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Chapter 1

Sound Source Separation

G. Evangelista, S. Marchand, M. D. Plumbley, E. Vincent

1.1 Introduction

When processing a sound recording, sound engineers often face the need to apply specific
digital audio effects to certain sounds only. For instance, the remastering of a music record-
ing may require to correct the tuning of a mistuned instrument or relocate that instrument
in space without affecting the sound of other instruments. This operation is straightforward
when these sounds are available as separate tracks but becomes quite difficult otherwise.
Indeed, the digital audio effects reviewed in this book all apply to the recording as a whole.

Source separation refers to the range of techniques aiming to extract the signals of indi-
vidual sound sources from a given recording. The input recording is called mixture signal.
The estimated source signals can then be separately processed and added back together for
remastering purposes. In this scenario, the number of mixture channels is typically equal
to one or two or more rarely up to five, while the number of sources ranges from two to
ten or more. The need for source separation also arises in many other application scenar-
ios, such as speech enhancement for hearing aids, high-quality upmixing of mono or stereo
content to 3D sound formats and automatic speech and speaker recognition in multi-talker
environments.

Source separation is a recent field of research compared to the other audio effects re-
viewed in this book, so that most techniques are less mature and cannot address the above
applications scenarios to date. Yet, some established techniques are gradually finding their
way to the industry and will soon be part of professional or general consumer software. This
chapter will provide an overview of these established techniques as well as more recent ones.

1.1.1 General principles

Notion of source

The first step to address when considering source separation is to formalize the notions
of source and mixture. The notion of source or track is often ambiguous in the absence
of additional assumptions. For instance, a bass drum, a snare drum and a hi-hat may be
considered as separate sources or as components of a single “drums” source depending on
the targeted degree of separation. In the following, we make the former choice and assume
that all sources are point sources emitting sound from a different point in space. We also
set additional constraints on the sources in case of a single-channel mixture.
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Chapter 1 Sound Source Separation

Modeling of the mixing process

Independently of the application scenario, the notion of mixture can generally be formalized
as the result of a multichannel filtering process. Let I be the number of mixture channels
and M the number of sources. The point source assumption implies that each source can
be represented as a single-channel signal sm(n), m ∈ {1, . . . ,M}. When the sources are
digitally mixed by amplitude panning (see Chapter 5), the i-th mixture channel xi(n),
i ∈ {1, . . . , I}, is given by the instantaneous mixing model

xi(n) =

M∑

m=1

aimsm(n) (1.1)

where aim is a scalar panning coefficient. When the mixture is obtained by simultaneous
recording of the sources or when additional artificial reverberation is applied, the mixture
channels can be expressed by the more general convolutive mixing model [SAM07]

xi(n) =

M∑

m=1

∑

τ

aim(τ )sm(n− τ ) (1.2)

where aim(τ ) is a Finite Impulse Response (FIR) filter called mixing filter modeling time-
varying sound transformation between the m-th source and its contribution to the i-th
channel1. In a conventional recording, the mixing filters are room impulse responses re-
flecting the spatial directivity of the sources and the microphones and acoustic propagation
from the sources to the microphones, including sound reflections over the walls or other ob-
jects in the room. The length of the filters is then on the order of a few hundred millisecond
in a small room or one second in a concert room. Additional filtering due to the listener’s
head arises in binaural recordings, so that the mixing filters are equal to the sum of the
Head-Related Transfer Functions (HRTFs) associated with the direct sound and with all
reflections.

Time-frequency domain processing

Despite its accurate reproduction of the mixing process, the time-domain signal represen-
tation (1.2) is generally considered as inconvenient for sound source separation, since all
sources except silent ones contribute to each sample xi(n) of the mixture signal. Time-
frequency representations are preferred, since they decrease the overlap between the sources
and simplify the modeling of their characteristics. Indeed, all sources are typically charac-
terized by distinct pitches or spectra in a given time frame and by distinct dynamics over
time, so that one or two predominant sources typically contribute to each time-frequency
bin. This property known as sparsity makes it easier to estimate their contributions and
subsequently separate them. This phenomenon is illustrated in Fig.1.1 where the features
of a violin source and a piano source are hardly visible in the mixture signal in the time
domain, but are easily segregated in the time-frequency domain.

Although perceptually motivated representations have been employed [WB06], the most
popular time-frequency representation is the Short Time Fourier Transform (STFT), also

1Models (1.1) and (1.2) both assume that the source positions and the digital audio effects applied upon
them are fixed throughout the duration of the recording. Moving source scenarios have received less
attention so far. However, such scenarios may be addressed to a certain extent by partitioning the
recording into time intervals over which the mixing filters are reasonably time-invariant and applying
the techniques reviewed in this chapter to each interval.
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Figure 1.1 Time vs. time-frequency representation of a single-channel mixture of a violin
source and a piano source.

known as the phase vocoder, that is the subject of Chapter 7. The mixing process can then
be modeled directly over the STFT coefficients using the time-frequency filtering algorithm
described in that chapter. However, this exact algorithm requires the window length N to
be larger than twice the length of the mixing filters, that is typically on the order of several
hundred millisecond, while the optimal window length in terms of sparsity is on the order
of 50ms [YR04]. Also it introduces a dependency between the source STFT coefficients
at different frequencies due to zero-padding that makes them more complex to estimate.
Approximate time-frequency filtering based on circular convolution is hence used instead.
Denoting by Xi(n, e

jω) and Sm(n, ejω) the complex-valued STFT coefficients of the i-th
mixture channel and the m-th source in time frame n and at normalized frequency ω and
by Aim(ejω) the frequency-domain mixing coefficients corresponding to the mixing filter
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Chapter 1 Sound Source Separation

aim(τ ), the mixing process is approximately modeled as [SAM07]

Xi(n, e
jω) =

M∑

m=1

Aim(ejω)Sm(n, ejω). (1.3)

Denoting by X(n, ejω) the I × 1 vector of mixture STFT coefficients and by S(n, ejω) the
M×1 vector of source STFT coefficients, the mixing process can be equivalently expressed
as

X(n, ejω) = A(ejω)S(n, ejω). (1.4)

where A(ejω) is the I×J matrix of mixing coefficients called mixing matrix. Source separa-
tion amounts to estimating the STFT coefficients Sm(n, ejω) of all sources and transforming
them back to the time domain using overlap-add STFT resynthesis.

Quality assessment

Before presenting actual source separation techniques, let us briefly introduce the terms
that will be used to describe the quality of the estimated sources in the rest of this chapter.
In practice, perfect separation is rarely achieved, e.g. because the assumptions behind
source separation algorithms are not exactly met in real-world situations. The level of the
target source is then typically increased within each estimated source signal, but distortions
remain compared to the ideal target source signals. One or more types of distortion can arise
depending on the algorithm [VGF06]: linear or nonlinear distortion of the target source
such as e.g. missing time-frequency regions, remaining sounds from the other sources, and
additional artifacts taking the form of time- and frequency-localized sound grains akin to
those observed in denoising applications (see Chapter 7). These three kinds of distortion
will be called target distortion, interference and musical noise, respectively. Minimizing
interference alone often results in increasing musical noise, so that a suitable trade-off must
be seeked depending on the application. For instance, musical noise is particularly annoying
and must be avoided at all costs in hearing aid applications.

1.1.2 Beamforming and Frequency-Domain Independent Component Analysis

Separation via unmixing filter estimation

One of the earliest paradigms for source separation consists of estimating the sources by
applying a set of appropriate multichannel unmixing filters to the mixture. In the time-
frequency domain, this amounts to computing the estimated STFT coefficients Ŝm(n, ejω)
of the sources as [BW01]

Ŝm(n, ejω) =
I∑

i=1

Wmi(e
jω)Xi(n, e

jω) (1.5)

where Wmi(e
jω) are complex-valued unmixing coefficients. With similar notations to above,

this can be expressed in matrix form as

Ŝ(n, ejω) = W(ejω)X(n, ejω) (1.6)

where W(ejω) is the J × I unmixing matrix.
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1.1 Introduction

These filters act as spatial filters that selectively enhance or attenuate sounds depending
on their spatial position. In order to understand how these filters can be designed to
achieve source separation, let us consider at first the simple case of a two-channel mixture
of two sources recorded from omnidirectional microphones. The extension of this approach
to more than two channels and two sources is discussed later in Section 1.1.3. Since each
interfering source generates a large number of echoes at distinct positions, sounds coming
from all of these positions should be canceled. Under the assumption that these positions
are far from the microphones relatively to the wavelength, sound from a given position will
arrive at the second microphone with little attenuation relatively to the first microphone
but a delay δ that is approximately equal to

δ =
d fS
c

cos θ samples (1.7)

where d is the microphone spacing in m, fS the sampling frequency in Hz, c the speed
of sound i.e. about 344m s−1 and θ the sound direction of arrival (DOA) relative to the
microphone axis oriented from the second to the first microphone. Since the frequency
response associated with delay δ is equal to e−jωδ, the directivity pattern of the unmixing
filters Wmi(e

jω) associated with source p, that is their magnitude response to a sound of
normalized frequency ω with DOA θ, is given by [BW01]

Gm(θ, ω) =

∣∣∣∣Wm1(e
jω) +Wm2(e

jω)e−jω
d fS

c
cos θ

∣∣∣∣ . (1.8)

Note that distance or elevation do not enter into account, provided that the distance is
large enough, so that all sounds located on the spatial cone corresponding to a given DOA
are enhanced or attenuated to the same extent.

Beamforming

Expression (1.8) allows it to design the filters so as to achieve suitable directivity patterns.
Let us assume for a moment that the DOAs θ1 and θ2 of both sources are known and that
we aim to extract the first source. A first simple design consists of setting

W11(e
jω) =

1

2
(1.9)

W12(e
jω) =

1

2
ejω

d fS
c

cos θ1 . (1.10)

This design called delay-and-sum beamformer [BW01] adjusts the delay between the two
microphone signals before summing them so that they are perfectly in phase for sounds
with DOA θ1 but tend to be out of phase for sounds with other DOAs. The directivity
pattern corresponding to this design is depicted in Fig. 1.2. Sounds within a beam around
the target DOA are enhanced. However, the width of this beam increases with decreasing
frequency and it covers the whole space in the range below 400Hz with the considered
microphone spacing of d = 30 cm. Sidelobe beams also appear with a regular spacing at
each frequency, so that the interfering source is cancelled at certain frequencies only. This
results in an average enhancement of 3 dB.
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Directivity pattern G1(θ,ω)
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Figure 1.2 Directivity pattern of the two-channel delay-and-sum beamformer pointing to
a target source at θ1 = 77◦ with a microphone spacing of d = 30 cm.

A more efficient design called null beamformer [BW01] consists of setting

W11(e
jω) =

1

1− ejω
d fS

c
(cos θ2−cos θ1)

(1.11)

W12(e
jω) = − ejω

d fS
c

cos θ2

1− ejω
d fS

c
(cos θ2−cos θ1)

. (1.12)

The numerator of this expression adjusts the delay between the two microphone signals
so that sounds with DOA θ2 are in antiphase, while the denominator adjusts the gain so
as to achieve a flat response to sounds with DOA θ1. The resulting directivity pattern
shown in Fig. 1.3 confirms that direct sound from the interfering source is now perfectly
notched out, while direct sound from the target source is not affected. Note that the
notch at θ2 is extremely narrow so that precise knowledge of θ2 is crucial. Also, sidelobes
still appear so that echoes of the interfering source are not canceled. Worse, sounds from
almost all DOAs are strongly enhanced at frequencies that are multiples of 1.8 kHz with
the considered microphone spacing and source DOAs. Indeed, both source DOAs result in
similar phase differences between microphones at these frequencies, i.e. ω d fS/c cos θ1 =
ω d fS/c cos θ2 (mod 2π), so that the numerator tends to cancel the target source together
with the interfering source and a strong gain must be applied via the denominator to
compensate for this. Precise knowledge of θ1 is therefore also crucial, otherwise the target
source might become strongly enhanced or attenuated at nearby frequencies.

The delay-and-sum beamformer and the null beamformer are both fixed designs, which
do not depend on the data at hand except from the source DOAs. More robust adaptive
designs have been proposed to attenuate echoes of the interfering source together with its
direct sound. For example, the Linearly Constrained Minimum Variance (LCMV) beam-
former [BW01] minimizes the power of the source signals estimated via (1.5), which is
equal to the power of direct sound from the target plus that of echoes and interference,
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Directivity pattern G1(θ,ω)
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Figure 1.3 Directivity pattern of the two-channel null beamformer for a target source at
θ1 = 77◦ and an interfering source at θ2 = 114◦ with a microphone spacing of
d = 30 cm.

while guaranteeing a flat response over the target DOA. This beamformer can be inter-
preted in a statistical framework as achieving Maximum Likelihood (ML) estimation of
the sources under the assumption that the sum of all interfering sounds has a stationary
Gaussian distribution. Its implementation via the so-called Generalized Sidelobe Canceller
(GSC) [BW01] algorithm does not necessitate knowledge of the interfering source DOA
anymore, but still requires precise knowledge of the target DOA. In realistic scenarios,
this information is not available and must be estimated from the mixture signal at hand.
State-of-the-art source localization algorithms e.g. [NSO09] are able to address this issue
in anechoic environments, but their accuracy drops in moderately to highly reverberant
environments so that the separation performance achieved by beamforming drops as well.

Frequency-Domain Independent Component Analysis

In order to understand how to circumvent this seemingly bottleneck issue, let us come
back to the matrix expression of the mixing and unmixing processes in (1.4) and (1.6). By

combining these two equations, we get Ŝ(n, ejω) = W(ejω)A(ejω)S(n, ejω). Therefore, if
the mixing filters were known, choosing the unmixing coefficients as

W(ejω) = A(ejω)−1 (1.13)

would result in perfect separation i.e. Ŝ(n, ejω) = S(n, ejω) in the limit where time-
frequency domain approximation of the mixing process is valid and A(ejω) is invertible. In
practice, A(ejω) can be singular or ill-conditioned at the frequencies for which the sources
result in similar phase and intensity differences between microphones. The directivity
pattern corresponding to these optimal unmixing coefficients is illustrated in Fig. 1.4 in the
case of a concert room recording. Deviations compared to Fig. 1.3 are clearly visible and
due to summation of direct sound and echoes at the microphones, resulting in apparent
DOAs different from the true DOAs.
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Directivity pattern G1(θ,ω)
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Figure 1.4 Directivity pattern of the optimal unmixing coefficients for a target source at
θ1 = 77◦ recorded in a concert room in the presence of an interfering source
at θ2 = 114◦ with a microphone spacing of d = 30 cm.

In practice, the mixing filters are unknown, thus the optimal unmixing coefficients must
be adaptively estimated from the mixture signal. This can be achieved in a statistical frame-
work by ML estimation of the unmixing coefficients under the assumption that the STFT
coefficients of all sources are independent and follow a certain distribution. It can be shown
that the ML objective is equivalent to maximizing the statistical independence of the STFT
coefficients of the sources, hence this approach is known as Frequency-Domain Independent
Component Analysis (FDICA). A range of prior distributions have been proposed in the
literature [SAM07, VJA+10] which typically reflect the aforementioned sparsity property
of the sources, i.e. the fact that the source STFT coefficients are significant in a few time
frames only within each frequency bin. Note that this statistical framework is very different
from that underlying LCMV beamforming, since the sources are now modeled as separate
sparse variables instead of a joint Gaussian “noise”.

A popular family of distributions is the circular generalized Gaussian family [GZ10]

P (|Sm(n, ejω)|) = p

β Γ(1/p)
exp

(
−
∣∣∣∣
Sm(n, ejω)

β

∣∣∣∣
p)

(1.14)

where Γ(.) denotes the function known in mathematics as the gamma function. The scale
and shape parameters β and p govern respectively the average magnitude and the sparsity of
the source STFT coefficients. The smaller p, the more coefficients concentrate around zero.
Distributions with shape parameter p < 2 are generally considered as sparse and those with
p > 2 as non-sparse with respect to the Gaussian distribution over the magnitude STFT
coefficients associated with p = 2. In the absence of prior information about the spectral
shape of the sources, the scale parameters β is typically fixed so that the coefficients have
unit power. Fig. 1.5 shows that this distribution with p = 0.4 provides a very good fit of the
distribution of a speech source after power normalization in each frequency bin. The shape
parameter value p = 1, which results in the slightly less sparse Laplacian distribution, is
nevertheless a popular choice [SAM07].
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Figure 1.5 Distribution of the power-normalized magnitude STFT coefficients of a speech
source compared to the generalized Gaussian distribution with shape param-
eter p = 0.4.

The likelihood of the observed mixture signal is obtained by multiplying the probability
density (1.14) over all sources, all time frames and all frequency bins. ML estimation of
the unmixing coefficients is then equivalent to solving the following optimization problem:

min
Wmi(e

jω )

M∑

m=1

∑

n,ω

|Ŝm(n, ejω)|p (1.15)

where Ŝm(n, ejω) implicitly depends onWmi(e
jω) via (1.5). This problem may be addressed

using a range of algorithms, that rely on principles of optimization theory beyond the scope
of this chapter. Readers may refer to [SAM07] for details.

Two additional problems remain. Firstly, since the scale parameter β is constant over
all frequency bins, the resulting sources have a flat average spectrum. This scaling indeter-
minacy of FDICA may be circumvented by exploiting more advanced models of the source
spectra or by multiplying the estimated source STFT coefficients by the mixing coefficients
derived from the unmixing coefficients via (1.13) so as to estimate the contribution of each
source to one or more mixture channels instead of the original source. Secondly, since the
model (1.14) is identical for all sources, the sources can be estimated at best up to a random
order. This permutation indeterminacy of FDICA can be addressed to a certain extent by
exploiting more advanced models of the source spectra or by estimating approximate source
DOAs and permuting the unmixing coefficients so that the resulting directivity patterns
match the null beamformer pattern in Fig.1.3 as closely as possible. Again, see [SAM07]
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for details.

1.1.3 Statistically Motivated Approaches for Under-Determined Mixtures

We have seen that null beamforming or preferably FDICA can be employed to separate a
two-channel mixture of two sources. At this stage, most readers will undoubtedly wonder
how these methods generalize to more channels and more sources. As it turns out, these
algorithms can be extended to any number of sources and channels. However, they are
efficient only when the number of sources is equal or smaller than the number of channels.
Indeed, the number of independent spatial notches corresponding to any set of unmixing
filters is at most equal to the number of channels. This can be seen in Fig.1.3 where the
unmixing coefficients may be chosen so as to form one notch per frequency in the direction of
the interfering source in a two-channel mixture but other notches due to sidelobes cannot be
independently adjusted. Mixtures satisfying this constraint are called determined mixtures.

In the rest of this chapter, we shall focus on under-determined mixtures, which involve
more sources than mixture channels and occur more often in practice. The separation of
such mixtures requires a novel paradigm: instead of estimating unmixing filter coefficients,
one now wants to estimate the mixing coefficients and the source STFT coefficients directly.
Again, this can be addressed in a statistical framework by specifying suitable statistical
models for the mixing coefficients and the source STFT coefficients. In practice, for histor-
ical reasons, most methods rely on a statistical model of the source STFT coefficients but
adopt a simpler deterministic model for the mixing coefficients based on e.g. perceptual
considerations.

Two categories of models have been studied so far, depending on the number of channels.
In a multichannel mixture, spatial information still helps separating the sources so that
weak source models are sufficient. Sparse distributions of the source STFT coefficients
have been used in context together with learned mapping functions between the source
DOAs and the mixing coefficients. An example algorithm relying on such distributions
will be presented in Section 1.2. In a single-channel mixture, spatial information is no
more available so that more accurate models of the source STFT coefficients are needed.
Example algorithms relying on such models will the described in Section 1.3.

1.1.4 Perceptually Motivated Approaches

The ability to locate and separate sound sources is well developed among humans and ani-
mals who use this feature to orient themselves in the dark or to detect the potential sources
of danger. The field of Computational Auditory Scene Analysis (CASA) studies artificial
systems able to mimic this localization-separation process. These approaches clearly rep-
resent a shift in the paradigm where rather than in modeling the sound production process
focus is in modeling the spatial sound perception processes.

A simple task in source localization is to detect, to a good degree of approximation, the
DOA of the source waves from the signals available at the two ears. To a certain extent,
humans are able to perform this task even if one of the two ears is obstructed or not
functioning, i.e., from monaural hearing. Several models have been conceived to explain
binaural perception, which are rooted in the work by Jeffress [JSY98] on the analysis of
Interaural Time Difference (ITD) by means of a neuronal coincidence structure, where
nerve impulses derived from each of the two ears stimuli travel in opposite directions over
delay lines. This model transforms time information into space information since a nerve
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1.2 Binaural Source Separation

cell is excited only at the position on the delay lines where the counter-traveling impulses
meet.

Back at the beginning of last century, the ITD together with the Interaural Level Dif-
ference (ILD) were considered as the principal spatial hearing cues by Lord Rayleigh, who
developed the so called Duplex Theory of Localization. According to this theory, validated
by more recent experimentation, ITDs are more reliable at lower frequencies (roughly below
800 Hz), while ILDs perform better at higher frequencies (roughly above 1.6 kHz). This is
due to the fact that the wavelength associated with low audio frequencies is larger than the
distance between the ears (typically 12-20 cm). In this case, the perturbation at the two
ears is mainly characterized by phase differences with almost equal levels. On the other
hand, at higher frequencies, the head is shadowing the perturbation reaching one of the
ears, thus introducing relevant ILDs for sound sources that are not placed directly in the
frontal direction of the listener. In real measurements, ITDs and ILDs are the result of
multiple reflections, diffractions and resonances generated in the head, torso and external
ears of the listener. Consequently, the interpretation and use of ITD and ILD as cues for
DOA detection is less simple and error prone [Bla01, Gai93, Lin86, ST97].

In perceptually motivated source separation methods, the binaural signals are first input
to a cochlear filter bank. The sources are separated by processing linearly or non-linearly
the signal in perceptual frequency bands. Typical non-linear processing includes half-wave
rectification or squaring followed by low-pass filtering [FM04]. ITD and ILD are also
estimated within perceptual bands and used as cues for the separation.

While the accurate modeling of binaural hearing is essential to the understanding of
auditory scene analysis as performed by humans or animals, several approaches to sound
source localization and separation based on spatial cues were derived for the sole purpose
of processing audio signals. In this case, the proposed algorithms are often only crudely
inspired by human physiological and perceptual aspects. The ultimate goal is to optimize
performance, without necessarily adhering to biological evidence. For example, the fre-
quency resolution at which ITD and ILD cues can be estimated can go well beyond that of
the critical frequency bands of the cochlear filter bank.

1.2 Binaural Source Separation

In binaural separation, the various sources are segregated according to spatial cues ex-
tracted from the signals available at both ears. This is the case of the signals transduced
by the microphones of a two-ear hearing aid system or of the signals available at the mi-
crophones in the artificial ears of a dummy head. The type of apparatus is irrelevant, as
long as human-like head shadowing is present in-between the microphones. A common
strategy is to first detect and discern sources based on the DOA of waves, which is the
object of Section 1.2.1, and then to build suitable time-frequency masks in a two-channel
STFT representation of the binaural signal in order to demix them. Each mask, which
can be binary or continuous valued with arbitrary values in [0, 1], coarsely represents the
time-frequency profile of a given source. Due to energy leakage in finite sliding window
time-frequency analysis, the masks are bound to cover broader bands than the ideal time-
frequency tracks. The estimation of proper masks is the object of Section 1.2.2. The masks
are multiplicatively applied to both STFT channels and the transforms inverted. The ideal
outcome is a set of binaural signals, each representing the sound of a single source spatially
placed at the corresponding DOA.

11



Chapter 1 Sound Source Separation

1.2.1 Binaural Localization

An important aspect of binaural localization is the estimation of the DOA in terms of
azimuth and elevation. Together with the range information (distance from the source), it
provides full knowledge of the coordinates of the source. However, we shall confine ourselves
in estimates of the azimuth only. Estimates of the range are difficult in closed spaces and if
the distance of the source to the listener is not large. Estimates of the elevation are affected
by larger error, even in the human hearing system. The so called cones of confusion [Bre90],
show large uncertainty on the elevation of the source, while azimuth uncertainty as sharp
as ±5◦ is common in humans. It must be pointed out that the azimuth resolution depends
on the angle, with lateral directions providing less sharp results.

In order to estimate the azimuth of the source one can explore spatial cues such as ILD
and ITD. For any given source and at any given time, the ILD is the difference in level
as received at the ears. Given the STFT of the left and right ear signals, XL

(
n, ejω

)
and

XR

(
n, ejω

)
, respectively, one can estimate the ILD at any angular frequency ω and time

interval indexed by n, where the signal energy is above a certain threshold, as follows:

∆Ln(ω) = 20 log10

∣∣∣∣∣
XR

(
n, ejω

)

XL (n, ejω)

∣∣∣∣∣ . (1.16)

Basically, the ILD estimate is the difference in dB of the amplitudes in the two channels as
a function of frequency and averaged over the STFT analysis interval [nN, ..., nN +M−1],
where the integers N and M respectively denote hop-size and window length of a discrete
time STFT.

For any given source and at any given time, the ITD is defined as the time shift of the
two signals received at the ears. This time shift could be measured, e.g., by finding a local
maximum of the two signals cross-correlation. However, in the time-frequency paradigm
we adopted for the whole localization-separation process, for each angular frequency ω one
can estimate the ITD from the STFT of the two ear signals, as follows:

∆Tn,p(ω) =
1

ω

(

∠
XR

(
n, ejω

)

XL (n, ejω)
+ 2πp

)

(1.17)

The ITD is estimated from the phase difference of the two ear signals. In fact, through
division by ω, it corresponds to a phase delay measurement. Since the phase is defined
modulo 2π, there is an ambiguity in the estimate that is a multiple of this quantity, which
justifies the term 2πp in (1.17), where p is any integer.

By the nature of the problem, ITD estimates are sharper at lower frequencies, where the
effect of phase ambiguity is minimized, while ILD estimates are sharper at high frequencies,
i.e., at wavelengths much shorter than the distance between the ears.

Localization using HRTF data or head models

Azimuth estimation from ITD and ILD can be performed by means of table lookup, using
a set of measured HRTFs for a given individual. Given the measurements HRTF s

R(θ, e
jω)

and HRTF s
L(θ, e

jω) of the subjective HRTF for the right and left ear as a function of the
azimuth θ and angular frequency ω, one can form the following tables

∆Ls(θ, e
jω) = 20 log10

∣∣∣∣
HRTF s

R(θ, e
jω)

HRTF s
L(θ, ejω)

∣∣∣∣ (1.18)

12



1.2 Binaural Source Separation

and

∆Ts,p(θ, e
jω) =

1

ω

(
∠
HRTF s

R(θ, e
jω)

HRTF s
L(θ, e

jω)
+ 2πp

)
(1.19)

for the azimuth lookup, respectively, from ILD and ITD estimates. As shown in Fig. 1.6
left column, the measured HRTF tables are quite noisy, depending on the details of multiple
head-torso wave reflection. It is practice to smooth these tables along the azimuth axis, as
shown in Fig. 1.6 right column; we will continue to use the same symbols as in (1.18) and
(1.19) to denote the smoothed tables.

For any frequency, given an STFT based estimate ∆Ln(ω) for the level difference as in
(1.16), the azimuth θ can be estimated by finding in (1.18) which value of θ provides the
measured ILD. We denote this estimate by θL,n(ω).

Similarly, given an STFT based estimate ∆Tn,p(ω) for the time difference as in (1.17), the
azimuth can be estimated by finding in (1.19) which value of θ provides the measured ITD.
The time difference estimate depends on an arbitrary integer multiple p of 2π. Therefore,
for any fixed frame index n and angular frequency ω, each ITD estimate is compatible with
a countable infinity of azimuth estimates θT,n,p(ω). However, assuming that the phase
difference of the HRTFs does not show large discontinuities across azimuth and that the
phase difference at zero azimuth is as small as possible, i.e. zero, it is possible to resolve
the phase ambiguity by unwrapping the phase difference of the right and left HRTFs along
the azimuth. Even when this ambiguity is resolved, there can still be several values of
θ providing the same ILD or ITD values in HTRF lookup. While smoothing tends to
partially reduce ambiguity, majority rules or statistical averages over frequency or other
assumptions can be used to increase the reliability of the azimuth estimate.

Usually, the Duplex Theory is applied here to choose among the estimates as a function
of frequency. At low frequencies, the estimate ∆Ts,0(θ, e

jω) is selected for the azimuth
lookup estimates from unwrapped phase difference, while at high frequencies ∆Ls(θ, e

jω)
is selected. In Section 1.2.1 a procedure for azimuth estimate jointly employing ITD and
ILD is described.

Given a head radius of r meters, the cut-off frequency fc to switch from ITD to ILD
based azimuth estimates can be estimated as the inverse of the time for the sound waves
to travel from ear to ear along the head semicircle, i.e., fc = c

πr
, where c ≈ 344 ms−1 is the

speed of sound in air. Approximately a cut-off frequency of 1.6 kHz is selected to switch
from ITD to ILD based estimates when the head radius is not known.

The discussed azimuth estimation lookup procedure requires knowledge of the individual
HRTFs. When these are not known, it is possible to resort to a slightly less accurate
estimation procedure which makes use of average ILD and ITD, respectively obtained from
(1.18) and (1.19) by averaging over several individuals in a database of HRTFs. It can be
shown [RVE10] that the performance of the averaged model is comparable with that of the
method based on individual transfer functions.

At the cost of slightly reduced performance, it is possible to eliminate the need for HRTF
based lookup tables in azimuth estimates. In fact, from simple geometric considerations
[WS54], as shown in Fig. 1.7 for an idealized face represented by a circular section of radius
r, the two ears path length difference of a wave reaching from DOA θ is not only due to an
“in air” term r sin θ but also to the arc length rθ of a curved path along the face, yielding

∆T (θ) = r
sin θ + θ

c
(1.20)
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Figure 1.7 Path length difference model for the ITD based on head geometry.

Due to the fact that the head is not perfectly spherical the measured ITD is slightly larger
than the values in (1.20), especially at low frequencies. A more accurate model, discussed
in [RVE10], scales the ITD model (1.20) by a frequency and, possibly, subject dependent
scaling factor αs(ω), to obtain

∆Ts(θ, ω) = αs(ω)r
sin θ + θ

c
(1.21)

Given a measure of the ITD ∆Ts(θ, ω), in order to produce an estimate for the azimuth θ
one needs to invert (1.21), which can be achieved by polynomial approximation [RVE10].

The ILD is a much more complex function of frequency. However, based on the obser-
vation of a large number of HRTFs, the following model [RVE10] can be shown to capture
its main features when the sources are at large distances (over 1.5 m) from the listener:

∆Ls(θ, ω) = βs(ω) sin θ (1.22)

where βs(ω) is again a frequency and, possibly, subject dependent scaling factor. Inversion
of (1.22) in order to produce an estimate for the azimuth does not present any problem.
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Localization using ITD, ILD and IC

Since both the ILD and the ITD are related to the azimuth, they can be jointly employed
in order to improve the azimuth estimates. The noisy ∆Ln(ω) provides a rough estimate
of the azimuth for each left/right spectral coefficient pair. This ILD estimate can be used
in order to select the most reasonable value for the parameter p in the ITD estimate, which
is the one for which the ILD and ITD based estimates provide the closest value for the
azimuth. Formally, this is given by

θJ,n = θT,n,ρ|ρ=argminp|θT,n,p−θL,n| (1.23)

Comparative experimental results obtained by ILD only, ITD only and joint method are
shown in Fig. 1.8 for a single white noise source located at angles 0◦, 15◦, 30◦, 45◦ and 65◦.
Extensive performance evaluation of the joint ILD-ITD azimuth estimates can be found in
[RVE10].

In the presence of one source only, the two ears signals xL and xR approximately are
two delayed and amplitude scaled versions of the same signal. In that case, the Interaural
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Chapter 1 Sound Source Separation

Cross Correlation (ICC), defined as the normalized cross-correlation

ρL,R(n) =

∑
m

xL(m)xR(n+m)

√∑
p

x2
L(p)

∑
q

x2
R(q)

(1.24)

peaks at a time lag corresponding to the relative delay or global ITD of the two signals.
The amplitude of the peak provides a measure of similarity. In the presence of two or more
sources with different DOA, the cross-correlation peaks are less distinguishable: since there
is more than one characteristic delay, the two ear signals are less similar. The Interaural
Coherence (IC) is defined as the maximum of the normalized cross-correlation of the two
ears signals, which is a number between 0 and 1. It is useful to evaluate the ICC in time-
frequency, i.e. with xL(n) and xR(n) in (1.24) replaced by the STFTs XL

(
n, ejω

)
and

XR

(
n, ejω

)
, respectively:

ρL,R

(
n, ejω

)
=

∣∣∣∣
∑
m

XL

(
m, ejω

)
X∗

R

(
n+m, ejω

)∣∣∣∣
√∑

p

|XL (p, ejω)|2
∑
q

|XR (q, ejω)|2
(1.25)

where ∗ denotes complex conjugation. In practice, the ICC is smoothed in time [Men10]
in order to mitigate the oscillatory behavior due to the STFT finite window length. The
corresponding time-frequency IC cue, defined as the amplitude of the maximum of the
time-frequency ICC for any fixed frequency, provides a measure of reliability of the ITD
and ILD for each frequency channel [FM04], IC being larger if only one source contributes
to a given frequency bin. Furthermore, the time-frequency IC can be effectively employed
as a cue to improve separation in the presence of time-frequency overlapping sources, where
non-binary demixing masks are optimized by maximizing the IC of the separated sources.

1.2.2 Binaural Separation

In Section 1.2.1, methods for the localization of sources in binaural signals are discussed,
which are based on DOA discrimination from the STFT of the signals observed at the
two ears. The azimuth θ(n, ω) estimated for each left/right pair of spectral coefficients
pertains to a narrow-band signal component in a short time interval. The ensemble of
azimuth estimates can be employed to obtain separate binaural signals where the spatial
information is preserved, but where only one source is present in each, which is the object
of this section. Starting from the simple method based on binary masks we then explore
the construction of countnuous valued masks based on Gaussian mixtures models of the
multimodal distribution of azimuth estimates. We then illustrate the use of structural
assumption in the multi-channel separation of overlapping harmonics.

Binary Masks

At any given time, each prominent peak of the histogram h(θ) obtained by cumulating
the azimuth estimates θ(n, ω) over frequency pertains to different observed DOA. In the
assumption that the sound sources are spatially distributed, so that each has a sufficiently
distinct DOA as observed by the listener, the number of peak equals the number of sources.
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1.2 Binaural Source Separation

The position of the peak estimates the DOA θk(n) of the corresponding source, where k
represents the source index, which can be tracked over time.

Given the azimuth estimates θ(n, ω) and the source azimuths θk(n), a weighting factor
Mk(n, ω) can be given for each spectral coefficient. For each source, the separated binaural
signal is obtained by multiplying this weighting factor by the STFT of the left and right
ear signals followed by STFT inversion. Respectively, the left and right channel STFTs of
the k-th reconstructed source signal are given by:

Yk,L(n, ω) = Mk(n, ω)XL(n, ω)

Yk,R(n, ω) = Mk(n, ω)XR(n, ω)
(1.26)

Different approaches can be considered for the definition of the weights. In the assumption
that the STFT spectra of the different sources do not overlap significantly, i.e., in the
Window-Disjoint Orthogonal (WDO) assumption [YR04]. In this case, only one source
contributes significant energy to a given spectral coefficient so that each spectral coefficient
can be exclusively assigned to that source. Binary weights can be efficiently employed in
this case. A possible strategy is to assign each spectral coefficient to the source whose
azimuth estimate is closest. This is formalized by the following choice of weights:

Mk(n, ω) =

{
1 argmin

m
|θ(n, ω)− θm(n)| = k

0 otherwise
(1.27)

This weight system can be considered as a spatial window in which the coefficients are
assigned to a given source according to the closeness of direction. However, this choice
of weights can lead to artifacts due to the fact that azimuth estimates that are very far
from the estimated azimuth of any source are unreliable. Therefore, the corresponding
STFT coefficients should not be arbitrarily assigned to a source in this case. It may be
better to consider these estimates as outliers and assign to a given source only those STFT
coefficients for which the corresponding azimuth estimates lie in a window of width W from
the estimated source azimuth. This is formalized by the following choice of weights:

Mk(n, ω) =

{
1 |θ(n, ω)− θk(n)| < W

2

0 otherwise
(1.28)

The result of the separation of three trombone sources, each playing a different note, located
at -30◦, 15◦ and 45◦ are shown in Fig. 1.9, together with the spectrogram displayed in
Fig. 1.10. Artifacts are visible and audible especially in the attack area and during silence.
Smoothing in the time direction can effectively reduce artifacts due to mask switching.

However, in performed music, more severely than in speech, the overlap of the sources in
the time-frequency is not a rare event. In fact, musicians are supposed to play with the
same tempo notes that are harmonically related, which means that several partials of the
various instruments are shared within the same time interval. This results in artifacts of the
separation when binary weighting of either of the forms (1.27) and (1.28) is enforced. One
way to reduce these artifacts is to enforce non-binary weighting in which the energy of time-
frequency bins is distributed among two or more overlapping sources, with different weights.
Even in the ideal case where one can guess the exact weights, the separation continues to
be affected by error in view of the fact that the phase of the signal components is also
important but not taken into consideration. The relative phase of the sources components
overlapping in the same bin also affects the total energy by interference.
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45◦: time domain.
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Figure 1.10 Binary mask separation of three trombone sources located at -30◦, 15◦ and
45◦: spectrograms (gray scale magnitude).

Gaussian Mixture Model

In theory, in the case of a single source all frequencies should give the same azimuth,
exactly corresponding to the source position θ. However, in practice, the violation of the
WDO assumption, the presence of noise and estimation errors make things a little more
complicated. As a first approximation, we consider that the energy of the source is spread
in the power histogram following a Gaussian distribution centered at the theoretical value
θ. The Gaussian nature of the distribution is comforted by the well-known Central Limit
Theorem as well as practical experiments. In this context, the ideal case is a Gaussian of
mean θ and variance 0.

In the case of K sources, we then introduce a model of K Gaussians (K-GMM, order-K
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1.2 Binaural Source Separation

Gaussian mixture model)

PK(θ|Γ) =
K∑

k=1

πk φk(θ|µk, σk) with πk ≥ 0 and

K∑

k=1

πk = 1 (1.29)

where Γ is a multiset of K triples (πk, µk, σ
2
k) that denotes all the parameters of the model;

πk, µk, and σ2
k indicate respectively the weight, the mean, and the variance of the k-th

Gaussian component described mathematically by

φk(θ|µk, σk) =
1√
2πσ2

k

exp

(
− (θ − µk)

2

2σ2
k

)
. (1.30)

We are interested in estimating the architecture of the K-GMM, that is the number of
sources K and the set of parameters Γ, to be able to setup the separation filtering.

Unmixing Algorithm

In the histogram h(θ), we observe local maxima whose number provides an estimation of
the number of sources in the mixture. The abscissa of the k-th local maximum reveals
the location θk of the k-th source. However, in practice, to avoid spurious peaks, we must
deal with a smoothed version of the histogram and consider only significant local maxima
– above the noise level. Informal experiments show that the estimated source number and
location are rather good. This gives the model order K and a first estimation of the means
of the Gaussians (µk in Γ). This estimation can be refined and completed – with the
variances σ2

k and the weights πk – for example by the EM algorithm.

Expectation Maximization (EM) is a popular approach to estimate parameters in mixture
densities given a data set x. The idea is to complete the observed data x with an unobserved
variable y to form the complete data (x, y), where y indicates the index of the Gaussian
component from which x has been drawn. Here, the role of x is played by the azimuth θ,
taking values in the set of all discrete azimuths covered by the histogram. We associate θ
with its intensity function h(θ) (the histogram). The role of y is played by k ∈ {1, · · · ,K},
the index of the Gaussian component θ should belong to.

The EM algorithm proceeds iteratively, at each iteration the optimal parameters that
increase locally the log-likelihood of the mixture are computed. In other words, we increase
the difference in log-likelihood between the current with parameters Γ and the next with
parameters Γ′. This log-form difference, noted Q(Γ′,Γ), can be expressed as

Q(Γ′,Γ) =
∑

θ

h(θ)
(
L(θ|Γ′)− L(θ|Γ)

)
with

L(θ|Γ) = log (PK(θ|Γ)) . (1.31)

We can then reformulate L(θ|Γ) like this:

L(θ|Γ) = log

(
∑

k

PK(θ, k|Γ)
)

with

PK(θ, k|Γ) = πk φk(θ|µk, σk). (1.32)
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The concavity of the log function allows to lower bound the Q(Γ′,Γ) function using the
Jensen’s inequality. We can then write

Q(Γ′,Γ) ≥
∑

θ

∑

k

h(θ)PK(k|θ,Γ) log
(
PK(θ, k|Γ′)

PK(θ, k|Γ)

)
(1.33)

where PK(k|θ,Γ) is the posterior probability, the degree to which we trust that the data
was generated by the Gaussian component k given the data; it is estimable with the Bayes
rule

PK(k|θ,Γ) = PK(θ, k|Γ)
PK(θ|Γ) . (1.34)

The new parameters are then estimated by maximizing the lower bound with respect to Γ:

Γ′ = argmax
γ

∑

θ

∑

k

h(θ)PK(k|θ,Γ) log (PK(θ, k|γ)) . (1.35)

Increasing this lower bound results automatically in an increase of the log-likelihood, and
is mathematically easier. Finally, the maximization of Equation (1.35) provides the fol-
lowing update relations (to be applied in sequence, because they modify – update – the
current value with side-effects, thus the updated value must be considered in the subsequent
relations):

πk ←
∑

θ h(θ) PK(k|θ,Γ)∑
θ h(θ)

, (1.36)

µk ←
∑

θ h(θ) θ PK(k|θ,Γ)∑
θ h(θ) PK(k|θ,Γ) , (1.37)

σ2
k ←

∑
θ h(θ) (θ − µk)

2 PK(k|θ,Γ)∑
θ h(θ) PK(k|θ,Γ) . (1.38)

The performance of the EM depends of the initial parameters. The first estimation param-
eter should help to get around likelihood local maxima trap. Our EM procedure operates
as follows:

1. Initialization step

• initialize K with the order of the first estimation

• initialize the weights equally, the means according to the first estimation, and
the variances with the data variance (for the initial Gaussians to cover the whole
set of data):

πk = 1/K, µk = θk, and σ2
k = var(θ)

• set a convergence threshold ε

2. Expectation step

• compute PK(k|θ,Γ) with Equation (1.34)

3. Maximization step

• compute Γ′ from Γ with Equations (1.36), (1.37), and (1.38)

• if PK(θ|Γ′)−PK(θ|Γ) > ε then Γ← Γ′ and go back to the Expectation step else
stop (the EM algorithm has converged).
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1.2 Binaural Source Separation

Finally, to separate the sources, a spatial filtering identifies and clusters bins attached to
the same source. Many methods, like DUET, separate the signals by assigning each of the
time-frequency bins to one of the sources exclusively. We assume that several sources can
share the power of a bin, and we attribute the energy according to a membership ratio –
a posterior probability. The histogram learning with EM provides a set of parameters for
the Gaussian distribution that characterizes each source. These parameters are then used
to parameterize automatically a set of spatial Gaussian filters. In order to recover each
source k, we select and regroup the time-frequency bins belonging to the same azimuth
θ. We use the parameters issued from the EM-component number k, and the energy of
the mixture channels is allocated to the (left and right) source channels according to the
posterior probability. More precisely, we define the following mask for each source:

Mk(t, f) = PK(k|θ(t, f),Γ) (1.39)

if 10 log10 |φk(θ(t, f)|µk, σk)| > LdB, and 0 otherwise. This mask limits the fact that the
tail of a Gaussian distribution stretches out to infinity. Below the threshold LdB (expressed
in dB, and set to −20 in our experiments), we assume that a source of interest does not
contribute anymore. For each source k, the pair of short-term spectra can be reconstructed
according to

SL(t, f) = Mk(t, f) ·XL(t, f), (1.40)

SR(t, f) = Mk(t, f) ·XR(t, f). (1.41)

Experimental Results

First, we synthesized binaural signals by mixing monophonic source signals filtered through
the HRTFs of a given individual corresponding to various azimuths using the HRTF-based
technique, then we applied the EM based unmixing algorithm described in the previous
section.

A result of demixing is depicted in Figure 1.11 for a two-instrument mixture: xylophone
at −55◦ and horn at −20◦; their original spectrograms are shown in Figure 1.12. In the
time domain, the xylophone rhythm is respected, its signal looks amplified and its shape
is preserved. Perceptively, the demixed xylophone is very similar to the original one.
Also, for the horn, we must tolerate some interference effects, and the spectrograms are
partly damaged. A portion of energy was absorbed by an unwanted source generated from
interferences. We also conducted tests on speech samples. The reconstruction quality was
good, much better than for long-distance telephone lines. Figure 1.13 shows the power
histogram for the localization of four instruments in a binaural mixture. This histogram,
here of size 65, was built using FFTs of N = 2048 samples with an overlap of 50%. Figure
1.14 shows the (normalized) Gaussian mixture model associated to this histogram. Of
course, the EM algorithm can also be applied on the raw azimuth estimates θ̂(t, f) instead
of the data stored in the histogram.

Multichannel Separation of Overlapping Harmonics

The separation of time-frequency overlapping source components is a very challenging prob-
lem. However, in a multichannel context one can use the sensor signals, together with
structural cues, e.g., harmonicity, in order to successfully separate the contributions of the
various sources to the shared time-frequency components.
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Figure 1.11 Waveforms of the demixtures (on the right, originals being on the left): xy-
lophone (−55◦) (top) and horn (30◦) (bottom).
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kazoo, and electric guitar.
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Figure 1.13 Histogram (solid line) and smoother version (dashed line) of the 4-source
mix: xylophone at −55◦, horn at −20◦, kazoo at 30◦, and electric guitar at
65◦.
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Figure 1.14 GMM (normalized) for the histogram of the 4-source mix.
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Chapter 1 Sound Source Separation

For each bin of the discrete time-frequency spectrum, let us now consider the observed
magnitude in this frequency bin as time goes by. If a single stationary sinusoid with
amplitude a and frequency exactly equal to the frequency of one of the analysis bin, the
observed magnitude STFT at that bin is proportional to the amplitude of the sinusoid.

When two sinusoids are present at the same frequency, then the resulting signal is also
a sinusoid of the same frequency (straightforward when considering the spectral domain).
More precisely, the complex instantaneous amplitudes of the sinusoids are adding together
as follows:

A = a1e
jφ1 + a2e

jφ2 (1.42)

where ap and φp are the amplitude and phase of the p-th sinusoid (p ∈ {1, 2}). Thus, via
the Cartesian representation of complex numbers, the corresponding magnitude is

a = |A| =
√

(a1 cos(φ1) + a2 cos(φ2))
2 + (a1 sin(φ1) + a2 sin(φ2))

2. (1.43)

Physically, the addition of two sinusoidal signals, even of same amplitude a0 (a1 = a2 = a0),
is ruled by a nonlinear addition law which gives a maximum of 2a0 (thus ≈ 6dB above the
volume of a0) when the sinusoids are in-phase (φ1 = φ2) and a minimum of 0 when they are
opposite-phase (φ1 = φ2 + π). One might intuitively think that all the cases in the [0, 2a0]
interval are equiprobable. Not at all! For example, in the case where the initial phases
of the sinusoids are independent uniformly distributed random variables over [−π,+π) we
have that a ≈ a1 + a2 is the most probable value for the magnitude, as shown in Figure
1.15. The interference of several sinusoids at the same frequency results in one sinusoid.
In this situation, it is quite impossible to separate the two sinusoids without additional
knowledge. A possible strategy would be to simply ignore time-frequency regions where
this interference phenomenon is likely to occur. However, in the case of musical signals,
musicians playing in tempo and in harmony often generate frequency overlap at least for
some of the partials. Thus, the separated signals would present large time intervals in
which all or some of the partials are muted. When properly exploited, structural cues
can help disambiguate overlapping partials and provide heuristics for their separation. In
fact, under the assumption of quasi-periodicity of the sources, all the signals are nearly
harmonic. Although this may seem a particular case of general inharmonic structure, one
can push the methods a little further with simple techniques and minimal side information.
In fact, given that at least one of the partials for each source is not completely overlapping
in time-frequency with those of the others, one can assume a harmonic structure based
on the isolated partials, without additional knowledge of the sources. The overlap of the
partials is resolved by assuming that the time envelopes of each partial are similar, with
neighboring partial bearing the highest similarity.

A similarity measure was proposed in [HG06], which involved the normalized scalar
product of the envelopes:

βp,q =

∑
n

Ep(n)Eq(n)

√∑
n

|Ep(n)|2
√∑

n

|Eq(n)|2
(1.44)

where Ep(n) and Eq(n) are the time envelopes of two components detected in time-
frequency, each obtained by detecting and tracking in time contiguous zones of non-zero
energy in adjacent frequency bins. When the envelopes are quite similar, like the ones of
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Figure 1.15 Interference of two sinusoids of the same frequency and amplitude 1. The
signal resulting from the addition of the these two sinusoids is also a sinusoid
with the same frequency, but its amplitude depends on the phases of the
initial sinusoids. (a) shows an histogram illustrating the probability density
function of this amplitude (for uniform distributions of the phases). The
sum of the amplitudes (2) is the most probable value. (b) gives an intuitive
justification. It shows that, considering the sum of the two vectors corre-
sponding to the complex amplitudes of the sinusoids in the complex plane
(see Equation (1.15)), its norm is more likely to be greater than 1 (bold line).
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Chapter 1 Sound Source Separation

adjacent harmonics of a single source, the similarity measure βp,q is close to one. However,
when interference among the sources is present, the similarity measure is much lower than
1.

All the sensor signals can be used in case of multichannel signals. The problem of
separating the overlapping partials can be stated as that of estimating a mixing matrix
from a known number of N sources contributing to M distinct measurement of each partial.
For the problem to have a reliable solution there must be at least as many sensors as there
are overlapping partials in that region. In view of the narrow band characteristics of the
partials, one can model this mixing process in time-frequency by means of constant complex
matrices for each partial [HG06] in each frequency bin. For a two-sensor two-sources case
of overlapping partials at frequency bin ω we have:

[
PL(n, e

jω)
PR(n, e

jω)

]
=

[
HL,1(e

jω) HL,2(e
jω)

HR,1(e
jω) HR,2(e

jω)

] [
S1(n, e

jω)
S2(n, e

jω)

]
(1.45)

where Si(n, e
jω), i = 1, 2 represent the STFTs of the original source signals, HL/R,i(e

jω)
the frequency responses from source i to left/right sensor channel and PL/R(n, expjω) the
STFTs of mixed overlapping partials at left and right sensors. The matrix composed by
the frequency responses HL/R,i(expjω) is the mixing matrix at frequency bin ω.

In order to proceed with separation, first the envelopes of the other non-overlapping
partials are computed, which are called the model envelopes. Then, for each candidate
mixing matrix, its pseudo-inverse is applied to the sensor mixed partials and the envelopes
of the resulting partials are computed. The matrix that gives separated partials with
envelopes whose shapes most closely resemble those of the model envelopes is chosen as
the estimate of the mixing matrix for that corresponding partial. Thus, the estimate of the
mixing matrix is obtained by means of optimization as the one that gives the best match
between the separated partials and the model partials according to the criterion (1.44).

Good experimental results are obtained by using the L1 norm to combine the similarity
measures deriving by each partial [Vis04]. An example of separation of overlapping partials
from two sources, a violin tone with vibrato and a trombone tone without vibrato, is shown
in Fig. 1.16, where one can appreciate how closely the envelopes are recovered together
with the fine AM-FM fine structure due to vibrato in the violin tone.

1.3 Source Separation from Single-Channel Signals

Separation of sources from single-channel (monophonic) mixtures is particularly challeng-
ing. If we have two or more microphones, we have seen earlier in this chapter that we can
use information on relative amplitudes or relative time delays to identify the sources and
to help us perform the separation. But with only one microphone, this information is not
available. Instead, we must use information about the structure of the source signals to
identify and separate the different components.

For example, one popular approach to the single channel source separation problem is to
use non-negative matrix factorization (NMF) of the short-term Fourier transform (STFT)
power spectogram of the audio signal. This method attempts to identify consistent spectral
patterns in the different source signals, allowing these patterns to be associated with the
different sources, then allowing separation of the audio signals. As well as NMF, we shall
see that methods based on sinusoidal modelling and probabilistic modelling have also been
proposed to tackle this difficult problem.
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Figure 1.16 Simple example of separation of overlapping partials from two harmonic
sources, violin (top row) and trombone (bottom row). Columns from left
to right: source envelopes, mixed sources envelopes at left and right sensors,
model envelopes extracted from non-overlapping partials at sensor signals,
envelopes of separated partials maximizing envelope similarity.

1.3.1 Source separation using Non-negative Matrix Factorization

Suppose that our mixture signal is composed of a weighted mixture of simple source objects
each with a fixed power spectrum an, and where the relative energy of the nth object in
the tth frame is given by snt ≥ 0. Then the activity of each object has a spectrum of
xnt = ansnt at frame t. If we then assume that the source signal objects have random
phase, so that the spectral energy due to each source object approximately adds in each
time-frequency spectral bin, then the spectrum of the mixture will be approximately given
by

xt ≈
∑

n

ansnt (1.46)

or in matrix notation

X ≈ AS (1.47)

where X is the mixture spectrogram, A = [an] is the matrix of spectra for each source,
and S = [snt] is the matrix of relative source energies in each frame. Since each of the
matrices X , A and S represent amounts of energy, they are all non-negative.

In single-channel source separation, we only observe the mixture signal with its corre-
sponding non-negative spectrogram X. But, since A and S are also non-negative, we can
use non-negative matrix factorization (NMF) [LS99] to approximately recover A and S

from X.
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Chapter 1 Sound Source Separation

(a) (b)

Figure 1.17 Simple example of non-negative matrix factorization.

Non-negative Matrix Factorization (NMF)

In its simplest form, NMF attempts to minimize a cost function J = D(V ;WH) between
a non-negative matrix V and a product of two non-negative matrices WH. For example,
we could use the Euclidean cost function

JE = DE(V ;WH) = 1
2
‖V −WH‖2F = 1

2

∑

pt

(vpt − [WH]pt)
2 (1.48)

or the (generalized) Kullback-Leibler divergence,

JKL = DKL(V ;WH) =
∑

pt

(
vpt log

vpt
[WH]pt

− vpt + [WH]pt

)
(1.49)

and search for a minimum of J using e.g. a gradient descent method. In fact we can simplify
things a little, since there is a scaling ambiguity between W and H, so we are free to
normalize the columns ofW to sum to unity,

∑
p wpn = 1. Lee and Seung [LS99] introduced

a simple parameter-free “multiplicative update” method to perform this optimization:

wpn ← wpn

∑

t

hnt(vpt/[WH]pt)

wpn ← wpn∑
p wpn

hnt ← hnt

∑

p

wpn(vpt/[WH]pt)

(1.50)

where this procedure optimizes the KL divergence (1.49).
Fig. 1.17(a) shows a simple example where we have two sourcesw1 andw2 each consisting

of a single frequency, with their activations over time given by h1 and h2. Smaragdis and
Brown [SB03] applied this type of NMF to polyphonic music transcription, where they
were looking to identify the spectra (wn) and activities (hn) of e.g. individual piano notes.

For simple source such as individual notes, we could use the separate products V n =
wnh

T
n as an estimate of the spectrogram of the original source. We could then transform

back to the time domain simply by using the phases in the mixture spectrum as estimates of
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1.3 Source Separation from Single-Channel Signals

the phases of the original sources. However, in practice this approach can be limited, since
it assumes that (a) the source spectrum is unchanging over time, and (b) real sources can
often change their pitch, which would produce many separate ‘sources’ from NMF [WP06].

Convolutive NMF

Real sources tend to change their spectrum over time, for example with the high frequency
components decaying faster than the low frequency components. To account for this,
Virtanen [Vir04] and Smaragdis [Sma04, Sma07] introduced a Convolutive NMF approach,
known as non-negative matrix factor deconvolution (NMFD). Here, each source is no longer
represented by a single spectrum, but instead by a typical spectrogram which reflects how
the spectrum of the source changes over time.

For NMFD, our model becomes

xpt ≈
∑

n,u

apn(u)sn,t−u (1.51)

which we can write in a matrix form as (Fig. 1.18)

X =

U−1∑

u=0

A(u)
u→

S (1.52)

where the
u→· matrix notation means that the matrix is shifted u places to the right

[
u→

S ]nt = [S]n,t−u. (1.53)

Smaragdis [Sma04] applied NMFD to separation of drum sounds, using it to separate bass
drum, snare drum and hi-hat from a mixture.

2D Convolutive NMF

The convolutive approach, NMFD, relies on each drum sound having a characteristic spec-
trogram that evolves in a very similar way each time that sound plays. However, pitched
instruments have a spectrum that is typically composed of spectral lines that change as
the pitch of the note changes. To deal with this, Schmidt and Mørup [SM06] extended the
(time-) convolutive NMF approach to a 2-dimensional convolutive NMF method, NMF2D.
NMF2D uses a spectrogram with a log-frequency scale, so that pitch changes become a
vertical shift, while time changes are a horizontal shift (as for NMFD).

The model then becomes

xpt ≈
∑

n,q,u

ap−q,n(u)sn,t−u(q) (1.54)

which we can write in a matrix convolution form as (Fig. 1.19)

X =

Q−1∑

q=0

U−1∑

u=0

q↓

A(u)
u→

S(q) (1.55)

where the
q↓· matrix notation indicates that the contents of the matrix are shifted q places

down

[
q↓

A]pn = [A]p−q,n. (1.56)

Schmidt and Mørup [SM06] used NMF2D to separate trumpet from piano sounds.
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Figure 1.18 Convolutive NMF model for Non-negative Matrix Factor Deconvolution
(NMFD)

1.3.2 Structural Cues

Sinusoidal Modeling

Sinusoidal modeling has solid mathematical, physical, and physiological bases. It derives
from Helmholtz’s research and is rooted in the Fourier’s theorem, which states that any
periodic function can be modeled as a sum of sinusoids at various amplitudes and har-
monically related frequencies. Here we will consider the sinusoidal model under its most
general expression, which is a sum of sinusoids (the partials) with time-varying amplitudes
and frequencies not necessarily harmonically related. The associated representation is in
general orthogonal (the partials are independent) and sparse (a few amplitude and fre-
quency parameters can be sufficient to describe a sound consisting of many samples), thus
very computationally efficient. Each partial is a pure tone, part of the complex sound
(see Figure 1.20). The partials are sound structures very important both from the pro-
duction (acoustics) and perception (psychoacoustics) points of views. In acoustics, they
correspond to the modes of musical instruments, the superpositions of vibration modes
being the solutions of the equations for vibrating systems (e.g. strings, bars, membranes).
In psychoacoustics, the partials correspond to tonal components of high energy, thus very
important for masking phenomena. The fact that the auditory system is well adapted to
the acoustical environment seems quite natural.

From a perceptual point of view, some partials belong to the same sound entity if they
are perceived by the human auditory system as a unique sound when played together.
There are several criteria that lead to this perceptual fusion. After Bregman [Bre90], we
consider

• the common onsets/offsets of the spectral components;
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Figure 1.19 Two-dimensional convolutive NMF model (NMF2D)
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Figure 1.20 The evolutions of the partials of an alto saxophone during ≈ 1.5 second.
The frequencies (a) and amplitudes (b) are displayed as functions of time
(horizontal axis).
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1.3 Source Separation from Single-Channel Signals

• the spectral structure of the sound, taking advantage of harmonic relations;

• the correlated variations of the time evolutions of these spectral parameters;

• and the spatial location, estimated by a localization algorithm.

All these criteria allow us to classify the spectral components. Since this is done according
to the perception, the classes we obtain should be the sound entities of the auditory scene.
And the organization of these sound entities in time should give the musical structure.
Music transcription is then possible by extracting musical parameters from these sound
entities. But an advantage over standard music information retrieval (MIR) approaches
is that here the sound entities are still available for transformation and resynthesis of a
modified version of the music.

The use of each criterion gives a different way to classify the partials. One major problem
is to be able to fuse these heterogeneous criteria, to obtain a unique classification method.
Another problem is to incorporate this structuring within the analysis chain, to obtain
a partial tracking algorithm with multiple criteria that would track classes of partials
(entities) instead of individual partials, and thus should be more robust. Finding solutions
to these problems are major research directions.

Common Onsets

As noted by Hartmann [Har88], the common onset (birth) of partials plays a preponderant
role in our perception of sound entities. From the experiences of Bregman and Pinker
[BP78] and Gordon [Gor84], the partials should appear within a short time window of
around 30ms (corresponding to a number of γ consecutive frames, see below), else they are
likely to be heard separately. Many onset detection methods are based on the variation in
time of the amplitude or phase of the signal (see [BDS+05] for a survey). Lagrange [Lag04]
proposes an algorithm based on the D measure defined as

D[n] =
B[n]

C[n]
(1.57)

with B[n] =
P∑

p=1

εp[n]āp and C[n] =
1

2γ + 1

P∑

p=1

+γ∑

k=−γ

ap[n+ k] (1.58)

where ap is the amplitude of the partial p, āp is its mean value, and εp[n] is 1 if the partial
is born in the [n− γ,n+ γ] interval and 0 otherwise. Thanks to this measure, it seems that
we can identify the onsets of notes even if their volume fades in slowly (see Figure 1.21),
leading to a better structuring of the sound entities (see Figure 1.22).

Simple and Poly- Harmonic Structures

The earliest attempts at acoustical entity identification and separation consider harmonic-
ity as the sole cue for group formation. Some rely on a prior detection of the fundamental
frequency [Gro96] and others consider only the harmonic relation of the frequencies [Kla03].
A classic approach is to perform a correlation of the short-term spectrum with some tem-
plate, which should be a periodic function, of period F – the fundamental frequency under
investigation. Such a template can be built using the expression of the Hann window

g1,F (f) =
1

2

(
1 + cos

(
2πf

F

))
(1.59)
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Figure 1.21 Examples of note onset detection using two different measures: (a) the dif-
ference in amplitude between consecutive frames and (b) the D measure of
Equation (1.57). The true onsets – annotated manually – are displayed as
vertical bars. Our method manages to identify correctly the note onsets, even
if the volume of the note fades in slowly (see around frame 200).
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Figure 1.22 Result of the structuring of the partials in sound entities using the common
onset criterion, on the example of Figure 1.21.

where f is the frequency and F is the fundamental. However, the problem of these templates
is that the width of the template peaks depend on F (see Figure 1.23.a). For a constant
peak selectivity, we can propose another function

g2,F (f) = g1,F (f)
−s/ log(g1,F (1)) (1.60)

where s ∈ (0, 1] allows us to tune this selectivity (see Figure 1.23.b). But this template is
still too far from the typical structure of musical sounds, whose spectral envelope (in dB)
is often a linear function of the frequency (in Hz), see [Kla03]. Thus, we can consider

g3,F (f) = g2,F (f) · 10−d(f−F ) (1.61)

where d is the slope of the spectral envelope, in dB per Hz (see Figure 1.23.c). Multi-pitch
estimation is still an active research area, and yet our simple approach gives very good
results, especially when the s and d parameters can be learned from a database. However,
many musical instruments are not perfectly harmonic, and the template should ideally also
depend on the inharminicity factor in case of inharmonic sounds.

Similar Evolutions

According to the work of McAdams [McA89], a group of partials is perceived as a unique
sound entity only if the variations of these partials are correlated, whether the sound is
harmonic or not.

An open problem is the quest for a relevant dissimilarity between two elements (the
partials), that is a dissimilarity which is low for elements of the same class (sound entity)
and high for elements that do not belong to the same class. It turns out that the auto-
regressive (AR) modeling of the parameters of the partials is a good candidate for the
design of a robust dissimilarity metric.
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Figure 1.23 Three kinds of templates for the extraction of harmonic structures: (a) simple
periodic function, (b) modified version for a constant peak selectivity, and
(c) modified version for a more realistic spectral envelope.
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Let ωp be the frequency vector of the partial p. According to the AR model, the sample
ωp[n] can be approximated as a linear combination of past samples

ωp[n] =

K∑

k=1

cp[k]ωp[n− k] + ep[n] (1.62)

where ep[n] is the prediction error. The coefficients cp[k] model the predictable part of the
signal and it can be shown that these coefficients are scale invariant. On contrary, the non-
predictable part ep[n] is not scale invariant. For each frequency vector ωp, we compute a
vector cp[k] of 4 AR coefficients with the Burg method. Although the direct comparison of
the AR coefficients computed from the two vectors ωp and ωq is generally not relevant, the
spectrum of these coefficients may be compared. The Itakura distortion measure [Ita75],
issued from the speech recognition community can be considered:

dAR(ωp, ωq) =
1

2π
log

∫ +pi

−pi

∣∣∣∣
Cp(ω)

Cq(ω)

∣∣∣∣ dω (1.63)

where

Cp(ω) = 1 +
K∑

k=1

cp[k]e
−jkω . (1.64)

Another approach may be considered. Indeed, the amount of error done by modeling the
vector ωp by the coefficients computed from vector ωq may indicate the dissimilarity of
these two vectors. Let us introduce a new notation eqp, the cross prediction error defined
as the residual signal of the filtering of the vector ωp with cq

eqp[n] = ωp[n]−
K∑

k=1

cq[k]ωp[n− k]. (1.65)

The principle of the dissimilarity dσ is to combine the two dissimilarities |eqp| and |epq | to
obtain a symmetrical one:

dσ(ωp, ωq) =
1

2

(
|eqp|+ |epq |

)
. (1.66)

Given two vectors ωp and ωq to be compared, the coefficients cp and cq are computed to
minimize the power of the respective prediction errors ep and eq. If the two vectors ωp and
ωq are similar, the power of the cross prediction errors eqp and epq will be as weak as those
of ep and eq. We can consider an other dissimilarity d′σ defined as the ratio between the
sum of the crossed prediction errors and the sum of the direct prediction errors:

d′σ(ωp, ωq) =
|eqp|+ |epq |

1 + |ep|+ |eq |
. (1.67)

Lagrange [Lag05] shows that the metrics based on AR modeling perform quite well.

1.3.3 Probabilistic Models

We can also view the source separation problem as a probabilistic inference problem. In
outline, using a probabilistic model p(x|s1, s2) for the observed mixture x from two sources
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s1 and s2, and then attempt to find the original sources given the mixture. This is typically
done using the maximum a-posteriori (MAP) criterion

(ŝ1, ŝ2) = argmax
s1,s2

p(s1, s2|x) (1.68)

using the Bayesian formulation p(s1, s2|x) ∝ p(x|s1, s2)p(s1)p(s2) where the sources s1 and
s2 are assumed to be independent, although other criteria such as the posterior mean (PM)
are also possible.

Benaroya et al. [BBG06] use this probabilistic approach, modelling the sources using
Gaussian mixture models (GMMs) and Gaussian scaled mixture models (GSMMs). A
GSMM is a mixture of Gaussian scaled densities, each of which corresponds to a random
variable of the form ga =

√
ag where g is a Gaussian with variance σ2 and a is a non-

negative scalar random variable with prior density p0(a).

They demonstrated their approach on separation of jazz tracks, considering “piano +
bass” as one source and drums as another source. The model parameters were trained
on a CD containing the separated tracks. This type of CD was originally designed for
people to learn how to play jazz, but is also convenient for this type of experiment since
it contains separated sources which make a coherent piece of music when mixed together.
They found good performance with about 8 or 16 components, although this depended on
the particular model used and the estimation method (MAP or PM).

1.4 Applications

In a binaural context, sound source separation has been applied to speech in hearing aids
systems for the reduction of the cocktail party effect. The same is true for mobile telephony,
where the reduction of environmental noise plays a critical role in the intelligibility of speech.
However, even the listening experience of music, both at home and in concert halls, can be
enhanced for the listener as interfering environmental noise sources can be eliminated or
attenuated.

In a broader single-channel or multi-channel context there are other compelling reasons
for desiring to separate sound sources. Traditionally, the listener is considered as a receptor
who passively listens to the audio signal stored on various medias (CD, DVD audio, etc.) or
streamed through the internet. The only modifications that are easy to perform are global
to the whole piece, like changing the volume, the tone or adding artificial reverberation.
Although new formats such as MPEG Audio Layer 3 (MP3) have changed the way people
access to music, the interaction with music is still very limited. However, with the avail-
ability of higher computing capabilities, people are more eager to interact with the original
media, while the sound is playing. This can be seen for example with the karaoke, where
the listener can replace the voice of the original singer. But more freedom and creativity
are also possible.

With the techniques presented in this chapter, new ways are available for the identi-
fication, separation, and manipulation of the several sound entities (sources) which are
perceived by the listener as independent components within the binaural (stereophonic)
mix that reaches his/her ears. More precisely, one can find out the sound entities by con-
sidering their localization (spatial hearing) and the correlations of their spectral parameters
(common onsets, harmonic relations, similar time evolutions). Then, it is possible to apply
digital audio effects on each separate sound entity.
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This way, listeners are enabled towards an active listening behavior, which entails freedom
to interact with the sound in real time during its diffusion. For example, the listener can
explore the possibility to change the spatial locations of the individual sound sources, their
relative volumes, pitches, and even timbres, as well as their durations, or the rhythm of
the music and experiment with these alterations while playing the piece. In other words,
by means of sound source separation, the engaging world of mixing and re-editing separate
tracks is re-opened to the listner without the need to store or stream the separate tracks,
which would require much larger storage or higher data rates.

1.5 Conclusions

In this chapter we have reviewed several methods addressing the problem of source sep-
aration in various contexts, such as multichannel, binaural, stereo or mono, vith various
degrees of a priori information or assumptions on the sources. To date the results achieved
are fairly good considered the complexity and ill-posedness of the problem but near-perfect
separation is still beyond reach in most cases. In some applications such as the addition
of audio effects or re-spatialization of the sources, near-perfect separation is not a must as
artifacts are less udible in the remixed sound. This field has undergone tremendous devel-
opment in recent years, of which we could only present a partial view, and a considerable
amount of work is still under progress.
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