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ABSTRACT 

Despite significant advances in medical imaging technologies, there currently exist no 

tools to effectively assist healthcare professionals during surgical procedures. In turn, 

procedures remain subjective and dependent on experience, resulting in avoidable failure 

and significant quality of care disparities across hospitals. 

 

Optical techniques are gaining popularity in clinical research because they are low cost, 

non-invasive, portable, and can retrieve both fluorescence and endogenous contrast 

information, providing physiological information relative to perfusion, oxygenation, 

metabolism, hydration, and sub-cellular content. Near-infrared (NIR) light is especially 

well suited for biological tissue and does not cause tissue damage from ionizing radiation 

or heat.  

 

My dissertation has been focused on developing rapid imaging techniques for mapping 

endogenous tissue constituents to aid surgical guidance. These techniques allow, for the 

first time, video-rate quantitative acquisition over a large field of view (> 100 cm
2
) in 

widefield and endoscopic implementations. The optical system analysis has been focused 
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on the spatial-frequency domain for its ease of quantitative measurements over large 

fields of view and for its recent development in real-time acquisition, single snapshot of 

optical properties (SSOP) imaging. 

 

Using these methods, this dissertation provides novel improvements and implementations 

to SSOP, including both widefield and endoscopic instrumentations capable of video-rate 

acquisition of optical properties and sample surface profile maps. In turn, these measures 

generate profile-corrected maps of hemoglobin concentration that are highly beneficial 

for perfusion and overall tissue viability. Also utilizing optical property maps, a novel 

technique for quantitative fluorescence imaging was also demonstrated, showing large 

improvement over standard and ratiometric methods. To enable real-time feedback, rapid 

processing algorithms were designed using lookup tables that provide a 100x 

improvement in processing speed. Finally, these techniques were demonstrated in vivo to 

investigate their ability for early detection of tissue failure due to ischemia. Both pre-

clinical studies show endogenous contrast imaging can provide early measures of future 

tissue viability. 

 

The goal of this work has been to provide the foundation for real-time imaging systems 

that provide tissue constituent quantification for tissue viability assessments. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Motivation 

Successful novel imaging technologies in the operating room must fit into the current 

protocol/standard of care and provide clinicians with information to impact patient 

outcomes. This is clearly a challenging task, as exemplified by the limited number of 

technologies that have reached daily clinical use in operating rooms today. While X-Ray 

Computed Tomography (CT) is now fairly common as a diagnostic tool, it requires a 

high dose of harmful ionizing radiation per examination, making it impractical as a 

monitoring method. Likewise, Positron Emission Tomography (PET) and Single-Photon 

Emission Computed Tomography (SPECT) are both costly and expose patients to 

ionizing radiation. On the other hand, the non-ionizing scans of Magnetic Resonance 

Imaging (MRI) are very slow, costly, and prohibit the use of any metallic object in the 

operating theater. Finally, ultrasound (US) techniques are very low cost and can provide 

instant feedback, but require contact with the patient and generate low contrast image 

slices into the body. The ideal surgical guidance technology should be low-cost and 

provide rapid feedback, while still providing high-resolution images that can be used to 

impact point-of-care decisions. 

 

Optical imaging has the potential to solve this longstanding clinical need. Near-infrared 

(NIR) diffuse optical imaging techniques use the deep penetration of NIR light to provide 

fast, inexpensive, quantitative measurements with non-ionizing light. Most diffuse optical 
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technologies are also scalable, and so can provide images up to desired fields of view, 

from microscopic to macroscopic scales. However, with current technologies there is a 

general tradeoff between field of view, temporal resolution, and spatial resolution. For 

operating room use the technology should be fast enough so as to not slow down the 

clinical workflow, provide clear enough images so as to be visually helpful, and have a 

field of view large enough to help guide surgical procedures. The proposed dissertation 

work aims to develop and validate an optical quantitative technique to fit this need. 

  

1.2 Chapter Summaries 

All work presented in this dissertation is within the context of providing surgical 

guidance with quantitative optical measures to assess tissue viability. The fundamentals 

of light-tissue interactions and photon transport modeling are provided for reference in 

Chapter 2. This is followed by a review of the current optical modalities for clinical 

imaging. Much of the novel work presented from Chapter 3 to Chapter 6 relies on a 

particular technique, spatial frequency domain imaging, which is covered in detail. 

Finally, the state of the art in spatial frequency domain imaging is presented along with 

signal processing theory for thoroughness and preparation for the following chapters. 

 

Chapter 3 introduces two novel imaging techniques that utilize structured illumination in 

order to enhance the current capabilities of fluorescence imaging. The first part, which 

also happens to be my first project, describes our masked detection of structured 

illumination technique, or MDSI. MDSI aims to enhance fluorescence imaging by 
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selectively improving relative signal for either shallow or deep fluorophores through 

instrumentation only. The second chapter part, which happens to be my final project, 

presents a novel combination of techniques called quantitative fluorescence single 

snapshot of optical properties, or qF-SSOP. This technique enables real-time fluorescence 

imaging that is quantitatively corrected for variations due to optical properties. 

 

Chapter 4 and beyond focuses on endogenous imaging techniques that do not rely on 

drugs or dyes for contrast. Instead, physiological markers such as the concentration of 

oxy- and deoxyhemoglobin are quantified and imaged using real-time acquisition 

techniques. In the first part, a powerful profile-correction feature is introduced for 

snapshot of optical properties (SSOP) imaging. In the clinic, samples are expected to 

have topographical variation, and this technique introduces profile-corrected 

measurements of tissue optical properties with real-time acquisition. However, 

approximately 50% of surgeries are minimally invasive, making access an issue for 

widefield imaging techniques such as the ones developed previously. The next two parts 

present the evolution of SSOP towards endoscopic imaging that measures sample 

distance, optical properties, and tissue oxygenation with a single measurement. 

Measurement speed is limited only to camera exposure time, and so video framerates of 

tissue oxygenation are possible. 

 

Chapter 5 presents work developing processing methods to help the real-time acquisition 

techniques presented in Chapter 4 provide real-time feedback. Two strategies are 
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presented that improve the processing speeds for spatial-frequency-domain inverse 

problem solving by a factor of 100. These strategies are flexible for different 

implementations and can be adapted to a variety of problems. 

 

Chapter 6 demonstrates the ability for the presented optical techniques to assess tissue 

viability in novel ways. The part presents an ischemic tissue model, i.e. inadequate blood 

supply, for a rat skin flap that results in a gradient of perfusion across the flap. Skin tissue 

without enough blood supply undergoes necrosis, and this boundary between necrotic and 

viable tissue takes several days to fully form. This part investigates endogenous imaging 

for predicting this necrosis boundary as early as 5 minutes after blood supply is cut off. 

Part two utilizes a pig facial flap model to investigate the sensing capability of spatial 

frequency domain imaging for tracking and discerning between venous and arterial 

occlusions. Here, the measurement of both oxy- and deoxyhemoglobin are paramount for 

distinguishing venous and arterial occlusions and that oxygenation measurements alone 

cannot discern between the two. 

 

Finally, Chapter 7 presents conclusions and future direction based on this body of work. 
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CHAPTER 2: BACKGROUND 

 

 Though not covered in this chapter, the fundamentals of electromagnetic radiation 

are as fascinating as they are enlightening. While a basic knowledge of optics and 

mathematics is assumed for readers of this dissertation, if more information is sought 

after I highly recommend The Feynman’s Lectures of Physics that are freely available 

online. There, Dr. Richard Feynman covers basic physics principles such as wave 

propagation, the Law of Least Action, and wave-particle duality with all the fervor and 

curiosity of a man in love. While romantic, he is forever pragmatic with understanding 

the laws of nature, “the first principle is that you must not fool yourself and you are the 

easiest person to fool.” 

 

2.1 Light-tissue Interactions 

Scattering, absorption, and fluorescence are the three main parameters that govern 

propagation of light in tissue. Because fluorescence is essentially a conversion of energy 

that changes the wavelength of light, it will be considered here as an absorption event. 

Mathematically, the absorbance A of light through a single chromophore at concentration 

C over a path length L is described by the Beer-Lambert Law:  

 

where ε is the molar extinction coefficient and µa, the absorption coefficient, is the 

probability of absorption per unit path length, λ is the wavelength of light. 

 
𝐴(𝜆) =  𝜀(𝜆) ∙ 𝐶 ∙ 𝐿 =

𝜇𝑎(𝜆) ∙ 𝐿

2.303
 (1)  
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Experimentally transmittance T can be calculated by taking the ratio of output intensity I 

over the input intensity I0 and taking its logarithm: 

 

 

However, there are multiple chromophores in living tissues, each with a unique, 

wavelength dependent molar extinction coefficient ε that contributes to a sample’s 

absorption coefficient 𝜇𝑎. 

 

 

𝜇𝑎(𝜆) =  2.303 ∙ ∑ 𝜀𝑖(𝜆) ∙ 𝐶𝑖

𝑁

𝑖=1

  (3)   

 

However, there are multiple chromophores in living tissues, each with a unique, 

wavelength dependent molar extinction coefficient ε that contributes to a sample’s 

absorption coefficient 𝜇𝑎. 

 

 
𝑇(𝜆) =  

𝐼(𝜆)

𝐼0(𝜆)
= 𝑒−𝜇𝑎(𝜆)∙𝐿 (2)   
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Figure 2.1: NIR window in biological tissue – adapted from here.
182

 

 

The major endogenous chromophores in tissues are oxy-hemoglobin, deoxy-hemoglobin, 

and water. The molar extinction coefficients for these substances are well known (see 

Fig. 2.1.1), and so if one knew the absorbance spectrum of a sample, the molecular 

content can be extracted via Eqs. (1–3), i.e. absorption spectroscopy.
101,102,186

  However, 

scattering dominates over absorption in tissue, greatly effecting optical path length, and 

must be considered in order to extract tissue constituent concentrations.
41

  

 

Scattering (in our case elastic scattering) is a complex phenomenon that, in its simplest 

form, describes the refraction of light in diffusive media. It can be described using a 

power law in which the coefficient depends on the type of tissue
28,151

 and is caused by 

boundary changes in refractive index, and depends on scatterer size, shape, and molecular 
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makeup. Though mostly attributed to sub-cellular content (nuclear size
66

, cell 

membranes
14

, mitochondria
13

, etc.),
113,125

 local order and structure should also be 

considered if studying single or limited scattering events
131

 or in highly oriented media.
84

 

Furthermore, the physiological state of these organelles can be correlated with an optical 

signature, leading to diagnosis of a disease state.
12,110

 Similar to absorption, the ratio of 

transmitted light I retaining its original direction to incident light I0 through a purely 

scattering substance can used to describe scattering, 

 

 
𝑇(𝜆) =

𝐼(𝜆)

𝐼0(𝜆)
=  𝑒−𝜇𝑠(𝜆)∙𝐿 (4) 

 

where T is the transmission of light, the scattering coefficient, µs, is the probability of 

scattering per unit path length, and L is the path length. In addition to the probability of 

scattering, one must also consider the angle of scatter, often described by a phase 

function 𝑝(θ, Ψ). The phase function describes the directional probability of scatter. For 

relatively large particles like those in tissue, individual interactions are described by Mie 

scattering that have highly forward scattering profiles., After multiple scattering events 

from randomly oriented scattering structures in tissue, the scattering dependence on the 

azimuthal angle Ψ averages isotropically and is therefore ignored while the polar angle θ 

is averaged to a form the anisotropy of scatter, 𝑔 = < cos (θ) > , that characterizes 

scattering in tissue in terms of the relative amount of forward to backward direction of 

scatter.
78

 This factor helps simplify the scattering dependence of tissue and effectively 

combines the scattering coefficient, µs, and the anisotropy factor g, to a reduced 

scattering coefficient  



 

 

9 

 𝜇𝑠
′ = (1 − 𝑔)𝜇𝑠 (5) 

 

However, it should be mentioned that for minimally scattered photons, the exact form of 

the phase function should be considered.
112

 From here, the foundation is laid for 

discussing how photon migration is modeled in tissue. 

 

2.2 Light Propagation Modeling 

While Maxwell’s equations describe the fundamental interactions of photon waves with 

matter, modeling on this level requires is impractical for scales much larger than the 

wavelength of light. However, modeling bulk properties of light energy transfer is 

extremely useful and will be briefly presented here. 

2.2.1 Transport Theory 

In transport phenomena, transport theory is a heuristic approach to modeling the 

propagation of a flux via conservation laws. Photon transport in biological tissue can 

likewise be modeled by the radiative transfer equation (RTE) based on conservation of 

energy, characterized by the radiance 𝐿(𝑟, �̂�, 𝑡)  [W/m2∙sr], defined as the amount of 

energy flowing through elemental area per unit solid angle per unit time. Six independent 

variables define the radiance: position vector 𝑟(𝑥, 𝑦, 𝑧), direction vector �̂�(θ, φ), and time 

t. So defined, the RTE states 

 

 1

𝑐

𝜕𝐿(𝑟, �̂�, 𝑡)

𝜕𝑡
= −�̂� ∙ ∇𝐿(𝑟, �̂�, 𝑡) − 𝜇𝑡𝐿(𝑟, �̂�, 𝑡) + 𝜇𝑠 ∫ 𝐿(𝑟, �̂�, 𝑡)𝑃(�̂�′ ∙ �̂�, 𝑡)𝑑Ω′

 

4𝜋

+ 𝑆(𝑟, �̂�, 𝑡) 

(6) 
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where c is the speed of light in the tissue, 𝜇𝑡 = 𝜇𝑎 + 𝜇𝑠  is the extinction coefficient, 

𝑃(�̂�′ ∙ �̂�, 𝑡) is the aforementioned phase function in vector, time dependent form, and S is 

the source. This models light propagation such that radiance can be lost via extinction 

and divergence, i.e. from absorption and scattering away from �̂�, respectively, and gained 

from a source, 𝑆(𝑟, �̂�, 𝑡), or scattering from �̂�′ into �̂�. Coherence, polarization, and non-

linearity are neglected here. Optical properties are assumed to be time-invariant, though 

can vary spatially, and scattering is assumed to be elastic. The RTE can be implemented 

numerically using Monte Carlo methods to produce highly accurate results for many 

conditions and is considered a gold standard in modeling.
179,202

 However, these methods 

are computationally expensive and not analytically tractable for modeling light in tissue. 

2.2.2 Diffusion Approximation 

A full derivation of the diffusion equation from the RTE can be found here.
180

 Briefly, 

two main assumptions are made to reach the diffusion equation from the RTE. First, 

relative to the high number of scattering events, absorption events are rare, resulting in a 

nearly isotropic propagation of radiance. Second, over one transport mean free path the 

fractional change in current density is much less than unity, meaning there should be no 

harsh boundaries in optical properties or indices of refraction. Both of these assumptions 

require a turbid media in which 𝜇𝑠
′   >>  𝜇𝑎, and source–detector separation large enough, 

which is appropriate for most measurement in biological tissue. To reach this formalism, 

first it is useful to define the fluence rate Φ 

 

 
Φ(𝑟, 𝑡) = ∫ 𝐿(𝑟, 𝑠,̂ 𝑡)

 

4𝜋

 (7) 
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which describes the total number of photons incident from all directions on a unit sphere 

divided by the cross-sectional area of the sphere and per time interval. The above 

equation simply integrates the radiance L in all directions, resulting in the scalar value of 

fluence rate Φ. Now, assuming that light has scattered enough to lose all directionality, an 

isotropic, diffusive propagation of energy is described by the diffusion equation 

 

 1

𝑐

𝜕Φ(𝑟, 𝑡)

𝜕𝑡
+ 𝜇𝑎Φ(𝑟, 𝑡) − 𝐷∇2Φ(𝑟, 𝑡) = 𝑆(𝑟, 𝑡) (8) 

 

where D is the diffusion coefficient 1/3(𝜇𝑎 + 𝜇𝑠
′ ) and S describes the photon source.  

Now, the original six independent variables have been reduced to four, and analytical 

solutions are readily available for several geometries and domain types (discussed 

below). Note, this formulation does not depend on 𝜇𝑠, but on 𝜇𝑠
′  only, meaning that all 

scattering direction information is simplified to the anisotropy factor g. Work has been 

done recently to probe a higher order scattering anisotropy factor γ 

 

 
𝛾 =

1 − 𝑔2

1 − 𝑔1
 (9) 

 

to sense the likelihood of backscatter in a medium that can correlate with physiological 

changes in tissue.
27,29,107

 This factor depends on the first and second Legendre moments 

of the scattering phase function, though to be sensitive to the second moment 𝑔2  the 

length scale must be shorter than what is applicable for the diffusion regime.
16,194
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Now that limits are being set on when the diffusion equation is appropriate and when it is 

not, it is necessary to define parameters that somehow normalize unique optical property 

combinations into comparable factors. In any physical description of a medium with 

tractable interactions, it is useful to define the mean free path (MFP) of the medium as 

the average distance traveled by a photon between collisions that cause directional 

change or energy loss. Here, photons are interacting with absorbers and scatterers as 

 

 
𝑀𝐹𝑃 =

1

𝜇𝑎 + 𝜇𝑠
 (10) 

 

However, because the diffusion equation assumes many scattering events have occurred 

and a loss of source directionality, it is appropriate to define a transport mean free path  

 

 
𝑀𝐹𝑃′ =

1

𝜇𝑎 + 𝜇𝑠
′
 (11) 

 

that uses the reduced scattering coefficient 𝜇𝑠
′ . Now, it should be noted that the accuracy 

of the diffusion equation diminishes within of 3-4 transport mean free path lengths of a 

source or distinct boundary.
194

 There are higher order approximations such as P3 that 

results in both a more complicated expression and a more accurate model than the 

standard diffusion approximation, especially at distances shorter than one MFP′.
122

 

Figure 2.2.1 demonstrates the increased accuracy of the diffusion equation with increased 

distance from the source. Still, the diffusion equation’s accuracy over large scales and 

computational ease allow for relatively fast extraction tissue of optical properties and has 

led to the development of several diffuse optical imaging technologies. 
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2.2.3 Monte Carlo Modeling 

Maxwell’s equations can be used to model light-particle interactions that are on the order 

of the wavelength of light but becomes cumbersome for large-scale interactions. The 

RTE can be simplified with assumptions in order to form an analytical expression that 

works best when modeling photon migration over several MFP′s. When modeling light-

tissue interactions that are much longer than the wavelength of light and perhaps up to 

multiple MFP′s, Monte Carlo (MC) modeling is most appropriate (see Fig. 2.2.1).  MC 

modeling involves computational algorithms that step photons through a well-defined 

media based on the probability of energy loss due to absorption and the directional 

probability of scattering. MC methods are necessarily statistical, requiring a large number 

of simulated photons and hence computational time and power. However, many iterations 

and improvements have been made since its first use for light-tissue interactions
184

 that 

include features such as polarization,
133

 quantum absorption,
26

 multiple tissue layers,
179

 

and parallel computing implementation.
2
 A thorough review can be read here.

80
 

 

Figure 2.2.1: Comparison of Monte Carlo (black dots) and Diffusion Approximation (dashed red 

line) light propagation models. Iso-concentration contour plots show little agreement between these 

methods for measurements close to the source, but show strong agreement at longer distances – 

adapted from here.
79
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2.3 Current Optical Modalities for Clinical Imaging 

2.3.1 Fluorescence Imaging 

Through a phenomenon of conversion of energy within a molecule, a change in 

wavelength, or fluorescence, will occur. This “color” change allows for the isolation of 

light that has interacted with the molecule. Some endogenous tissues constituents 

fluoresce (termed autofluorescence), providing imaging contrast and diagnostic 

information
40,142

, however, this same signal can cause a higher background signal for 

other fluorescent targets. Several techniques are used to minimize or subtract a 

autofluorescent background signal, such as the use of near-infrared (NIR) light or 

fluorescent lifetime quantification.
1
 Thusly, exogenous contrast agents can appear as 

“bright stars on a black background,” i.e. imaging a high signal to background ratio 

(SBR). 

 

Image-guided surgery using exogenous contrast agents has been a hot topic as of late 

with the advent of several pre-clinical and clinical-ready instruments. The Novadaq 

SPY™ (www.novadaq.com) and the Fluobeam™ (www.fluoptics.com) are currently 

approved by the U.S. Food and Drug Administration (FDA), while other experimental 

systems, e.g. the FLARE™ camera system (www.frangionilab.org), the Artemis™ 

camera system (www.O2view.com), and the Photodynamic Eye (Hamamatsu Photonics, 

Hamamatsu City, Japan), have eligibility for 510(k) approval from the FDA based on the 

Novadaq system as a predicate. Several reviews exist to explicate the parameters and 

applications of such systems.
61,82,144

 These powerful, real-time imaging techniques have 



 

 

15 

great potential for clinical impact though they rely on the use of exogenous fluorophores, 

of which none are currently FDA approved for the indications relevant to image-guided 

surgery. 

2.3.2 Multi-spectral Imaging 

Multi-spectral imaging is a continuous wave technique that uses planar illumination to 

acquire images at several wavelengths. There are two main types of multi-spectral 

imaging: chromophore imaging and spectral unmixing. In chromophore imaging, the 

scattering and absorption coefficients cannot be separated. So, in order to acquire 

chromophore parameters, such as tissue oxygenation, assumptions are made about the 

tissue’s scattering properties. It should be noted that monochrome continuous wave (CW) 

techniques cannot uniquely separate 𝜇𝑎 and 𝜇𝑠
′ ,

9,188
 but utilizing several wavelengths can 

overcome this downfall by the careful selection of measurement wavelengths.
34

 Recent 

work has achieved this in a single acquisition.
81

 Spectral unmixing relies on a priori 

knowledge of the fluorophores’ emission spectra and principal component analysis 

(PCA) in order to color-code an analyzed image. 

2.3.3 Coherence Techniques 

An even more successful optical imaging technique that has reached the clinic is optical 

coherence tomography (OCT). Though there are several forms and measurement domains 

of the technique, the basic principle relies on low coherence interferometry, allowing 

interference to occur between the output signal and a reference signal at very specific 

depths within a sample. Therefore, the techniques rely on label-free, backscattering 



 

 

16 

contrast. For clinical use, ophthalmic OCT is now the standard-of-care in the U.S. and in 

Europe
56

 and has been one of the main successes of optical imaging technologies. 

Likewise, intravascular OCT is quickly becoming the standard-of-care in interventional 

cardiology,
155

 and many other emerging implementations, such as endoscopic OCT, are 

on the rise.
20

 Scan rates depend on the type of OCT and the instrumentation used (often 

>5 second per 3D scan),
162

 but algorithms have been developed to utilize graphics 

processing units (GPUs) for real-time feedback.
196,197

 However, the sampled area is 

generally under 1 cm2 and not suitable for widefield imaging applications. 

 

Laser Doppler imaging (LDI) has also reached the clinic with its ability to measure blood 

flow because anomalous peripheral blood flow can be an indicator for many health 

disorders.
50,88,114

 The technique relies on the classic Doppler effect between an input 

signal and the reflected signal off of a moving particle. This reflected signal will have a 

frequency shift directly related to the particle’s speed, enabling blood flow measurements 

for point, scanning, and (simultaneous) full field measurements. Real-time, full field LDI 

has been achieved on the bench-top through the use of a fast complementary metal oxide 

semiconductor (CMOS) camera with a generous FOV (~50 cm2) over 480 x 480 pixels 

capable of 12–14 fps.
97

 The technology can be further refined by addressing a few issues, 

such as low signal-to-noise ratio (SNR), motion artifacts, and its FOV by increasing laser 

power and photosensitivity of its high-speed CMOS sensors.  

 

A very similar technique, laser speckle imaging (LSI) has also found many applications 
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in measuring blood flow. A thorough overview of the various laser speckle techniques 

can be found here.
46

 This technique uses laser speckle created from a coherent laser 

reflecting off a diffusive surface. The speckle pattern changes over time and space when 

the sample moves, and so techniques tend to be temporally- or spatially-resolved at the 

cost of the alternate domain’s resolution. The use of laser speckle has been inherently 

widefield and held that advantage over LDI until said real-time, full field LDI was 

developed. A disadvantage to laser speckle techniques is that a velocity distribution must 

be assumed, whereas laser Doppler needs no assumption. Furthermore, movement 

artifacts cannot be filtered out by a high-pass filter like that of laser Doppler. However, 

laser speckle is inherently much faster than laser Doppler and can be implemented with 

an inexpensive low-frame-rate camera. Both laser speckle and laser Doppler techniques 

boast high compatibility with other techniques and are continuously compared in many 

reviews.
22,23,175

 Still, these techniques gain contrast through structure, whether it be 

through refractive index (OCT), or particle flow (LDI and LSI). The following section 

will address techniques capable of functional imaging through mapping tissue optical 

properties. 

2.3.4 Widefield Modalities for Mapping Optical Properties 

There is an ever-expanding list of optical technologies capable of quantifying tissue 

optical properties and, by extension, tissue constituents through the detection of a 

remitted or transmitted light field. This detected light field is a function of space and time 

(Eq. 8), and so technologies rely on spatially-resolved or time-resolved measurements 

(see Fig. 2.3.1). For spatially- and temporally-resolved techniques several similarities 
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occur. First, both genres use reflectance and transmittance geometries for data collection, 

but it should be mentioned that reflectance is generally preferred in the clinic. Second, 

both are capable of using point or widefield measurements, though the ease for some 

techniques to be done in widefield is a great advantage. Finally, no matter the domain, 

there is always a tradeoff to be made in performance. For instance, any technique that 

boasts high spatial resolution will sacrifice temporal resolution. Minimizing these 

sacrifices in order to gain clinical utility is the goal for these modalities. 

 

 

Figure 2.3.1: Measurement domains for characterizing turbid media - adapted from here.
35

 

 

Time-resolved techniques rely on the measurement of the time-domain temporal point-

spread function (t-PSF), i.e. the temporal spreading of pulsed light
183,193

 or its Fourier 

transform equivalent in the frequency domain, the temporal modulation transfer function 
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(t-MTF), i.e. the attenuation and delay of temporally modulated photon density 

waves.
54,121,156

 Time-domain instrumentation is typically expensive and complex,
11,141

 

though it has been used for early detection of breast cancer.
65

 Point raster-scanning or 

multiple array acquisitions leads to long acquisition times impractical for real-time 

measurements, though strides are being made toward faster acquisition via charged 

couple device (CCD) detection.
31

 The large dataset and extensive post-processing enables 

tomographic reconstruction of tissue optical properties, but is also prohibitively slow for 

real-time feedback. Finally, these robust time-domain techniques have been kept to pre-

clinical imaging due to costly equipment. 

 

Frequency-domain methods are typically less expensive and easier to use than time-

domain instrumentation,
60

 have reached clinical trials,
146

 and are thoroughly reviewed 

here.
30

 Diffuse optical spectroscopy imaging (DOSI) is an example of frequency domain 

technique, also called frequency-domain photon migration (FDPM). Though it has shown 

positive results for discerning healthy and diseased tissue in its clinical trials, it has yet to 

find its place as a standard-of-care in the clinic. Moreover, while some current frequency-

domain methods can track tissue hemodynamics in real-time, few systems provide 

imaging and none can do both. 

 

Similarly, spatially-resolved measurements belong to one of two domains: the spatial-

domain (or continuous wave-domain), i.e. measuring the spatial point-spread function (s-

PSF) at multiple distances
19,52

 or its Fourier transform equivalent in the spatial frequency 
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domain, the spatial modulation transfer function (s-MTF), i.e. measuring the remitted 

light fields at several spatially modulated illumination patterns.
36,44

 Just as the time 

domain relies on the temporal spreading of a light pulse, the spatial domain relies on the 

spatial spreading of a point source. For this reason, spatial-domain techniques require 

point-scanning (time/field of view prohibitive)
71,195,198

 or a large source-detector array 

(resolution prohibitive)
17,32,76

 to form an image map of optical properties, though are 

typically used for tomography.  

 

Imaging in the spatial frequency domain is of particular interest for widefield mapping of 

optical properties in the clinic because it is inexpensive, easy to implement, and capable 

of mapping optical properties over large fields of view rapidly.
35,36

 Briefly, because of the 

spatial low-pass filter characteristics of tissue, analyzing the frequency-dependent 

reflectance allows one to map the s-MTF (Fig. 2.3.1) and quantitatively obtain tissue 

optical properties. In order to separate the carrier signal from the sample-dependent 

signal, MAC, standard processing requires acquisition of at least three phases for each 

spatial frequency of analysis. These three phases are required for each wavelength, and 

unless multispectral acquisition is employed, the number of acquisitions quickly adds up. 

Height correction should be implemented for accurate diffuse reflectance maps, though 

requires an additional three phases,
62

 further compromising temporal resolution. By 

implementing a pre-calculated 2-D look-up table of Monte Carlo simulations, processing 

times for mapping optical properties from diffuse reflectance are minimal compared to 

other optical properties imaging methods, but still outside of real-time. However, with 
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advances in processing techniques, spatial-frequency domain methods have potential for 

providing real-time feedback. 

 

2.4 Spatial Frequency Domain Imaging 

2.4.1 Principles 

A full tutorial on spatial frequency domain imaging (SFDI) can be found here.
35

 Spatial-

frequency domain imaging relies on the ability to extract diffuse reflectance as a function 

of spatial-frequency. In order to measure the diffuse reflectance, system-dependent 

components must be removed from the measurement. So, starting with an initial 

measurement of the remitted signal I = IAC + IDC, the AC component IAC can be modeled 

as a sine wave with phase φ at location (x, y) 

 

 𝐼AC(𝑥, 𝑦, 𝑓𝑥 , 𝜑) = 𝑀AC(𝑥, 𝑦, 𝑓𝑥) ∙ cos(2𝜋𝑓𝑥𝑥 + 𝜑) (12) 

 

where fx is the projected spatial frequency and MAC is the frequency-dependent 

modulation amplitude. Intuitively, MAC is the measurement IAC demodulated of the 

carrier frequency projected onto the sample. As mentioned, this can be acquired with 

through many processing techniques, but standard SFDI protocol uses a three-phase 

acquisition scheme, per frequency, per wavelength. The modulation amplitude is of 

interest because it can be related directly to diffuse reflectance Rd through the source 

intensity I0 and the modulation transfer function of the optical system MTFsys 

 

 𝑀𝐴𝐶(𝑥, 𝑦, 𝑓𝑥) = 𝐼0 ×  MTF𝑠𝑦𝑠(𝑥, 𝑦, 𝑓𝑥) × 𝑅𝑑(𝑥, 𝑦, 𝑓𝑥) (13) 
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The spatial-frequency domain allows for easy separation of system components through 

division, as opposed to deconvolution in the spatial domain. A calibration measurement 

MAC, ref is made from a phantom with known optical properties to remove the instrument-

dependent components, I0 and MTFsys, and a predicted diffuse reflectance measurement 

Rd, ref,pred  is used for normalizing the calibration: 

 

 
𝑅𝑑(𝑥, 𝑦, 𝑓𝑥) =

𝑀AC(𝑥, 𝑦, 𝑓𝑥)

𝑀AC,𝑟𝑒𝑓(𝑥, 𝑦, 𝑓𝑥)
× 𝑅𝑑,ref,pred(𝑓𝑥) (14) 

 

Hence, after calibration the modulation amplitude can be used to directly solve for the 

diffuse reflectance. A detailed derivation can be found here.
35

 Figure 2.4.1 shows the 

dependence of diffuse reflectance on spatial frequency and optical property variations. 

 

 

Figure 2.4.1: Diffuse reflectance frequency dependence with varying optical properties. Dots show 

experiment measurements made on phantoms, while the lines show Monte Carlo predictions - 

adapted from here.
35
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Figure 2.4.1 demonstrates the experimental validity of the standard SFDI. Experimental 

values (dots) show agreement with Monte Carlo predictions (lines) over a wide range of 

spatial frequencies and absorption and scattering coefficients. It should also be noted that 

low frequencies show sensitivity to both absorption and scattering, while high 

frequencies are mostly sensitive to scattering variations. These different dependencies 

provide a means to separate the two optical properties with as few as two spatial 

frequency measurements.
35

 The most rapid processing methods to solve this final inverse 

problem employ a lookup table approach, by which solutions for diffuse reflectance are 

generated from a light propagation model (diffusion, Monte Carlo) or empirically with 

various spatial frequencies and optical properties.
35,124,132

 A visual example of this two-

dimensional look-up table can be seen in Figure 2.4.2, where the contour lines represent 

constant absorption and scattering. The contour lines in this example are very orthogonal, 

meaning that the optical properties can be extracted with maximum sensitivity. This is 

largely due to the large separation in DC and AC spatial frequencies used, 0 mm
-1

 and 0.5 

mm
-1

, respectively. The range of spatial frequencies in Figure 2.4.1 only reaches 0.14 

mm
-1

, but the most common spatial frequency pair used in experiments is (0 mm
-1

, 0.15 – 

0.2 mm
-1

). 
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Figure 2.4.2: Two-dimensional look-up table for mapping diffuse reflectance to optical 

properties.
35

  

 

2.4.2 System and Data Flow 

In principle, all that is needed for SFDI is sinusoidal illumination and narrow-band 

wavelength imaging. To that point, work has been done to demonstrate the accessibility 

of SFDI, utilizing inexpensive consumer-grade equipment such as inexpensive light-

emitting diode (LED) sources
39

 or a common digital projector system for illumination.
150

 

A common format for the illumination and collection scheme in reflectance is shown in 

Figure 2.4.3. In short, a projection source and an imager are placed off-angle so as to 

limit specular reflections from the sample and to enable fringe profilometry for sample 
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profile measurement and correction.
62

 Crossed polarizers further minimize collection of 

specular reflections, and either an emission filter or narrow-band source are used for 

optical property analysis. 

 

 

Figure 4.2.3: Schematic of a common SFDI system setup. Note that only two fundamental 

components, the projector and the camera, largely determine the cost and performance of the system 

– adapted from here.
62

 

 

As visualized in Figure 2.4.4, each image Ii at each wavelength and spatial frequency fx 

must be processed. First, it must be demodulated to calculate its modulation amplitude 

(Eq. 13), which is then calibrated to find its diffuse reflectance Rd (Eq. 14). Then, a data 

fitting, most commonly via lookup table (see Fig. 2.4.2), must be done to calculate 

optical properties 𝜇𝑎  and 𝜇𝑠
′ . It should be noted that in order to calibrate the sample, 

another acquisition must be made on a reference phantom of known optical properties. 
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Figure 2.4.4: A visualization of the data flow dictated by the proposed principles 

in the previous section.
35

 

 

With these fundamentals of theory and acquisition, there has been a flurry of activity 

around SFDI in the past 5 years. Several groups have aimed to push the robustness of 

measurement to include profile correction (See Fig. 2.4.5),
62,199

 wavelength optimization 

for chromophore fitting,
106

 tomographic imaging and depth sensing,
36,38,89,104

 scattering 

orientation measurement,
90

 and sub-diffuse sensitivity.
107

 Others have aimed at achieving 
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Figure 2.4.5: Demonstration of surface measurement and profile-corrected optical property 

measurements for SFDI.
62

 

 

multi-modal measurements by utilizing SFDI’s simple imaging requirements and 

combining it with polarization imaging,
190

 speckle imaging,
105

 and short-wave 

multispectral measurements.
185

 So rapid this exploration has been that clinical and pre-

clinical applications are already sought after in various capacities, such as burn wound 

assessment,
24,118

 guidance for breast reconstruction,
63,120

 monitoring of drug delivery,
150

 

and monitoring response to neoadjuvant chemotherapy.
158
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2.5 Single Snapshot of Optical Properties 

By and large the literature has utilized SFDI’s robustness and ease of implementation to 

build onto the existing platform while keeping its limitations, namely speed. With the 

potential to be utilized by nearly all of the above improvements and breakthroughs just 

mentioned, a reduction in acquisition time has the potential to bring these techniques 

utility as time is always precious in the clinic. Furthermore, as will be demonstrated in 

the remainder of this dissertation, it will allow implementation of widefield optical 

property imaging in ways previously thought impractical and sensitivity to a time-regime 

once thought impossible. 

2.5.1 Demodulation via single sideband analysis 

As previously mentioned, nearly all SFDI techniques require the acquisition of three 

phase images φ to perform a demodulation in order to remove the carrier signal and 

acquire the demodulation amplitude MAC. Once this is done, various processing is done to 

calculate diffuse reflectance, optical properties, or other parameters. Note most end-goal 

calculations require multiple MAC measurements, meaning that if four wavelengths at two 

spatial frequencies are required, then 4𝜆 ∙ 2 𝑓𝑥 ∙ 3𝜑 =  24 images are needed for a single 

measurement! 

 

Recent progress has been made to reduce the three-phase acquisition dependence of 

standard spatial-frequency domain imaging.
115,177

 Both methods utilize the power of the 

Hilbert transform and analytic functions for extracting wave envelopes of sinusoidal 

signals (See Fig. 2.5.1). 
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Figure 2.5.1: Signals considered in demodulation. The goal is to calculate the 

envelope of the modulated signal, effectively reconstructing the signal wave. 

 

The following demodulation theory only works for a detected signal u(t) with no DC 

component and is commonly known as single sideband (SSB) demodulation. Therefore 

both methods in question have ways of removing the DC component of u(t), the red 

“modulated signal” curve in Fig. 2.5.1, which will be discussed shortly. First, the carrier 

wave c(t) with frequency fc modulates the signal s(t), the black “signal” in Fig. 2.5.1, and 

shifts the Fourier spectrum of s(t) to ±fc. This results in a detected signal 𝑢(𝑡)  =  𝑠(𝑡)  ∙

 𝑐(𝑡) (see Fig. 2.5.2). Again, in practice, the carrier signal will have a DC component. 

This component is neglected for the following analysis and will be addressed afterward.  

 

The analytic function of u(t) is formed thusly 

 

 𝑢𝑎(𝑡) = 𝑢(𝑡) + 𝑖𝐻{𝑢(𝑡)} (15) 

 

The Hilbert transform H rotates all positive frequencies of u(t) by -90° and all negative 

frequencies by +90° in the complex frequency domain. Then, multiplication with i rotates 
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all frequencies by +90°, resulting in all positive frequencies being restored and negative 

frequencies being rotated 180 degrees with respect to their original orientation. Hence, 

the addition of u(t) will ‘constructively interfere’ with all positive frequencies, resulting 

in a doubling effect, and a ‘destructive interference’ for all negative frequencies, resulting 

in their complete removal. In the context of signal detection, this new, complex function 

ua(t) is formed from a real-valued signal u(t) by removing all negative frequency 

components. As the Fourier transform F{ua(t)} is shown in Fig. 2.5.2, this results in 

keeping only one of the so called ‘sidebands’ at +fc. It is now helpful to write this 

complex signal ua(t) in polar coordinates: 

 

 𝑢𝑎(𝑡) = �̃�(𝑡)𝑒𝑖2𝜋𝑓𝑐𝑡 (16) 

 

This is a very helpful insight, as this shows that one can view the analytic function ua(t) 

as a function �̃�(𝑡), called the complex envelope, with frequency components centered at 

zero that are shifted with the complex exponential by frequency fc. This shift can be 

followed in Fig. 2.5.2. Therefore, by simply taking the magnitude of ua(t) one can 

calculate �̃�(𝑡). This brings the signal back to the baseband, effectively demodulating the 

detected signal u(t) and calculating the sample signal s(t). 
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Figure 2.5.2: Frequency domain schematic following the modulation of a signal s(t) by +/- fc into u(t), 

the nullifying of negative frequencies with ua(t), and the shifting to ~ua(t) to a center frequency of 

zero. 

 

The method recently developed from Nadeau et al uses this SSB demodulation strategy in 

order to reduce the image capture requirements from six down to two, a three-fold 

improvement.
115

 By acquiring a DC image separately from a combined DC + AC signal, 

the difference can be taken to remove the DC signal and the resulting AC signal can be 

demodulated using SSB analysis. This analysis requires a pure sinusoidal projection, but 

flicker rates of most digital micromirror device (DMD) projectors at 8 bits greatly inhibit 

the projection speed, hence limiting the possible framerate of collection. A benefit to 

their two-dimensional analysis is that the AC pattern can be oriented at any angle, which 
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is a consideration for the following technique. However, perhaps this convenience gained 

by rotational freedom does not outweigh the cost of synchronizing projection with 

collection as far as practical implementation of technique is concerned.  

 

Single Snapshot Optical Properties (SSOP) imaging takes advantage of both DC and AC 

components of a single projected spatial frequency wave and effectively reduces the 

acquisition burden from six frames down to one. By taking the Fourier transform of each 

row of pixels along the remitted spatially modulated wave, the DC and AC reflectance 

components can be separated in frequency space to extract two spatial frequency images 

(see Fig. 2.5.3). In order to separate the DC and AC components, this method uses a 

minimum detection algorithm to find the optimal cutoff frequency once the spectrum is 

smoothed. After the spectrum is separated into two, each undergoes an inverse Fourier 

transform and then is demodulated using the SSB analysis (see Fig. 2.5.2) to acquire the 

AC and DC images seen in Fig. 2.5.3. From here, the images are then processed with the 

standard 2-D look-up table to create optical property maps.  

 

Figure 2.5.3: Single snapshot processing method that highlights the separation of DC and AC signals 
in Fourier space - adapted from here.177 
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This technique has effectively reduced acquisition times to that of a single exposure for 

mapping optical properties, hence its name. Note, improvements have been made to the 

Hilbert technique by Nadeau et al.
116

 This allows for square wave projection, removing 

the original burden of 8-bit projection and its cost to speed. This analysis also allows for 

the harmonics of a spatial frequency to be analyzed as well, though creating a 

computational cost approximately an order of magnitude more than the original three-

phase processing. However, any reported speed can effectively be doubled using SSOP 

given its single exposure advantage. Furthermore, square wave projection and harmonic 

analysis is compatible with SSOP as well. Recent developments of this technique, as 

demonstrated throughout this dissertation, support the already video-rate acquisition of 

SSOP by minimizing processing time, applying profile corrections, simplifying 

instrumentation, and combining multispectral measurements so as to provide real-time 

feedback for inexpensive, robust, quantitative surgical guidance. 
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CHAPTER 3: STRUCTURED ILLUMINATION FOR ENHANCED 

FLUORESCENCE IMAGING 

 

 Fluorescence image guided surgery has been shown to provide improved benefit 

to patients
8
 (from qF-SSOP). Though there have been many developments for widefield, 

real-time fluorescence imaging, our lab has focused on two areas to broadly help 

fluorescence imaging become more effective for surgical guidance: depth sensitivity and 

quantitative corrections. In part 1, depth sensitivity is approached with a novel depth-

enhanced imaging technique called masked detection of structured illumination (MDSI). 

This technique utilizes the diffusive nature of tissue to either focus on highly scattered, 

relatively deep fluorophores or less scattered, shallow fluorophores. Structured light and 

detection allows for system control and analysis that enables this selective process. Part 2 

presents our real-time, quantitative fluorescence single snapshot of optical properties (qF-

SSOP) technique that aims to correct for variations in fluorescence signal due to varying 

tissue optical properties. Sinusoidal projection enables spatial frequency domain 

processing for optical property measurements, bringing quantitative processing to real-

time fluorescence imaging. In this chapter, structured illumination provides parametric 

control over spatial fluence that allows tailored light collection in MDSI and quantitative 

system analysis using qF-SSOP, making the future of fluorescence image guided surgery 

brighter. 
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3.1. Depth-enhanced Fluorescence Imaging using Masked Detection of Structured 

Illumination 

 
The work in part 3.1 is published in the Journal of Biomedical Optics

5
 with the following 
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 Boston University, Department of Biomedical Engineering and 

4
 Department of Electrical and 
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3
 CEA-LETI, Minatec Campus, Grenoble 38054, France 

  

3.1.1 Introduction 

Continuous wave reflectance imaging of exogenous fluorescence in turbid media is 

relatively superficial, with a maximum detection depth of 5 to 10 mm in the near-infrared 

(NIR), depending on the medium optical properties.
61

 This limitation, in turn, strongly 

impairs the use of fluorescence imaging during in vivo applications in animals or in 

humans. For example, during the detection of sentinel lymph nodes in breast cancer,
160

 

fluorescence imaging performs as well as the detection of 99 Technetium-colloid except 

in high body mass index patients, where the presence of fatty tissue strongly limits the 

depth of detection to <2 to 3 mm.
3
 Therefore, there is a strong interest in increasing the 

capabilities of fluorescence imaging to measure signals at depth. Two general approaches 

are taken to increase the sensitivity to fluorescence at depth. The first approach consists 

of using ultrasensitive detection technology, such as image intensifiers, intensified CCD, 
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or electron multiplying CCD.
61,145,201

 The second approach relies on developing 

acquisition methods to enhance the sensitivity of fluorescence signals at depth. In this 

study, we chose the latter approach, since the price of the equipment can be a concern 

when using highly sensitive detection methods. 

 

Several methods have been developed to perform depth-sensitive measurements within 

turbid media, each with its own fundamental limitations and benefits. Time- and 

frequency-domain reflectance methods require the acquisition of several sequential 

images, or raster scans, to collect a final depth-sensitive map.
127

 This prolonged 

acquisition usually permits tomographic reconstruction at the cost of lengthy model-

based processing. In the spatial domain, laminar optical tomography,
71,195,198

 while 

mainly exploited for tomographic reconstructions, could be employed to perform depth-

sensitive fluorescence imaging. However, the acquisition requires two-dimensional raster 

scanning, the field of view is relatively small, and post-acquisition image reconstruction 

is required. In the spatial-frequency domain, spatial frequency domain imaging has been 

used for depth-sensitive and tomographic applications over wide fields of view.
36,89,104

 

Still, an acquisition requires several images and post-processing to obtain depth-sensitive 

images.  

 

In this study, we introduce a novel acquisition method called masked detection of 

structured illumination (MDSI) that is capable of preferentially enhancing the relative 

fluorescence signal at depth within a diffuse medium. This spatial-domain method relies 
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on the scanning of a collimated beam onto a diffuse medium and the physical masking of 

the point spread function (PSF) on the detection arm before acquisition on a CCD 

camera. By using instrumentation to preferentially collect diffuse photons at a chosen 

source-detector range, this method shows promise for enhancing fluorescence at depth 

within the medium. In the first section of this article, we describe the principle of the 

method and its implementation. In the following section, we present experiments to 

validate the approach using both digital and physical masks, by imaging fluorescence 

from various depths inside a tissue-mimicking phantom. Finally, we assess the 

performance of the method and its current implementation in highlighting deeper or more 

superficial fluorescence contrast. 

 

3.1.2. Materials and Methods 

3.1.2.1 MDSI Principle 

The radial dependence of the backreflectance from a point source illumination in a 

diffuse medium has been widely described.
52

 From a reflectance imaging perspective, the 

function that describes this radial dependence can also be called a PSF. This PSF is 

directly related to the photons’ visitation histories between a source and a detector, i.e., 

the paths most traveled by the collected photons within the medium, often described as a 

banana-shape function or photon banana. Typically, as the source-detector separation 

increases, the mean depth of this visitation distribution also increases.
37

 As the length of 

travel increases, photons are more scattered and absorbed by the medium and the PSF 

intensity decreases. Many studies have taken advantage of this phenomenon to measure 
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information at depth in a diffuse medium
126,203

 or to characterize optical properties.
45

 

MDSI relies on this principle to preferentially select or reject photons by masking the 

PSF from a collimated illumination.
4,51

  

 

 

Figure 3.1.1: Masked detection of structured illumination (MDSI) — principle. A point illumination 

is shined onto a diffuse medium containing two fluorescence inclusions at different depths. 

Fluorescence is collected through the dichroic mirror and an emission filter in front of a camera. In 

this geometry, the shallow fluorescent inclusion is optimally excited at shorter source-detection 

separations and the deeper inclusion at larger source-detection separations. MDSI introduces a mask 

that preferentially selects the most diffused photons and, therefore, the deeper inclusion in the diffuse 

medium.  

 

As shown in Fig. 3.1.1, a laser source is collimated, reflected by a dichroic mirror, and 

directed onto a diffuse medium (shown in gray). Fluorescence images are formed on a 

camera through the dichroic mirror and rejecting the excitation light with an emission 

filter. If two fluorescent inclusions (in green) are present within the medium at different 

depths and the detection system is scanned across the medium, shorter source-detector 
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separations will excite fluorophores at shallower depth, while longer source-detector 

separations will excite fluorophores at deeper depths. Therefore, by using a physical 

mask to block a range of short source-detector separations on the detection path of the 

system, contributions of deeper fluorophores will be relatively highlighted. Similarly, a 

different mask can be used to block the longer source-detector separation and highlight 

the contribution from shallower fluorophores (not shown in Fig. 3.1.1). 

 

MDSI relies on this core principle to preferentially enhance deeper or shallower 

contributions to the fluorescence signal. To interrogate the entire medium, and, therefore, 

form a depth-enhanced fluorescence image, the laser illumination is scanned at regular 

intervals across the surface of the medium while keeping the mask always centered on the 

illumination, and images are collected by the camera. One image is acquired per scan 

location, and all acquired images are summed at the end of the scan to form a final, 

depth-enhanced fluorescence image.  

 

In this study, we present a possible embodiment for a setup capable of performing the 

described MDSI and report test results of its performance on the bench. 

3.1.2.2 System Design 

An experimental challenge in building a setup capable of performing MDSI is to 

guarantee that the physical mask is always centered on the illumination location in the 

detection path, regardless of the scan position. To achieve this, we built the setup shown 

schematically in Fig. 3.1.2. The source is collimated and then directed onto the sample 
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using a mirror (Ms) that scans the beam over the medium. A first two-lens relay system 

(L1, L2) is used to relay the image plane from the sample surface to the mask location 

through the scanning mirror. This guarantees that the illumination is always centered on 

the physical mask. A second two-lens relay system (L3, L4) is used to relay the masked 

image back onto the sensor of a CCD camera and de-scan it to the correct location 

through a rotating mirror (Md) that is synchronized with the first scanning mirror. In 

summary, as the first scanning mirror samples the surface of the medium, the center of 

the illumination is always at the center of the mask plane, and the resulting masked image 

is directed to its correct location using the second rotating mirror. In this proof-of-concept 

implementation, the source was shaped as a line, and the scanning was performed along 

one dimension only. 

 
Figure 3.1.2: MDSI—schematics. A source shines a collimated line illumination on the medium via a 

dichroic mirror and a scanning mirror (Ms). This mirror scans the line illumination over the medium 

and an image of the fluorescence is formed at the mask plane using a two-lens relay (L1 and L2). Note 

that through this geometry, the illumination is always centered onto the mask plane. An image of the 

mask plane is formed onto the CCD camera sensor using a two-lens relay (L3 and L4) and a de-

scanning mirror (Md) that replaces the masked image at the correct location onto the CCD sensor.  
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3.1.2.3 Data Acquisition and Processing 

In this study, the sample used was a tissue-mimicking, silicone-based phantom having 

fluorescent tubes at different depths and optical properties of 𝜇𝑠
′  = 1 mm

−1
 and 𝜇𝑎 = 0.01 

mm
−1

. Titanium dioxide was used as a scattering agent and India ink as an absorbing 

agent.
10 ,128

 As shown in Fig. 3.1.3, a total of five capillary tubes were embedded within 

the sample, separated progressively by 1 mm in depth at 1 cm intervals, tube 1 being 

most superficial and tube 5 being the deepest. Each tube was ∼1 mm in diameter. The 

capillary tubes were filled with FHI-7206 (Fabricolor Holding, Paterson, New Jersey) in 

dimethyl sulfoxide at a concentration of 3 μM. This dye’s maximum absorption is at 720 

nm and the emission is strongest at 750 nm, though it continues out to 850 nm. FHI-7206 

was chosen because it proved more stable in preliminary testing than other common dyes. 

Tube depths were sampled individually with the same procedure. 

 

 

 

Figure 3.1.3: Schematics of the phantoms used during the experiments. Five capillary tubes are 

embedded at different depths into a silicon- based tissue-mimicking phantom. Each tube is separated 

by 1 cm laterally and 1 mm in depth, and is filled with FHI-7206 in dimethyl sulfoxide at a 

concentration of 3 μM.  
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The illumination line was scanned over the sample with 0.25 mm steps. First, a 

calibration run was performed to synchronize the two rotating mirrors. Following the 

calibration run, a rapid scan was performed on a homogenous sample to calibrate the 

camera exposure to collect enough signal at all scan locations (>3000 counts on a 12-bit 

camera). Finally, the sample was scanned and each image normalized by its optimized 

exposure before summation. Two types of acquisitions were performed, either with no 

physical mask (no-mask acquisition) or with a physical mask (mask acquisition) in the 

detection path of the system. Two types of masks were tested, either center passing or 

center blocking.  

 

3.1.2.4 Simulation Experiments 

The concept of MDSI was first tested by simulating the effect of masks onto a no-mask 

acquisition. Digital masks were created by extrapolating real physical mask profiles to 

the desired shape or size. Digital masks of blocking width from 0 to 7 mm were used for 

the center-blocking design, and from 2 to 12 mm passing width for the center-passing 

design. Following a no-mask acquisition, exposure-normalized images were masked 

using a digital mask and then summed together. 

 

3.1.2.5 Validation Experiments 

To validate MDSI, masked images were formed using mask acquisitions (i.e., with a 

physical mask) and summing the individual exposure-normalized images together. Real 



 

 

43 

masks of 6 mm blocking width (for the center-blocking design) and 3 mm open width 

(for the center-passing design) were fabricated and tested. 

 

3.1.3 Results 

3.1.3.1 MDSI System 

Figure 3.1.4 shows an actual photograph of the experimental setup. For the source, a 660 

nm 1-W 9-mm laser diode (LDX-3115- 660, LDX Optronics, Maryville, Tennessee) was 

mounted in a temperature-controlled laser diode mount (TCLDM9, Thorlabs, Newton, 

New Jersey). The laser diode temperature was controlled using a thermoelectric cooler 

controller (TED200C, Thorlabs) and the intensity using a diode current controller 

(LDC220C, Thorlabs). The line illumination was formed using a combination of a 50 mm 

focal length biconvex lens, a 500 mm focal length biconvex lens, and a cylindrical lens 

having a 3.8 mm focal length. The dichroic mirror used was a 2 in. × 2 in. 770 nm long-

pass interference filter (Chroma, Bellows Falls, Vermont). The scanning was 

accomplished using standard 2 in. × 2 in. silver mirrors mounted on stepper motors 

(HT11-012, Applied Motion, Watsonville, California) and controlled with stepper motor 

controllers (1240i, Applied Motion). The first two-lens relay system was built using a 50-

mm-diameter lens having a 300 mm focal length (L1) and a 50-mm-diameter lens having 

a 75 mm focal length (L2). The second two-lens relay system comprised a 50-mm-

diameter lens having a 100 mm focal length (L3) and a 50-mm-diameter lens having a 75 

mm focal length (L4). Center-blocking masks were made from aluminum shims, while 
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center-passing masks were based on a mechanically variable slit (VA100/M, Thorlabs). 

Finally, the camera used was a monochrome 12- bit cooled CCD (Hamamatsu Orca-ER, 

Bridgewater, New Jersey) and the emission filter a 25-mm-diameter 795 nm long-pass 

interference filter (HHQ795LP, Chroma).  

 

 

Figure 3.1.4: Photograph of the MDSI setup. As shown in the schematics in Fig. 3.1.2, a source shines 

a collimated beam through a dichroic mirror and a scanning mirror. An image of the phantom is 

formed at the mask plan and a secondary image for the masked phantoms reformed on the CCD 

sensor.  

 

Shown in Fig. 3.1.5 are sample images and corresponding line profiles taken during a 

mask acquisition (center-blocking design) of a single tube, as well as the resulting 

summed image using the MDSI system. As anticipated, both the images and line profiles 
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clearly show the overlapping illumination and real mask scanning over the tube 

containing the fluorophore.  

 

 

Figure 3.1.5: Sample images and corresponding profiles obtained with the MDSI setup. As the 

illumination scans the medium, the mask (center blocking) is centered on the illumination and blocks 

the less diffused photons. The summed image is formed by individually summing all masked images. 

 

3.1.3.2 Center-Blocking Simulation Experiments 

In this experiment, several digital center-blocking masks of varying size, from 0 to 7 mm 

blocking width, were applied to no-mask acquisitions. As illustrated in Fig. 3.1.6(a), for a 

fixed 6-mm real mask size, the fluorescence from shallower tubes is relatively more 

attenuated compared to deeper tubes, showing a relative enhancement of fluorescence 

signal at depth. To quantify this effect, the ratios of the peak for a given digital center-
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blocking mask scan to that of the no-mask case were simulated at various mask sizes 

without averaging, and are shown in Fig. 3.1.6(b). Going from a 0-mm mask (i.e., no-

mask) to a 7-mm mask, the peak signal for tube 1 decreases by 76%. Similarly, peaks for 

tubes 2, 3, 4, and 5 exhibit decreases by 70, 64, 60, and 54%, respectively, demonstrating 

less attenuation for deeper signals. In addition, a broadening of the profiles (demonstrated 

in Fig. 3.1.6(a)) is noticeable as the mask size increases, which is consistent with the fact 

that a greater proportion of diffused photons is collected. This broadening is 

characterized by the full-width at half-maximum (FWHM) of the emission line profiles 

for digital masks and is shown in Fig. 3.1.6(c). The percent increase in FWHM from a 

no-mask scan to a 7-mm center-blocking scan is 100, 100, 77, 62, and 50% for tubes 1, 2, 

3, 4, and 5, respectively. In addition, results obtained with the 6-mm center-blocking real 

mask are plotted in Figs. 3.1.6(b) and 3.1.6(c) (x’s) for comparison with the digital mask 

data.  
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Figure 3.1.6: Center-blocking mask results. (a) compares the summed images profiles for the no-

mask scan and the real 6 mm mask scan. Note the relative signal and full-width at half-maximum 

(FWHM) increase for deeper tubes when the center-blocking mask is used. Digital mask simulations 

(lines) demonstrate this effect showing (b) the relative signal increase and (c) the FWHM with 

increasing blocking width and tube depth, along with the real 6 mm mask scans (x’s).  

 

3.1.3.3 Center-Passing Simulation Experiments 

In this experiment, several digital center-passing masks of varying sizes from 12 to 2 mm 

width were applied to no-mask acquisitions. As shown in Fig. 3.1.7(a), for a fixed 3-mm 

real mask size, the fluorescence from deeper tubes is relatively more attenuated compared 

to shallower tubes, showing a relative enhancement of the fluorescence signal at the 

surface. To quantify this effect, the ratios of the peak for a given digital center-passing 

mask scan to that of the no-mask case were simulated at various mask sizes, without 
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averaging, and are shown in Fig. 3.1.7(b). Comparing results from the no-mask [Fig. 

3.1.7(b), asterisk] to a 2-mm mask, the peak signal for tube 1 decreases by 63%. 

Similarly, peaks for tubes 2, 3, 4, and 5 exhibit decreases of 69, 71, and 77%, 

respectively, demonstrating more attenuation for deeper signals. In addition, a narrowing 

of the image profiles is noticeable as the mask size decreases, which is consistent with the 

fact that a greater proportion of diffused photons is rejected. This narrowing is 

characterized by the FWHM and is shown in Fig. 3.1.7(c). The decrease in FWHM is 19, 

25, 33, 21, and 28% drop for tubes 1, 2, 3, 4, and 5, respectively. In addition, the no-mask 

condition (asterisks) and the 3 mm center-passing physical mask (x’s) results are plotted 

in Figs. 3.1.7(b) and 3.1.7(c) for comparison with the digital mask data.  
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Figure 3.1.7: Center-passing mask results. (a) compares the summed images profiles for the no-mask 

scan and the real 3 mm mask scan. Note the relative signal and FWHM decrease for deeper tubes 

when the center-passing mask is used. Digital mask simulations (lines) demonstrate this effect by 

showing (b) the relative signal decrease and (c) the FWHM with decreasing passing width and tube 

depth, along with the real 3 mm mask (x’s) and no-mask (asterisks) scans.  

 

3.1.3.4 Validation Experiments 

A set of summed images obtained with no mask, a real 6 mm center-blocking mask, and a 

real 3 mm center-passing mask is shown for all tubes in Fig. 3.1.8. Each row of images is 

normalized to tube 1 of the row. Line profiles for center-blocking and center-passing 

masks are normalized by and compared to the no-mask case in Figs. 3.1.6(a) and 3.1.7(a), 

respectively. Again, it is evident that the relative effect on deeper, more diffused signals 
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is less for center-blocking scans and more for center-passing scans. As evidenced in the 

previous experiments (Secs. 3.1.3.2 and 3.1.3.3), compared to a no-mask acquisition, the 

center-blocking mask shows more diffuse images with higher levels of fluorescence at 

deeper locations. The center passing, conversely, shows less diffuse images with lower 

fluorescence levels. 

 

Results obtained with these validation experiments were compared to simulations 

performed previously and indicated in plots in Figs. 3.1.6(b), 3.1.6(c), 3.1.7(b), and 

3.1.7(c). Overall, they show good agreement with the simulation data.  

 

 

Figure 3.1.8: Images for all tubes formed by physically masked scans. The blurring and signal 

enhancement is apparent between the no-mask case and the center block 6 mm mask case. Likewise, 

sharpening and signal decrease is apparent for the center pass 3 mm mask case. 
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3.1.4 Discussion 

In this study, we introduce and validate a novel acquisition method, called MDSI, taking 

advantage of the diffusion of photons within a turbid medium to preferentially enhance 

fluorescence signal as a function of depth in an imaging geometry. In this particular 

embodiment, the method enables performance of depth-enhanced fluorescence imaging 

without any post-processing, simply relying on an optical arrangement to either mask or 

select diffuse photons in a scanning geometry.  

 

We investigated the effect of different mask sizes and shapes. Because the selection of 

the mask is of paramount importance with MDSI, a large body of work remains to be 

completed by studying different mask shapes and understanding their effects. In addition, 

the current implementation is focused on fluorescence imaging, but because MDSI 

highlights diffusion effects, it is anticipated that this method could also be used without 

fluorescence to highlight changes in absorption and/or scattering without post-processing.  

 

The phantom used in this study consists of tissue-simulating material without 

autofluorescence since the motivation for this study was to prove the potential of MDSI 

for signal depth enhancement. In our case, in the NIR range around 800 nm, tissue 

autofluorescence in living tissues is particularly low
55

 and should not present any 

concern. However, if this technique is applied to lower wavelengths, where 

autofluorescence becomes significant, such as <700 nm, this method may be prone to 

collect nonspecific diffused fluorescence, which would lower its performances. 
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Some of the limits concerning signal depth and mask size were reached in this study. 

Though the percent change in relative signal increases with increasing center-blocking 

mask width for each tube (see Fig. 3.1.6(b)), the absolute signal also decreases (Figs. 

3.1.6(a) and 3.1.8). Tube 1’s signal decreases faster than deeper tubes’ signals, but 

exposure time and signal noise become a concern when using wide masks with deeper 

tubes. For the center-passing mask case, mask widths narrower than 3 mm tend to create 

sampling artifacts, causing the relative signal to fluctuate and seem non-monotonic. 

These sampling artifacts can be avoided by using a higher spatial sampling. Finally, the 

center-pass effect of narrowing a signal’s FWHM for the deepest tubes (4 and 5) begins 

to diminish at ∼5 mm masks or smaller. This is thought to be due to the absolute signal 

of these deeper tubes reaching the noise floor. All measurements were made on a 

homogenous phantom, and the performance of this method on heterogeneous media will 

be the topic of future investigation.  

 

One of the limitations of the current setup is a long acquisition time due to a calibration 

run followed by data acquisition, all in a step-by-step scanning manner. More 

particularly, the current setup has the disadvantage of keeping the collimated laser line at 

the same position for a long time. This causes the fluorescence signal to bleach over time 

and is the reason behind the choice of laser dye, which is more stable in these conditions. 

However, the current setup acquisition is not optimized, scanning could be performed 

more rapidly, and the source could be synchronized with the image acquisition. Also, the 

development of a continuously scanning instrument would eliminate this effect.  



 

 

53 

A strong motivation for developing MDSI is the potential to provide rapid (near to real 

time) depth-enhanced fluorescence imaging. As detailed above, the current system relies 

on a step-by-step scanning approach, requiring post-acquisition summation of the images 

and rendering the acquisition slow. Because MDSI relies only on masked scanning of the 

medium without post-processing, it is possible to add a continuously rotating polygonal 

mirror along with continuous acquisition on a CCD camera for real-time summation of 

masked images and, therefore, real-time depth-enhanced fluorescence imaging.  

 

The similarity of MDSI to other diffuse optics techniques has been described above. 

Some similarities can be seen between MDSI and microscopy techniques such as 

confocal microscopy, but the techniques function according to different principles. MDSI 

relies on highly scattering media in order for the structured illumination to propagate 

diffusely and to sample select depths on average according to the source-detector 

separation. Sufficient scattering is necessary for MDSI to work, whereas most 

microscopy techniques suffer greatly from noise due to light scattering within the sample. 

 

3.1.5 Conclusion 

In this study, we introduce and validate an acquisition method, called MDSI, allowing 

performance of depth-enhanced fluorescence imaging from a diffusive medium without 

post-processing. We present a proof-of-concept instrument and perform simulation 

experiments using digital masks to investigate the effect of mask size and shape, as well 

as validate MDSI capabilities with a physical blocking and passing masks. In summary, 
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this study lays the foundation for the development of a rapid in vivo depth-enhanced 

fluorescence imaging method without post-processing.  
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3.2 Real-time Optical Property Corrected Fluorescence Imaging using Quantitative 

Fluorescence Single Snapshot of Optical Properties Imaging 

Much of the work in part 3.2 has been presented and published through SPIE
163

 with the 

following contributing authors: 

Pablo A. Valdes,
1
* Joseph Angelo,

2,3,
* and Sylvain Gioux

3,4
 

1
 Harvard Medical School, Brigham and Women’s/Boston Children’s Hospitals, Department of 

Neurosurgery, Boston, MA 02115, United States 

2
 Boston University, Department of Biomedical Engineering, Boston, MA 02215, United States 

3
 Beth Israel Deaconess Medical Center, Department of Medicine, Boston, MA 02115, United 

States 

4
 ICube Laboratory, University of Strasbourg, Illkirch 67412, France 

*Co-first authorship shared 

 

3.2.1 Introduction 

Fluorescence image guided surgery has been shown to provide improved benefit to 

patients.
153

 Current state of the art clinical fluorescence imaging systems do not account 

for the distorting effects of tissue optical properties. As a result, clinical assessments of 

the fluorophore levels are highly prone to subjectivity and as such, are qualitative in 

nature.
21,57,87,140,164,165,167,169,191,192

 Qualitative assessments can lead to intraoperative 

assessments of ‘no fluorescence present’ in areas of low, raw fluorescence emissions 

and/or higher attenuation, and as such surgeons are prone to leaving significant levels of 

non-visually fluorescent tumor tissue unresected.
165,167

 This can be particularly crucial 

near the end of resection when the surgeon is surveying the surgical cavity for left over, 

infiltrative tumor.  
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The varying effects of tissue optical properties significant impact light tissue interactions 

during fluorescence imaging of tissue, which lead to qualitative, relative assessments of 

the emitted fluorescence. Two broad categories of methodologies for addressing this non-

linear phenomenon are: model based corrections or empiric ratiometric techniques.
21

 The 

former provides direct estimates of tissue optical properties and applies them in a model 

of the fluorescence, and the later, uses a ratio of the raw fluorescence over the tissue 

reflectance to correct the raw fluorescence. Model based techniques to date have been 

mostly successful with single point probes. Recent studies have demonstrated some 

advances in imaging based methods whereas the ratiometric techniques have had more 

success translating into imaging techniques.
21,35,57,86,140,166,168,191,192

 

 

An ideal optical property corrected fluorescence technique would provide real-time, i.e. 

video rate, images of the full surgical field of view; would collect the necessary 

information to estimate tissue optical property maps of the surgical cavity to implement a 

rigorous model based fluorescence correction method; and would estimate optical 

property corrected fluorescence images co-registered in both space and time. Here we 

present a technique using single snapshot optical properties (SSOP) imaging
177

 to image 

the tissue optical properties in real time. Our imaging system was coupled with 

simultaneous acquisition of the tissue fluorescence to derive optical property corrected 

maps of fluorescence. We call this technique, quantitative fluorescence-single snapshot 

optical properties (qF-SSOP) imaging represents a significant advancement in 

fluorescence image guidance as we provide a novel real-time optical property corrected 



 

 

57 

fluorescence imaging technique that has the potential to integrate with the neurosurgical 

workflow and significantly improve molecular fluorescence image guidance. 

 

3.2.2 Materials and Methods 

The raw fluorescence undergoes attenuation due to the heterogeneous effects of tissue 

optical properties at both the excitation and emission wavelengths. A significant effort 

has been dedicated at developing empiric ratiometric, model-based, spectroscopic and/or 

imaging based techniques that account for these effects to produce quantitative (i.e., 

intrinsic, optical property corrected) fluorescence estimates.
21,57,86,140,164,168,169,191,192

 The 

basic concept for estimation of the quantitative fluorescence assumes that the quantitative 

fluorescence, fxm, is a function of the raw fluorescence, Fxm, and an unknown correction 

factor, X, 

 

 
𝑓𝑥𝑚 =

𝐹𝑥𝑚

𝑋
 (17) 

 

The correction factor is a function of the tissue optical properties and system specifics 

(e.g., excitation power, detector efficiency), such that application of this factor on the raw 

fluorescence can account for the pixel-by-pixel fluorescence attenuation. A common 

correction technique uses an empiric correction of the fluorescence as ratio of the raw 

fluorescence over the reflectance at the excitation wavelength, Fxm/Rx.
169

 More rigorous 

techniques use model-based correction methods that depend on a prior estimates of the 

diffuse reflectance and tissue optical properties to derive a correction factor, X, and 
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ultimately, the quantitative fluorescence, fxm.
21

 Here we used a previously validated 

algorithm
86

 noted in Equation 18 that has been shown to correct for the distorting effects 

of tissue optical properties to produce quantitative estimates of tissue fluorescence, 

 

 fxm =
ma,x

1-R,x( )
*
Fxm

Rm
 (18) 

 

Equation 18 is a function of the raw fluorescence, the absorption coefficient at the 

excitation wavelength, and the diffuse reflectance at the excitation and emission 

wavelengths. Estimation of the diffuse reflectance and derived tissue optical properties 

provides the necessary information to derive the correction factor, X. 

 

We used an imaging system enabled for simultaneous patterned illumination and 

fluorescence imaging. Patterned illumination is required for SSOP imaging at one 

predetermined frequency. Previous work by our group, Vervandier and Gioux,
177

 

validated the use of single patterned illumination with subsequent line processing in the 

frequency domain for extraction of optical properties. This was a technical development 

arising from the standard spatial frequency domain imaging (SFDI) technique which uses 

patterned illumination at multiple frequencies and multiple phases (i.e., 6 total images) 

for estimation of the diffuse reflectance and tissue optical properties
35

. SSOP imaging 

uses one single frequency without need of multiple phases. As such, it requires only one 

(1) image to extract the tissue optical properties, in comparison to the standard 6 images 

required for SFDI. Our system performs SSOP imaging with patterned illumination at the 
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excitation (x = 760 nm) and emission (m = 808 nm) wavelengths, and simultaneously 

excites tissue to collect spatially and temporally co-registered fluorescence emissions ( 

> 815) (Fig. 3.2.1a,b). We can subsequently use SSOP techniques to estimate the diffuse 

reflectance (Rx, Rm), and derive the tissue optical properties – absorption (𝜇𝑎,𝑥, 𝜇𝑎,𝑚) and 

reduced scattering (𝜇𝑠,𝑥
′ , 𝜇𝑠,𝑚

′ ) - at both wavelengths (Fig. 3.2.1b). 

 

We fabricated tissue simulating phantoms using silicone oil and one tenth part methanol 

as the medium. India ink (Blick Art Materials, Boston MA) was used as the main 

absorber, and titanium oxide (Atlantic Equipment Engineers, Bergenfield NJ) as the main 

scatterer. ZW800-1, developed in the Center for Molecular Imaging at Harvard Medical 

School, was used as the main fluorophore and functions as a near infrared fluorophore 

that typifies other similar clinical NIR compounds such as indocyanine green (ICG). 

Fifteen (15) phantoms at varying absorption and scattering properties were fabricated in 

the range of 𝜇𝑎,𝑥  = 0.05 – 0.20 mm
-1 

and 𝜇𝑠,𝑥
′ = 1.0 – 2.1 mm

-1
 (Table 3.2.1). Each 

phantom was made with a fluorophore 

concentration of 5 mol/L ZW800-1. 

 

 

 

Table 3.2.1 Phantom Optical Properties 

Phantom # a,x s,x’ 
1 0.1 1.4 
2 0.06 1.8 
3 0.05 2.1 
4 0.12 1.3 
5 0.09 1.7 
6 0.07 2 
7 0.15 1.2 
8 0.1 1.7 
9 0.07 2 

10 0.17 1.1 
11 0.14 1.5 
12 0.1 1.8 
13 0.2 1 
14 0.16 1.3 
15 0.17 1.7 
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Figure 3.2.1 A): QF-SSOP Imaging Schematic. A surgical guidance SFDI system 

adapted for dual SSOP reflectance and fluorescence imaging was used
63

. Three 

temporally and spatially simultaneous images are acquired in real time: one 

fluorescence (λ>815 nm) and two reflectance images at the excitation (λx=760 nm) and 

emission wavelengths  (λm=808 nm) under SSOP mode. 
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Figure 3.2.1 B): QF-SSOP Imaging Data Flow. The reflectance images at λx and λm at one spatial 

frequency are processed under SSOP conditions to derive the diffuse reflectance and corresponding 

μa and μs’ maps. Fluorescence is evaluated using either the raw fluorescence maps only (Fx,m) or an 

attenuation correction is applied unto the raw fluorescence Fx,m to correct for the distorting effects of 

tissue optical properties to derive quantitative fluorescence maps (fx,m = Fx,m/X) 

 

3.2.3 Results 

Figure 3.2.2 presents phantom results across all combinations of scattering and 

absorption for both the raw (Fig. 3.2.2(a)), the F/R (Fig. 3.2.2(b)), and quantitative 

fluorescence (Fig. 3.2.2(c)). Optical property measurements were made with a spatial 

frequency pattern of 0.2 mm
-1

. In Figure 3.2.2(a) the raw fluorescence signal intensity of 

15 phantoms without correction for varying optical properties demonstrates a 
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qualitatively clear difference in the fluorescence signal in phantoms with highest 

absorption and lowest scattering (lower left corner) compared to phantoms with lowest 

absorption and highest scattering (upper right corner).  The difference between the 

highest and lowest fluorescence signal phantoms varied by ~10x (st.dev 2.82 a.u., range: 

1.7 - 11.7 a.u.) using the raw fluorescence estimates for ZW800-1 levels. Figure 3.2.2(b) 

shows the same 15 phantoms after using a standard literature empiric correction of F/R 

for variation in tissue optical properties.  

 

 

Figure 3.2.2: Raw and corrected fluorescence using Equation 2. Tissue simulation phantoms with 

equal fluorophore concentrations (5 μmol/L) demonstrate a clear difference in the A) raw 

fluorescence with attenuating effects with increasing absorption (top to bottom) and increasing 

scattering (left to right); B) demonstrates the F/R empiric fluorescence following an empiric 

correction using the raw reflectance in the same phantoms with a moderate improvement in the 

estimated fluorescence across all tissue phantoms; whereas C) demonstrates the qF-SSOP derived 

quantitative fluorescence following a model based correction for tissue optical properties in the same 

phantoms with a notable similarity in the estimated fluorescence across all tissue phantoms. Note: all 

methods were scaled to the same values of fluorescence, though on aF-SSOP it quantitative and 

reports units of concentration. 
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The F/R correction results demonstrate a moderately smaller variation in estimated levels 

(st.dev 1.39 a.u., range: 3.63 – 8.39 a.u.).  Figure 3.2.2(c) shows the same 15 phantoms 

after using simultaneous SSOP and fluorescence detection for correction of tissue optical 

properties. In comparison to both the raw and F/R fluorescence estimates, the qF-SSOP 

correction results demonstrate a much smaller variation in estimated levels (st.dev 0.32 

μmol/L, range: 4.55 – 5.66 μmol/L). These results qualitatively demonstrate an 

improvement in the recovered, estimated fluorescence using a fluorescence correction 

technique in imaging mode. 

 

 

Figure 3.2.3: Region of interest analysis of raw and qF-SSOP corrected fluorescence. Estimated 

fluorophore concentrations using A) raw fluorescence demonstrate a significant deviation from the 

true phantom concentration (dotted red line) of 5µmol/L compared to the B) F/R fluorescence, and 

the C) quantified fluorescence as demonstrated by the mean percentage error estimates of 43.0%, 

21.6% and 4.8%, respectively. 

 

We analyzed each phantom to quantify the error in fluorescence estimates. Figure 

3.2.3(a) shows the raw fluorescence, Figure 3.2.3(b), the F/R fluorescence, and Figure 

3.2.3(c) the qF-SSOP estimated quantitative fluorescence. A dotted red line denotes the 

known fluorescence level of 5 μmol/L. The mean percentage error (mPE) for the raw 

fluorescence estimates was 43.0% with a coefficient of variation of 80.1% (st.dev: 



 

 

64 

34.5%, range: 1.2% - 134%). A moderated improvement of approximately 50% in the 

estimates is noted with the standard correction technique of F/R fluorescence estimates of 

21.6% with a coefficient of variation of 75.7% (st.dev: 16.3%, range: 2.1% - 67.9%).  

Meanwhile, for the corrected, quantitative fluorescence, a much larger improvement was 

produce with a mPE of 4.8% and a coefficient of variation of 6.4% (st.dev: 4.0%, range: 

0.1% - 13.2%).  

 

Figure 3.2.4 presents a single frame from the real-time acquisition of two phantoms with 

distinct optical properties but the same level of fluorophore (8 μM), acquired with 0.24 

mm
-1

 spatial frequency and flat-fielded. The video shows a real-time image of (a) the raw 

fluorescence, (b) F/R fluorescence, and (c) the corrected, quantitative fluorescence. As 

expected, Figure 3.2.4(a) and (b) show a marked difference in the detected fluorescence, 

whereas Figure 3.2.4(c) shows no clear difference in the estimated fluorophore levels. 

Note that both (a) and (b) have arbitrary units with max fluorescence set to 85%, and (c) 

the correct fluorescence is calibrated for fluorescence, allowing units of molecular 

concentration.
191

 This video was acquired with a 500ms exposure time, giving a 

framerate of 2 frames per second. 
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Figure 3.2.4: Video-frame of two tissue simulating phantoms. Two tissue simulating phantoms of 

varying tissue optical properties are imaged in real time with A) showing the raw fluorescence, B) the 

F/R fluorescence, and C) the qF-SSOP quantitative fluorescence of the same phantoms following 

correction for tissue optical properties. Note, only the quantitative fluorescence imaging presents a 

quantitative scale in fluorophore concentration.  

 

3.2.4 Discussion 

These promising results demonstrate a real-time imaging technique that acquires maps 

co-registered in space and time of tissue optical properties and raw fluorescence 

emissions followed by a rigorous model-based correction to estimate the quantitative 

fluorescence. The qF-SSOP technique provides a means to collect video rate images that 

are corrected for the distorting effects of tissue optical properties on the fluorescence 

emissions meanwhile concurrently collecting the absorption and scattering images for the 

same tissue. Our study uses one particular correction method noted in Eq. 18, but can be 

applied to a number of other rigorous model-based correction methods that depend on a 

priori knowledge of the tissue optical properties. We chose this model for its simplicity 

and successful implementation in previous studies for brain tumor surgery.
166

. 

 

This study used flat phantoms without the use of profilometry, or curvature correction 

methods. We have previously described a technique for curvature correction, and our 
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group is actively optimizing such methods to implement in our next iteration of this 

technology for ex vivo and in vivo studies on rodents glioma models and clinical 

surgeries having demonstrated the ability to perform quantitative fluorescence imaging.
62

 

Our technique uses SSOP, which has previously been validated to provide estimates 

equivalent in accuracy to the standard SFDI method.
177

 Further, the current qF-SSOP 

system employs single band pass and long pass filters for collection of the reflectance and 

emitted fluorescence, and does not collect spectrally resolved data for fluorophore 

multiplexing. We are currently integrating previously developed spectrally resolved 

methods for fluorophore multiplexing with our SSOP technique.
167

 Here we used the NIR 

fluorophore, ZW800-1, which is similar to other NIR compounds such as ICG. Our 

system is built for NIR imaging, but in principle, any fluorophore could be used, 

including Protoporphyrin IX (PpIX), which is currently used for brain tumor surgery. 

Future work is aimed at modifying our system to image PpIX in vitro and in vivo to 

implement in the neurosurgical operating room for quantitative PpIX imaging. 

 

3.2.5 Conclusion 

In conclusion, with the use of SSOP for real time estimates of tissue optical properties, 

we demonstrate a novel imaging system and technique for rigorous and model-based 

quantitative fluorescence imaging. Unlike previous studies, our qF-SSOP technique 

provides co-registered real-time tissue optical property maps and quantitative 

fluorescence images based on a rigorous model based method. This novel technique can 
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be easily integrated into the surgical workflow to further guide tumor resection, and 

enable more accurate molecular guidance. 
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CHAPTER 4: REAL-TIME IMAGING OF TISSUE PROPERTIES 

 

Surgical guidance poses a unique scenario and restricts the parameters for 

potential technological solutions. Space in the operating room is highly limited and time 

is costly in both patient care and patient management. Ideally, the technique would be 

noncontact and measure broadly so as to not disrupt the surgeon’s field of view and it 

would provide quantitative feedback in real-time. Chapter 3 introduces two novel 

techniques with potential for future surgical guidance in the clinic, though they both rely 

on exogenous contrast. While these techniques are sure to benefit from future fluorophore 

development and FDA approval, we also wanted to focus on techniques that did not rely 

on exogenous agents and instead could utilize the wealth of endogenous contrast in 

tissue, namely hemodynamic contrast.  

 

The importance of oxygen in all aspects of wound healing has been well studied for many 

years,
73,74

 and so tissue oxygenation measurement has shown a prominent role in 

assessing tissue viability.
69

 The original point-probe optical techniques have proven 

useful as pioneering oxygenation measurements with light. However, due to their single 

point sampling this technique requires contact with the tissue and relies on global effects, 

and visualization of the complete surgical field would be advantageous. Furthermore, no 

adaptation of this technique, or a full-field technique, has been made suitable for 

minimally invasive surgery. 
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This chapter introduces novel acquisition schemes for breaking current limits of 

oxygenation measurements. First, we improve upon real-time widefield acquisition by 

incorporating a profile-correction method – crucial for any practical clinical use of non-

contact imaging. Next, parts 4.2 and 4.3 introduce and progress through the development 

of endoscopic oxygenation imaging, something heretofore never achieved. 
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4.1. Real-time, Profile-corrected Single Snapshot Imaging of Optical Properties 

The work in part  4.1 is published in Biomedical Optics Express
170

 with the following 

contributing authors: 

Martijn van de Giessen,
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 Joseph Angelo,
1, 3

 and Sylvain Gioux
1
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 Beth Israel Deaconess Medical Center, Department of Medicine, 330 Brookline Avenue, Boston, 

MA 02215, United States 

2
 Division of Image Processing, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, 

Leiden, The Netherlands 

3
 Boston University, Department of Biomedical Engineering, Boston, MA 02215, United States 

 

4.1.1 Introduction 

Over the last few years, sub-surface diffuse optical imaging has been making constant 

progress towards reaching the bedside, in particular in the fields of functional point 

measurement
91,136

 and wide-field surgical guidance.
61,169

 However, providing real-time 

quantitative sub-surface images remains a significant challenge that has been strongly 

limiting diffuse optical imaging in being more widely tested and applied. Recent 

developments in Spatial Frequency Domain Imaging (SFDI) have shed hopes in solving 

this fundamental issue.
35

 This method relies on the analysis of the spatial frequency 

response of turbid media to structured illumination (i.e. stripes of light), allowing the 

characterization of an entire field-of-view at once (i.e. in a multipixel approach). SFDI 

has shown significant promise in performing wide-field surgical guidance and specimen 

examination, both in animals and in humans, ex vivo and in vivo.
63,93,120,130,138 ,189
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Despite its capabilities of analyzing full fields-of-view at once, traditional SFDI 

acquisitions have been limited to phase shifting approaches to extract the tissue response 

to structured illumination, impairing its capabilities to perform in real time. Indeed, a 

minimum of 6 images is necessary to extract optical properties (absorption and reduced 

scattering), 3 phases at 2 spatial frequencies, with this number increasing to 9 images 

when performing simultaneous profile acquisition to correct for the effects of the sample 

distance and profile.  

 

Efforts are currently being made to find alternative demodulation techniques to reduce 

the acquisition time in the spatial frequency domain. Nadeau et al. introduced a two-

dimensional Hilbert transform method requiring only 2 images instead of 6 to extract the 

necessary information for deducting optical properties.
115

 While much faster than the 3-

phases traditional approach, this method still uses two sequential images, and necessitates 

expensive instrumentation (projector and camera) to perform at a real-time level. Our 

group recently introduced Single Snapshot of Optical Properties (SSOP), a method 

working entirely in the frequency domain that necessitates the acquisition of a single 

image to extract the optical properties.
177

 While very rapid and inexpensive (a single 

projection slide containing a pattern is necessary), this method suffers from a degraded 

image quality due to the single-phase acquisition and spatial frequency filtering. 

 

While these recent advances improve the capabilities of SFDI for forming quantitative 

images rapidly over a large field-of-view, none is taking into account the 3D-surface 
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profile of the sample, a major source of error using non-contact imaging techniques. As 

part of previous work, we introduced a method capable to acquire both the profile and 

optical properties sequentially in the spatial frequency domain, and developed a method 

using the 3D-profile information to correct for the effects of sample-to-imaging device 

distance and of sample’s surface angle.
62

 Not correcting for these effects can lead to very 

strong variations in optical properties, 10% errors on average per cm, and 86% for a 40 

degree surface angle, preventing the use of SFDI during many clinical scenarios. 

 

In this work, we present a novel acquisition and processing method that recovers both 

optical properties and surface profile from a single snapshot acquisition. This method is 

based on the previously developed Single Snapshot of Optical Properties (SSOP) method, 

but with the difference that both the phase and the amplitude modulation of a 2-

dimensional sinusoidal intensity wave are recovered from a single projection. The 

method was validated on tissue mimicking phantoms and in vivo. Tissue mimicking 

phantoms with known absorption (𝜇𝑎 ) and reduced scattering (𝜇𝑠
′ ) coefficients were 

imaged using the single acquisition method and compared to the original 3-phase SFDI 

acquisition method. Finally, a demonstration of real-time acquisition using 3D-SSOP was 

performed on both a hemispherical tissue mimicking phantoms and on a human hand. 

Together, this study lays the foundation for the development of real-time quantitative 

sub-surface imaging for the clinic. 
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4.1.2 Materials and Methods 

4.1.2.1 Spatial Frequency Domain Imaging 

Spatial frequency domain imaging (SFDI) has been described extensively in the literature 

and will be only briefly summarized here. Analogous to the temporal point-spread 

function (t-PSF) as response to a pulse illumination in time-domain, a point source that 

illuminates tissue induces a diffuse reflectance with a spatial point spread function (s-

PSF). The shape of the spatial decay of the s-PSF is characteristic for the sub-surface 

optical properties of the tissue.
52

 Just as temporal frequency-domain measurements 

acquire as a function of temporal frequency the t-MTF (Modulation Transfer Function, 

the t-PSF Fourier equivalent), SFDI acquires the s-MTF as a function of spatial frequency 

by projecting a wide 1D intensity sinusoidal wave on the tissue.
44

  

 

The medium s-MTF is represented by the diffuse reflectance Rd measured at a location x 

and spatial frequency fx. The diffuse reflectance Rd of the medium (here considered 

homogeneous and with a semi-infinite geometry) can be modeled in various ways using 

the diffusion approximation to the radiative transport equation or Monte-Carlo.
36

 On the 

other end, instrumentally, the diffuse reflectance is measured by extracting the amplitude 

modulation M(x,fx) from a projected intensity sinusoidal wave. Once the diffuse 

reflectance has been measured, solving the inverse problem allows the recovery of the 

optical properties of the medium. 
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Relevant to this work, the acquisition of the amplitude modulation of the projected 

sinusoidal wave traditionally relies on a 3-phases demodulation technique.
117

 The 

intensity I of a sinusoidal wave as a function of x, at a spatial frequency fx and phase 

Φi projected on the medium is acquired on the camera as: 

 

 

where M(x,fx) is the amplitude modulation, and IDC the DC component. M(x,fx) is 

obtained by projecting three sequential sinusoidal waves with phases Φi = 1-3 = [0°, 120°, 

240°]: 

 

 

The amplitude modulation M(x,fx) can be related to the measured diffuse reflectance 

Rd(x,fx) (the 1-D version as shown is chapter 2): 

 

 𝑀(𝑥, 𝑓𝑥) = 𝐼0 ∙  MTF𝑠𝑦𝑠(𝑥, 𝑓𝑥) ∙ 𝑅𝑑(𝑥, 𝑓𝑥) (21) 

 

with I0 the source intensity and MTFsys(x,fx) the amplitude modulation of the optical 

system (e.g. lenses). Finally, the medium diffuse reflectance is obtained by using a 

calibration reference with known optical properties (1-D version of Eq. 4 in chapter 2): 

 

 
𝑅𝑑(𝑥, 𝑓𝑥) =

𝑀(𝑥, 𝑓𝑥)

𝑀ref(𝑥, 𝑓𝑥)
∙ 𝑅𝑑,ref,pred(𝑓𝑥) (22) 

 

 𝐼𝑖(𝑥, 𝑓𝑥) = 𝑀(𝑥, 𝑓𝑥) cos(𝑓𝑥 ∙ 𝑥 + 𝛷𝑖) + 𝐼𝐷𝐶(𝑥) (19)   

 

𝑀(𝑥, 𝑓𝑥) =
1

3
√2 {

[𝐼1(𝑥, 𝑓𝑥) − 𝐼2(𝑥, 𝑓𝑥)]2 + [𝐼2(𝑥, 𝑓𝑥) − 𝐼3(𝑥, 𝑓𝑥)]2

+[𝐼3(𝑥, 𝑓𝑥) − 𝐼1(𝑥, 𝑓𝑥)]2 } (20)   
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where Mref(x,fx) is measured on the calibration reference, and Rd,ref,pred(x,fx), modeled 

based on the known optical properties of the medium 

 

In the traditional “fast” acquisition implementation, two spatial frequencies (e.g. 0 and 

0.2 mm
-1

) are obtained by imaging a sinusoidal wave with three offsets in phase (e.g. 0°, 

120° and 240°) per frequency.
35

 The amplitude for both frequencies is obtained by 

demodulation of the three phases.
117

 Following calibration using a tissue-mimicking 

phantom with well-known optical properties, the tissue sample optical properties can then 

be estimated rapidly from a precomputed lookup table generated using a Monte Carlo 

model.
35,49

 

4.1.2.2 Profile-corrected SFDI 

The original SFDI description assumes imaging of a flat surface at a well-defined 

height.
35

 In clinical practice this assumption is challenging to satisfy, leading to 

calibration errors due to 1) variations in distance between the imaging system and the 

sample, and 2) the sample’s local surface angle. Using a multi-height calibration method 

along with a Lambertian model for the reemitted light intensity from diffusive surfaces, 

the local intensity of the collected light can be corrected for these two effects.  

 

As explained in detail here
62

 and illustrated in Figure 4.1.1, optical properties are 

obtained by projecting sinusoidal patterns that are parallel to the plane spanned by the 

projector and optical collection axes. Such a projection ensures that the phase of the 

projected sinusoidal wave is insensitive to height variations. Following optical properties 
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acquisition, the surface profile is obtained through phase profilometry. Contrary to 

optical properties, the projected profilometry fringes need to be maximally sensitive to 

height variation and are projected perpendicular to the plane formed by the projection and 

collection axes. The height dependent phase is then obtained by demodulating a three 

phase acquisition, called phase-shifting profilometry,
75,152

 similar to the 3-phase SFDI 

acquisition. Finally, the sample distance and angle is used to correct the intensity of the 

SFDI acquisition at each pixel. This approach has been validated and translated to the 

clinic.
63

 

 

Alternatively, using Fourier transform based profilometry, a single image can be used to 

determine the height dependent phase of a projected profilometry fringe.
159

 Because it 

relies on a single projection pattern, and therefore allows real-time measurements, this 

approach is taken in this work. Here the intensity variations due to the projected fringes 

are assumed to dominate intensity variations from tissue reflectivity in the spectral band 

around the projected carrier spatial frequency fy. Taking the 1D Fourier transform in the 

image direction along the projected profilometry fringes enables separation of the 

profilometry information from slower varying intensity changes. Through the selection of 

only the positive sideband around fy and applying the inverse 1D Fourier transform a 

complex signal is obtained that contains the local phases φy. The phase difference Δφ 

between φy and the local phases φ0 in a reference plane is directly related to the distance 

between camera and tissue. 
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4.1.2.3 Single Snapshot of Optical Properties 

We previously developed an acquisition and demodulation method, called Single 

Snapshot of Optical Properties (SSOP), capable of extracting optical properties in the 

spatial frequency domain from a single acquired image. SSOP works by projecting a 

single sinusoidal pattern onto the specimen and relies on processing entirely in the 

frequency domain to extract the DC and AC components (i.e., 2 spatial frequencies) that 

are used to calculate the specimen’s optical properties.
177

 

 

4.1.2.3 Simultaneous Imaging of Optical Properties and 3-D Profile  

In this work, we propose to extend this work to acquire simultaneously both optical 

properties and surface profile in real-time, and to directly obtain profile-corrected optical 

properties maps from a single image. For this purpose, a pattern containing two 

superimposed sinusoidal waves, orthogonal to each other, are projected onto the 

specimen. Specifically, one pattern will be used for optical properties processing 

(similarly to standard SSOP) and the other for extracting the specimen surface profile.
62

 

As illustrated in Figure 4.1.1, by projecting a dual sinusoidal wave pattern, one can gather 

information regarding both profile-sensitive pattern orientation (horizontal in this case) 

and optical properties, profile-insensitive pattern orientation (vertical in this case). Note 

that the profile-sensitive patterns are also sensitive to optical properties. However, the 

sinusoidal wave phase variations renders the amplitude modulation extraction 

challenging. In essence, the profile sensitive patterns are used to extract the phase of each 



 

 

78 

pixel in the image that can in turn be used to deduce each pixel’s height.
200

 Following this 

step, the profile insensitive patterns are used to extract the AC and DC components of the 

image, similarly to standard SSOP. Finally, the height information is used correct for 

both height and angle effects, and optical properties extracted.
62

 

 

 

Figure 4.1.1: 3-D Single Snapshot of Optical Properties. A dual sinusoidal wave is projected, one 

wave being sensitive to the specimen’s optical properties and the other to the specimen’s profile. AC, 

DC components as well as phase are extracted (not shown here) leading to profile, absorption and 

reduced scattering. 

 

More precisely, the AC and DC components as well as the phase for profilometry are 

estimated in frequency space. In this space, the optical properties sinewave (properties 
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orientation in Figure 4.1.1) exhibits a narrow band in one direction and the profilometry 

sinewave (profile orientation in Figure 4.1.1) a narrow band in a second direction, 

perpendicular to the first one. Apart from these pronounced bands, the higher frequency 

content describes spatially varying intensity variations of the projected waves, e.g. due to 

the height sensitive profilometry wave deformations. The orthogonality in the Fourier 

domain and clear detectability of frequency bands enables separation of the AC and DC 

components, as well as the phase for Fourier transform profilometry. 

 

In 3D-SSOP each image is analyzed according to the schematics in Figure 4.1.2. After 

acquisition each frame is expanded using mirrored images to minimize artifacts due to 

discontinuities at the image edges (Figure 4.1.2.B). The expanded image is transformed 

to the frequency domain with a two-dimensional Fourier transform (Figure 4.1.2.C). The 

DC and AC components are obtained by filtering in the frequency domain with the filters 

shown in Figure 4.1.2.D and 4.1.2.E, respectively. The phase is obtained by filtering in 

the frequency domain with the filters shown in Figure 4.1.2.F. These filters are designed 

to select the appropriate frequency bands, while minimizing the formation of artifacts 

near discontinuities in the images. The latter is achieved by preserving the high frequency 

information in each of the filters. The bands that cover the projected waves are centered 

on the projected frequency. In this work, the band centers are estimated by peak detection 

in a 2D Fourier transform of a flat calibration image. Depending on the acquisition 

geometry and the expected variation in distance to sample, one could re-estimate the 

bands from each frame. The widths of the bands are user-determined and depend on the 
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accuracy of the projected sine waves and on the expected steepness of ramps in the scene 

for the profilometry wave. 

 

After filtering, an inverse two-dimensional Fourier transform is applied to each of the 

filtered frequency domain images. The DC component is a direct result of the inverse 

two-dimensional Fourier transform (Figure 4.1.2.G). The inverse Fourier transformed 

images for the AC and phase components are obtained by applying an additional Hilbert 

transform (Figures 4.1.2.H and 4.1.2.I, respectively). The final images are obtained by 

selecting the central portion of the expanded frames. 

 

 

Figure 4.1.2: Data processing for 3-D Single Snapshot of Optical Properties. The acquired image (A) 

is expanded by mirroring (B) and a 2D Fourier transform performed (C). Filters (D, E and F) are 

then used to isolate the DC component (G), the AC component (H) and the phase (I), respectively.  
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4.1.2.5 Calibration 

Spatial Frequency Domain Imaging necessitates a calibration measurement.
35

 Our 

imaging setup is calibrated using a flat, homogeneous, tissue-mimicking phantom of 

96×96×20 mm with known optical properties. The phantom consists of 

polydimethylsiloxane with India ink as absorber and TiO2 as scattering agent.
10

 The 

spectral absorption and reduced scattering coefficients were verified with two-distance, 

multifrequency FDPM measurements.
15

 In addition, because we perform 3D profile 

correction, the height dependency frequency response is calibrated by acquiring our 

calibration phantom at 6 heights with 1 cm steps. 

 

4.1.2.6 Experiments 

Three experiments were performed to compare the accuracy and precision of the 

proposed 3D-SSOP method with standard three-phase modulated and profilometry-

corrected SFDI (3D-SFDI). All images have been acquired a 670 nm and at a spatial 

frequency of 0.2 mm
-1

 for optical properties calculation and of 0.15 mm
-1

 for phase 

extraction. Cutoff frequencies were set at 0.16 mm
-1

 (low) and 0.24 mm
-1

 (high) for 

filtering the AC component for optical properties calculation, and 0.11 mm
-1

 (low) and 

0.20 mm
-1

 (high) for filtering the signal for the extracting the phase for profilometry. 

 

Flat homogeneous phantom: In this experiment, height and optical properties were 

recovered from a tissue-mimicking phantom with known optical properties, imaged at six 

heights with steps of 1 cm. Using titanium oxide (TiO2) as a scattering agent and India 
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ink as absorbing agent, optical properties were set at 0.036 mm
-1

 for absorption (µ𝑎) and 

0.97 mm
-1

 for reduced scattering (𝜇𝑆
′ ). Height and profile-corrected optical properties 

maps were extracted using both methods and compared with non-profile-corrected maps 

using SFDI.  

 

Hemispheric homogeneous phantom: In this experiment a hemispheric tissue-mimicking 

phantom on top of a flat homogeneous tissue-mimicking phantom having the same 

optical properties (µa = 0.023 mm
-1

 and 𝜇𝑆
′  = 0.97 mm

-1
) were imaged with both methods. 

Height and profile corrected optical properties maps were extracted and their percentage 

difference assessed. Finally a movie was captured where the phantom is imaged in real-

time using the 3D-SSOP method.  

 

In-vivo measurement: A hand movie was captured where the hand is imaged in real-time 

for both height and profile-corrected optical properties using the 3D-SSOP method. 

 

4.1.3 Results 

4.1.3.1 Flat Homogeneous Phantoms 

The results from the flat homogeneous phantoms experiments are shown in Figure 4.1.3. 

A comparison of profile corrected maps of absorption processed either with profile-

corrected SFDI (3D-SFDI) or 3D-SSOP is plotted in 3D in Figures 4.1.3.A and 4.1.3.B. 

One can notice a good agreement between the two methods, both in 3D profile and in 
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absorption values. This agreement is quantified and confirmed both in height (plot shown 

in Figure 4.1.3.C) and in optical properties (absorption shown in Figure 4.1.3.D and 

reduced scattering shown in Figure 4.1.3.E). Both 3D-SFDI and 3D-SSOP evidenced 

accurate and precise height estimation, on average within 1.1 mm of the expected height 

and with an average standard deviation of 0.7 mm. Similarly both methods were able to 

extract and correct optical properties for all the sample heights, within 1.25% of the 

expected value, and with 3.1% coefficient of variation for absorption, and 1.1% of the 

expected value, and with 1.6% coefficient of variation for reduced scattering. Note the 

extent of the correction necessary to account for the change in height of the sample. 

 

 

Figure. 4.1.3: Flat homogeneous phantom measurements. 3D-SFDI and 3D-SSOP methods were used 

to acquire and process a set of homogeneous phantoms at different heights (A and B, respectively). 

Notice the good agreement in heights (C), and in profile-corrected values for absorption (D) and 

reduced scattering (E). 
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4.1.3.2 Hemispheric Homogeneous Phantom 

The results from the hemispherical phantoms measurements are shown in Figure 4.1.4. 

As expected from a single image measurement, the 3D-SSOP maps exhibit artifacts on 

the edge of the hemispheric phantom, as well as noise due to the variation in angle and 

height of the surface (themselves due to noise in the 3D profile data). However, on 

average the novel method performs fairly well, within 1.2 mm of the 3D-SFDI data for 

height with a 0.3 mm standard variation, 12% for absorption with a 4.2% coefficient of 

variation and 6.1% for reduced scattering with a 1.7% coefficient of variation (note: 

errors are calculated from the absolute difference between the two methods, not the 

relative difference that would artificially give a lower error). 

 

 

Figure. 4.1.4: Hemispheric phantom measurements. 3D-SFDI and 3D-SSOP methods were used to 

acquire and process a hemispheric homogeneous phantom. Notice the good agreement in heights, as 

well as in profile corrected values for absorption and reduced scattering. 
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To illustrate the advantage of this new method to provide real-time quantitative 

measurements of optical properties in realistic conditions, i.e. with profile-correction, we 

included a movie of the hemispheric phantom moving in space. Acquisition time was set 

at 220 ms, giving a frame rate of 4.5 frames per second. Are shown: the raw data (top, 

left), the 3D profile data (top, right), and the optical properties (absorption: bottom, left; 

reduced scattering: bottom, right). Note the quality of the 3D profile data as well as the 

quantitative values of optical properties over the image while the specimen moves.  

 

 

Figure. 4.1.5: Frame from the hemispheric phantom movie. A movie of a homogeneous hemispheric 

phantom was acquired with the 3D-SSOP method. Raw data (top, left), 3D profile (top, right), 

profile-corrected absorption (bottom, left) and reduced scattering (bottom, right) are shown. 
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4.1.3.3 In Vivo Measurement 

To validate the novel method capability for providing real-time quantitative optical 

properties images with profile correction in vivo, we acquired a movie of a hand moving 

while performing a continuous 3D-SSOP measurement. Acquisition time was set at 150 

ms, giving a frame rate of 6.7 frames per second. Are shown: the raw data (top, left), the 

3D profile data (top, right), and the optical properties (absorption: bottom, left; reduced 

scattering: bottom, right). Note the quality of the 3D profile data as well as the 

quantitative values of optical properties over the image while the specimen moves. 

 

 

Figure. 4.1.6: Frame from the in-vivo hand movie. A movie of a hand was acquired with the 3D-SSOP 

method. Raw data (top, left), 3D profile (top, right), profile-corrected absorption (bottom, left) and 

reduced scattering (bottom, right) are shown. 
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4.1.4 Discussion 

In this work we described and validated a novel method called 3D-SSOP that is capable 

of acquiring and processing profile-corrected optical properties maps from a diffuse 

medium. This method relies on projecting a dual sinewave and extracting orthogonally in 

the frequency domain the DC and AC components necessary to calculate optical 

properties, and the phase necessary to deduce the sample’s 3D profile. The 3D profile is 

then used to correct for errors due to the mismatch between calibration and sample 

surface profile, and to obtain profile-corrected optical properties from a single acquired 

image. It is important to highlight that this method enables quantitative optical imaging 

over a large field of view (>100 cm
2
) in real-time and in realistic conditions for future 

clinical use. 

 

This method offers two important improvements over the previous SSOP method. First, it 

is capable of simultaneous profile and optical properties, which enables a broad range of 

applications compared to methods, such as standard SSOP, that suffers from severe 

quantitative errors due to sample’s height and angle. Second, it introduces SSOP 

processing in the 2D Fourier space, which along with a novel fast 2D lookup table, 

enables real-time processing with an average image processing time of less than 125 ms. 

While describing this novel processing scheme will be the subject of another publication, 

it is important to note that 3D-SSOP truly enables real-time imaging through both 

acquisition and processing. Such a feature is highly desirable to reach future clinical use. 
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However, this method does introduce supplementary artifacts. On top of the image 

degradation caused by a single phase projection, and therefore energy spectrum losses, 

the phase itself is noisy, leading to artifacts that are visible in the sample’s 3D profile. In 

turn these artifacts are visible in the optical properties maps, in particular through the 

surface angle correction that amplifies the profile noise. Several solutions are currently 

being investigated to increase the resolution of SSOP and the precision of the 

reconstructed 3D profile and therefore reduce the profile correction noise. 

 

Finally, this method remains to be integrated within a preclinical imaging setup and 

tested through preclinical experiments towards enabling real-time tissue endogenous 

chromophore quantitative imaging. The possibilities offered by such a system are 

particularly interesting in surgery where feedback regarding the status and function of 

tissue is required in real-time.  

 

4.1.5 Conclusion 

The 3D-SSOP method allows for real-time imaging of profile-corrected tissue properties 

from a single acquired image. In this article, we presented the principles of this method 

and evaluated its performance onto tissue mimicking phantoms and in vivo, in 

comparison with standard profile-corrected Spatial Frequency Domain Imaging (3D-

SFDI). Overall, the 3D-SSOP method performs similarly to the 3D-SFDI method, with 

some image degradation but with the unique property of enabling real-time profile-
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corrected quantitative optical imaging. This work lays the foundation for the investigation 

of real-time surgical image-guidance using endogenous contrast. 
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4.2 Real-time Endoscopic Optical Properties Imaging using 3D Single Snapshot of 

Optical Properties (3D-SSOP) Imaging 

The work in part 4.2 was presented through SPIE
6
 and will soon be submitted for publication 

with the following contributing authors: 

Joseph Angelo,
1,2

 Martijn van de Giessen,
3
 and Sylvain Gioux

4,5
 

1
Dept. of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA 

2
Dept. of Biomedical Engineering Boston University, Boston, MA 02215, USA 

3
Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands 

4
Dept. of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA 

5
ICube Laboratory, University of Strasbourg, 300 Bd S. Brant, Illkirch, 67412  France 

 

4.2.1 Introduction 

With the rapid increase in the number of minimally invasive procedures aimed at 

improving patient care while lowering the healthcare financial burden,
161

 there has been a 

strong push for optical technologies to provide clinicians guidance during endoscopic 

procedures. This need for guidance is clearly evidenced by the development of 

instruments by both investigators and companies that aim at aiding visualization using 

techniques such as fluorescence,
48,53,99

 endogenous imaging,
18,96,134

 and stereoscopic 

imaging.
47,77,123

 Unfortunately, most of these techniques are not quantitative in nature and 

are therefore subject to interpretation and user experience, limiting their value for being 

used routinely in clinical settings. With point measurements methods having established 

the potential of quantitative optical measurements for providing high sensitivity and 

specificity in many diseases and conditions, it is of paramount importance to develop 
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novel methods and instruments that would allow real-time optical quantitative imaging 

through endoscopes. 

 

Spatial frequency domain imaging (SFDI) has recently been pushed to real-time 

acquisition
115,177

 and is particularly well-suited for endoscopic implementation. SFDI 

offers a widefield, noncontact approach for acquiring optical property maps that can be 

analyzed over several wavelengths to produce chromophore concentrations of 

endogenous tissue constituents.
35,36,44

 Several steps have been made to improve the 

technique’s robustness and standard acquisition and processing times, including a fast 2-

D look-up table,
35

 a 3-D height correction method,
62,199

 and an optimization of 

wavelengths for spectroscopic fitting of tissue constituent concentrations.
106

 These 

developments led to a first-in-human pilot study that measured skin flap oxygenation 

during reconstructive breast surgery.
63

 However, further work was needed in order to 

avoid motion artifacts and to approach real-time image acquisition for image-guided 

surgery. 

 

Recent developments have pushed the speed of SFDI, reducing its usual requirement of 6 

image acquisitions down to two
115

 and even to one by using single snapshot of optical 

properties (SSOP) processing.
177

 The single exposure acquisition and simple 

instrumentation of SSOP makes it amenable to the demanding environment of 

endoscopic imaging. Moreover, recent work has demonstrated the ability to extract phase 

information from a single projection while using SSOP, enabling height-corrections that 
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accommodate for irradiance loss due to variations in surface topography.
170

 These 

features have led to this study that aims to provide quantitative endoscopic imaging.  

 

The work presented in this article introduces a proof-of-concept endoscopic 

implementation of a functional widefield imaging technique that provides quantitative 

maps of absorption and reduced scattering optical properties as well as surface 

topography in real-time. SSOP acquisition and processing is utilized for speed and 

simplicity of instrumentation along with SFDI calibration and modeling for robust 

quantitative measurement. This study validates the developed system to accurately and 

precisely measure optical properties and height maps of tissue-mimicking phantoms and 

further demonstrates video acquisition of a moving phantom and an in vivo sample. 

 

4.2.2 Materials and Methods 

4.2.2.1 Spatial Frequency Domain Imaging 

Spatial frequency domain imaging (SFDI) has been widely discussed in the literature and 

so will only be briefly introduced here. It is well known that the spatial response of a 

point source of light in turbid media can be described by a point spread function, s-PSF, 

which depends on the subsurface optical properties and radial distance from the source.
52

 

SFDI uses the medium’s calibrated response to spatially modulated light to obtain the 

spatial modulation transfer function, s-MTF, the Fourier domain equivalent of the s-PSF. 

The s-MTF is obtained through the analysis of the diffuse reflectance Rd measured from 
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an intensity sinewave projection. Solving the inverse problem at each image pixel enables 

spatially resolved mapping of the medium’s absorption and reduced scattering 

properties.
36,44

 

 

This work utilizes the fundamentals of SFDI to acquire and process Rd measurements in 

the spatial frequency domain, thereby enabling optical property measurements. In 

practice, the intensity I of a sinusoidal wave at location x and spatial frequency fx must be 

a linear combination of both an AC signal and a DC offset, as shown in part 4.1 (we 

cannot project a negative intensity): 

 

 

where IDC is the DC offset and M(x, fx) is the modulation amplitude of the AC signal, and 

φ is the phase. The modulation amplitude M(x, fx) can be obtained through various 

demodulation techniques, and though our work utilizes Fourier demodulation method, the 

most widely used method for SFDI is a three-phase demodulation where three 

sequentially projected sinusoidal waves with varying phase φ are acquired in order to 

isolate the contribution of M(x, fx) in Ii(x, fx). M(x, fx) is directly related to the sample’s 

diffuse reflectance Rd by 

 

 𝑀(𝑥, 𝑓𝑥) = 𝐼0 ∙  MTF𝑠𝑦𝑠(𝑥, 𝑓𝑥) ∙ 𝑅𝑑(𝑥, 𝑓𝑥) (21) 
 

as previously shown in Eq. 21 with I0 as the source intensity and MTFsys as the 

modulation transform of the optical system. In order to isolate Rd, a calibration 

 𝐼𝑖(𝑥, 𝑓𝑥) = 𝑀(𝑥, 𝑓𝑥) cos(𝑓𝑥 ∙ 𝑥 + 𝛷𝑖) + 𝐼𝐷𝐶(𝑥) (19)   
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measurement is made on a reference phantom with known optical properties (and 

therefore known Rd) to account for both I0 and MTFsys. Spatial frequency domain 

measurements, as opposed to other spatially resolved measurements, have the 

advantageous multiplicative nature of system frequency response contributions, and these 

terms are accounted for with a simple division-based correction as shown in Eq. 22: 

 

 
𝑅𝑑(𝑥, 𝑓𝑥) =

𝑀(𝑥, 𝑓𝑥)

𝑀ref(𝑥, 𝑓𝑥)
∙ 𝑅𝑑,ref,pred(𝑓𝑥) (22) 

 

where Mref(x, fx) is the reference phantom’s modulation amplitude and Rd, ref, pred(fx) is a 

model prediction of the reference phantom’s diffuse reflectance. One can see that this 

assumes each measurement has the same source intensity and collection efficiency, and 

so the reference phantom should ideally have the same surface height and profile as the 

sample. Otherwise, a profile correction technique should be used to ensure measurement 

accuracy (discussed below in section 4.2.2.3). 

 

Once the Rd of a sample is known, we utilize a model based 2-D look-up table method 

that can generate optical property maps given the Rd at a minimum of two spatial 

frequencies, a DC (planar illumination, fx = 0) and an AC measurement, the latter 

typically around fx = 0.15mm
-1

 0.2mm
-1

 for skin.
35

 This modest requirement of the Rd, DC 

and Rd, AC measurements enables the use of single snapshot of optical properties imaging, 

a video-rate acquisition technique in the spatial frequency domain. 
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4.2.2.2 Single Snapshot of Optical Properties 

Our lab recently developed a novel spatial frequency domain technique called single 

snapshot of optical properties (SSOP) that allows for video-rate acquisition of optical 

properties.
170,177

 Long acquisition times (fewer than 1 frame per second, fps) are prone to 

motion artifacts created by a moving sample and are unable to capture dynamics of 

motion or changing optical properties. Long acquisition times are also not suitable for 

endoscopy, which requires at least a rate of 10 fps for proper visualization.
176

 SSOP uses 

spatial-frequency filtering and single sideband (SSB) demodulation to recover the optical 

reflectance signal from the projected carrier wave from both the AC and DC components 

of a single sinusoidal projection. This minimizes the acquisition time to the length of a 

single exposure, which is simply limited by optical throughput and collection efficiency. 

 

In this work we utilize the line-by-line Fourier transform method originally presented in 

2013.
177

 After the 1-D Fourier transform is performed line-by-line over the entire raw 

image, an ideal frequency filter separates the DC and AC components of the Fourier 

image. A simple inverse Fourier Transform of the DC spectrum recovers the DC image. 

SSB demodulation is performed on the AC image to remove the carrier frequency and 

recover the AC response image. These DC and AC images correspond to the components 

of the signal in Eq. (19) and, once calibrated using Eq. (22), provide the Rd_DC and Rd_AC 

components needed to utilize a 2-D look-up table and generate optical property maps. 
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4.2.2.3 Profile Correction 

It is often difficult to control the surface height and profile of a sample, and so a profile-

correction method was developed by utilizing the distance-dependent phase-shifting 

behavior of angled sinusoidal projections.
62

 Profile corrections are absolutely crucial for 

both SFDI
62,199

 and SSOP
170

 as varying sample height causes uncorrected measurements 

of absorption and reduced scattering properties. Hence, this work also implements and 

demonstrates the need for a height-based correction. Note: in endoscopic imaging 

geometry, it seems more intuitive to describe the sample’s position as an absolute 

measure in space in terms of distance from the endoscope as opposed to a ‘height’ from 

an arbitrary ground. 

 

With our endoscope implementation, several parameters of a given measurement change 

along with the sample’s distance from the endoscope, e.g. projected spatial frequency and 

the radiance of source intensity. However, each of these parameters can be calibrated and 

accounted for over a range of distances by using the same principles demonstrated 

previously.
62,170

 For any given parameter, calibration measurements on a reference 

phantom are made at several known distances from the endoscope and the parameter is fit 

to a regression as a function of distance. Then, for any given sample distance, this 

parameter is known and can be corrected. First, the sample’s distance from the endoscope 

must be measured. 

 

This work utilizes a Fourier transform profilometry technique in order to measure the 



 

 

97 

sample’s surface topography.  Using the same fringe pattern for both profilometry and 

SSOP, the phase of a sample is measured using 1-D line-by-line Fourier processing 

previously demonstrated.
159

 Once the phase is measured for the reference phantom at 

several known distances, a distance vs. phase relationship is made and can be utilized for 

a sample of unknown height.
200

 Therefore, a phase measurement is simultaneously taken 

for every pixel of a sample, and for every pixel a distance is calculated. Finally, this 

distance measurement then gives the distance-dependent factors their correction based on 

the calibration regressions.
62

 

4.2.2.4 System Design 

Figure 4.2.1(a) depicts the optical design of the endoscopic imaging system. The 

fundamentals of imaging in the spatial frequency domain are preserved, starting with a 

light source. Given a source with a fiber output, lenses L1 and L2 are used to expand and 

collimate the beam onto mask M of a sinusoidal pattern. Since SSOP only requires a 

single pattern, the need for a digital micro-mirror device (DMD) or other type of variable 

projector can be replaced by a simple mask. The image of the illuminated pattern is then 

collimated by L3 and polarized by linear polarizer P1 as it is sent through the projection 

channel of the endoscope and onto the sample. The reflected light is imaged through the 

collection channel of the endoscope. The collimated output is cross-polarized with 

respect to P1 by linear polarizer P2 and then imaged by objective lens L4 onto the CCD. 

The entire endoscope is shown in Fig. 4.2.1(b), while the optical channels of the working 

end of the endoscope are shown in Fig. 4.2.1(c). 
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Figure 4.2.1: (a) A schematic of the optical system: a laser source is expanded and collimated by 

lenses L1 and L2, passes through a mask of a sinusoid printed onto a transparency and is collimated 

by L3 into the projection channel of the endoscope. The polarizers P1 and P2 ensure specular light 

removal. The collection channel of the endoscope sends light through L4 where it is imaged onto a 

CCD camera. (b) A photograph of the optical system. (c) The distal end of the endoscope showing the 

projection and collection channels. 

 

Figure 4.2.2 compares the projection characteristics of (a) standard widefield structured 

illumination with (b) endoscopic structured illumination used in this work. Both systems 

have an image projection that undergoes a phase shift as a function of distance from the 

projector. While widefield illumination systems have an almost constant projected spatial 

frequency or are approximated as such, this endoscopic implementation has a non-

negligible monotonic decrease is spatial frequency with increased distance due to the 

viewing angle of the endoscope (45°). This varying spatial frequency is accounted for by 

first calibrating over several known distances and then measuring the samples height, as 

described above. 
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Much of the data flow follows standard widefield SFDI and SSOP processing 

implemented on a custom-developed MATLAB code (Mathworks, Natick, MA) that was 

further adapted for this work. This code has been previously validated in past 

experiments.
62,63,170,177

 

 

 

Figure 4.2.2: Schematic demonstrating the projection and collection characteristics (a) a common 

widefield setup and (b) our endoscopic system. Both systems use the phase shift in the projected 

sinusoid to measure distance. However, the endoscope system has a field of view dependent on 

distance, and so this variation is characterized during calibration. 

 

4.2.2.5 Calibration 

4.2.2.5.1 Flat Homogeneous Phantom 

 

Fixed distance measurement: to first validate the accuracy and precision of extracting 

optical properties without the involvement of profile correction, a flat, homogeneous, 
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tissue-mimicking phantom with known optical properties was used as a sample and 

placed at a fixed distance for measurement and calibration. The phantom was fabricated 

with silicone and used India Ink and titanium dioxide to adjust for absorption and 

scattering properties, respectively.
10

 The phantom’s known optical properties (𝜇𝑎= 0.032 

mm
-1

 and 𝜇𝑠
′  = 0.99 mm

-1
 as measured by widefield SFDI) were used as gold standards 

for the measurements made using this endoscopic SSOP system. 

 

Multi-distance measurement: to then validate the system for generating optical property 

and distance maps over varying distances, the same flat homogeneous phantom was 

measured at each calibration distance (4 thru 9 cm at 1 cm increments). Validating 

against the expected values, distance-based corrected optical property measurements and 

profile maps were compared with non-corrected optical property measurements for 

accuracy and precision. 

 

4.2.2.6.2 Hemispheric Phantom 

 

In this experiment, a hemispherical tissue-mimicking phantom was used in order to 

assess the profile acquisition and distance-based correction of a curved surface. This 

silicone phantom was made to have similar optical properties as the flat homogeneous 

phantom described above by using India Ink and titanium dioxide to control absorption 

and scattering, respectively (0.025 mm
-1

 and 1.05 mm
-1

). In order to also test the accuracy 

of extracted optical properties over time and sample location, a video was acquired of the 
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hemispherical phantom placed on top of the flat homogeneous phantom as it is moved in 

three dimensions. 

 

4.2.2.6.3. In-vivo measurement 

To demonstrate the endoscopic real-time acquisition of optical properties and 

profilometry in vivo, a video of a hand in motion was taken with the same flat 

homogeneous phantom as the background. 

 

4.2.3 Results 

4.2.3.1 System Design 

The optical design shown in Fig. 4.2.1(a) has minimal components and can be relatively 

inexpensive depending on the choice of source, endoscope, and camera. The NIR source 

used in this system has been built and described in recent work.
176

 For this embodiment, 

we utilized two 1W laser diodes operating at 660 nm (LDX-3115-660, LDX Optronics, 

Maryville, TN) along with current and thermoelectric cooler controllers (ITC300, 

Thorlabs, Newton, NJ). The laser module is integrated to the endoscope optical system 

with a 1mm multimode fiber optic cable (BFY1000LS02, Thorlabs) and the light is then 

shaped using two 35 mm focal length biconvex lenses L1 and L2 (LB1811, Thorlabs) for 

illuminating the sinusoidal projection pattern, M. The projection pattern M was printed 

onto transparency film using an office laser printer. The endoscope used was a dual-

imaging, rigid endoscope (Schölly, Inc., Worcester, MA). The projection lens L3 was a75 
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mm focal plano-convex lens (LA1765, Thorlabs). A pair of linear polarizers, P1 and P2 

(PPL05C, Moxtek, Inc., Orem, UT) helped reduce specular reflections on the proximal 

end of the endoscope. A simple plano-convex objective lens was used for L4 (#45-508, 

Edmund Optics, Barrington, NJ) that imaged the sample onto a 14-bit CCD camera 

(pco.pixelfly usb, PCO, Romulus, MI). 

 

4.2.3.2 Flat Homogeneous Phantom 

Fixed distance measurement: The flat homogeneous phantom was imaged at 6cm, the 

same height as the reference phantom (see Fig. 4.2.3). At this distance, the field of view 

of the entire CCD was 5.7 x 7.6 cm. Signal loss towards the edges of the collected image 

was too low for proper processing, and so a mask (480 pixel diameter circle) was used to 

throw away unusable pixels, slightly decreasing the field of view. Also, close to the mask 

edge there are apparent artifacts due to this loss of signal, and so all analyzed data was 

taken from the dotted rectangular ROI (310 x 405 pixels, 3.39 x 4.42 cm) in the center of 

view. In Fig. 4.2.3(a), the measured absorption of 0.033 ± 0.00037 mm
-1

 was very 

accurate to the expected value of 0.032 mm
-1

. Likewise, in Fig. 4.2.3(b) the measured 

reduced scattering 0.96 ± 0.0079 mm
-1

 was very close to its expected value of 0.99 mm
-1

. 
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Figure 4.2.3. A flat homogeneous phantom was measured 6 cm from the distal end of the endoscope 

and (a) absorption and (b) reduced scattering properties were generated. Analysis was done on the 

white-dotted ROIs. 

 

Figure 4.2.4: A flat homogeneous was measured from 4 to 9 cm in 1 cm increments. (a) The surface 

topography for all 6 measurements are plotted with the color map showing absorption values. (b) 

The topographical accuracy is shown by analyzing the ROI for each distance measurement. The 

analyzed (c) absorption and (d) reduced scattering values for the distance-corrected measurement 

and the uncorrected measurement demonstrate the need for distance-correction. 
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Multi-distance measurement: The flat homogeneous phantom was measured from 4 to 9 

cm in 1 cm increments (see Fig. 4.2.4). The sample profile maps are shown in Fig. 

4.2.4(a) with the color showing absorption values. In Fig. 4.2.4(b) the measured distance 

is compared with the known distance of the phantom from the endoscope and shows high 

accuracy at each distance with a maximum error of 1.3 mm. Each plotted point is the 

average height within the ROI and includes error bars. In Figs. 4.2.4(c) and (d), the 

uncorrected measurements (blue x’s) were referenced against a phantom at 4cm. The 

uncorrected measurements lose accuracy rapidly as the sample distance increases, 

changing by nearly an order of magnitude for absorption and reduced by 0.36 mm
-1

 for 

scattering. In comparison, the corrected measurements (red squares) show fairly accurate 

and precise values over the distance range, staying within 0.004 mm
-1

 for absorption and 

within 0.05 mm
-1

 for scattering. 
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Figure 4.2.5: Absorption and reduced scattering maps measured on a flat homogeneous phantom 

from 4 to 9 cm. These maps demonstrate the divergence of accuracy when not correcting for sample 

distance. The 1 cm scale bar varies with increased sample-distance from the endoscope, as does the 

field of view. 

 

To demonstrate the general degradation of optical property maps when profilometry is 

not used, the absorption and reduced scattering maps are presented in corrected and 

uncorrected formats in Fig. 4.2.5. The large color scale range is to capture the large 

variations in the uncorrected maps. These maps demonstrate not only the large deviation 

in the average optical properties measured, but also a large increase in standard deviation, 

with absorption error going from 0.0019 mm
-1

 (corrected) to 0.032 mm
-1

 (uncorrected) 

and scattering going from 0.048 mm
-1

 (corrected) to 0.13 mm
-1

. The scale bar given at 
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each height represents 1 cm and demonstrates the correlation between increasing field of 

view and distance. 

 

4.2.3.3. Hemispheric homogeneous phantom 

Figure 4.2.6 shows data collected and processed from the real-time acquisition of optical 

properties for a moving hemispherical phantom and a flat homogeneous background. The 

video was acquired with a 85ms exposure time, and thus a framerate of approximately 11 

frames per second (fps). The raw data inside the ROI is shown in the upper left frame, 

and the three extracted measurements of 3D profile (top right), absorption (bottom left), 

and reduced scattering (bottom right) come from this single raw image. The 

hemispherical phantom and the flat homogeneous background phantom are translated in 

the transverse plane in a random manner, showing stable optical property measurements 

in time and space. The phantom’s translation was done by hand, and so slight variations 

in depth occur. The variations in height mean the field of view is not constant, but a scale 

bar that represents the scale at a distance of 7 cm is presented. The latter half of the 

movie captures a large translation in depth and shows stable measurements throughout. 

Slight optical property artifacts, especially for absorption, occur at the base of the 

hemispherical phantom and tend to ripple laterally around it. 
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Figure 4.2.6: A hemispherical phantom resting on a flat homogeneous phantom was measured at 

video rate (~11 fps). Every frame of collected raw data generated a 3D profile, absorption, and 

reduced scattering maps. Note: since the scale changes with distance, this scale bar is given for 7cm. 

 

4.2.3.4. In-vivo measurement 

Figure 4.2.7 shows the in-vivo experiment with real-time acquisition of optical properties 

of a hand in motion. In the background is the flat homogeneous phantom previously used, 

and its position is held constant throughout the experiment. The video was acquired with 

a 85ms exposure time (~11 fps), and each ROI frame of raw data (top left) produced the 

three extracted measurements of 3D profile (top right), absorption (bottom left), and 

reduced scattered (bottom right). The hand is moved laterally over a static background, 

showing stable optical property and 3D profile maps throughout. Similarly to Fig. 6, the 

variations in height mean the field of view is not constant, so a scale bar that represents 
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the scale at a distance of 7 cm is presented. Slight optical property artifacts are seen 

outlining the hand, as well as rippling laterally from the hand. 

 

 

Figure 4.2.7: An in vivo sample (hand) is measured at video rate as it passes into view over a 

homogeneous flat phantom. 

 

4.2.4 Discussion 

In this work we introduced a novel implementation of single snapshot of optical property 

(SSOP) imaging capable of acquiring widefield optical property and 3D profile maps in 

real-time. This technique relies on the projection of a single 1D-sinusoidal illumination 

pattern that is then imaged and decomposed into components of AC, DC, and phase for 

further processing in the spatial frequency domain.
35,170,177

 Calibration at multiple 

distances is done in order to calculate optical property and 3D profile maps and to also 
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account for system parameter variations due to changes in the sample distance. The 

context for this work is focused on enabling quantitative surgical guidance, and while this 

work demonstrates a benchtop proof-of-concept system toward this goal, several factors 

should be considered for future work. 

 

During surgery, the field of view is likely to change continuously due to the handling of 

the endoscope or the in-vivo sample’s motion itself, and so real-time acquisition is crucial 

to eliminate motion artifacts while imaging. The video framerate demonstrated in these 

experiments is approximately 11 frames per second, but it should be noted that this 

technique’s framerate is only limited by the time of a single exposure, and so improved 

throughput and collection efficiency in an optimized system would greatly reduce the 

exposure time and increase the framerate of this technique. Ideally the acquisition speed 

would be greater than 15 fps to offer a smooth viewing experience, though cardiac 

dynamics have been seen in a similar technique done in widefield at rates of 50 fps.
59

 

 

Given the intended use of this technique, sample distance variation will most likely be 

happening continuously during imaging. As shown here, endoscopic SSOP imaging 

necessitates the use of profilometry correction. As distance is increased, absorption map 

averages fall by nearly an order of magnitude while reduced scattering was reduced by 

0.36 mm
-1

. Moreover, artifacts become apparent as the measured sample’s distance gets 

farther from the reference phantom’s distance (see Fig. 4.2.4). The use of profilometry 

keeps absorption and reduced scattering map averages within 0.004 mm
-1

 and 0.05 mm
-1

, 
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respectively. Because the single snapshot collects phase information as well, there is no 

additional acquisition time necessary to measure the sample’s phase, though calibration 

steps are added in order to create distance-dependent correction factors. Profilometry 

corrections are therefore necessary for quantitative imaging of samples with variations in 

height and also help reduce imaging artifacts.62,199 

 

The spatial information extracted from a single raw image allows for rapid acquisition, 

but the cost will be some loss of spatial resolution. The videos presented (Figs. 4.2.6 and 

4.2.7) show a slight loss in image resolution from the raw image collected to the optical 

property maps, along with minor ringing artifacts due to the demodulation process 

relying on filtering in the Fourier domain. However, these image degradations tend to be 

stable and minor in the variations in optical properties. No measure of image quality or 

viewer experience has been presented in this work because this work is simply a proof-

of-concept and a more optimized system will greatly improve image quality. This 

optimization will mostly entail increased optical efficiency and throughput, along with 

optimization of SSOP processing framework. 

 

In order to progress this technique from endoscopic real-time imaging of optical 

properties to surgical guidance will first entail incorporating a second wavelength in 

order to enable oximetry imaging. Previous work has demonstrated the ability of spatial 

frequency domain imaging to perform accurate oximetry measurements in tissue with 

only two spatial frequencies and two wavelengths,106 making endoscopic real-time 
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oximetry imaging readily achievable by adding a second wavelength to the benchtop 

system presented here. The next concern will be to perform real-time acquisition along 

with real-time feedback. Two fundamental hurdles need to be considered: 1) 

demodulation time and 2) inversion of measured diffuse reflectance to sample properties, 

e.g. optical property or chromophore maps. Demodulation time is currently estimated at 

100ms, though this processing is currently being done in MATLAB and could certainly 

be optimized for real-time feedback. While the current processing time to invert diffuse 

reflectance maps to optical properties is typically on the order of 1 second, we recently 

demonstrated that this inversion time could be reduced significantly to approximately 

10ms.
8
 Altogether this work lays the foundation of real-time quantitative optical imaging 

through an endoscope and its clinical translation. 

4.2.5 Conclusion 

The endoscopic SSOP system allows for real-time imaging of profile-corrected optical 

properties through an endoscope. In this work, we presented the principles and methods 

of this system’s design and processing scheme, along with a validation of its accuracy on 

tissue mimicking phantoms and a demonstration of its in-vivo imaging capabilities. In 

addition, the method presented is also capable of measuring the sample profile and 

corrects for variations in the sample’s distance from the endoscope to obtain accurate 

optical property maps from a single image acquisition with a slight loss in image 

resolution. This work utilizes previous investigations into widefield imaging of optical 

properties to lay the foundation for real-time, endoscopic surgical image-guidance using 

endogenous contrast. 
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4.3 Real-time Endoscopic Oxygenation using 3D Single Snapshot of Optical 

Property (SSOP) Imaging 

 

The work in part 4.3 has been partially presented through SPIE
7
 with the following 

contributing authors: 

 

 
Joseph P. Angelo,

1,2
 Martijn van de Giessen,

3
, and Sylvain Gioux

4,5
 

1
Dept. of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA 

2
Dept. of Biomedical Engineering Boston University, Boston, MA 02215, USA 

3
Dept. of Radiology, Leiden University Medical Center, Leiden, The Netherlands 

4
Dept. of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA 

5
ICube Laboratory, University of Strasbourg, 300 Bd S. Brant, Illkirch, 67412  France 

 

4.3.1 Introduction 

Surgical guidance poses a unique scenario and restricts the parameters for potential 

technological solutions. Space in the operating room is highly limited and time is costly 

in both patient care and patient management. Ideally, the technique would be noncontact 

and measure broadly so as to not disrupt the surgeon’s field of view and it would provide 

quantitative feedback in real-time. The importance of oxygen in all aspects of wound 

healing has been well studied for many years,
73,74

 and so tissue oxygenation measurement 

has shown a prominent role in assessing tissue viability.
69

 My associated lab has recently 

retroactively reviewed the utility of an optical tissue oxygenation monitoring device to 

save transplanted skin flaps, and this technology has shown promise in clinical trials by 

giving surgeons tissue oxygenation feedback at a single point, influencing surgical 
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decisions that dramatically decreased the rate of skin flap loss in breast reconstructive 

surgery.
98,143

 However, due to its single point sampling this technique requires contact 

with the tissue and relies on global effects, and visualization of the complete surgical 

field would be advantageous. Furthermore, no adaptation of this technique, or a full-field 

technique, has been made suitable for minimally invasive surgery. 

 

A great difficulty in quantitative, non-contact endoscopic imaging is the unstable distance 

of the sample over time and space. Furthermore, the endoscope will most likely be 

handheld, making it difficult to keep a steady field of view and therefore requiring rapid 

measurement acquisition. Our lab has focused heavily on finding solutions for 

quantitative imaging methods that are ideal for real-time,
177

 profile-corrected,
170

 suitable 

for endoscopic implementation,
6
 and presented here is our work on endoscopic 

oxygenation imaging in real-time. 

 

This work is a direct continuation of the single-wavelength endoscopic imaging presented 

in chapter 4 part 2, and so, in an effort to limit redundancy, aforementioned system 

details will be kept brief. 

 

4.3.2 Materials and Methods 

4.3.2.1 Endoscopic Imaging Considerations in the Spatial Frequency Domain 

Due to the simultaneous, widefield measurement inherent to spatial frequency domain 

imaging, techniques have been developed in order to push the acquisition requirements 
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from 6 images with standard SFDI,
35,36

 down to 2 images with alternating DC and AC 

patterns,
115

 to 1 single image.
177

 As discussed in chapter 2 section 4, the system response 

of diffusive medium, e.g. skin tissue, to a spatial frequency projection of light will 

depend on the tissue’s absorption, reduced scattering, and the spatial frequency used. The 

above-mentioned methods push the speed of acquisition in the spatial frequency domain, 

but assume the tissue sample matches the optical reference, and this is very much 

unlikely for clinical imaging. With the help of recent work in phase extraction from 

spatial frequency patterns for widefield optical property imaging,
170

 we recently 

submitted work demonstrating a real-time, profile corrected endoscopic imaging system 

utilizing SSOP at a single wavelength.
6
  

 

Briefly, some of the unique challenges circumvented with our endoscopic SSOP system 

will be addressed here, and further information can be seen above in chapter 4 section 2. 

First, given the strong influence of sample distance on the accuracy of measured optical 

properties (see Fig. 4.2.4 and Fig. 4.2.5), it is imperative to invoke a profile-correction 

method. Similar to past spatial frequency domain profile-correction methods,
62,170

 this 

system utilizes slight angle between the projection and collection of light to create and 

measure phase-sensitive structured illumination (see Fig. 4.2.2). Unique to our 

endoscopic implementation, we use the phase-sensitive projection also as the optical 

property measurement.
6
 This helps increase signal to noise by increasing overall 

throughput of the system. Next, with a changing working distance (distal end of 

endoscope to the sample) comes a change in the spatial frequency of the projected pattern 
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due to the viewing angle of the endoscope (45°) (see Fig. 4.2.2). Because the system-

response analysis depends on spatial frequency, this system requires a calculation of 

spatial frequency at every pixel. This is achieved by calibrating the spatial frequency 

dependence with distance prior to measurement (see section 4.2.2.3). Once these 

considerations are met, standard SFDI processing is done to obtain optical property maps 

at 670 nm and 808 nm, and least square fitting takes the measured absorption maps and 

fits them to chromophore concentrations of oxy- and deoxyhemoglobin to then obtain 

oxygenation. 

4.3.2.2 Endoscopic Dual-Wavelength Imaging System 

The single-wavelength endoscopic imaging system previously developed (see Fig. 4.2.1) 

was amended to accommodate a second wavelength channel such that 670 nm and 808 

nm could be acquired simultaneously. In Fig. 4.3.1 A), a schematic depicts the dual-

wavelength endoscopic imaging system with lenses L1 and L2 collimating light onto 

image mask M before being imaged in the projection channel of the endoscope by lens 

L3. The projection and collection channels at the distal end of the endoscope are cross-

polarized with XP to remove specular reflections. The collected light is relayed by lens 

L4 and split with a dichroic mirror to separate wavelength channels. Fig. 4.3.1 B) and C) 

are photographs of the actual endoscope used. 
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Figure 4.3.1: A) Schematic of the dual-wavelength endoscopic imaging system with lenses L1 and L2 

collimating light onto image mask M before being imaged in the projection channel of the endoscope 

by lens L3. The projection and collection channels at the distal end of the endoscope are cross-

polarized with XP to remove specular reflections. The collected light is relayed by lens L4 and split 

with a dichroic mirror to separate wavelength channels. B) and C) are photographs of the actual 

endoscope used. 

 

4.3.2.3 Experiments 

4.3.2.3.1 Crosstalk validation 

 

In order to confirm that the channels were accurate for both single channel and dual 

channel use, and to ensure that no crosstalk between channels was present, a fixed-

distance measurement was made on a flat homogeneous phantom of known optical 

properties with the primary channel on, and with the second channel on. Statistical 

analysis of the resulting optical properties was used to assess the accuracy and precision 

in both cases for both wavelengths. 
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4.3.2.3.2 Multi-distance accuracy 

 

To then validate the system for generating optical property and distance maps over 

varying distances, the same flat homogeneous phantom was measured at each calibration 

distance (4 thru 9 cm at 1 cm increments). Validating against the expected values, 

distance-based corrected optical property measurements and profile maps were compared 

with non-corrected optical property measurements for accuracy and precision for each 

wavelength channel.  

4.3.2.3.3 In-vivo demonstration 

 

Two arm cuff occlusion experiments were done on a healthy volunteer. Both experiments 

acquired video-rate images before, during, and after the occlusion was applied and 

oxygenation curves were generated. In the first experiment, the subject’s fingers were 

imaged and analyzed over an ROI, while the subject’s palm was measured was analyzed 

in the second experiment. These oxygenation and profile measurements are made from 

single exposures from two cameras taken simultaneously 

 

4.3.3 Results 

4.3.3.1 System Design 

The optical design shown in Fig. 4.3.1(A) has minimal components and can be relatively 

inexpensive depending on the choice of source, endoscope, and camera. For this 

embodiment, we utilized two 1W laser diodes operating at 670 nm (LDX-3115-665, LDX 

Optronics, Maryville, TN) and one 2W diode at 808 nm (LDX-3210-808) along with 

current and thermoelectric cooler controllers (ITC300, Thorlabs, Newton, NJ). The laser 
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module is integrated to the endoscope optical system with a 1mm multimode fiber optic 

cable (BFY1000LS02, Thorlabs) and the light is then shaped using two 35 mm focal 

length biconvex lenses L1 and L2 (LB1811, Thorlabs) for illuminating the sinusoidal 

projection pattern, M. The projection pattern M was printed onto transparency film using 

an office laser printer. The endoscope used was a dual-imaging, rigid endoscope 

(Schölly, Inc., Worcester, MA). The projection lens L3 is a75 mm focal plano-convex 

lens (LA1765, Thorlabs). A pair of linear polarizers, (LPVISE2X2, Thorlabs, Newton, 

NJ) create the crossed polarizer pair XP and helped reduce specular reflections on the 

proximal end of the endoscope. A simple plano-convex objective lens was used for L4 

(#45-508, Edmund Optics, Barrington, NJ) that imaged the sample onto a 14-bit CCD 

camera (pco.pixelfly usb, PCO, Romulus, MI). 

 

4.3.3.2. Phantom Experiments 

Figures 4.3.2 and 4.3.3 present the crosstalk validation experiment, showing 670 nm and 

808 nm, respectively, in mono- and dual-wavelength acquisition. Both figures were 

fixed-distance measurements at 7 cm from the distal end of the endoscope. In Figure 

4.3.2, the results of optical property measurements at 670 nm are shown to be highly 

accurate for both mono- and dual-wavelength imaging. Analysis of the ROIs of each map 

show highly accurate optical properties, with absorption within 0.001 mm
-1

 from the 

expected value of 0.033 mm
-1

 for both cases and reduced scattering within 0.04 mm
-1

 of 

the expected 0.91 mm
-1

. For the remainder of the data processing, all data analysis was 

done within the ROIs shown. 
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Figure 4.3.2: Optical property maps of fixed-distance measurements at 670 nm for both mono- and 

dual-wavelength imaging. ROI analysis shows highly accurate optical property measurements for 

both cases, showing no signs of crosstalk between wavelengths. 

 

 

Figure 4.3.3: Optical property maps of fixed-distance measurements at 808 nm for both mono- and 

dual-wavelength imaging. ROI analysis shows highly accurate optical property measurements for 

both cases, showing no signs of crosstalk between wavelengths. 
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In Figure 4.3.3, the results of optical property measurements at 808 nm are shown to be 

highly accurate for both mono- and dual-wavelength imaging. Analysis of the ROIs of 

each map show highly accurate optical properties, with absorption within 0.001 mm
-1

 

from the expected value of 0.033 mm
-1

 for both cases and reduced scattering within 0.04 

mm
-1

 of the expected 0.91 mm
-1

. For the remainder of the data processing, all data 

analysis was done within the ROIs shown. 

 

To further validate the accuracy of the dual-wavelength measurement, Figure 4.3.4 shows 

multi-distant measurement results from taking a flat homogeneous optical phantom over 

a distance of 4 to 9 cm in 1 cm increments. Both 670 nm and 808 nm measurements were 

accurate over the range of distances for the distance-corrected maps for both absorption 

and reduced scattering, while uncorrected optical properties tended to diverge quickly 

once the sample left the reference distance. The data points were averaged pixel values 

over the ROIs shown in Fig. 4.3.2 with standard deviations as error bars.  
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Figure 4.3.4: Multi-distant measurement results from taking a flat homogeneous optical phantom 

over a distance of 4 to 9 cm in 1 cm increments. 

 

4.3.3.3 In vivo oxygenation measurements 

Two in vivo samples were measured, both arm cuff occlusions with a baseline, occlusion, 

and recovery state, for percent oxygen saturation. Oxygenation video acquisition was 

made at 2 frames per second of a finger of a hand of the occluded arm, as shown in 

Figure 4.3.5. Each frame of the video is acquired from single exposures of two cameras 

taken simultaneously. This figure shows a single frame near the end of the occlusion 

cycle in the recovery state, with oxygen saturation percent coming back to a stable ~80%, 

as it started as in the baseline state. The upper left panel shows the raw data collection by 
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the 670 nm channel normalized to its max signal. The upper right panel shows the profile 

map as distance from the distal end of the endoscope and coloration also representing 

distance. The lower left panel shows the average pixel value, over time, of the black- 

dashed rectangle ROI in the lower right panel, demonstrating the predictable oxygenation 

curve of an occluded tissue. Finally, the lower right panel shows the oxygenation map of 

the sample for each frame. Note: the background of the sample was a black piece of 

paper, resulting in 0% oxygenation between fingers. 

 

 

Figure 4.3.5: In vivo sample of a finger measured throughout a cuff occlusion cycle. This figure is a 

single frame of oxygenation video acquisition at 2 frames per second, with the sample in the recovery 

state. Note: the ROI trace is taken from the black-dashed rectangle in the lower right panel of the 

oxygenation map. Note: no scale bar is given since the field of view varies with sample distance, 

though the upper right hand panel captures approximately 5 x 5 cm. 
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The last sample was the palm of a hand of an occluded arm with oxygenation 

measurements acquired at 2 frames per second. Again, single frame exposures are 

acquired simultaneously from both cameras to obtain profile and oxygenation 

measurements. Figure 4.3.6 shows the baseline state of the palm, with the oxygenation 

map on the left panel and the right panel showing the oxygenation time trace of the black-

dashed ROI.  

 

 

Figure 4.3.6: The in vivo oxygenation measurement of a palm of an occluded hand. This figure is a 

single frame of oxygenation video acquisition at 2 frames per second, with the sample in the baseline 

state. Note: the ROI trace is taken from the black-dotted rectangle in the left panel oxygenation map. 

Note: the palm measurement was taken closer to the endoscope than the fingers, resulting in a 

smaller field of view. 

 

4.3.4 Discussion 

The crosstalk validation experiment results shown in Fig. 4.3.3 demonstrate the 

negligible, if any, effects of using dual-wavelength imaging versus the mono-wavelength 

imaging. Both imaging schemes show accurate results for both absorption and reduced 

scatter measurements, within 0.001 mm
-1

 for all absorption maps and 0.04 mm
-1

 for all 
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reduced scattering maps. 

 

The multi-distance validation experiment results shown in Fig. 4.3.4 demonstrate the 

necessity for distance correction. For both wavelengths and for both optical property 

maps, uncorrected measurements of optical properties diverge rapidly from the expected 

values as the sample distance increases from the reference distance of 4 cm.  

 

Both in vivo demonstrations of real-time oxygenation measurement, seen in Figs. 4.3.5 

and 4.3.6, show the potential of this novel technique for endoscopic tissue viability 

assessment in vivo. Acquisition rates were limited to 2 frames per second due to low 

throughput of 808 nm. This low throughput was largely due to non-optimized optics and 

low output power of the 808 nm laser diode. The framerate possible for 670 nm is > 10 

frames per second (see chapter 4 section 2).
6
 Though this overall framerate of 2 frames 

per second is hardly ‘real-time’ it should be explicitly stated, again, that acquisition rates 

are limited to single exposure times. Therefore, by simply increasing laser power, 

optimizing optical throughput, or decreasing sample distance, exposure time can be 

greatly reduced and framerate increased. 

 

Though this work has primarily focused on the novel introduction of real-time, 

endoscopic oxygenation imaging, there is yet more to be gained from the profile 

measurement taken during acquisition. Recently, an endoscopic profile measurement 

technique has helped detect and classify colon polyps because while their coloration is 
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very similar to healthy tissue, their unique topography provides high contrast in 3D 

imaging.
47

 There has been a great push in technology and methodology in order to make 

these 3D imaging techniques real-time and robust,
171

 and these developments can greatly 

aid surgical vision and help discern between tissue states using quantitative sensing.
172

 

This quantitative profile analysis approach could be potentially useful to assist the 

oxygenation maps in tissue viability assessment in future work. 

 

4.3.6 Conclusion 

This work presents improvements to our novel real-time, single-wavelength, endoscopic 

imaging system for measuring tissue optical properties. Highlighting dual-wavelength 

imaging design, validation, and in vivo demonstrations of oxygenation measurements, 

this work expands upon both widefield and endoscopic imaging by achieving 

oxygenation measurement based off single exposures. These improvements push the 

limits of current surgical guidance and biomedical imaging techniques. 
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CHAPTER 5: CONTRIBUTIONS TO REAL-TIME SPATIAL FREQUENCY 

DOMAIN PROCESSING 

 

Chapters 3 and 4 highlight the real-time acquisition techniques developed for 

widefield optical property imaging, leading to real-time fluorescence correction and 

oxygenation imaging. However, with acquisition time being reduced to a single exposure, 

the bottleneck to real-time feedback lies in the processing. The “rapid” processing 

techniques used to convert spatial frequency domain measurements to optical property 

maps were certainly fast enough for the original acquisition methods, but with the advent 

of real-time acquisition, a commensurate processing technique is needed. Hence, 

presented here is work directed to this end of real-time processing to enable real-time 

feedback for clinical imaging and surgical guidance. 
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5.1 Ultra-fast optical property map generation using lookup tables 

The work in section 5.1 is published in the Journal of Biomedical Optics
3
 with the following 

contributing authors: 

Joseph Angelo,
1, 2

 Christina R. Vargas,
3
 Bernard T. Lee,

3
 Irving J. Bigio,

2,4
 and Sylvain Gioux

2,5
 

1
 Beth Israel Deaconess Medical Center, Department of Medicine and 

3
 Department of Surgery, 

330 Brookline Avenue, Boston, MA 02215, United States 

2
 Boston University, Department of Biomedical Engineering and 

4
 Department of Electrical and 

Computer Engineering, Boston, MA 02215, United States 

5
 ICube Laboratory, University of Strasbourg, 300 Bd S. Brant, 67412 Illkirch, France 

 

5.1.1 Introduction 

Rapid quantitative imaging of tissue optical properties, namely absorption (𝜇𝑎 ) and 

reduced scattering (𝜇𝑠
′ ), has long been a challenge in the field of biomedical optics. The 

recent introduction of Spatial Frequency Domain Imaging (SFDI) provides a 

transformative approach capable of measuring optical properties over a large field-of-

view.
44

 In principle, SFDI relies on the analysis of the tissue response to structured 

illumination (patterns of light) in the spatial frequency domain in a multi-pixel manner 

over an entire field-of-view at once.
35,36

 More specifically, the spatial-frequency-

dependent response, called the modulation transfer function (s-MTF), is calibrated using 

a phantom with known optical properties to determine the tissue diffuse reflectance (Rd), 

which is then used to extract the optical properties using a light propagation model. 

 

While the method is rapid, SFDI has until recently involved the measurement of several 

images to form maps of optical properties, typically a total of 6 images (2 spatial 
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frequencies at 3 phases), although a method employing only a single spatial frequency 

and 3 phases has also been described. Recent developments in acquisition methods 

reduced the number of images necessary to extract optical properties from 6 to 2,
92

 and 

even from 6 to a single image with the method called Single Snapshot of Optical 

Properties (SSOP).
177

 In their most advanced implementations, such methods enable 

profile-corrected measurements of optical properties in a single snapshot, in turn 

facilitating true real-time acquisition of optical properties.
170

  

 

Unfortunately, while acquisition methods can be performed in real-time, the processing is 

still commonly achieved post-acquisition. The most rapid processing method employs a 

lookup table approach, by which solutions for diffuse reflectance are generated from a 

light propagation model (diffusion, Monte-Carlo) or empirically with various spatial 

frequencies and optical properties.
35,124,132

 Such a method allows one to directly link a 

calibrated diffuse reflectance measurement at known spatial frequencies to a unique 

solution of optical properties (𝜇𝑎 and 𝜇𝑠
′ ). However, because it necessitates interpolations 

within the lookup table for each pixel in the image, this method is still time-consuming 

(seconds), preventing the use of SFDI for true real-time imaging of optical properties. 

 

In this work, we present novel forms of lookup tables allowing rapid extraction of optical 

properties from the measurement of calibrated diffuse reflectance. We propose two 

solutions that do not necessitate interpolations and thus dramatically reduce computation 

time. The first method consists of a hyper-dense linearized lookup table, and the second 
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invokes an analytical representation of the lookup table. These methods are described, 

implemented, and compared to the standard lookup table method in terms of precision, 

accuracy, and computation time. Combined with real-time acquisition, this work 

facilitates real-time quantitative optical imaging of tissue properties. 

 

5.1.2 Materials and Methods 

The two methods described in this work are based on a previously developed lookup 

table (LUT).
35

 This standard LUT method uses “white” Monte Carlo simulation (WMC, 

with zero absorbance) to model the spatially-resolved impulse response, i.e. the steady-

state diffuse reflectance Rd(ρ), of a collimated point-source illumination for a given set of 

𝜇𝑎, 𝜇𝑠
′ , n, and g, which is then Fourier transformed to determine the spatial frequency 

response of the diffuse reflectance.
85,157

 To generate the standard LUT, WMC was used 

to simulate 10
7
 photons into a homogenous medium with index of refraction n = 1.4 and 

anisotropy factor g = 0.9. The model used a detector with a numerical aperture of 0.22 

and the radial bins were sampled in increments of Δρ = 0.09 mm, allowing a maximum 

spatial frequency of over 5 mm
-1

. This process is repeated over several optical properties, 

and stored in a table that associates the diffuse reflectance at two spatial frequencies with 

a unique pair of optical properties. Recovering optical properties therefore involves 

measuring the diffuse reflectance of the sample and searching the table to find the 

corresponding optical property values (hence the name “lookup table”). With this 

method, it is important to understand that the optical properties are linearly sampled, so 

we refer to this method as the Linear OP LUT. Using this method, the measured Rd 
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values are used to search through the nonlinear mapping of Rd against the tissue 

properties in the Linear OP LUT table, and then μa and μs′ are acquired using cubic spline 

interpolation. For our Linear OP LUT, the resolution of the sampled optical properties 

was 0.001 mm
-1

 and 0.01 mm
-1

 with a range of [0, 0.3] mm
-1

 and [0.3, 3] mm
-1

 for 𝜇𝑎 and 

𝜇𝑠
′ , respectively, with a table size of 81,571 points (see Linear OP LUT in Fig. 5.1.1). 

 

To avoid the time consuming searching and interpolation steps required for the standard 

Linear OP LUT, an LUT linear with respect to Rd (Linear Rd LUT) was made by 

interpolating linearly sampled Rd values from 0 to 1 by 500 points within a high 

resolution Linear OP LUT (0.0001 mm
-1

 and 0.001 mm
-1

 resolution with a range of [0, 

0.3] mm
-1

 and [0.3, 3] mm
-1

 for μa and μs′, respectively, with a table size of 8,105,701 

points). The resolution of the Rd linear sampling is chosen so that measured Rd values can 

be found directly in the table by rounding their value to the nearest increment of 0.02, 

without interpolation (see Linear Rd LUT in Fig. 5.1.1). Given a sample’s Rd values, the 

LUT’s corresponding indices can be calculated by parameterizing the linear Rd grid and 

rounding to the nearest vertex to acquire μa and μs′. 

 

Using the Linear Rd LUT, each optical property table was fit to a 2D function using a 

nonlinear least squares solver (“fit” using MATLAB): 

 

 𝜇𝑎(𝐷𝐶, 𝐴𝐶) = 𝑎1𝑒𝑎2𝐷𝐶+𝑎3𝐴𝐶+𝑎4 + 𝑏1𝑒𝑏2𝐷𝐶+𝑏3𝐴𝐶+𝑏4 + 𝑐1𝑒𝑐2𝐷𝐶+𝑐3

+ 𝑑1𝑒𝑑2𝐴𝐶3+𝑑3(𝐷𝐶+𝑑4)𝐴𝐶2+𝑑5𝐷𝐶+𝑑6𝐴𝐶+𝑑7 

(23) 
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 𝜇𝑠
′ (𝐷𝐶, 𝐴𝐶) = 𝑎1𝑒𝑎2𝐴𝐶+𝑎3 + 𝑏1𝑒𝑏2𝐴𝐶+𝑏3 + 𝑐1𝑒𝑐2𝐴𝐶+𝑐3 + 𝑑1𝑒𝑑2𝐴𝐶+𝑑3 +

     (𝑑1 + 𝐴𝐶)𝑒𝑑2𝐷𝐶2+𝑑3𝐷𝐶+𝑑4 , 

(24) 

 

where a1 through d4 are optimized parameters. Using these functions, optical properties 

can be directly deduced from the diffuse reflectance at low spatial frequency (noted DC 

here) and the diffuse reflectance at high spatial frequency (noted AC here). This is 

referred to as the 2D Fit LUT (see 2D Fit LUT in Fig. 5.1.1). 

 

Figure 5.1.1 summarizes the LUT formations and workflows. The red arrows describe the 

formation process from Monte-Carlo simulation to the Linear OP LUT (arrow 1), to the 

Linear Rd LUT (arrow 2), and finally to the 2D Fit LUT (arrow 3). The blue arrows 

indicate the three options for workflow when using the LUTs to extract optical properties. 

Diffuse reflectance measurements at 2 spatial frequencies (low: DC, and high: AC) are 

used as inputs to the lookup tables to extract the optical properties. 

 

The custom imaging system and associated processing has been described extensively 

and results have been published, including a clinical trial.
62,63

 Briefly, the system utilizes 

a digital micro-mirror device (DMD) to project patterns of 670nm laser illumination 

which is cross polarized with the collection optics to minimize specular reflections in 

images collected on a CCD camera. 
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Figure 5.1.1: LUT protocols: red white arrows indicate the formation of each lookup table, from 

Monte-Carlo simulation, to linear Rd sampling, and finally function fitting. Blue Black arrows 

indicate three options for data flow and usage of each LUT. First, a sample’s Rd (DC and AC) is 

measured and used as input. The Linear OP LUT (Left) must search and interpolate to generate 

optical properties, the Linear Rd LUT (Middle) uses parametric indexing to recall optical properties, 

and the 2D Fit LUT (Right) evaluates the function F to generate optical properties. 

 

An array of tissue-like silicone phantoms was made using India ink (Blick Art Materials, 

Boston MA) and titanium dioxide (Atlantic Equipment Engineers, Bergenfield NJ) for 

absorption and scattering, respectively. The array was made to span the optical properties 

μa = [0.01, 0.1] mm
-1

 and μs′ = [0.5, 2] mm
-1

. The array was imaged using SFDI and the 

inversion from Rd to optical properties was then evaluated on all three LUT methods and 

compared to a Monte Carlo (MC) least-squares solver over square ROIs of 15 x 15 

pixels.
85
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Finally, a Yorkshire pig was used as an in vivo model to evaluate each LUT method 

during realistic surgical conditions (Beth Israel Deaconess Medical Center Institutional 

Animal Care and Use Committee approved institutional protocol #034-2013). Abdominal 

skin flaps were elevated on a pair of perforator vessels, the venous pedicle was occluded, 

and the pedicle was released to restore tissue perfusion. 

 

All computational processing and analyses were done on a 64bit Dell Optiplex 9020 

(Dell, Round Rock TX) with an Intel Core i7-4770 CPU (Intel, Santa Clara CA). Rd 

inversions were repeated 100 times for each LUT type and averaged for comparison. 

 

5.1.3 Results 

Figure 5.1.2 shows the results for the phantom sample array. Agreement is seen among 

all three LUTs for both absorption and reduced scattering maps (Fig. 5.1.2a). ROIs were 

chosen to quantify the results for each phantom well (Fig. 5.1.2a) and to compare the 

LUT methods (Fig. 5.1.2b). All methods show low relative error compared to the MC 

results (μa %, μs′ %): Linear OP LUT (1.3, 0.5), Linear Rd LUT (0.2, 0.09), 2D Fit LUT 

(1.9, 2.8). Table 5.1.1 summarizes the processing times for each method on this sample, 

from a single pixel to the entire image. The Linear Rd and 2D Fit LUTs exhibit better 

performances over the entire range. Importantly, processing shows a 100-fold 

improvement for an entire image (572 x 612 pixels), for both absorption and reduced 

scattering. 
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Figure 5.1.2: Phantom array measurement. A) Tissue-simulating phantom array was measured using 

SFDI and absorption (top row) and reduced scattering (bottom row) maps were generated using the 

Linear OP, Linear Rd, and 2D Fit LUTs. B) Regions of interest (dotted squares) were chosen to 

compare each method’s accuracy. Image resolution is 512 x 672 pixels. Scale bar represents 1cm. 

 

Table 5.1.1: Processing speeds for LUT inversion of Rd to both μa 

and μs' property maps. 

Number of 

Pixels 

  Linear OP 

LUT 

Linear Rd 

LUT 

2D Fit 

LUT 

1 

 

0.2814 s 5.207 x 10
-5

 s 5.117 x 10
-4

 s 

10 x 10 

 

0.4801 s 1.107 x 10
-4

 s 5.205 x 10
-4

 s 

100 x 100  0.5120 s 5.801 x 10
-4

 s 1.174 x 10
-3

 s 

572 x 672  2.492 s 0.0175 s 0.01881 s 

 

The in vivo results are shown in Figure 5.1.3. All LUT methods show strong agreement 

for both absorption and reduced scattering maps (Fig. 5.1.3a). A line profile was taken 

across the sample (dotted lines in Fig. 5.1.3a) to quantitatively compare the LUT results 

(Fig. 5.1.3b). All LUTs show agreement to the MC results (𝜇𝑎  %, 𝜇𝑠
′

 %): Linear OP LUT 

(4.1, 2.1), Linear Rd LUT (0.9, 0.6), 2D Fit LUT (1.5, 3.2). 

 



 

 

136 

 

Figure 5.1.3: In vivo measurement. A) A pig skin flap vascular occlusion model was measured using 

SFDI and optical property maps were generated using each LUT. B) Line profiles (dotted lines) 

compare each method’s accuracy. Scale bar represents 1cm. 

 

5.1.4 Discussion 

Both newly developed LUT methods, the Linear Rd LUT and 2D Fit LUT, decrease the 

processing time by a factor of ~100x by avoiding searching and interpolating with two 

different approaches. The Linear Rd LUT parameterizes a linear grid using the table’s 

sampling resolution and range and rounds to the nearest vertex that matches the sample’s 

Rd input. The 2D Fit method avoids this discrete sampling by fitting a continuous 

function to each surface of 𝜇𝑎 and 𝜇𝑠
′  as a function of diffuse reflectance at two spatial 

frequencies. 

 

Each LUT method has its own unique relationship between inversion speed, memory 

space, and accuracy. The standard Linear OP LUT must use interpolation for practically-

sized tables, which increases the required processing time. Withal, because this table 

samples Rd in a nonlinear manner, increasing the sampling grid greatly increases the 
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searching time for each input. In comparison, the Linear Rd LUT is sampled with a 

parameterized grid, and so its speed is minimally affected by increased grid size because 

no searching occurs. However, because the table is linearly sampled, the density required 

to maximize accuracy at high gradients in the table is used for the entire table, resulting 

in a large grid that requires considerable computer memory. This could potentially be 

mitigated by choosing a sampling function whose density increases for higher gradients 

of the table. The 2D Fit LUT requires less computer memory space but has variable 

accuracy across the table due to under-fitting, though this accuracy could potentially be 

weighted toward optical property values that are more likely to occur, e.g. separate LUTs 

for brain, liver, or skin tissues. While the presented 2D Fit LUT was fit to the entire 

Linear Rd LUT, accuracy was weighted to prioritize optical properties reasonably 

expected for skin tissues (𝜇𝑎= [0.0035 0.192] mm
-1

, 𝜇𝑠
′  = [0.3 2.281] mm

-1
).  Within this 

range of optical properties, errors in comparing the 2D Fit LUT with ground truth does 

not exceed 0.004 mm
-1

 in absorption and 0.1072 mm
-1

 in scattering. 

 

The two LUTs introduced in this work have utility in different settings. Figures 5.1.2(b) 

and 5.1.3(b) demonstrate the accuracy advantage of the Linear Rd LUT over other LUTs, 

but it is the most memory intensive. In a scenario where batch processing is occurring, 

the Linear Rd LUT can potentially be more accurate and 100x faster than the standard 

Linear OP LUT used. However, our lab is developing several techniques based on the 

method of SSOP imaging that are aiming towards real-time feedback, and memory is a 

major concern. Here, the 2D Fit LUT may be more practical since it requires only 18 
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parameters in memory to invert Rd values to absorption values. Likewise, if the 

processing scheme were moved to parallel processing or to a FPGA, the low memory 

requirements for the 2D Fit LUT make it a more practical choice.  

 

As with the originally proposed standard Linear OP LUT, the Linear Rd LUT and the 2D 

Fit LUT are built with a two-frequency input for inverse solutions of optical properties. 

When using inverse solvers, the problem of degeneracy should always be considered. 

Here, these LUTs have no degeneracies, but they are potentially sensitive to 

orthogonality and noise. If two spatial frequencies are chosen that are not well separated, 

e.g. 0 and 0.01 mm-1, then the table’s orthogonality will decrease, meaning the contour 

lines of absorption and scattering will start to collapse and that small amounts of noise 

can lead to large changes in the retrieved optical properties. This is why our work and 

many others use higher AC frequencies (~0.2 mm-1). A multi-frequency analysis is also 

possible for retrieving a more robust measure of absorption and scattering, and these 

LUTs are capable of incorporating multiple AC frequencies. 

 

The new frameworks introduced can be applied to other lookup table processes with 

possibly more dimensions. For profile corrected SFDI62 or 3D-SSOP,170 there is the 

potential to include height/phase dependence among the table’s input parameters for 

optical property mapping. In addition, it is important to note that in order to make 

multispectral measurements each wavelength is processed separately with the same LUT. 

Because wavelengths can be independently processed in parallel, processing time is 
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minimally affected. Given a known set of wavelengths, one could also go directly from 

Rd input values to hemodynamic values such as oxygen saturation. Generating these 

calculations after calibrating the imaging system but before the sample acquisition makes 

real-time feedback for surgical guidance possible. 

 

5.1.5 Conclusion 

In this work, we introduced a new framework for LUT formation and evaluated its 

performance on tissue-mimicking phantoms and in vivo in comparison with a standard 

OP LUT.
35

 Overall, the new techniques were accurate compared to MC simulations, i.e. 

within 0.9% and 0.6% for Linear Rd LUT 𝜇𝑎 and 𝜇𝑠
′ , respectively, and within 1.9% and 

3.2% for 2D Fit LUT 𝜇𝑎  and 𝜇𝑠
′ , respectively, and are 100x faster than the standard 

Linear OP LUT. These techniques help enable real-time image-guidance feedback for 

spatial frequency domain techniques.  
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CHAPTER 6: PRE-CLINICAL STUDIES OF OXIMETRY-MONITORED 

TISSUE VIABILITY 

 

Chapters 3 and 4 present novel acquisition techniques to enhance image-guided 

surgery, supporting both fluorescence and endogenous contrast. While testing and 

validating these techniques is paramount for their acceptance and utility, their relevance 

for clinical application needs to be demonstrated further with tissue viability studies. To 

this point, the first part of this chapter presents a rat skin flap model for tissue viability 

margin assessment using both fluorescence and tissue property monitoring. Part two 

demonstrates the power of oxygenation imaging using spatial frequency domain imaging 

for sensing vascular occlusion in vivo. 
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6.1 A Preliminary Study of Endogenous Imaging used to Predict Tissue Viability 

Boundary 

The work in section 6.2 is preliminary and has not been published. However, this work was done 

in concert with the fluorescence work in section 6.1 and the same contributing members should 

be mentioned: 

Joseph Angelo,
1,2

 Christina Vargas,
3
 Hideyuki Wada,

3, 4
 Bernard T. Lee (BTL),

3
 and Sylvain 

Gioux 

1
Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical 

Center and Harvard Medical School, Boston, MA 02215 

2
Department of Biomedical Engineering, Boston University, Boston, MA 02215 

3Division of Plastic and Reconstructive Surgery, Department of Surgery, Beth Israel Deaconess 

Medical Center and Harvard Medical School, Boston, MA 02215 

4
Department of Gastroenterological Surgery II, Hokkaido University Graduate School of 

Medicine, Sapporo, 060-8638, Japan 

5
 ICube Laboratory, University of Strasbourg, 300 Bd S. Brant, 67412 Illkirch, France 

 

6.1.1 Introduction 

Necrosis is a morbidity that can lead to higher rates of infection and longer hospital stays. 

Unfortunately, it is associated with a number of surgical procedures, such as mastectomy 

skin flaps,
173

 tissue transfer, among others. Though there is a strong effort to lower the 

occurrence of necrosis through sound surgical techniques, rates are still unacceptably 

high at 4.9 - 16%.
33,58,178

 There is a need to provide objective guidance to predict tissue 

viability and to enable intraoperative intervention.  

 

There is currently no objective measure of tissue viability in the clinic today. The 

standard of care is to use qualitative measures for tissue perfusion, such as skin color, 
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capillary refill, and temperature. The results based off these measures are shown to be 

unreliable and rely on the clinician’s experience.
25,139

  

 

This work investigates the potential for using widefield endogenous imaging as an early 

indicator of tissue viability. Profile-corrected spatial frequency domain imaging (SFDI) is 

used to quantitatively track several tissue parameters including absorption, reduced 

scattering, and hemoglobin concentrations on a rat model for skin flap necrosis. This 

preliminary work shows promising correlations between variations in these tissue 

parameters and a 7 day necrosis line determined with color imaging. 

 

6.1.2 Material and Methods 

6.1.2.1 Animal Model 

For clarity, it will be stated that animals were housed in an Association for Assessment 

and Accreditation of Laboratory Animal Care–certified facility and were studied under 

the supervision of Beth Israel Deaconess Medical Center’s Institutional Animal Care and 

Use Committee in accordance with approved institutional protocol number 030-2013. For 

this study, three Male Sprague-Dawley rats were imaged with an average weight of 365 g 

(Charles River Laboratories, Wilmington, Mass.) were induced, and anesthesia was 

maintained, with 2 to 3% isoflurane. Meloxicam (Bimeda, Oakbrook Terrace, Ill.) was 

administered subcutaneously 20 minutes before the end of surgery and at 24 hours for 

analgesia. 
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A reverse McFarlane dorsal skin flap in rats (Fig. 6.1.1) is well validated and 

reproducible as a skin profusion model.
108,135

 However, for this preliminary study only 

three rats were imaged. Analysis of a representative sample is provided from a single rat. 

A visual example of a rat prepared for surgery is shown in Fig. 6.1.1. This also represents 

the control image. 

 

 

Figure 6.1.1: A color image of the control time point: a rat marked for skin flap surgery. 

 

6.1.2.1 Spatial Frequency Domain Imaging 

The details of the SFDI imaging system have been previously reported.
64

 Briefly, a 

clinic-friendly cart houses the NIR light source, control electronics, and computer and has 

an adjustable imaging head on a locking mechanical arm. The NIR source is capable of 

projection 6 wavelengths simultaneously or in any combination of 670, 730, 760, 808, 

860, and 980 nm. This source is fiber-coupled to a digital light modulator (DMD) which 

projects structured illumination used for SFDI analysis. The collected light is split into 
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one of three optical pathways: color, NIR1 (650 to 780 nm), or NIR2 (780 to 1000 nm). 

All three cameras are co-registered for comparison and analysis purposes. 

 

For analysis, the spatial frequencies of 0 and 0.2 mm
-1

 were projected and processed for 

optical property measurements at each wavelength. These absorption coefficients were 

then fit with least square error to chromophore extinction spectra, such as oxyhemoglobin 

and deoxyhemoglobin, using Beer’s Law. Two methods of fit were considered for 

chromophore extraction. The first used water as a chromophore to fit, and the second 

method set the water concentration at a fixed value of 50% and excluded 980 nm from 

chromophore fitting. Control images were taken preoperatively and 0 time point images 

were taken immediately after surgery, followed by acquisitions at 5, 10, 15, 30 minutes, 

and every 30 minutes thereafter. 

 

To reduce the amount of information, line profiles were taken across the entirety of the 

skin flap, utilizing the surgical margins drawn in Fig. 6.1.1. The plastic surgeon boundary 

lines were averaged horizontally for every vertical position to form a boundary line for 

SFDI evaluation. 

 

6.1.2.3 Necrosis Boundary Determination 

Three independent plastic surgeons were asked to draw a line to separate what they 

believed were the viable and necrotic areas of the flap using the color image on 
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postoperative day 7. This information was used to as a gold standard to evaluate the SFDI 

results. 

 

6.1.3 Results 

Figure 6.1.2 represents the wealth of information from a single time point. Presented are 

tissue optical parameters from Rat 3 15 minutes post operation. For all 6 wavelengths, 

absorption and reduced scattering optical property maps are given. In Fig 6.1.2 A) a 

chromophore fitting was done to include 980 nm and fit for percent water concentration. 

B) presents the fitting excluding 980 nm and fixes the water concentration at 50% for 

chromophore fitting. Also presented are the power law scattering parameters log(A) and 

B, shown to be sensitive to nanoscale physiological changes.
154
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Figure 6.1.2: Tissue optical parameters given for all wavelengths and for various chromophore 

fittings. Also included is a 72 hour post-operative color image for a visual reference. Optical property 

maps are given in mm
-1

, oxy-, deoxy-, and total hemoglobin are given in μM, and oxygenation and 

water are given in percent concentration. 

 

Line profiles for several tissue optical measurements of the Rat 3 skin flap are shown in 

Fig. 6.1.3. The horizontal axes are pixel location in the extracted maps, 0 being at the 

base of the necrotic end of the flap and 430 being at the perfused, connected end of the 

flap. From the bulk of information in Fig. 6.1.2, the parameters that best correlated with 

the necrosis boundary determined by a group of three plastic surgeons (black dotted line) 

are represented. 
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Figure 6.1.3: Line profiles from Rat 3 for various tissue optical parameters. All horizontal axes 

represent pixel location across the skin flap. The black dotted line represents the necrosis boundary 

line determined by three plastic surgeons. 

 

6.1.4 Discussion and Conclusion 

The utility of this measurement is in its potential for early intervention to treat ischemic 

tissue. Surprisingly, directly after surgery at the 0 time point, there are noticeable 

differences in the slope and magnitude of necrotic and viable tissue areas for 670 and 760 

absorption and deoxyhemoglobin (see Fig. 6.1.3). To be clear, directly after the flap is 

elevated it is sutured back in place, which takes approximately 3 to 5 minutes, so the 0 

time point represents tissue that has possibly been losing perfusion for several minutes. 

For all parameters in Fig. 6.1.3, the trends started at time 0 are kept through the 30-

minute time point. This is also surprising, as the outstanding visual appearance of 
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necrosis seen in the 72-hour image take days to form, but this data and the paper 

presented in the previous section show sensitivity to early perfusion loss. 670 and 760 nm 

absorption contribute the most to the deoxyhemoglobin chromophore fit, so the trends, 

similar in the absorption parameter, are found directly in the chromophore. As expected, 

the necrotic region is becoming deoxygenated, though interestingly the entire region 

beyond the eventual necrotic boundary has the same level of deoxyhemoglobin. The 

point of transition from this deoxyhemoglobin plateau to a monotonic region of decrease 

seems to correspond with the necrotic boundary very well. 

 

The chromophore most sensitive to 860 nm absorption is oxyhemoglobin. However, one 

would expect the concentration of oxyhemoglobin to fall dramatically in the necrotic 

region and Fig. 6.1.3 does not show this trend. The ischemia has not set in long enough to 

introduce other chromophores like high levels of methemoglobin, and so the 

chromophore fitting should still be most sensitive to oxy- and deoxyhemoglobin, along 

with water and lipids. Though this method shows very promising results for possible 

tissue viability assessment based on deoxyhemoglobin alone, the next section of this 

chapter will demonstrate the importance of having both oxy- and deoxyhemoglobin to 

help differentiate venous from arterial occlusions. 
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6.2 Intraoperative Hemifacial Composite Flap Perfusion Assessment using Spatial 

Frequency Domain Imaging: A Pilot Study in Preparation for Facial 

Transplantation 

 

The work in part 6.2 was published in the Annals of Plastic Surgery
174

 with the following 

contributing authors: 

Vargas, C.R. MD,
1
 Nguyen, J.T. MD,

1
 Ashitate, Y. MD,

2,3
 Angelo, J. BS,

2,4
 Venugopal, V. PhD,

2
 

Kettenring, F. BS,
2
 Neacsu, F. MSc,

2
 Frangioni, J.V. MD, PhD,

2,5,6
 Gioux, S. PhD,

2
 Lee, B.T. 

MD, MBA, MPH
1
 

1
 Division of Plastic and Reconstructive Surgery, Department of Surgery, 

2
 Division of 

Hematology and Oncology, Department of Medicine, and 
5
 Department of Radiology, Beth Israel 

Deaconess Medical Center, Harvard Medical School, Boston, MA  

3
 Division of Cancer Diagnostics and Therapeutics, Hokkaido University Graduate School of 

Medicine, Sapporo, Japan  

4
 Department of Biomedical Engineering, Boston University, Boston, MA  

5
 Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, 

Boston, MA 

6
 Curadel, LLC, Worcester, MA. 

 

6.2.1 Introduction 

Vascularized composite allotransplantation (VCA) has continued to increase in 

popularity over the last 2 decades as a means of providing functional restoration of 

complex defects.
70

 The VCA methods are uniquely advantageous compared with 

conventional techniques in that they offer replacement of defective or absent structures 

with anatomically identical tissues.
129

 Advancing microsurgical and immunosuppressive 

techniques have led to composite hand and face transplantation with encouraging 
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results.
147,149

 Since the first reported partial face transplantation in 2005, over 30 human 

facial VCAs have been performed worldwide.
42,83,148

 

 

Despite distinct clinical utility, more complex VCAs present inherent risks, both 

perioperatively and over the long term. The risk of flap failure in head and neck free 

autologous tissue transfer has been reported at 3.8% and represents significant clinical 

morbidity.
187

 Emergent surgical re-exploration is indicated for postoperative flap 

compromise and is most often performed for venous or arterial insufficiency.
187,181

 A 

majority of salvage procedures performed for vascular compromise in a recent series of 

autologous head and neck flaps were reported to be successful in preventing complete 

flap loss.
187

 Earlier identification of flap compromise and prompt re-exploration have led 

to improvement in rates of successful flap salvage.
43

 The importance of early detection 

and salvage of facial allografts cannot be understated, as loss of the graft mandates 

removal, and may leave patients in a worse functional and aesthetic state than before 

transplantation.
129

  

 

Although the field of reconstructive microsurgery has seen remarkable advances in VCA, 

standard intraoperative monitoring techniques have not evolved. In most institutions, flap 

viability is determined clinically by the surgical team, typically in terms of color, 

temperature, edema, and capillary refill. Unfortunately, these measures are subjective and 

rely on relatively late signs of tissue compromise. Often, clinical assessment is 

supplemented with the use of a handheld Doppler probe when pedicle vessels are easily 
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accessible. Although other techniques, such as implantable Doppler systems,
68,100

 laser 

Doppler flowmetry,
68

 fluorescence angiography,
94,95,103

 and near-infrared (NIR) tissue 

oximetry
98,100

 have been described, each has important limitations, and none has achieved 

widespread adoption into routine clinical practice. 

 

Spatial frequency domain imaging (SFDI) is a noncontact optical imaging method which 

provides accurate assessment of tissue optical properties using rapid acquisition over a 

large field of view (>100 cm2).
35,177

 Measurement of specific NIR wavelengths allows 

quantification of tissue constituents—oxyhemoglobin, deoxyhemoglobin, lipids, and 

water—at depths up to 5 mm.
63

 Our group has previously validated the SFDI system in 

porcine abdominal skin flap, bowel, and liver ischemia models, and performed a first-in-

human study during perforator flap breast reconstruction.
120

 Here, we present a novel 

evaluation of this technology in a porcine hemifacial composite transplantation model. 

 

6.2.2 Methods 

6.2.2.1 Animals 

The use of animals in this study was performed under the supervision of the Institutional 

Animal Care and Use Committee, and in accordance with approved institutional protocol 

number 046-2010. Three female, 35 kg Yorkshire pigs (E.M. Parsons and Sons, Hadley, 

MA) were included in this study. All animals were healthy, with no history of 

allosensitization. Each pig was housed in its own cage and provided with a standard diet 
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and water ad libitum. An initial physical examination was performed on each animal 

before beginning the procedure. 

 

6.2.2.2 Surgical Procedure 

Anesthesia was induced using 4.4 mg/kg intramuscular Telazol (Fort Dodge Animal 

Health, Fort Dodge, IA), and maintained with 2% isoflurane (Baxter Healthcare Corp., 

Deerfield, IL) in oxygen after intubation. Mechanical ventilation via Quantiflex ventilator 

(Matrix Medical, Inc, Orchard Park, NY) was maintained throughout the procedure. 

Femoral central venous access was established for intravenous hydration, and a urinary 

catheter was placed for urine output monitoring before the start of surgery. Physiologic 

parameters—heart rate, blood pressure, temperature, and urine output—were monitored 

during all experiments. 

 

A total of 6 hemifacial composite flaps were elevated, and included skin, muscle, nerve, 

ear cartilage, parotid gland, and surrounding soft tissue as previously described.
119

 In the 

lateral position, after hair removal, skin was incised to the depth of the platysma 

anteriorly, cleido-occipitalis and cleidomastoideus posteriorly, and to the periosteum 

cranially. The upper and lower eyelids were excluded from the flap. Anteriorly, the 

platysma was divided, and external jugular vein was carefully preserved as the pedicle 

vein. The tendon of the sternomastoideus muscle was transected, and the bony 

paracondylar process was removed to reveal the common carotid artery and its branches. 

The internal carotid artery and lingual artery were ligated and the external carotid was 
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preserved as the pedicle artery. The superficial temporal artery, 1 of 2 terminal branches 

of the external carotid, was preserved to supply the flap; the other branch, the maxillary 

artery, was identified and ligated. Facial dissection was carried out superficial to the 

masseter muscle toward the ear, with preservation and inclusion of the parotid gland and 

ligation of the facial nerve trunk. Posteriorly, the flap was elevated in a plane superficial 

to the trapezius, cleido-occipitalis, and cleidomastoideus muscles. External ear cartilage 

was detached at the osteocartilaginous junction and included in the flap. After complete 

elevation about the external jugular vein and external carotid artery pedicle, the flap was 

secured using a running 4-0 nylon cuticular suture to prevent inadvertent pedicle tension 

or torsion (Fig. 6.2.1). 

 

 

Figure 6.2.1: Hemifacial flap elevation. The SFDI field of view is shown after elevation of a right 

hemifacial composite flap in a 35-kg Yorkshire pig. The anteriormost aspect of the face is included 

for control measurement and comparison. 
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To evaluate the ability to detect tissue oxygenation defects associated with acute 

compromise of the vascular pedicle, after an initial 3 to 5 minutes of that the data were 

acquired, a vascular clamp was applied to either the pedicle artery or vein for a period of 

10 to 15 minutes and subsequently released. 

 

6.2.2.3 Imaging 

As shown in Figure 6.2.2, the SFDI system consists of an imaging cart containing a 

multispectral NIR light source, control electronics, computer, and adjustable imaging 

head which enables data acquisition over a 16 × 12 cm field at a 45-cm working distance. 

The imaging head is further composed of a projector which shines patterns of light onto 

the surgical field and cameras that record color images coregistered with NIR images for 

further processing (2 channels, NIR1 from 650 to 780 nm, and NIR2 from 780 to 1000 

nm). The SFDI data are acquired by projecting 6 wavelengths onto the field: 670, 730, 

and 760 collected on the NIR1 channel, and 808, 860, and 980 nm collected on the NIR2 

channel. Three distinct patterns are projected: 2 of which are used to extract optical 

properties, and the other which is used for profilometry measurement and correction for 

variation in surface profile.
62

 Acquisition is performed in real-time intraoperatively, then 

processed to extract spatial maps of tissue oxyhemoglobin (ctO2Hb) and 

deoxyhemoglobin (ctHHb) concentration. Complete details of the SFDI clinical system 

have been previously reported.
63

 The SFDI oxygen saturation measurements have also 

been validated directly against a clinical, Food and Drug Administration–approved 
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oxygenation probe in an earlier study using a skin flap model, and values were found to 

correlate within 10%.
63

 

 

 

Figure 6.2.2: The SFDI imaging system. The SFDI imaging system is composed of a cart containing 

all electronics and a light source, and of an imaging head containing a projector and 3 coregistered 

cameras (color, NIR1 and NIR2). A) Schematics of the imaging head. B) Picture of the actual 

imaging system. 

 

In this study, SFDI data were acquired continuously during vascular pedicle clamping, 

and for 10 minutes after clamp release. Regions of interest were established in 2 areas of 

the facial composite flap as well as in a control area of the face not included in the flap. 

Data were processed using a custom code in MATLAB (Mathworks, Natick, MA), and 

component analysis of oxyhemoglobin concentration, deoxyhemoglobin concentration, 

and total hemoglobin was performed. 
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6.2.2.4 Statistical Analysis 

Change in flap oxygenation measurements were compared with controls using unpaired t 

tests. A P value less than 0.05 was considered statistically significant. Flaps that 

experienced significant change in control tissue measurements during the imaging period 

were not included. 

 

6.2.3 Results 

A total of 6 composite hemifacial flaps were successfully elevated and evaluated using 

SFDI. Intraoperative SFDI demonstrated clear change in all 3 parameters during both 

arterial and venous pedicle clamping. Unique and consistent profiles using these elements 

were identified for arterial occlusion and venous occlusion relative to controls and to one 

another. 

 

6.2.3.1 Arterial Occlusions 

As expected clinically, the concentration of oxyhemoglobin after arterial pedicle 

occlusion decreased within seconds by a mean of 20.0 µM (SD, 5.5). The concentration 

subsequently appeared to reach a steady trough, which lasted until clamp release. 

Interestingly, the postocclusion concentration of oxyhemoglobin exceeded baseline flap 

measurements by an average of 3.1 µM (SD, 2.0) (Fig. 6.2.3A). 
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Figure 6.2.3: Arterial occlusion. Representative SFDI measurements of oxygenation parameters are 

shown over the study period for flap (green) and control (blue) regions. The pedicle artery was 

clamped at 3 minutes and released at 16min (red arrows). Numbers 1 to 4 indicate key time points 

for which spatial maps are shown in Figure 6.2.4. A) Tracing of ctO2Hb concentration over the study 

period. B) Tracing of ctHHb concentration over the study period. C) Tracing of ctHbT during the 

study period. 

 

Deoxyhemoglobin concentration within the flap also decreased within seconds after 

arterial pedicle occlusion, and steadily declined by a mean of 4.6 µM (SD, 2.9) during the 

clamping period. After clamp release, ctHHb increased rapidly, peaking an average of 2.8 

µM (SD, 2.1) above the baseline flap measurement before declining again (Fig. 6.2.3B). 
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Total hemoglobin concentration decreased by an average of 23.0 µM (SD, 4.0) during 

arterial pedicle clamping, quickly reaching a relatively steady value. Release of the 

vascular clamp produced an immediate increase in total hemoglobin, which exceeded 

initial flap measurements by 5.0 µM (SD, 4.6) (Fig. 6.2.3C). 

 

 

Figure 6.2.4: Spatial map of perfusion defects during arterial occlusion. Changes in flap color, 

ctO2Hb, ctHHb, and ctHbT over the SFDI field of view are shown at key time points (1–4) during 

arterial pedicle occlusion. The anterior aspect of the face is included as a control region for 

comparison. 

 

Spatial mapping of alterations in ctO2Hb, ctHHb, and total hemoglobin (ctHbT) during 

arterial occlusion are shown in Figure 6.2.4. Although the flap color may appear slightly 

pale to the surgeon in late occlusion (color images), examination of the SFDI component 
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maps demonstrate visible change at the earlier time point. All 3 components return to or 

exceed baseline measurements after release of the pedicle clamp. 

 

6.2.3.2 Venous Occlusions 

Unlike the arterial occlusion pattern, venous pedicle clamping produced an immediate 

increase in oxyhemoglobin concentration by a mean of 13.0 µM (SD, 3.3). The 

concentration was noted to fall slowly during the clamping period until reaching 

approximately the initial flap value. Only a very small increase in concentration was 

noted when the venous clamp was released (Fig. 6.2.5A). 

 

Deoxyhemoglobin measurements followed a dramatic and consistent path during venous 

occlusion, with a progressive increase by an average of 39.0 µM (SD, 14.0) over the 

period leading up to clamp release. Release of the venous clamp resulted in a sharp 

decrease in concentration followed by a gradual return to initial values. Unlike the 

changes in ctHHb with arterial occlusion, flap ctHHb during venous occlusion actually 

increased to values well above that of the control tissue (Fig. 6.2.5B). 
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Figure 6.2.5: Venous occlusion. Representative SFDI measurements of oxygenation parameters are 

shown over the study period for flap (green) and control (blue) regions. The pedicle vein was 

clamped at 3 minutes and released at 13minutes (red arrows). Numbers 1 to 4 indicate key time 

points for which spatial maps are shown in Figure 6.2.6 A) Tracing of ctO2Hb concentration over the 

study period. B) Tracing of ctHHb concentration over the study period. C) Tracing of ctHbT during 

the study period. 

 

Initial ctHbT measurements in the flap were 105.0 µM (SD, 14.3). Total hemoglobin 

concentration during pedicle vein occlusion was noted to increase quickly at first then 

more slowly, reaching an average of 134.0 µM (SD, 18.4). Clamp release produced a 

steep decrease in ctHbT, which subsequently approached initial flap values at 106.0 µM 



 

 

161 

(SD, 16.3) (Fig. 6.2.5C). This pattern was noted to correlate inversely with changes 

during arterial occlusion (Fig. 6.2.3C). 

 

 

Figure 6.2.6: Spatial map of perfusion defects during venous occlusion. Changes in flap color, 

ctO2Hb, ctHHb, and ctHbT over the SFDI field of view are shown at key time points (1–4) during 

venous pedicle occlusion. The anterior aspect of the face is included as a control region for 

comparison. 

 

Spatial mapping of alterations in ctO2Hb, ctHHb, and ctHbT during venous occlusion are 

shown in Figure 6.2.6. Although changes in flap color would be apparent to the surgeon 

in late occlusion (color images), examination of the SFDI component maps demonstrate 

visible change at the earlier time point. Return to baseline appearance is seen in all 4 

components after release of the pedicle clamp. 
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6.2.4 Discussion 

The SFDI technology provides a potential method for reliably imaging changes in 

ctO2Hb, ctHHb, and ctHbT during VCA in this model of hemifacial flap vascular 

compromise. Characteristic patterns identified using these measurements were seen 

quickly after vascular clamping and may be reliably differentiated based on which 

pedicle vessel was clamped. This technique could provide a means of not only rapidly 

detecting pedicle occlusion but also directing revascularization of the affected vessel. 

 

The opportunity to view spatial representations of changes in tissue oxygenation 

associated with pedicle compromise provides additional valuable information to the 

surgeon. As regions of the flap further from the pedicle vessels are typically affected 

more rapidly by vascular insufficiency, evaluation of the larger surgical field is important 

for early detection. Figure 6.2.6 demonstrates the pattern of alteration in each aspect of 

tissue oxygenation during key phases of experimental venous pedicle occlusion. 

Appreciable change in ctO2Hb, ctHHb, and ctHbT occur quickly during early 

occlusion—perhaps sooner than might be detected using more localized techniques or 

with tissue oximetry measurements alone. 

 

As demonstrated in the ctO2Hb, ctHHb, and ctHbT tracings during pedicle vessel 

clamping (Figs. 6.2.3 and 6.2.5), the ability to extract these values individually provides 

valuable insight into the presence and type of vascular compromise beyond simply 

monitoring tissue oxygenation. Access to this information intraoperatively could aid 
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surgeons during initial microsurgical anastomosis and flap inset as well as during 

revision, if necessary. As shown in Table 6.2.1, significant change in ctO2Hb, ctHHB, 

and ctHbT was seen in both arterial and venous flap pedicle occlusion relative to control 

tissue. By analyzing ctO2Hb, ctHHb, and ctHbT individually, the SFDI system has the 

ability to differentiate between arterial and vascular compromise within 2 minutes; far 

earlier than any potential irreversible damage from thrombosis. 

 

Table 6.2.1: Component Change with Vascular Occlusion 

 
ΔctO2Hb, μM ΔctHHb, μM ΔctHbT, μM 

(A)  Arterial Occlusion   

Flap 20.0 (SD, 5.5) 4.6 (SD, 2.9) 23.0 

Control 0.3 (SD, 0.5) 0.7 (SD, 0.8) 0.0 (SD, 0.0) 

P <0.01* <0.01* <0.01* 

(B)  Venous Occlusion   

Flap 13.0 (SD, 3.3) 27.0 (SD, 13.0) 29.0 (SD, 10.0) 

Control 12.0 (SD, 1.9) 0.2 (SD, 0.4) 1.0 (SD, 1.1) 

P <0.01* <0.01* <0.01* 

   (A) Absolute change in ctO2Hb, ctHHb, and ctHbT in control tissue and the hemifacial flap 

during pedicle artery occlusion are shown (mean, standard deviation). P values less than 0.05 

are considered statistically significant 

   (B) Change in ctO2Hb, ctHHb, and ctHbT in control tissue and hemifacial flap during pedicle 

vein occlusion are shown (mean, standard deviation). P values less than 0.05 are considered 

statistically significant. 

 

There are limitations to this study. To compare SFDI flap monitoring against the gold 

standard of clinical assessment as well as methods of tissue oximetry currently in use at 

some institutions, we will need to perform simultaneous measurements of flap 

oxygenation parameters using all three techniques. Future study is planned in this regard 

to assess the time to detection of vessel occlusion using each method. Only complete 

vascular compromise was evaluated; additional investigation of partial pedicle 
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compromise is planned to assess the use of SFDI in varying degrees of flap failure. 

Effects of microvascular anastomosis were not evaluated because native pedicle vessels 

were clamped after flap elevation. The experimental clamp time of 15 minutes, though 

important for early detection of pedicle compromise, would not detect patterns of change 

in oxygenation parameters that require longer ischemia time. In these preliminary 

experiments, we did not attempt to predict long-term flap outcome in the setting of 

specific vascular insults. Our group is planning additional study of more complex auto- 

and allografted composite tissue using SFDI. We are also pursuing development of 

software capable of providing real-time processing of the SFDI data to further increase 

the opportunity for intraoperative application (see Chapter 5). 

 

The need for noninvasive, reliable, immediate assessment of composite tissue graft 

viability is clear, given the morbidity associated with flap failure. The ability to rapidly 

detect and simultaneously characterize vascular pedicle defects represents an important 

advancement in the evaluation of composite tissue transfer. The SFDI technology shows 

promise in providing reconstructive surgeons with critical intraoperative guidance with 

regard to pedicle vessel integrity. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 

This final chapter summarizes the conclusions of this body of work and offers 

ideas directly related to these results for future work. 

 

Section 7.1 Summaries 

Chapter 3 presents novel technological improvements to fluorescence imaging. The first 

method, masked detection of structured illumination (MDSI), scans a line of light across 

a fluorescent sample and uses various masks on the collection pathway to selectively 

enhance contrast for either superficial or deep fluorescent sources. This is done 

completely through instrumentation, as the choice of detection mask acts as a filter for 

short or long source-detector separations, effectively favoring photons that have scattered 

minimally or that have scattered broadly. 

 

The second method presented in Chapter 3 gives a quantitative fluorescence correction 

method using single snapshot of optical properties called qF-SSOP. This method uses 

simultaneous real-time acquisition of fluorescence and optical property maps at the 

excitation and emission wavelengths in order to correct the fluorescence signal and 

provide fluorescence concentration. This method is shown to have highly accurate results 

for a large range of optical properties and outperforms raw fluorescence imaging and F/R 

imaging (a common correction method) as well. Furthermore, we have demonstrated the 
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real-time capabilities of this measurement, as each measurement time depends upon a 

single exposure. 

 

Chapter 4 presents robust improvements to real-time imaging of optical properties with 

two new techniques. The first builds upon the original single snapshot of optical 

properties (SSOP) imaging by introducing two-dimensional image processing, height 

map generation, and profile-corrections to SSOP’s real-time acquisition capabilities. This 

technique has been validated against standard spatial frequency domain imaging (SFDI) 

measurements, including height map generation, and demonstrated its acquisition speed 

by presenting a moving hand at approximately 10 frames per second. This profile-

corrected technique gives SSOP the robustness necessary for practical imaging in the 

clinic. 

 

Next, the second technique presented in Chapter 4 was the endoscopic implementation of 

SSOP. This technique, for the first time, enables simultaneous acquisition of profile-

corrected optical property maps, a sample profile map, and hemodynamic maps such as 

oxyhemoglobin, deoxyhemoglobin, total hemoglobin, and oxygen saturation. Several 

new challenges were circumvented in order to implement the endoscopic, dual-

wavelength imaging scheme, including the spatial-frequency dependence on sample 

distance. This work validated the accuracy of this bench-top, dual-wavelength endoscopic 

SSOP system by measuring samples with known optical properties over several distances 

from the distal end of the endoscope using both wavelengths and ensuring no crosstalk 
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was present. Several videos were acquired using single- and dual-wavelength imaging as 

fast as 11 frames per second and vascular occlusions were tracked using oxygenation 

imaging, resulting in the predictable curve of baseline saturation, loss of perfusion, and 

quick recovery to normal. This adaptation of SSOP opens the door to many applications 

once thought to be cut-off from oxygenation imaging, and future work will push it there. 

 

Chapter 5 focuses the other side of this equation for real-time imaging: processing speed. 

Using new ways of forming and utilizing lookup table (LUT) methods, this work 

demonstrates that it can be as accurate as the standard LUT method
35

 while being 100 

times faster. This improvement brings processing speed from seconds to milliseconds and 

removes the processing bottleneck that prevented any chance at real-time processing. 

These new methods were demonstrated on a wide range of optical property phantoms as 

well as in vivo. They also aim to viable in different environments, with one more suited 

for batch processing on a personal computer and the other for possible on-chip 

processing. These new methods provide the means for real-time feedback and looks to 

future work for that implementation. 

 

Finally, Chapter 6 provides demonstrations of widefield optical imaging technologies 

assessing tissue viability. The first pare uses a rat skin flap model of necrosis in order to 

have a sample with both necrotic and viable tissue that can be separated by a boundary. 

Three plastic surgeons chose a necrosis boundary that was used as a gold standard for 

both the fluorescence imaging and SFDI study. The SFDI study only presents preliminary 
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data for a single rat, but shows promising correlations between the necrosis boundary and 

deoxy-hemoglobin variation.  

 

The final project in Chapter 6 presents a pig facial flap model to study how sensitive 

SFDI is to vascular occlusions, both venous and arterial. The work demonstrates a skin 

flap model that is viable and amenable to both arterial and vascular occlusions. As 

expected, oxyhemoglobin concentrations decrease rapidly for arterial occlusions, while 

deoxyhemoglobin greatly increases for venous occlusions, showing that these 

measurements are indeed immediately sensitive to occlusions and can show quantitative 

measures of change far before subjective measures currently practiced such as capillary 

refill or skin color. However, this work also demonstrates that measurements of tissue 

oxygen saturation, while capable of sensing either occlusion, cannot discern between an 

arterial and a venous occlusion. This emphasizes the need for a suite a measurements 

besides oxygenation alone. 

 

Section 7.2 Future Work 

Many future directions are possible based off this dissertation, though a few potential 

directions stand out to extend the presented work: 

1. Masked detection of structured illumination resulted in enhanced fluorescence 

images, though this work was less quantitative and less impressive than initially 

hoped for. However, there is potential for this method with endogenous imaging. 

Work has been done by Mourant and Bigio et al that shows a region of source-
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detector separations that does not depend on scattering properties.
111

 This means 

masked detection could be designed to utilize this regime and be sensitive only to 

changes in absorption presumably due to physiological changes. 

 

2. Many exciting avenues are available to SSOP since its only requirement is that a 

striped pattern is projected and collected. Some work can aim to improve its 

application and robustness, as done here with profile measurements and 

endoscopic implementation, but one can also aim for multimodal developments, 

such as the presented qF-SSOP or another new technique, cSFDI.
59

 For 

robustness, the ability to acquire many spatial frequencies at once could 

potentially be very useful and has been demonstrated recently,
116

 but not using 

SSOP. The analysis and filtering in Fourier space is straight forward and new 

information could be useful, especially for depth resolved measurements. For a 

multimodal contribution, hyperspectral SSOP seems like a natural extension of 

combining the quantitative power of the spatial frequency domain along with the 

robust content of hyperspectral imaging. The most present challenge would be to 

detect and separate all of this information, but snapshot hyperspectral imaging is 

also on the rise,
67,72

 and the timing seems quite perfect. 

 

3. The rapid lookup table methods presented here have several avenues for 

improvement, namely improving the fitting functions for the analytic method, 

choosing a nonlinear (but parametric) sampling function for the “linear” lookup 



 

 

171 

table, and pre-computing a table for other results besides optical properties. 

Optical properties are most often used for spectroscopic analysis of the absorption 

coefficients, and so creating a table that solves directly for oxy- and 

deoxyhemoglobin would make this table immediately applicable. Furthermore, 

these tables can be adapted to incorporate more dimensions, or inputs, for more 

complex output, such as profile-corrected optical properties or multi-frequency 

analysis. 

 

4. Finally, perhaps the least exciting for engineers but the most necessary, much 

legwork is needed to bring real clinical impact with most optical technologies that 

sense functional change. Diffuse optics has continued to make quantitative 

measures of biomarkers for the last twenty-odd years, yet has little use in the 

clinic today. More work is needed to demonstrate, with specific application, the 

utility and physiological relevance of most optical measurements. A few 

researchers have taken a statistical approach and showed utility of their 

measurement for guiding surgeons by demonstrating their technique can very 

accurately discern, for example, between thyroid and parathyroid glands
109

 or 

between neoplastic and non-neoplastic polyps.
137

 This I find very promising, as 

demonstrating high sensitivity, specificity, and reproducibility for a specific 

problem is providing an answer to that problem. Utilizing this paradigm, perhaps 

oxygenation measurements of a specific tissue during a specific surgery can be 

tracked for predictive outcome. Hopeful future applications for endoscopic SSOP 
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are aimed at imaging various bowel diseases and occlusions, and the use of this 

tightly focused approach could bring great impact to patient care and 

management. 

 

Section 7.3 Conclusion 

This body of work has aimed to improve, expand, and mature the field of biomedical 

optics so as to be practical for clinical use and benefit patient outcomes. Surgical 

guidance is currently lead by subjective measures and needs to be replaced with 

quantitative tools to provide objective guidance. The proposed techniques have been 

validated for accuracy and have provided potential answers to what these objective tools 

might look like. More work needs to be done in order to see these tools reach the clinic, 

including system optimization and clinical studies to investigate their utility for specific 

clinical problems. Biomedical optics has great potential to lower healthcare costs, aid 

patient management, and improve patient outcomes, and it is my hope that this body of 

work contributes to this goal. 
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