997 research outputs found

    Multispectral photography for earth resources

    Get PDF
    A guide for producing accurate multispectral results for earth resource applications is presented along with theoretical and analytical concepts of color and multispectral photography. Topics discussed include: capabilities and limitations of color and color infrared films; image color measurements; methods of relating ground phenomena to film density and color measurement; sensitometry; considerations in the selection of multispectral cameras and components; and mission planning

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    ENHANCEMENTS TO THE MODIFIED COMPOSITE PATTERN METHOD OF STRUCTURED LIGHT 3D CAPTURE

    Get PDF
    The use of structured light illumination techniques for three-dimensional data acquisition is, in many cases, limited to stationary subjects due to the multiple pattern projections needed for depth analysis. Traditional Composite Pattern (CP) multiplexing utilizes sinusoidal modulation of individual projection patterns to allow numerous patterns to be combined into a single image. However, due to demodulation artifacts, it is often difficult to accurately recover the subject surface contour information. On the other hand, if one were to project an image consisting of many thin, identical stripes onto the surface, one could, by isolating each stripe center, recreate a very accurate representation of surface contour. But in this case, recovery of depth information via triangulation would be quite difficult. The method described herein, Modified Composite Pattern (MCP), is a conjunction of these two concepts. Combining a traditional Composite Pattern multiplexed projection image with a pattern of thin stripes allows for accurate surface representation combined with non-ambiguous identification of projection pattern elements. In this way, it is possible to recover surface depth characteristics using only a single structured light projection. The technique described utilizes a binary structured light projection sequence (consisting of four unique images) modulated according to Composite Pattern methodology. A stripe pattern overlay is then applied to the pattern. Upon projection and imaging of the subject surface, the stripe pattern is isolated, and the composite pattern information demodulated and recovered, allowing for 3D surface representation. In this research, the MCP technique is considered specifically in the context of a Hidden Markov Process Model. Updated processing methodologies explained herein make use of the Viterbi algorithm for the purpose of optimal analysis of MCP encoded images. Additionally, we techniques are introduced which, when implemented, allow fully automated processing of the Modified Composite Pattern image

    Advanced Image Acquisition, Processing Techniques and Applications

    Get PDF
    "Advanced Image Acquisition, Processing Techniques and Applications" is the first book of a series that provides image processing principles and practical software implementation on a broad range of applications. The book integrates material from leading researchers on Applied Digital Image Acquisition and Processing. An important feature of the book is its emphasis on software tools and scientific computing in order to enhance results and arrive at problem solution

    A comparative study of methods for surface area and three-dimensional shape measurement of coral skeletons

    Get PDF
    The three-dimensional morphology and surface area of organisms such as reef-building corals is central to their biology. Consequently, being able to detect and measure this aspect of corals is critical to understanding their interactions with the surrounding environment. This study explores six different methods of three-dimensional shape and surface area measurements using the range of morphology associated with the Scleractinian corals: Goniopora tenuidens, Acropora intermedia, and Porites cylindrica. Wax dipping; foil wrapping; multi-station convergent photogrammetry that used the naturally occurring optical texture for conjugate point matching; stereo photogrammetry that used projected light to provide optical texture; a handheld laser scanner that employed two cameras and a structured light source; and X-ray computer tomography (CT) scanning were applied to each coral skeleton to determine the spatial resolution of surface detection as well as the accuracy of surface area estimate of each method. Compared with X-ray CT wax dipping provided the best estimate of the surface area of coral skeletons that had external corallites, regardless of morphological complexity. Foil wrapping consistently showed a large degree of error on all coral morphologies. The photogrammetry and laser-scanning solutions were effective only on corals with simple morphologies. The two techniques that used projected lighting were both subject to skeletal light scattering, caused by both gross morphology and meso-coral architecture and which degraded signal triangulation, but otherwise provided solutions with good spatial resolution. X-ray CT scanning provided the highest resolution surface area estimates, detecting surface features smaller than 1000 mu m(2)

    Real Time Structured Light and Applications

    Get PDF

    Real-time tissue viability assessment using near-infrared light

    Get PDF
    Despite significant advances in medical imaging technologies, there currently exist no tools to effectively assist healthcare professionals during surgical procedures. In turn, procedures remain subjective and dependent on experience, resulting in avoidable failure and significant quality of care disparities across hospitals. Optical techniques are gaining popularity in clinical research because they are low cost, non-invasive, portable, and can retrieve both fluorescence and endogenous contrast information, providing physiological information relative to perfusion, oxygenation, metabolism, hydration, and sub-cellular content. Near-infrared (NIR) light is especially well suited for biological tissue and does not cause tissue damage from ionizing radiation or heat. My dissertation has been focused on developing rapid imaging techniques for mapping endogenous tissue constituents to aid surgical guidance. These techniques allow, for the first time, video-rate quantitative acquisition over a large field of view (> 100 cm2) in widefield and endoscopic implementations. The optical system analysis has been focused on the spatial-frequency domain for its ease of quantitative measurements over large fields of view and for its recent development in real-time acquisition, single snapshot of optical properties (SSOP) imaging. Using these methods, this dissertation provides novel improvements and implementations to SSOP, including both widefield and endoscopic instrumentations capable of video-rate acquisition of optical properties and sample surface profile maps. In turn, these measures generate profile-corrected maps of hemoglobin concentration that are highly beneficial for perfusion and overall tissue viability. Also utilizing optical property maps, a novel technique for quantitative fluorescence imaging was also demonstrated, showing large improvement over standard and ratiometric methods. To enable real-time feedback, rapid processing algorithms were designed using lookup tables that provide a 100x improvement in processing speed. Finally, these techniques were demonstrated in vivo to investigate their ability for early detection of tissue failure due to ischemia. Both pre-clinical studies show endogenous contrast imaging can provide early measures of future tissue viability. The goal of this work has been to provide the foundation for real-time imaging systems that provide tissue constituent quantification for tissue viability assessments.2018-01-09T00:00:00
    corecore