1,631 research outputs found

    Occipital Alpha and Gamma Oscillations Support Complementary Mechanisms for Processing Stimulus Value Associations.

    Get PDF
    Selective attention is reflected neurally in changes in the power of posterior neural oscillations in the alpha (8–12 Hz) and gamma (40–100 Hz) bands. Although a neural mechanism that allows relevant information to be selectively processed has its advantages, it may lead to lucrative or dangerous information going unnoticed. Neural systems are also in place for processing rewarding and punishing information. Here, we examine the interaction between selective attention (left vs. right) and stimulus's learned value associations (neutral, punished, or rewarded) and how they compete for control of posterior neural oscillations. We found that both attention and stimulus–value associations influenced neural oscillations. Whereas selective attention had comparable effects on alpha and gamma oscillations, value associations had dissociable effects on these neural markers of attention. Salient targets (associated with positive and negative outcomes) hijacked changes in alpha power—increasing hemispheric alpha lateralization when salient targets were attended, decreasing it when they were being ignored. In contrast, hemispheric gamma-band lateralization was specifically abolished by negative distractors. Source analysis indicated occipital generators of both attentional and value effects. Thus, posterior cortical oscillations support both the ability to selectively attend while at the same time retaining the ability to remain sensitive to valuable features in the environment. Moreover, the versatility of our attentional system to respond separately to salient from merely positively valued stimuli appears to be carried out by separate neural processes reflected in different frequency bands

    Atypical MEG inter-subject correlation during listening to continuous natural speech in dyslexia

    Get PDF
    Listening to speech elicits brain activity time-locked to the speech sounds. This so-called neural entrainment to speech was found to be atypical in dyslexia, a reading impairment associated with neural speech processing deficits. We hypothesized that the brain responses of dyslexic vs. normal readers to real-life speech would be different, and thus the strength of inter-subject correlation (ISC) would differ from that of typical readers and be reflected in reading-related measures. We recorded magnetoencephalograms (MEG) of 23 dyslexic and 21 typically-reading adults during listening to ∼10 min of natural Finnish speech consisting of excerpts from radio news, a podcast, a self-recorded audiobook chapter and small talk. The amplitude envelopes of band-pass-filtered MEG source signals were correlated between subjects in a cortically-constrained source space in six frequency bands. The resulting ISCs of dyslexic and typical readers were compared with a permutation-based t-test. Neuropsychological measures of phonological processing, technical reading, and working memory were correlated with the ISCs utilizing the Mantel test. During listening to speech, ISCs were mainly reduced in dyslexic compared to typical readers in delta (0.5–4 Hz) and high gamma (55–90 Hz) frequency bands. In the theta (4−8 Hz), beta (12–25 Hz), and low gamma (25−45 Hz) bands, dyslexics had enhanced ISC to speech compared to controls. Furthermore, we found that ISCs across both groups were associated with phonological processing, technical reading, and working memory. The atypical ISC to natural speech in dyslexics supports the temporal sampling deficit theory of dyslexia. It also suggests over-synchronization to phoneme-rate information in speech, which could indicate more effort-demanding sampling of phonemes from speech in dyslexia. These irregularities in parsing speech are likely some of the complex neural factors contributing to dyslexia. The associations between neural coupling and reading-related skills further support this notion.Peer reviewe

    From rest to task

    Get PDF
    A primary goal of neuroscience research on psychiatric disorders such as schizophrenia is to enhance the current understanding of underlying biological mechanisms in order to develop novel interventions. Human brain functions are maintained through activity of large-scale brain networks. Accordingly, deficient perceptual and cognitive processing can be caused by failures of functional integration within networks, as reflected by the disconnection hypothesis of schizophrenia. Various neuroimaging techniques can be applied to study functional brain networks, each having different strengths. Frequently used complementary methods are the electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), which were shown to have a common basis. Given the feasibility of combined EEG and fMRI measurement, EEG signatures of functional networks have been described, providing complimentary information about the functional state of networks. Both at rest and during task completion, many independent EEG and fMRI studies confirmed deficient network connectivity in schizophrenia. However, a rather diffuse picture with hyper- and hypo- activations within and between specific networks was reported. Furthermore, the theory of state dependent information processing argues that spontaneous and prestimulus brain activity interacts with upcoming task-related processes. Consequently, observed network deficits that vary according to task conditions could be caused by differences in resting or prestimulus state in schizophrenia. Based on that background, the present thesis aimed to increase the understanding of aberrant functional networks in schizophrenia by using simultaneous EEG-fMRI under different conditions. One study investigated integrative mechanisms of networks during eyes-open (EO) resting state using a common-phase synchronization measure in an EEG-informed fMRI analysis (study 3). The other two studies (studies 1&2) used an fMRI-informed EEG analysis: The second study was an extension of the first, which was performed in healthy subjects only. Hence, the same methodologies and analyses were applied in both studies, but in the second study schizophrenia patients were compared to healthy controls. The associations between four temporally coherent networks (TCNs) – the default mode network (DMN), the dorsal attention network (dAN), left and right working memory networks (WMNs) – and power of three EEG frequency bands (theta, alpha, and beta band) during a verbal working memory (WM) task were investigated. Both resting state and task-related studies performed in schizophrenia patients (studies 2&3) revealed altered activation strength, functional states and interaction of TCNs, especially of the DMN. During rest (study 3), the DMN was differently integrated through common-phase synchronization in the delta (0.5 – 3.5Hz) and beta (13 – 30Hz) band. At prestimulus states of a verbal WM task, however, study 2 did not reveal differences in the activation level of the DMN between groups. Furthermore, from pre-to-post stimulus, the association of the DMN with frontal-midline (FM) theta (3 – 7Hz) band was altered, and a reduced suppression of the DMN during WM retention was detected. Schizophrenia patients also demonstrated abnormal interactions between networks: the DMN and dAN showed a reduced anti-correlation and the WMNs demonstrated an absent lateralization effect (study 2). The view that schizophrenia patients display TCN deficiencies is supported by the results of the present thesis. Especially the DMN and its interaction to the task-positive dAN showed specific alterations at different mental states and their interaction (during rest and from pre-to-post stimulus). Those alterations might at least partly explain observed symptomatology as attentional orientation deficits in patients. To conclude, functional networks as the DMN might represent promising targets for novel treatment options such as neurofeedback or transcranial direct current stimulation (tDCS)

    Individual variation in EEG spectral power enhancement and intelligence

    Get PDF
    This study tested the relationship between short-term neuroplasticity and individual differences in intelligence. Twenty-two participants completed cognitive testing and a visual EEG experiment involving exposures to repeated and novel stimuli. Time-frequency analyses of phase-locked (evoked) and non-phase-locked (induced) power showed a small effect of decreasing evoked/induced theta (4-8 Hz) ratios over stimulus exposures, irrespective of condition. Hypotheses that intelligence would relate to an increase in this ratio over exposures were not supported. However, the magnitude of the ratio positively correlated with intelligence; while the amount of induced gamma (30-50Hz) activation pre- to post-stimulus was highly inversely related to g. Results suggest that transient changes in neural network phase strongly relate to intelligence in physiological measurements acquired over brief intervals

    Interactions between visual and semantic processing during object recognition revealed by modulatory effects of age of acquisition

    Get PDF
    The age of acquisition (AoA) of objects and their names is a powerful determinant of processing speed in adulthood, with early-acquired objects being recognized and named faster than late-acquired objects. Previous research using fMRI (Ellis et al., 2006. Traces of vocabulary acquisition in the brain: evidence from covert object naming. NeuroImage 33, 958–968) found that AoA modulated the strength of BOLD responses in both occipital and left anterior temporal cortex during object naming. We used magnetoencephalography (MEG) to explore in more detail the nature of the influence of AoA on activity in those two regions. Covert object naming recruited a network within the left hemisphere that is familiar from previous research, including visual, left occipito-temporal, anterior temporal and inferior frontal regions. Region of interest (ROI) analyses found that occipital cortex generated a rapid evoked response (~ 75–200 ms at 0–40 Hz) that peaked at 95 ms but was not modulated by AoA. That response was followed by a complex of later occipital responses that extended from ~ 300 to 850 ms and were stronger to early- than late-acquired items from ~ 325 to 675 ms at 10–20 Hz in the induced rather than the evoked component. Left anterior temporal cortex showed an evoked response that occurred significantly later than the first occipital response (~ 100–400 ms at 0–10 Hz with a peak at 191 ms) and was stronger to early- than late-acquired items from ~ 100 to 300 ms at 2–12 Hz. A later anterior temporal response from ~ 550 to 1050 ms at 5–20 Hz was not modulated by AoA. The results indicate that the initial analysis of object forms in visual cortex is not influenced by AoA. A fastforward sweep of activation from occipital and left anterior temporal cortex then results in stronger activation of semantic representations for early- than late-acquired objects. Top-down re-activation of occipital cortex by semantic representations is then greater for early than late acquired objects resulting in delayed modulation of the visual response
    corecore