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Abstract 

Unraveling how brain regions communicate is crucial for understanding how the brain 

processes external and internal information. Neuronal oscillations within and across brain 

regions have been proposed to play a crucial role in this process. Two main hypotheses have 

been suggested for routing of information based on oscillations, namely the ‘communication 

through coherence’ and the ‘gating by inhibition’ frameworks. Here, we propose a framework 

unifying these two hypotheses that is based on recent empirical findings. We discuss a theory in 

which communication between two regions is established by phase-synchronization of 

oscillations at lower frequencies (<25Hz), which serve as temporal reference frame for 

information carried by high frequency activity (>40Hz). Our framework, consistent with 

numerous recent empirical findings, posits that cross-frequency interactions are essential for 

understanding how large-scale cognitive and perceptual networks operate. 

Significance statement 

 To understand how the brain operates as a network it is essential to identify the 

mechanisms supporting communication between brain regions. Based on recent empirical 

findings, we propose a novel mechanism for selective routing based on cross-frequency coupling 

between slow oscillations in the alpha and gamma band. 

Main text 

Humans operate in complex environments requiring the encoding and processing of the 

constant flow of sensory information. While the information must be prioritized, the mechanisms 

underlying the selective routing of sensory information remain to be understood. Neuronal 

oscillations, in which excitability is modulated by the phase of the rhythm, have been proposed 

to play important mechanistic roles for routing information, since they can change the dynamic 

interactions between brain regions on a fast time scale (Varela, et al. 2001). Two hypotheses 

have been proposed for routing of information based on oscillations: the ‘communication 

through coherence’ (CTC; Bastos, et al. 2015, Fries 2005, 2009) and the ‘gating by inhibition’ 

(GBI; Jensen and Mazaheri 2010) frameworks (see also Akam and Kullmann 2014). The CTC 

framework, at least in its initial form, mainly focused on gamma activity (>30Hz) while the GBI 
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is mainly based on alpha oscillations (8-13Hz). These two frameworks are not mutually 

exclusive and the aim of this paper is to unify them.  

The CTC and GBI frameworks  

Consider two pools of neurons A and B that are connected to a third pool C. As an 

example, this could be two subpopulations of neurons representing different spatial locations 

within V1 and project to a common subpopulation of V4 neurons that represent both spatial 

locations. When spatial attention is directed to the receptive fields (RFs) of neurons in pool A, 

the routing mechanism should favor the communication between A and C while preventing the 

communication between B and C (figure 1a).  How is the functional connectivity between A and 

C, but not B and C, established? 

According to the CTC hypothesis, inter-regional communication is established when the 

oscillatory activity between these neuronal pools is coherent, i.e. they oscillate at the same 

frequency with a stable phase difference (Fries 2005, 2009). This would allow the excitable 

phase of neurons in C to coincide with synaptic input from neurons in A. To block the 

communication (the B to C pathway), the synaptic input from neurons in B arrives at the non-

excited phase of the neuron in C (figure 1b). Thus if B and C are not oscillating in phase-

synchrony the communication is reduced. Brain regions have indeed been shown to phase-

synchronize in the gamma band when attention is allocated (e.g. Bosman, et al. 2012, 

Womelsdorf, et al. 2006, Womelsdorf, et al. 2007). How is the phase-synchrony between regions 

A and C established? Fries and colleagues (Bastos, et al. 2015, Fries 2009) proposed that it is 

established by oscillations in neurons of pool A entraining neurons in C at the gamma frequency. 

This mechanism also implies that the phase-synchronization among the neurons in A is stronger 

and potentially oscillates at a faster gamma frequency than in B (Fries 2015). As a consequence, 

the neurons in C are entrained by A rather than B, thus dynamically strengthening the functional 

connectivity. This effect results in a mechanism that increases the impact of A on C while 

reducing the impact of B on C (Fries 2009, 2015). It is not completely clear how B and C 

achieve asynchrony (Akam and Kullmann 2014). As demonstrated in Bosman et al. (Bosman, et 

al. 2012), coherence between B and C is reduced as compared to coherence between A and C. 

The reduced coherence could be achieved by B and C fluctuating independently in the same 

frequency band, or by B and C oscillating at different frequencies (as shown in Bosman, et al. 
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2012). Yet, a possibility is that they oscillate at the same frequency but with a fixed phase 

difference (e.g. anti-phase); however, this possibility seems at odds with the reduced coherence 

in the unattended pathway (Bosman, et al. 2012). 

According to the GBI hypothesis (figure 1c), the information flow between regions is 

established by actively inhibiting the pathway not required for the task. It has been proposed that 

alpha activity reflects regional-specific inhibition (Foxe and Snyder 2011, Jensen and Mazaheri 

2010, Jensen, et al. 2012, Klimesch, et al. 2007). Alpha activity is associated with pulses of 

inhibition, i.e. the larger the alpha activity, the stronger the bouts of inhibition. This is consistent 

with findings from many experiments showing that alpha activity is high over task-irrelevant 

areas (Bonnefond and Jensen 2012, Capilla, et al. 2014, Haegens, et al. 2010, Snyder and Foxe 

2010 but see Mo, et al. 2011) or task-irrelevant groups of neurons within a brain area (van 

Kerkoerle, et al. 2014). Furthermore, this increase has been shown to predict behavioral 

performance (Bonnefond and Jensen 2012, Bonnefond and Jensen 2013, Foxe, et al. 1998, 

Haegens, et al. 2011, Haegens, et al. 2012, Handel, et al. 2011, Meeuwissen, et al. 2010, Myers, 

et al. 2014, Payne, et al. 2013, Thut, et al. 2006). Considering Figure 1a, gating would thus be 

reflected by alpha power increases in B and a decrease of alpha power in A and C. Furthermore, 

the alpha power decrease in A and C would allow for increased gamma power in these regions 

that could be involved in transmitting information. It is important to note that, in the latest 

version of the CTC framework (Fries 2015), Fries also highlighted the potential role of alpha 

oscillations, in opposition to gamma oscillations, in preventing effective communication of local 

neuronal representations but also in holding these representations “on-stock” so they can be 

flexibly used when needed. 

Even though both of these frameworks have strong explanatory value, they account for 

different findings in the literature. In particular, CTC in its current formulation does not address 

the issue of diverging routes where e.g. one region is connected to two downstream regions. In 

this case the entrainment by gamma oscillations does not provide a routing mechanism (but see 

Bastos, et al. 2015, Fries 2015). Several other challenges have been put forward to the CTC 

framework. One criticism is based on the finding that the gamma frequency is modulated by 

stimulus features such as contrast (Hadjipapas, et al. 2015, Ray and Maunsell 2010). This implies 

that different contrast levels that are part of a larger scene (e.g. a single object) are 

communicated at different frequencies, which might pose a problem for integrating this 
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information in the converging visual hierarchy (Ray and Maunsell 2010). However, Fries (2015) 

mentioned that the stimulus salience and level of attention to the subparts of a single object are 

often similar and thus result in similar gamma frequencies facilitating the integration in higher 

levels of hierarchy. However, a second criticism is based on an optogenic study that manipulated 

spike timing in the gamma and beta bands. Manipulating the temporal coordination of spiking 

activity did not influence behavior or transmission of spikes (Histed and Maunsell 2014).  Third, 

there is a debate as to whether the high frequency activity generated by natural stimuli is 

dominated by band-limited oscillations in the gamma frequency range or non-oscillatory changes 

over a broad range of frequencies (Hermes, et al. 2014; see section "Existing evidence and 

predictions for communication by nested oscillations"). Finally, it has been argued based on 

results from a modeling study, that while entrainment might occur, communication is established 

already prior to coherence (Rolls, et al. 2012).  

Also the GTI framework is associated with several limitations. First, the phase 

modulation of neuronal firing by the alpha band activity is not made explicit (Jensen, et al. 2012, 

Jensen, et al. 2014). Second, GTI does not elaborate on the role of gamma band activity for inter-

areal communication nor does it consider interregional phase-synchrony in the alpha-band as 

also being involved in inter-regional communication.  Third, the strong emphasis on the alpha 

band activity seems at odds with many non-human primate studies on attention in which 

modulations by alpha oscillations have only been recently reported, mainly via the use of laminar 

recordings (Haegens, et al. 2011, Haegens, et al. 2015, Maier, et al. 2011, Spaak, et al. 2012).  

At different levels of the cortical hierarchy feedforward and feedback information needs 

be integrated (see e.g. Larkum 2013 for one proposal). The GTI and CTC proposals are not fully 

explicit on the integration of feedforward and feedback at the microcircuit level (but see Lee, et 

al. 2013 cited in Bastos, et al. 2015 and Fries 2015). Therefore it is crucial that these frameworks 

are unified and extended (e.g. by incorporating the phase coding scheme), so that empirical 

studies can be specifically designed to test for the predictions derived from such a unified 

framework.  
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Figure 1: The communication-through coherence (CTC) and gating through inhibition (GTI) hypotheses. a. Two 

pools of neurons (A and B; e.g. in V1) are connected to a pool of neurons (C; e.g. V4). In this example, pool A 

communicates with C (solid line) while functional connectivity between B and C is suppressed (dashed line). b. 

Communiction through coherence (CTC). The waveforms represent oscillatory population activity (as measured in 

the LFP) in the three regions whereas the small vertical lines represent spiking activity.  The phase of the oscillatory  

activity modulates the excitability and thus spike timing, i.e. it is the phase relationship between the regions 

determining the routing. The neurons in A and C oscillate in phase, whereas the neurons in B do not oscillate in 

phase with C. It has been proposed that this mechanism is implemented by gamma band oscillations (>30Hz) (Fries 

2005) c. Gating by inhibition (GBI): The flow of information is controlled by an increase of alpha-band oscillations  

(~10Hz) which inhibits firing in pool B, and a decrease in alpha oscillations of neurons in A and C allowing 

communication by release from inhibition (Jensen and Mazaheri 2010). It is the magnitude of the pulses of inhibtion 

and thus the alpha power  that controls the routing. 

A unified framework based on nested oscillations 

We here propose a unified framework which is based on the coupling of slow and fast 

oscillations (see also Florin and Baillet 2015, Hyafil, et al. 2015, Lakatos, et al. 2005, Schroeder 

and Lakatos 2009). In this framework (figure 2), we suggest that the information flow is 

established by neuronal synchronization at lower-frequencies in the theta (4 – 7Hz), alpha (8 – 

13 Hz) and beta (14 – 25Hz) bands rather than in the gamma band. We will first develop the 

framework around the alpha band in the visual system (see section “Communication based on 

nested oscillations could be a general mechanism throughout the brain” for a discussion about 

the role of beta oscillations in the visual system). This is motivated by the fact that there are a 

numerous empirical reports on alpha oscillations in the visual system in the context of 

experiments in which routing is manipulated using attention task. We will then discuss how the 

framework could generalize to other regions.  
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 We consider here that alpha oscillations are associated with pulses of inhibition every 

~100 ms and as such can suppress neuronal activity locally as well as support inter-areal 

communication, through phase-synchronization and release of inhibition (see also section on 

Control of alpha oscillations in relation to cortical layers). It is important to note that these 

mechanisms do not exclude complementary roles of alpha oscillations in other processes such as 

transmitting prior-evidence to sensory areas  (Sherman, et al. 2016)  or sampling (Busch and 

VanRullen 2010, Song, et al. 2014, VanRullen 2016; see also section "The role of saccades and 

slower rythms"). 

 We propose that, when neurons in pool A and C communicate, they oscillate coherently 

in the alpha band in conjunction with a decrease in alpha power. The decrease in alpha power 

creates longer windows of excitability in each cycle, i.e. longer duty-cycles (Jensen and 

Mazaheri 2010), allowing for more information to be transferred between the synchronized 

regions. The blocking of communication between pool B and C is assured by two 

complementary mechanisms: asynchrony between B and C preventing communication and 

stronger alpha power in B resulting in shorter duty-cycles. Asynchrony could mean that the 

regions are oscillating in anti-synchrony which could imply that they are still coherent. Another 

possibility is that they are not synchronized, but fluctuating at different phases albeit the 

frequencies are within the same range. Another possibility would be that pools B and C fluctuate 

at different frequencies. In the latter case, the prevention of the transfer of information would be 

mainly implemented via an increase of alpha inhibition. 

Gamma oscillations are expected to be nested within alpha oscillations, i.e. they should occur 

only during the excitability phase of alpha oscillations. In pool A, the low magnitude of alpha 

oscillations allows for longer duty cycles, i.e. longer time-windows for the gamma activity 

during the excitability phase of the alpha cycle. As the excitable phase of the alpha oscillations 

will be aligned between the two relevant pools of neurons, gamma activity in A will be able to 

impact the neurons in C. This fast neuronal synchronization will have a strong impact on C due 

to synaptic summation within the time window of a gamma cycle (Salinas and Sejnowski 2001).  
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Figure 2: The new framework. The synchronization in the alpha-band establishes the functional connection between 

A and C. This allows for representational specific neuronal firing  reflected by the gamma band activity to flow to 

region C.  The blocking of communication between B and C is achieved by high alpha power in B and an 

asynchrony between B and C. Therefore both modulations in alpha-band power, as in gating by inhibition, and 

phase-synchronization between the regions, as in CTC, are determining the routing of information between regions. 

Note that phase-synchronization is assumed in the alpha band and the information transfer is reflect by gamma band 

activity.   

As a consequence, gamma oscillations in A and C will be correlated and possibly coherent. In 

pool B, the high magnitude of alpha oscillations will reduce the duty cycle, i.e. the gamma 

oscillations duration. In addition, the asynchrony of alpha oscillations in B and C will prevent 

gamma activity in B to drive cells in C. In short, a coupling between the phase of the alpha 

oscillations and gamma power could reflect the temporal coordination of information between 

regions.  

 The significance of alpha synchronization, specifically in a sensori-fronto-parietal 

network, in sensory processing was also emphasized by Palva and Palva (2007, 2011) and more 

recently in Siebenhühner et al. (2016). They proposed that cross-frequency phase coupling 

between alpha, beta and gamma oscillations would allow the selection and maintenance of object 

representations during perception and working memory. They more specifically proposed that 

cross-frequency phase synchrony between the fronto-parietal network and the local gamma 

oscillations in sensory regions might underlie the incorporation of stimulus representations into 

the focus of attention. The current framework shares many similarities with their inspiring 

framework. The framework developed here is, however, very specific on how the modulation of 

1) the local amplitude of alpha oscillations 2) the inter-areal phase-alignment and 3) how the 

local interaction between the phase alpha oscillations and the power (not the phase) of feed-

forward gamma oscillations is involved in the selective routing of information in cognitive 
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networks. Furthermore, the current framework incorporates the phase coding scheme and 

discusses the implementation of the model within the cortical layers.  Finally, we attempt to 

generalize the model by considering that other slow rhythms could implement the specific inter-

areal communication in other networks. 

Existing evidence and predictions for communication by nested oscillations  

Testing the proposed framework would require recordings from different regions in 

humans or non-human primates in the context of a task as for instance done by Saalmann et al. 

(2012). In this study, monkeys were cued to covertly attend to one of six locations after which a 

target array appeared. In the delay between cue and target, the allocation of covert attention was 

associated with an increase in coherence between V4 and temporo-occipital areas. Moreover, 

gamma coherence between V4 and TEO phase-locked to the alpha oscillations was observed. 

These results support our framework by demonstrating that alpha-band coherence is in control of 

the communication. While these findings provide first support for our framework, we will 

outline set of more specific predictions applied to the visual system in the following: 

 

Prediction 1: Alpha oscillations are a consequence of internal control while gamma activity 

reflects feedforward communication. Moreover, gamma activity is phase-locked to the alpha 

oscillations. 

The framework predicts that alpha oscillations set up the communication between 

relevant areas in a given task context. This idea implies that the phase and power of the alpha 

oscillations are under internal control. The gamma oscillations phase-modulated by the alpha 

oscillations will then reflect the information to be transferred in a feedforward manner. 

  Several recent papers have provided evidence in favor of slow frequency activity (alpha 

and beta oscillations) reflecting feedback control and gamma activity reflecting feedforward 

processing within the visual hierarchy (Bastos, et al. 2015, Jensen, et al. 2015, Michalareas, et al. 

2016, van Kerkoerle, et al. 2014, von Stein, et al. 2000, see also Arnal, et al. 2011). Using 

granger causality measures, they showed that alpha/beta oscillations in higher-order visual 

regions impacted lower-order regions during an attention task while the reverse was observed for 

gamma oscillations.  Van Kerkoerle et al. (van Kerkoerle, et al. 2014) further demonstrated that 

electrical stimulation of V1 induced an increase of gamma activity in V4 while stimulating V4 
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induced an increase of alpha oscillations in V1. The prediction regarding the control of alpha 

oscillations goes beyond feedback control and we elaborate on many possibilities on where alpha 

is generated in the section “Control of alpha oscillations in relation to cortical layers”. It is 

important to note that gamma oscillations also can reflect feedback communication (Bastos, et al. 

2015, Michalareas, et al. 2016; possibly controlled by alpha oscillations). 

 It has recently been shown that alpha and gamma activity interacts: gamma activity is 

phase-coupled to alpha oscillations during rest and during stimulus anticipation and processing in 

both monkeys and humans (Berman, et al. 2014, Bonnefond and Jensen 2015, Florin and Baillet 

2015, Khan, et al. 2013, Spaak, et al. 2012, 2012, Voytek, et al. 2010). Two studies have 

demonstrated that the higher the alpha activity, the lower the gamma activity at a specific phase 

of alpha oscillations during rest in monkeys and during the retention period of a working 

memory task in humans. This is in line with alpha activity being associated with pulses of 

inhibition every ~100ms (Bonnefond and Jensen 2015, Spaak, et al. 2012). We propose that 

gamma oscillations, nested within slow-oscillations serve to segment the neuronal 

representations in time. According to this framework a neuronal representation is constituted by 

a distributed firing pattern constrained to a given gamma cycle (Lisman and Idiart 1995). This 

allows for several items to be multiplexed over a gamma cycle (see section “Exchange of phase 

encoded information”).  

However, there is currently a debate to whether gamma activity reflects oscillations or 

whether they are a broad-band phenomenon devoid of rhythmicity, in particular for >80Hz 

oscillations (Brunet, et al. 2014, Buzsaki and Schomburg 2015, Hermes, et al. 2014, Lachaux, et 

al. 2005, Ray and Maunsell 2015). The broad-band activity (often called high-gamma activity or 

even epsilon when > 80Hz) is likely to reflect a hash of neuronal spiking rather than oscillations. 

However, it is possible that the 30-150 Hz activity is composed of both true oscillatory gamma 

activity (Brunet, et al. 2014) and broad-band multi-unit activity (Manning, et al. 2009, Ray and 

Maunsell 2011). Possibly, the 80-150Hz activity reflects the firing of neural populations, which 

is phase-locked to gamma oscillations at lower frequencies (30-80Hz), as has been observed in 

the rat hippocampus (Belluscio, et al. 2012).   

This is an important issue as the CTC framework articulates a mechanistic role for the 

phase of gamma oscillations such that the information can be transferred via inter-areal 



 11 

synchrony. The nature of activities observed in different gamma frequencies needs therefore to 

be further investigated using intracranial animal or human data. 

 In the present framework, the neuronal representation could contain both rhythmical 

activity (cf e.g. section “Exchange of phase encoded information”) or broad-band activity devoid 

of rhythmicity as the selectivity of the communication is subserved by an inter-areal 

synchronization at lower frequencies, i.e. theta, alpha or beta. 

 Moreover, as pointed out above the modulation of gamma frequency by different visual 

features (e.g contrast) is difficult to reconcile with the CTC framework. This would result in 

different parts of an object being communicated at different frequencies in the visual hierarchy 

preventing integration (but see Fries 2015). In the present framework, the gamma activity 

generated by the different features of a stimulus would be represented at different phases of a 

single alpha cycle in a multiplexing manner which then allows for integration. In future work, it 

will be interesting to investigate whether alpha oscillations indeed serve to group and integrate 

sensory input. 

 

Prediction 2: Alpha magnitude and inter-areal synchrony controls the transfer of information 

carried by gamma oscillations.  

   The framework assumes that alpha band phase-synchrony between A and C (see figure 2) 

allows stimulus-driven gamma oscillations, modulated by the phase of the alpha oscillations, to 

be transferred from A to C. Specifically we hypothesize that the synchrony of alpha oscillations 

between relevant areas predicts inter-areal correlation or coherence of gamma oscillations.  

  While the inter-areal coherence observed in the alpha and gamma band during several 

cognitive processes in rats, monkeys and humans (Bastos, et al. 2015, Bosman, et al. 2012, 

Grothe, et al. 2012, Muller and Weisz 2012, Pollok, et al. 2007, Popov, et al. 2013, van 

Kerkoerle, et al. 2014, Womelsdorf, et al. 2006) supports  the notion that phase-synchronization 

reflects information exchange, the role of cross-frequency interactions needs to be explored in 

greater detail.  

  Our framework also predicts that the oscillatory dynamics can prevent the transfer of 

information from region B to C. This is achieved by strong alpha oscillations in B which are in 

asynchrony or anti-synchrony with oscillations in C. This results in the hypothesis that (i) alpha 
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power is strong in task-irrelevant areas (i.e. B) and (ii) there is a change in the phase relation 

between task-irrelevant (B) and downstream regions (C). This might be reflected by anti-

synchrony or a decrease in synchrony (possibly due to a change in frequency in one of the pool). 

The power increase and synchrony decrease will be associated with less inter-areal power-

correlation or coherence in the gamma band.  

There is strong support for alpha magnitude increasing in task-irrelevant regions during 

attention and memory tasks (Banerjee, et al. 2011, Bonnefond and Jensen 2012, Foxe, et al. 

1998, Payne, et al. 2013, Snyder and Foxe 2010, Thut, et al. 2006, Worden, et al. 2000). For 

instance, alpha oscillations have been shown to increase in the early visual regions in 

anticipation of a distractor in working memory tasks (Bonnefond and Jensen 2012, Payne, et al. 

2013). With respect to the inter-regional phase relationship, anti-synchrony (~180˚ phase 

difference) between  parietal and frontal areas during an oculomotor, delayed-match-to-sample 

task has been reported (Dotson, et al. 2014); however there are also findings demonstrating a 

decrease in synchronization between visual regions when spatial attention is directed away (e.g. 

Bastos, et al. 2015, Saalmann, et al. 2012) .  

Future investigations are required to identify when and where the mechanisms for 

preventing information transfer are at play.  

 

Prediction 3: To allow communication between two specific pools of neurons, alpha oscillations 

must be modulated locally on a fine spatial scale. 

 The framework proposes that alpha oscillations are differently modulated in neuronal 

pools A and B (see figure 1c). This should be the case even if the stimuli processed by A and B 

are close to each other in retinotopic space. This results in the hypothesis that alpha oscillations 

must be modulated locally.  

 However, while it is often assumed that alpha oscillations in the visual system are 

modulated more globally (Thut, et al. 2006), recent monkey and human ECoG data provide 

promising evidence that alpha oscillations can be modulated locally even at the receptive field 

level. More precisely, these studies have shown that alpha oscillations increased (compared to 

baseline) in the surround area of the stimulated receptive field in V1 (Harvey, et al. 2013, van 

Kerkoerle, et al. 2014). This does not preclude the need for alpha oscillations to be modulated 
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more globally in the visual system in some situations such as during working memory 

maintenance to protect against distractors (Bonnefond and Jensen 2012) or during alertness 

(Sadaghiani and Kleinschmidt 2016). 

Communication based on nested oscillations could be a general mechanism throughout the 

brain 

 Thus far, we have focused on the coordinating role of alpha oscillations in the visual 

network. Further modulation of the alpha activity related to functional inhibition has been 

reported in the language network in humans (Wang, et al. 2012), in pre-frontal regions in the 

monkey (Buschman, et al. 2012, Engel 2012, Jensen and Bonnefond 2013, Welberg 2013) and 

even the hippocampus (Staresina, et al. 2016; but see below for a discussion regarding the 

hippocampus). However, similar functional roles may be played by oscillations at other 

frequencies, which have been shown to be prominent in other brain regions. For instance, there is 

strong evidence for the coupling in the theta band between the hippocampus and other regions 

such as prefrontal cortex, amydala and the striatum (e.g. Backus, et al. 2016, Benchenane, et al. 

2010, Kaplan, et al. 2014, Seidenbecher, et al. 2003, Staudigl and Hanslmayr 2013). Importantly 

when theta and alpha activity are observed in intracranial recordings across species, gamma 

power is typically found to be coupled to the phase of these oscillations (Belluscio, et al. 2012, 

Canolty, et al. 2006, Canolty and Knight 2010, Colgin, et al. 2009, Hermes, et al. 2014, Jensen 

and Colgin 2007, Spaak, et al. 2012, Voytek, et al. 2010). Thus, theta oscillations may play the 

same functional role as the alpha oscillations in coordinating neuronal processing. Several 

studies also points to theta being inhibitory (Mehta, et al. 2002). Given that theta oscillations in 

the monkey hippocampus have been found to overlap in frequency with alpha oscillations 

(Jutras, et al. 2013), it remains an exciting possibility that the visual cortex and the hippocampus 

communicate via synchronization by means of these oscillation (Fell, et al. 2011). However, it is 

debated whether the human theta rhythm is at ~3 Hz or in a higher band (Watrous, et al. 2013). 

In case it would be at 3Hz, the interactions between the visual cortex and hippocampus could 

then occur via cross-frequency coupling (Gu, et al. 2015).  The involvement of theta oscillations 

for coordinating the interactions between the striatum and the cortex during motor behavior in 

rats has been revealed by von Nicolai et al. (2014). In line with the current model, they further 
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showed that the coordination of fast oscillations occurred via the coherent coupling of theta-

phase and high frequency amplitude. 

Beta band oscillations might also play a role for coordinating the information flow by 

means of cross-frequency coupling in e.g. the motor network (van Wijk, et al. 2016). Moreover, 

some studies have reported attentional modulation of feedback-related beta oscillations in the 

visual system (e.g. Bastos, et al. 2015, Kornblith, et al. 2016). It remains to be explored what the 

functional differences between alpha and beta oscillations are. In particular, it will be important 

to determine whether the beta activity in some cases result from non-linear addition of different 

alpha generators in different cortical layers (Jones, et al. 2009). In line with this idea, laminar 

recordings have only revealed modulation of alpha oscillations in the visual system during 

attentional tasks (e.g. Bollimunta, et al. 2011, van Kerkoerle, et al. 2014) while EcoG recordings 

have revealed modulation of beta oscillations (Bastos, et al. 2015). 

Exchange of phase encoded information  

Extensive work in the rat hippocampus has demonstrated that different information is 

encoded at different phases of the theta cycle. In particular when a rat traverses a place field, the 

phase of firing of the respective place cell advances with respect to theta-phase (O'Keefe and 

Recce 1993). Several mechanisms have been proposed for how such a phase-organized code 

might emerge (Burgess and O’Keefe 2011, Jensen and Lisman 1996, Lisman and Jensen 2013) . 

In analogy, Jensen et al. (2014) recently proposed a model for how visual information might be 

encoded along the phase of the alpha cycle. In the model, competing visual representations are 

represented at different phase of the alpha cycle in order to resolve the bottleneck problem in the 

visual system. Due to the convergence in the hierarchy of the visual ventral stream, two stimuli 

(e.g. faces) might partly share the same neuronal representation in higher-order visual areas. 

Jensen et al. proposed that the processing of these two stimuli is segmented in time by being 

represented at different phases of the alpha cycle. The stronger the excitability of a given 

representation the earlier it overcomes the inhibition as it ramps down within an alpha cycle. 

This creates a temporal code organized according to excitability (Jensen, et al. 2014). As 

proposed for the hippocampus (Colgin 2011, Jensen 2001), the exchange of phase-encoded 

information can be achieved by phase-synchronizing the communicating networks (see figure 3). 



 15 

 

Figure 3: Exchange of phase coded information. a. Two stimuli processed by two pools of neurons A and B, e.g. in 

V1. The pools both project to a pool of neurons C downdstream  in the hierarchy, e.g. in V4. Because of this 

bottleneck in the visual system, it is important that neurons coding for A and B in V1 are not activated 

simultaenously. For the information related to the two stimuli to be transferred from V1 to V4, we propose two 

mechanisms b. A single alpha generator in V1 controls for the timing of activation of neurons in pool A and B as 

reflected in the gamma band. The activation of the most excitable neurons, i.e. cells in pool A, overcomes  the pulse 

of inhibition early in the alpha cycle followed by neurons in pool B (see Jensen et al. 2014 for details). The temporal 

organisation is then transmitted to the pool of neurons in C. c. Another possibility is that the magnitude of the alpha 

oscillations is modulated locally and is lower for one of the representations compared to the other. Since the alpha 

inhibition is lower for  A, the respective neurons fire earlier than B. This temporal organization is then transmitted to 

C.  

Consider two representations associated with neurons in pool A and B. The excitability is 

stronger for A than for B (figure 3a). Jensen et al. (2014) proposed that the neuronal firing 

associated with each stimulus occurs at different phases of the alpha cycle. Moreover, A, B and 

C would be synchronized in the alpha band and, as a consequence, this temporal organization 

would then be transmitted to C (figure 3b). A possibility Jensen et al. (2014) did not discuss is 

that the magnitude of the alpha oscillations in the two pools determines which stimulus is 

processed first (figure 3c). In particular alpha power will be lower in pool A than in pool B, if the 

stimulus processed by the former is more relevant/salient. As a consequence, the gamma burst 

will occur earlier in A than in B due to the stronger alpha inhibition in the latter. Importantly, 

alpha oscillations are still expected to be synchronous between the three pools. To date there is 

little empirical evidence demonstrating that alpha phase organizes neuronal coding. There is 

work in the delta, theta and beta band demonstrating phase-coding (Kayser, et al. 2009, Voytek, 

et al. 2015, Watrous, et al. 2015). We call for future studies in which a phase-specific code is 

investigated in the visual system in the alpha band.  
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Control of alpha oscillations in relation to cortical layers 

The framework we propose assumes that alpha oscillations are internally controlled in 

terms of phase and magnitude. We here discuss the mechanisms involved in the control. The 

control serves to phase-synchronize the oscillations between different regions and to modulate 

the degree of pulsed inhibition in order to allocate computational resources. A number of studies 

have shown that alpha magnitude and phase can be modulated in anticipation of relevant or 

irrelevant stimuli (Bonnefond and Jensen 2012, Foxe, et al. 1998, Foxe and Snyder 2011, 

Samaha, et al. 2015, Thut, et al. 2006, but see van Diepen, et al. 2015) indicating that alpha 

oscillatory activity is indeed under internal control. In this section, we discuss two 

complementary mechanisms for this control, namely that alpha oscillations are controlled by 

neocortical feedback connections or by the thalamus. We will discuss this in the context of layer-

specific computations. 

 

Feedback in relation to cortical layers and canonical microcircuits 

Interestingly, the pools of neurons involved in the feedforward and feedback pathways 

are segregated in different cortical layers in the visual system (Markov, et al. 2014). The cortical 

layers involved in the feedforward and feedback differ according to the hierarchical distance 

between the connected brain regions (Barone, et al. 2000, Markov, et al. 2011, Markov, et al. 

2014). In the case of the connections between V1 and V4, the feedforward pathway originates in 

supragranular layers (L3B) in V1 and target granular layers (L4) and L3B in V4. The feedback 

pathway from V4 originates in the supragranular layers L3A and infragranular layers L6 and 

target supragranular layers L1-2/3A and infragranular layer L6 respectively in V1 (figure 4).   

Interestingly, alpha activity has been observed mainly in both the supragranular and 

infragranular layers of a given area, with a stronger power in the later (but see Haegens, et al. 

2015) while gamma activity has been shown to be prominent in the granular and supragranular 

layers (Bollimunta, et al. 2008, Bollimunta, et al. 2011, Buffalo, et al. 2011, Dougherty, et al. 

2015, Maier, et al. 2011, Spaak, et al. 2012, van Kerkoerle, et al. 2014).   

According to our model, supragranular and/or infragranular alpha oscillations should 

exercise an inhibitory phasic influence on the granular and/or the supragranular gamma 

magnitude (see Spaak, et al. 2012) (figure 4b).  
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 As shown in figure 4, the feedback is diverging when originating in V4 and project back 

to several V1 regions. This feedback needs to be selective, e.g. determining the alpha phase 

synchronization from C to A, but not C to B. Moreover, local alpha magnitude in A and B should 

be distinct with a higher alpha magnitude in B. We discuss below the putative role of different 

neocortical and subcortical regions in modulating the local change in alpha magnitude and the 

alpha synchronization between communicating areas. 

 It remains to be better understood how alpha and gamma oscillations are generated from 

a physiological perspective and how their interaction is implemented at the level of the 

microcircuit. The mechanisms generating gamma oscillations have been extensively reviewed in 

Buzsáki and Wang (2012) but less is known about alpha oscillations. Alpha oscillations are 

thought to involve inhibitory neurons to set-up pulses of inhibition every ~100ms.  Somatostatin 

cells engaged via lateral connections (Zhang, et al. 2014) or trans-laminar fast-spiking neurons 

engaged by layer 6 neurons (Bortone, et al. 2014, Olsen, et al. 2012) or even layer 5 pyramidal 

cells (Buchanan, et al. 2012) are strong candidates but further research is needed to evaluate their 

behavior during alpha oscillations. Layer 1 interneurons might also be involved as dendrites from 

layers 2/3A, 3B and 5 reach this layer (Markov, et al. 2014). Also, the role of lateral connections 

(Angelucci and Bullier 2003, Tamura, et al. 2004, Wang, et al. 2000) as well as the role of the 

thalamus (da Silva, et al. 1973, Lorincz, et al. 2009, Vijayan and Kopell 2012) needs to be 

investigated. 

The examples considered here concern the visual system. It has, however, been shown 

that the laminar organization (e.g. cortical types can be granular, agranular or dysgranular) and 

the connectivity between areas varies across networks (see e.g. Rempel-Clower and Barbas 

2000). It will be important to consider these anatomical, but also functional, heterogeneities to 

further determine whether the information is communicated by similar principles in these 

different networks. 
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Figure 4: Converging feed-forward and diverging feedback pathways. a.  Pools of neurons A and B converge on a 

pool of neurons in C. Black arrows represent the converging feedforward pathway while the grey arrows represent 

the diverging feedback pathway b. Example in which two cortical columns in V1 (A,B) are connected to a column 

in V4 (C). Three layers are represented, the supragranular, the granular and the infragranular layers. In dark and 

light grays are represented in the layers involved in the feedforward and feedback pathways respectively. The layers 

associated with each pathway are inspired by Markov et al. (2014). The feedforward connections from the pulvinar 

are also indicated (purple arrows) c. Gamma and alpha oscillations have been shown to be prominent in the 

granular/supragranular and infragranular/supragranular layers respectively. 

Regions involved in the control of alpha   

Several studies have investigated the influences of the fronto-parietal network, i.e. the 

frontal eye field (FEF) and the posterior parietal cortex, on activity of posterior regions 

(Noudoost and Moore 2011, Squire, et al. 2013, Szczepanski, et al. 2010). The fronto-parietal 

network includes a number of areas that are retinotopically organized, and it is engaged during 

spatial attention, saccade planning and other cognitive and perceptual operations (Saygin and 

Sereno 2008, Silver and Kastner 2009). The fronto-parietal network is directly and indirectly 

(through the pulvinar) connected to visual regions. The FEF and parietal cortex have both been 

shown to be associated with the control of alpha activity in posterior regions in humans 
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(Capotosto, et al. 2009, Marshall, et al. 2015, Sauseng, et al. 2011) potentially via the superior 

longitudinal fasciculus (Marshall, et al. 2015). However, the role of the fronto-parietal network 

for controlling alpha phase remains to be elucidated (but see Sauseng, et al. 2005).   

Recently, Sadaghiani et al. (2016) further proposed that different cortical networks were 

involved in controlling alpha oscillations. More specifically, they proposed that a network 

including the dorsolateral prefrontal cortex, the rostrolateral prefrontal cortex, the posterior 

inferior parietal lobe, the paracingulate gyrus, and there mid-cingulate gyrus was involved in 

controlling long-range alpha phase-locking associated with adaptative control while the dorsal 

attention network (including intraparietal sulci, frontal eye fields, and middle temporal complex) 

was associated with controlling the (dis-) engagement of regions via the control of local alpha 

amplitude and as such with implementing selective attention. 

 Subcortical regions might also play a key role in modulating alpha activity. For instance, 

the pulvinar is in a particularly well-suited anatomical position for controlling the 

communication between posterior neocortical areas, since it is connected to a wide range of areas 

in the visual hierarchy. More specifically, it is connected to neighboring cortical regions that are 

themselves directly connected to each other (Saalmann and Kastner 2011, Saalmann, et al. 

2012). Here, we consider two ways in which the pulvinar might influence the synchronization in 

the alpha band between brain regions:  

 (1) The pulvinar might modulate the feedback originating from higher-order regions as it 

targets layers 1 to 3 (L 1-3) of the lower-order area. In line with this idea, Purushothaman, et al. 

(2012) showed that electrical stimulation of pulvinar neurons in anesthetized prosimian primates 

resulted in boosting the firing of V1 neurons when stimuli were presented in the V1 neurons’ 

receptive fields, while it suppressed the neuronal activity when the stimuli were presented 

outside the receptive field. As such, the stimulation mimicked the effects of attention. Following 

the schema shown in Figure 4, we suggest that the pulvinar serves to synchronize C and A by 

increasing the impact of the feedback connections arriving in L1-3. Likewise, the pulvinar might 

decrease the activity in B reducing the synchrony between C and B. It is further possible that the 

pulvinar increases the magnitude of alpha oscillations in B.   

 (2) The pulvinar might directly control the synchronization of alpha activity between two 

areas, as it is connected to supragranular layers (L1-3) of the lower-order area (e.g. V1) and 

granular layer (L4) of the higher-order area (e.g. V4) (Saalmann and Kastner 2011).  Although 
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alpha activity is thought to be particularly high in supragranular and infragranular layers, several 

papers have also revealed the presence of an alpha generator in L4 (Bollimunta, et al. 2008, 

Bollimunta, et al. 2011, Haegens, et al. 2015).  It is thus possible that the pulvinar allows the 

synchronization between L1-3 in a lower-order region and L4, which receives the feedforward 

activity, in a higher-order region. In line with this idea, Saalmann et al. (2012) demonstrated, 

using a measure of Granger causality, that the pulvinar was driving the alpha-band 

synchronization between V4 and TEO when attention was allocated at the receptive field of the 

regions recorded. However, they did not observe an increase of the amplitude of alpha 

oscillations in these cortical areas when attention was directed away from it (Kastner, 

unpublished observations). Such amplitude change might occur only in V1. Therefore, they 

could not investigate the influence of the pulvinar on a change in alpha amplitude as suggested in 

the paragraph above. Interestingly, the pulvinar is also known to be connected to frontal areas 

(Saalmann and Kastner 2011).  It is therefore possible that part of the influence of frontal areas 

on the sensory cortex are mediated by the pulvinar. In summary, the mechanisms underlying the 

influences of the pulvinar on alpha oscillations in the different cortical areas remain to be 

understood. In addition to the pulvinar, interactions between the prefrontal cortex, the thalamic 

reticular nucleus (TRN) and the lateral geniculate nucleus might also be involved in setting-up 

alpha power increases in early visual regions. Recent papers have shown that the prefrontal 

cortex directly influences TRN activity, thereby controlling thalamic sensory gain during 

attention (Halassa, et al. 2011, Wimmer, et al. 2015). 

Further investigations, such as exploring the task-specific laminar profiles of alpha 

oscillations will be necessary to determine how the feedback activity from higher visual regions 

and the different cortical and subcortical regions influence the power and the phase of alpha 

activity across the visual network. In particular, it will be useful to determine how the phase 

synchrony (both synchrony and anti-synchrony) is implemented. It is possible that the alpha 

oscillations observed in different layers have distinct roles for coordinating communication.  For 

instance, alpha in supragranular layers might be involved in coordinating inter-areal 

communication over long distances, while alpha in infragranular layers might be involved in 

more local control of granular and supragranular gamma power.  Indeed, it has been shown that 

the supragranular layers exhibit a spatially-specific connectivity in both the feedforward and 

feedback pathways, while the infragranular layers exhibit a more diffuse connectivity (Markov, 
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et al. 2014).  The more diffuse connectivity might be related to the role of alpha oscillations in 

the inhibition of all non-relevant cortical columns in a rather unspecific way while the spatially-

specific connectivity could be related to the communication of alpha activity within the relevant 

pools of neurons. 

The role of saccades and slower rhythms 

In most electrophysiological studies in human and animals on attention and visual 

perception, fixation is kept constant. However in daily life we make saccades several times per 

second. Furthermore, even when fixating micro-saccades at 3 – 4Hz are apparent (Bosman, et al. 

2009, Lowet, et al. 2016). In future work, it will be of great interest to investigate how saccade 

relates to coupled alpha and gamma oscillations. One intriguing possibility is that the (micro-) 

saccades are coordinated with alpha oscillations (Drewes and VanRullen 2011, Gaarder, et al. 

1966). While spatial sampling could involve saccades, it could as well be implemented by 

rhythmic shifts of spatial attention at slow frequency (Fiebelkorn, et al. 2013, Landau and Fries 

2012, Landau, et al. 2015, Song, et al. 2014, see VanRullen 2016  for a review).  

In the latest version of the CTC, Fries (2015) further develops the idea that the cross-

frequency coupling between theta and gamma oscillations implements visual attentional 

sampling (Bosman, et al. 2009, Bosman, et al. 2012). The sampling role of theta oscillations in 

the visual system proposed by Fries (2015), which seems to be transmitted in the feedforward 

direction (Bastos et al. 2015, van Kerkoerle et al. 2014), is different from the role of alpha 

oscillations we propose. Specifically we suggest that the role of alpha oscillations is to 

implement inter-areal communication by modulating inter-areal phase synchronization and the 

local magnitude. However, recent results suggest that the theta and alpha rhythms could interact. 

Song et al. (2014) presented interesting results showing that the behavioral performances (in 

terms of reaction time) in an attention task (discrimination of a square or a circle) was modulated 

in the alpha-range, but alternated between the cued and uncued side at a theta rhythm (3-4Hz), 

i.e. the behavior exhibited a theta-alpha coupling.  

Further work is needed to understand in which situations such slower rhythms are 

required and how they interact with the alpha and gamma oscillations in relation to (micro-) 

saccades. Finally, it is important to develop a model integrating the feedforward sweep that is 

evoked by saccades and microsaccades (Gaarder, et al. 1966, Ito, et al. 2013).  
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Conclusion 

   In this paper, we have proposed a framework for flexible communication between 

interconnected nodes in the brain based on the coupling between slow oscillations in the 

theta/alpha band and activity in the gamma band. Testing the framework will require integrating 

animal and human research in order to relate spiking to behavior from a mechanistic perspective. 

This will allow for elucidating how representational specific information is exchanged between 

brain regions. Finally, it needs to be understood how these cross-frequency interactions are 

internally controlled. Of particular interest is the involvement of the thalamus in coordinating 

oscillatory activity between regions.  
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