auditory Spatial Receptive Fields Created by a Hierarchy of Population Codes

    Get PDF
    A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to the generation of spatially selective auditory neurons in the owl's midbrain. Previous analyses of multiplicative responses in the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening conditions. Here, we present a model for the responses of ITD- and ILD-sensitive neurons in the barn owl's inferior colliculus which satisfies constraints raised by experimental data on frequency convergence, multiplicative interaction of ITD and ILD, and response properties of afferent neurons. We propose that multiplication between ITD- and ILD-dependent signals occurs only within frequency channels and that frequency integration occurs using a linear-threshold mechanism. The model reproduces the experimentally observed nonlinear responses to ITD and ILD in the inferior colliculus, with greater accuracy than previous models. We show that linear-threshold frequency integration allows the system to represent multiple sound sources with natural sound localization cues, whereas multiplicative frequency integration does not. Nonlinear responses in the owl's inferior colliculus can thus be generated using a combination of cellular and network mechanisms, showing that multiple elements of previous theories can be combined in a single system

    Decoding neural responses to temporal cues for sound localization

    Get PDF
    The activity of sensory neural populations carries information about the environment. This may be extracted from neural activity using different strategies. In the auditory brainstem, a recent theory proposes that sound location in the horizontal plane is decoded from the relative summed activity of two populations in each hemisphere, whereas earlier theories hypothesized that the location was decoded from the identity of the most active cells. We tested the performance of various decoders of neural responses in increasingly complex acoustical situations, including spectrum variations, noise, and sound diffraction. We demonstrate that there is insufficient information in the pooled activity of each hemisphere to estimate sound direction in a reliable way consistent with behavior, whereas robust estimates can be obtained from neural activity by taking into account the heterogeneous tuning of cells. These estimates can still be obtained when only contralateral neural responses are used, consistently with unilateral lesion studies. DOI: http://dx.doi.org/10.7554/eLife.01312.001

    Multisensory causal inference in the brain

    Get PDF
    At any given moment, our brain processes multiple inputs from its different sensory modalities (vision, hearing, touch, etc.). In deciphering this array of sensory information, the brain has to solve two problems: (1) which of the inputs originate from the same object and should be integrated and (2) for the sensations originating from the same object, how best to integrate them. Recent behavioural studies suggest that the human brain solves these problems using optimal probabilistic inference, known as Bayesian causal inference. However, how and where the underlying computations are carried out in the brain have remained unknown. By combining neuroimaging-based decoding techniques and computational modelling of behavioural data, a new study now sheds light on how multisensory causal inference maps onto specific brain areas. The results suggest that the complexity of neural computations increases along the visual hierarchy and link specific components of the causal inference process with specific visual and parietal regions

    Comparing Bayesian models for multisensory cue combination without mandatory integration

    Get PDF
    Bayesian models of multisensory perception traditionally address the problem of estimating an underlying variable that is assumed to be the cause of the two sensory signals. The brain, however, has to solve a more general problem: it also has to establish which signals come from the same source and should be integrated, and which ones do not and should be segregated. In the last couple of years, a few models have been proposed to solve this problem in a Bayesian fashion. One of these has the strength that it formalizes the causal structure of sensory signals. We first compare these models on a formal level. Furthermore, we conduct a psychophysics experiment to test human performance in an auditory-visual spatial localization task in which integration is not mandatory. We find that the causal Bayesian inference model accounts for the data better than other models

    Sound Source Separation

    Get PDF
    This is the author's accepted pre-print of the article, first published as G. Evangelista, S. Marchand, M. D. Plumbley and E. Vincent. Sound source separation. In U. Zölzer (ed.), DAFX: Digital Audio Effects, 2nd edition, Chapter 14, pp. 551-588. John Wiley & Sons, March 2011. ISBN 9781119991298. DOI: 10.1002/9781119991298.ch14file: Proof:e\EvangelistaMarchandPlumbleyV11-sound.pdf:PDF owner: markp timestamp: 2011.04.26file: Proof:e\EvangelistaMarchandPlumbleyV11-sound.pdf:PDF owner: markp timestamp: 2011.04.2

    The Neural Particle Filter

    Get PDF
    The robust estimation of dynamically changing features, such as the position of prey, is one of the hallmarks of perception. On an abstract, algorithmic level, nonlinear Bayesian filtering, i.e. the estimation of temporally changing signals based on the history of observations, provides a mathematical framework for dynamic perception in real time. Since the general, nonlinear filtering problem is analytically intractable, particle filters are considered among the most powerful approaches to approximating the solution numerically. Yet, these algorithms prevalently rely on importance weights, and thus it remains an unresolved question how the brain could implement such an inference strategy with a neuronal population. Here, we propose the Neural Particle Filter (NPF), a weight-less particle filter that can be interpreted as the neuronal dynamics of a recurrently connected neural network that receives feed-forward input from sensory neurons and represents the posterior probability distribution in terms of samples. Specifically, this algorithm bridges the gap between the computational task of online state estimation and an implementation that allows networks of neurons in the brain to perform nonlinear Bayesian filtering. The model captures not only the properties of temporal and multisensory integration according to Bayesian statistics, but also allows online learning with a maximum likelihood approach. With an example from multisensory integration, we demonstrate that the numerical performance of the model is adequate to account for both filtering and identification problems. Due to the weightless approach, our algorithm alleviates the 'curse of dimensionality' and thus outperforms conventional, weighted particle filters in higher dimensions for a limited number of particles

    Research at the learning and vision mobile robotics group 2004-2005

    Get PDF
    Spanish Congress on Informatics (CEDI), 2005, Granada (España)This article presents the current trends on wheeled mobile robotics being pursued at the Learning and Vision Mobile Robotics Group (IRI). It includes an overview of recent results produced in our group in a wide range of areas, including robot localization, color invariance, segmentation, tracking, audio processing and object learning and recognition.This work was supported by projects: 'Supervised learning of industrial scenes by means of an active vision equipped mobile robot.' (J-00063), 'Integration of robust perception, learning, and navigation systems in mobile robotics' (J-0929).Peer Reviewe

    Learning to see and hear in 3D: Virtual reality as a platform for multisensory perceptual learning

    Get PDF
    Virtual reality (VR) is an emerging technology which allows for the presentation of immersive and realistic yet tightly controlled audiovisual scenes. In comparison to conventional displays, the VR system can include depth, 3D audio, fully integrated eye, head, and hand tracking, all over a much larger field of view than a desktop monitor provides. These properties demonstrate great potential for use in vision science experiments, especially those that can benefit from more naturalistic stimuli, particularly in the case of visual rehabilitation. Prior work using conventional displays has demonstrated that that visual loss due to stroke can be partially rehabilitated through laboratory-based tasks designed to promote long-lasting changes to visual sensitivity. In this work, I will explore how VR can provide a platform for new, more complex training paradigms which leverage multisensory stimuli. In this dissertation, I will (I) provide context to motivate the use of multisensory perceptual training in the context of visual rehabilitation, (II) demonstrate best practices for the appropriate use of VR in a controlled psychophysics setting, (III) describe a prototype integrated hardware system for improved eye tracking in VR, and (IV, V) discuss results from two audiovisual perceptual training studies, one using multisensory stimuli and the other with cross-modal audiovisual stimuli. This dissertation provides the foundation for future work in rehabilitating visual deficits, by both improving the hardware and software systems used to present the training paradigm as well as validating new techniques which use multisensory training not previously accessible with conventional desktop displays

    Computational models of auditory perception from feature extraction to stream segregation and behavior

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: This is a review study, and as such did not generate any new data.Audition is by nature dynamic, from brainstem processing on sub-millisecond time scales, to segregating and tracking sound sources with changing features, to the pleasure of listening to music and the satisfaction of getting the beat. We review recent advances from computational models of sound localization, of auditory stream segregation and of beat perception/generation. A wealth of behavioral, electrophysiological and imaging studies shed light on these processes, typically with synthesized sounds having regular temporal structure. Computational models integrate knowledge from different experimental fields and at different levels of description. We advocate a neuromechanistic modeling approach that incorporates knowledge of the auditory system from various fields, that utilizes plausible neural mechanisms, and that bridges our understanding across disciplines.Engineering and Physical Sciences Research Council (EPSRC

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use
    • …
    corecore