499 research outputs found

    Characterisation of Carotenoids Involved in the Xanthophyll Cycle

    Get PDF
    Carotenoids are known for versatile roles they play in living organisms; however, their most pivotal function is involvement in scavenging reactive oxygen species (ROS) and photoprotection. In plant kingdom, an important photoprotective mechanism, referred to as the xanthophyll cycle, has been developed by photosynthetic organism to avoid excess light that might lead to photoinhibition and inactivation of photosystems and induce the formation of reactive oxygen species (ROS), resulting in photodamage and long-term changes in the cells caused by oxidative stress. Apart from high-light driven enzymatic conversion of violaxanthin (Viola) to zeaxanthin (Zea) that occurs mostly in higher plants, mosses and lichens, other less known types of the xanthophyll cycle have been hitherto described. The work is aimed at summarising the current knowledge on the pigments engaged in the xanthophyll cycles operating in various organisms

    Is Meta-Learning the Right Approach for the Cold-Start Problem in Recommender Systems?

    Full text link
    Recommender systems have become fundamental building blocks of modern online products and services, and have a substantial impact on user experience. In the past few years, deep learning methods have attracted a lot of research, and are now heavily used in modern real-world recommender systems. Nevertheless, dealing with recommendations in the cold-start setting, e.g., when a user has done limited interactions in the system, is a problem that remains far from solved. Meta-learning techniques, and in particular optimization-based meta-learning, have recently become the most popular approaches in the academic research literature for tackling the cold-start problem in deep learning models for recommender systems. However, current meta-learning approaches are not practical for real-world recommender systems, which have billions of users and items, and strict latency requirements. In this paper we show that it is possible to obtaining similar, or higher, performance on commonly used benchmarks for the cold-start problem without using meta-learning techniques. In more detail, we show that, when tuned correctly, standard and widely adopted deep learning models perform just as well as newer meta-learning models. We further show that an extremely simple modular approach using common representation learning techniques, can perform comparably to meta-learning techniques specifically designed for the cold-start setting while being much more easily deployable in real-world applications

    Molecular organization in MAPLE‐deposited conjugated polymer thin films and the implications for carrier transport characteristics

    Full text link
    The morphological structure of poly(3‐hexylthiophene) (P3HT) thin films deposited by both Matrix Assisted Pulsed Laser Evaporation (MAPLE) and solution spin‐casting methods are investigated. The MAPLE samples possessed a higher degree of disorder, with random orientations of polymer crystallites along the side‐chain stacking, π–π stacking, and conjugated backbone directions. Moreover, the average molecular orientations and relative degrees of crystallinity of MAPLE‐deposited polymer films are insensitive to the chemistries of the substrates onto which they were deposited; this is in stark contrast to the films prepared by the conventional spin‐casting technique. Despite the seemingly unfavorable molecular orientations and the highly disordered morphologies, the in‐plane charge carrier transport characteristics of the MAPLE samples are comparable to those of spin‐cast samples, exhibiting similar transport activation energies (56 vs. 54 meV) to those reported in the literature for high mobility polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 39–48Molecular order in poly(3‐hexylthiophene) (P3HT) films deposited by the novel vapor‐assisted deposition technique Matrix Assisted Pulsed Laser Evaporation (MAPLE) was investigated. The structure of MAPLE‐deposited films is insensitive to the substrate chemistries and processes random crystallite orientation. The seemingly unfavorable morphology in MAPLE‐deposited samples however does not have detrimental effects on in‐plane transport characteristics, suggesting that field‐effect carrier transport in conjugated polymer devices is resilient to structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135123/1/polb24237.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135123/2/polb24237_am.pd
    • 

    corecore