498 research outputs found

    Effects of Gender and Regional Dialect on Uptalk in the American Midwest

    Get PDF
    This study compares the distribution of uptalk contours across male and female speakers of two Midwestern dialects of American English. Sixteen speakers, evenly divided between dialect and gender, were recorded reading ten passages in plain lab speech. The contours defined as uptalk in this study were H* H-H%, H* L-H%, L* H-H%, and L* L-H%. The results indicate that neither gender nor dialect had an effect on overall uptalk frequency, which could reflect prosodic similarities in the two dialects. The null results for gender are particularly surprising because they run contrary to many of the previous studies on uptalk, which found that women use uptalk more than men. Gender and dialect also had no significant effect on the types of uptalk contours used: speakers from both dialects used primarily three of the four uptalk contours that were examined (H* L-H%, L* H-H% and L* L-H%). These uptalk contours differed from the uptalk contours identified in other North American varieties of English, suggesting that there are regional differences in uptalk realization.Undergraduate Research ScholarshipNational Science Foundation (BCS-1056409)No embargoAcademic Major: LinguisticsAcademic Major: Spanis

    3D-Druck des Hochleistungskunststoffes Polyetheretherketon (PEEK)

    Get PDF

    Classical Malice: A New Fault Standard for Defamation in Fiction

    Get PDF

    Modelling sulphate stream concentrations in the Black Forest catchments Schluchsee and Villingen

    No full text
    International audienceThe sulphate (SO4) released by mineralisation and desorption from soil can play an important role in determining concentrations of SO4 in streams. The MAGIC model was calibrated for two catchments in the Black Forest, Germany (Schluchsee and Villingen) and SO4 concentrations in the streams for the years 2016 and 2030 were predicted. Special emphasis was placed on the dynamics of soil sulphur (S) pools. At Schluchsee, 90% of soil S is stored in the organic S (Sorg) pool, whereas at Villingen, 54% is in the inorganic (Sinorg) pool. The Villingen stream chemistry was modelled successfully by measured Langmuir isotherm parameters (LIPs) for Sinorg. Schluchsee data could not be modelled satisfactorily using measured or freely adapted LIPs only, as the Sinorg pool would have to be more than five times larger than what was measured. With 60.5 mmolc SO4 m-2 yr-1 as internal soil source by mineralisation and the measured LIPs, stream data was modelled successfully. The modelling shows that in these two catchments pre-industrial concentrations of SO4 in runoff can be reached in the next two decades if S deposition decreases as intended under currently agreed national and international legislation. Sorg is the most likely dominant source of SO4 released at Schluchsee. Mineralization from the Sorg pool must be included when modelling SO4 concentrations in the stream. As the dynamics and the controlling factors of S release by mineralisation are not yet clear, this process remains a source of uncertainty for predictions of SO4 concentrations in streams. Future research should concentrate on dynamics of S mineralisation in the field, such that mathematical descriptions of long-term S-mineralisation can be incorporated into biogeochemical models. Keywords: sulphate release, organic S, mineralisation, acidification, recovery, modelling, MAGIC, catchments, predictions, Germany, fores

    Transform-limited single photons from a single quantum dot

    Full text link
    A semiconductor quantum dot mimics a two-level atom. Performance as a single photon source is limited by decoherence and dephasing of the optical transition. Even with high quality material at low temperature, the optical linewidths are a factor of two larger than the transform-limit. A major contributor to the inhomogeneous linewdith is the nuclear spin noise. We show here that the nuclear spin noise depends on optical excitation, increasing (decreasing) with increasing resonant laser power for the neutral (charged) exciton. Based on this observation, we discover regimes where we demonstrate transform-limited linewidths on both neutral and charged excitons even when the measurement is performed very slowly

    GHz bandwidth electro-optics of a single self-assembled quantum dot in a charge-tunable device

    Get PDF
    The response of a single InGaAs quantum dot, embedded in a miniaturized charge-tunable device, to an applied GHz bandwidth electrical pulse is investigated via its optical response. Quantum dot response times of 1.0 \pm 0.1 ns are characterized via several different measurement techniques, demonstrating GHz bandwidth electrical control. Furthermore a novel optical detection technique based on resonant electron-hole pair generation in the hybridization region is used to map fully the voltage pulse experienced by the quantum dot, showing in this case a simple exponential rise.Comment: 7 pages, 4 figure

    Electrically-tunable hole g-factor of an optically-active quantum dot for fast spin rotations

    Full text link
    We report a large g-factor tunability of a single hole spin in an InGaAs quantum dot via an electric field. The magnetic field lies in the in-plane direction x, the direction required for a coherent hole spin. The electrical field lies along the growth direction z and is changed over a large range, 100 kV/cm. Both electron and hole g-factors are determined by high resolution laser spectroscopy with resonance fluorescence detection. This, along with the low electrical-noise environment, gives very high quality experimental results. The hole g-factor g_xh depends linearly on the electric field Fz, dg_xh/dFz = (8.3 +/- 1.2)* 10^-4 cm/kV, whereas the electron g-factor g_xe is independent of electric field, dg_xe/dFz = (0.1 +/- 0.3)* 10^-4 cm/kV (results averaged over a number of quantum dots). The dependence of g_xh on Fz is well reproduced by a 4x4 k.p model demonstrating that the electric field sensitivity arises from a combination of soft hole confining potential, an In concentration gradient and a strong dependence of material parameters on In concentration. The electric field sensitivity of the hole spin can be exploited for electrically-driven hole spin rotations via the g-tensor modulation technique and based on these results, a hole spin coupling as large as ~ 1 GHz is expected to be envisaged.Comment: 8 pages, 4 figure

    Global random walk solvers for fully coupled flow and transport in saturated/unsaturated porous media

    Get PDF
    In this article, we present new random walk methods to solve flow and transport problems in saturated/unsaturated porous media, including coupled flow and transport processes in soils, heterogeneous systems modeled through random hydraulic conductivity and recharge fields, processes at the field and regional scales. The numerical schemes are based on global random walk algorithms (GRW) which approximate the solution by moving large numbers of computational particles on regular lattices according to specific random walk rules. To cope with the nonlinearity and the degeneracy of the Richards equation and of the coupled system, we implemented the GRW algorithms by employing linearization techniques similar to the -scheme developed in finite element/volume approaches. The resulting GRW -schemes converge with the number of iterations and provide numerical solutions that are first-order accurate in time and second-order in space. A remarkable property of the flow and transport GRW solutions is that they are practically free of numerical diffusion. The GRW solvers are validated by comparisons with mixed finite element and finite volume solvers in one- and two-dimensional benchmark problems. They include Richards’ equation fully coupled with the advection-diffusion-reaction equation and capture the transition from unsaturated to saturated flow regimes.publishedVersio
    • …
    corecore