1,267 research outputs found

    Modelling of building interiors with mobile phone sensor data

    Get PDF
    Creating as-built plans of building interiors is a challenging task. In this paper we present a semi-automatic modelling system for creating residential building interior plans and their integration with existing map data to produce building models. Taking a set of imprecise measurements made with an interactive mobile phone room mapping application, the system performs spatial adjustments in accordance with soft and hard constraints imposed on the building plan geometry. The approach uses an optimisation model that exploits a high accuracy building outline, such as can be found in topographic map data, and the building topology to improve the quality of interior measurements and generate a standardised output. We test our system on building plans of five residential homes. Our evaluation shows that the approach enables construction of accurate interior plans from imprecise measurements. The experiments report an average accuracy of 0.24 m, close to the 0.20 m recommended by the CityGML LoD4 specificatio

    Modeling and interpolation of the ambient magnetic field by Gaussian processes

    Full text link
    Anomalies in the ambient magnetic field can be used as features in indoor positioning and navigation. By using Maxwell's equations, we derive and present a Bayesian non-parametric probabilistic modeling approach for interpolation and extrapolation of the magnetic field. We model the magnetic field components jointly by imposing a Gaussian process (GP) prior on the latent scalar potential of the magnetic field. By rewriting the GP model in terms of a Hilbert space representation, we circumvent the computational pitfalls associated with GP modeling and provide a computationally efficient and physically justified modeling tool for the ambient magnetic field. The model allows for sequential updating of the estimate and time-dependent changes in the magnetic field. The model is shown to work well in practice in different applications: we demonstrate mapping of the magnetic field both with an inexpensive Raspberry Pi powered robot and on foot using a standard smartphone.Comment: 17 pages, 12 figures, to appear in IEEE Transactions on Robotic

    Data driven estimation of building interior plans

    Get PDF
    This work investigates constructing plans of building interiors using learned building measurements. In particular, we address the problem of accurately estimating dimensions of rooms when measurements of the interior space have not been captured. Our approach focuses on learning the geometry, orientation and occurrence of rooms from a corpus of real-world building plan data to form a predictive model. The trained predictive model may then be queried to generate estimates of room dimensions and orientations. These estimates are then integrated with the overall building footprint and iteratively improved using a two-stage optimisation process to form complete interior plans. The approach is presented as a semi-automatic method for constructing plans which can cope with a limited set of known information and constructs likely representations of building plans through modelling of soft and hard constraints. We evaluate the method in the context of estimating residential house plans and demonstrate that predictions can effectively be used for constructing plans given limited prior knowledge about the types of rooms and their topology

    Detection of Suspicious Activity using Mobile Sensor Data and Modified Sub-space K-NN for Criminal Investigations

    Get PDF
    With the bulk availability of mobile sensors, the data collected from them mustn’t be wasted. Nowadays the creation of black-box software that collects this data is not a very difficult task. It is possible to detect suspicious unlawful events using this black-box data. In this paper, we present a novel way of doing forensic investigation using a modified sub-space K-NN (MSK) algorithm. The MSK algorithm is capable of detecting suspicious activities from mobile sensor data. Using this technique, we could detect any normal activity versus suspicious activity with 99.7 % accuracy. This study lays the foundation for future explorations, envisioning potential applications in diverse fields, including zoology. By adapting and expanding the proposed methodology, researchers in zoology could harness mobile sensor data to study animal behavior, offering an innovative approach to understanding and monitoring wildlife activities. Such interdisciplinary bridges highlight the versatility of technological advancements, where tools developed for criminal investigations may find unexpected yet valuable applications in the study of zoological phenomen

    Comparison of Different Remote Sensing Methods for 3D Modeling of Small Rock Outcrops

    Get PDF
    This paper reviews the use of modern 3D image-based and Light Detection and Ranging (LiDAR) methods of surface reconstruction techniques for high fidelity surveys of small rock outcrops to highlight their potential within structural geology and landscape protection. LiDAR and Structure from Motion (SfM) software provide useful opportunities for rock outcrops mapping and 3D model creation. The accuracy of these surface reconstructions is crucial for quantitative structural analysis. However, these technologies require either a costly data acquisition device (Terrestrial LiDAR) or specialized image processing software (SfM). Recent developments in augmented reality and smartphone technologies, such as increased processing capacity and higher resolution of cameras, may offer a simple and inexpensive alternative for 3D surface reconstruction. Therefore, the aim of the paper is to show the possibilities of using smartphone applications for model creation and to determine their accuracy for rock outcrop mapping.O

    The Integration of HBIM-SIG in the Development of a Virtual Itinerary in a Historical Centre

    Full text link
    [EN] The continuous increase in cultural tourism, together with the deficient planning of public use, increases the risk of heritage resource degradation. Currently, there are collaborative methodologies enabling all the agents involved in the conservation of a heritage site to work in a coordinated way (HBIM), such as in the management of public use. However, in this study, through a review of the scientific literature, the lack of a method and tool that allows sustainable conservation management and the planning of cultural tourism of heritage assets in a specific geographical environment is demonstrated. The objective of this research is thus to explore and identify the possibilities of interoperability between HBIM and GIS for the development of a protocol aimed at synchronizing the information concerning heritage architecture across the management and cultural tourism planning and preventive conservation. This protocol was implemented for three monumental buildings in the historic centre of the city of Valencia (Spain). This novel protocol provides a new technological system that fosters the cultural development and preservation and conservation of heritage assets through a single tool integrating HBIM and GISWe thank the Cathedral Chapter and the Rectorate and managers of the Royal Seminary College of Corpus Christi and the rectory church of San Juan del Hospital for their availability so that this research could be carried out. We thank Junshan Liu and Danielle Wilkens for their collaboration in collecting data from the Real Colegio Seminario.López González, MC.; G-Valldecabres, J. (2023). The Integration of HBIM-SIG in the Development of a Virtual Itinerary in a Historical Centre. Sustainability. 15(18):1-19. https://doi.org/10.3390/su151813931119151

    Exploiting low-cost 3D imagery for the purposes of detecting and analyzing pavement distresses

    Get PDF
    Road pavement conditions have significant impacts on safety, travel times, costs, and environmental effects. It is the responsibility of road agencies to ensure these conditions are kept in an acceptable state. To this end, agencies are tasked with implementing pavement management systems (PMSs) which effectively allocate resources towards maintenance and rehabilitation. These systems, however, require accurate data. Currently, most agencies rely on manual distress surveys and as a result, there is significant research into quick and low-cost pavement distress identification methods. Recent proposals have included the use of structure-from-motion techniques based on datasets from unmanned aerial vehicles (UAVs) and cameras, producing accurate 3D models and associated point clouds. The challenge with these datasets is then identifying and describing distresses. This paper focuses on utilizing images of pavement distresses in the city of Palermo, Italy produced by mobile phone cameras. The work aims at assessing the accuracy of using mobile phones for these surveys and also identifying strategies to segment generated 3D imagery by considering the use of algorithms for 3D Image segmentation to detect shapes from point clouds to enable measurement of physical parameters and severity assessment. Case studies are considered for pavement distresses defined by the measurement of the area affected such as different types of cracking and depressions. The use of mobile phones and the identification of these patterns on the 3D models provide further steps towards low-cost data acquisition and analysis for a PMS

    Indoor navigation for the visually impaired : enhancements through utilisation of the Internet of Things and deep learning

    Get PDF
    Wayfinding and navigation are essential aspects of independent living that heavily rely on the sense of vision. Walking in a complex building requires knowing exact location to find a suitable path to the desired destination, avoiding obstacles and monitoring orientation and movement along the route. People who do not have access to sight-dependent information, such as that provided by signage, maps and environmental cues, can encounter challenges in achieving these tasks independently. They can rely on assistance from others or maintain their independence by using assistive technologies and the resources provided by smart environments. Several solutions have adapted technological innovations to combat navigation in an indoor environment over the last few years. However, there remains a significant lack of a complete solution to aid the navigation requirements of visually impaired (VI) people. The use of a single technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid solution using Internet of Things (IoT) devices and deep learning techniques to discern the patterns of an indoor environment may help VI people gain confidence to travel independently. This thesis aims to improve the independence and enhance the journey of VI people in an indoor setting with the proposed framework, using a smartphone. The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons and a smartphone, BVIP monitors the movements and relative position of the moving user. In dark areas without external devices, the research tests the feasibility of using sensory information from a smartphone with a pre-trained regression-based deep learning model to predict the user s absolute position. The work accomplishes a diverse range of simulations and experiments to confirm the performance and effectiveness of the proposed framework and its components. The results show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and this research benchmarks the approach with other popular pathfinding algorithms. Further, this research develops a smartphone-based application to test the trajectories of a moving user in an indoor environment
    corecore