
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Doctoral Dissertations Graduate School 

2011 

ENHANCEMENTS TO THE MODIFIED COMPOSITE PATTERN ENHANCEMENTS TO THE MODIFIED COMPOSITE PATTERN 

METHOD OF STRUCTURED LIGHT 3D CAPTURE METHOD OF STRUCTURED LIGHT 3D CAPTURE 

Charles Joseph Casey 
University of Kentucky, ccasey0@hotmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Casey, Charles Joseph, "ENHANCEMENTS TO THE MODIFIED COMPOSITE PATTERN METHOD OF 
STRUCTURED LIGHT 3D CAPTURE" (2011). University of Kentucky Doctoral Dissertations. 226. 
https://uknowledge.uky.edu/gradschool_diss/226 

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been 
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


 
 
 
 
 
 
 
 
 
 
 

ABSTRACT OF DISSERTATION 
 
 
 
 
 

Charles Joseph Casey 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Graduate School 
 

University Of Kentucky 
 

2011 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

ENHANCEMENTS TO THE MODIFIED COMPOSITE PATTERN METHOD OF  
STRUCTURED LIGHT 3D CAPTURE 

 
 
 
 
 

__________________________________________ 
 

ABSTRACT OF DISSERTATION 
__________________________________________ 

 
 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Engineering 
at the University of Kentucky 

 
 

By 
Charles Joseph Casey 

 
Lexington, Ky 

 
Director: Dr. Laurence G. Hassebrook, Professor of Electrical and Computer Engineering 

 
Lexington, Ky 

 
2011 

 
Copyright © Charles Joseph Casey 2011 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

ABSTRACT OF DISSERTATION 
 
 
 
 

ENHANCEMENTS TO THE MODIFIED COMPOSITE PATTERN METHOD OF  
STRUCTURED LIGHT 3D CAPTURE 

 
The use of structured light illumination techniques for three-dimensional data acquisition 
is, in many cases, limited to stationary subjects due to the multiple pattern projections 
needed for depth analysis.  Traditional Composite Pattern (CP) multiplexing utilizes 
sinusoidal modulation of individual projection patterns to allow numerous patterns to be 
combined into a single image.  However, due to demodulation artifacts, it is often 
difficult to accurately recover the subject surface contour information.  On the other 
hand, if one were to project an image consisting of many thin, identical stripes onto the 
surface, one could, by isolating each stripe center, recreate a very accurate representation 
of surface contour.  But in this case, recovery of depth information via triangulation 
would be quite difficult.  The method described herein, Modified Composite Pattern 
(MCP), is a conjunction of these two concepts.  Combining a traditional Composite 
Pattern multiplexed projection image with a pattern of thin stripes allows for accurate 
surface representation combined with non-ambiguous identification of projection pattern 
elements.  In this way, it is possible to recover surface depth characteristics using only a 
single structured light projection. 
 
The technique described utilizes a binary structured light projection sequence (consisting 
of four unique images) modulated according to Composite Pattern methodology.  A stripe 
pattern overlay is then applied to the pattern.  Upon projection and imaging of the subject 
surface, the stripe pattern is isolated, and the composite pattern information demodulated 
and recovered, allowing for 3D surface representation.   
 
In this research, the MCP technique is considered specifically in the context of a Hidden 
Markov Process Model.  Updated processing methodologies explained herein make use 
of the Viterbi algorithm for the purpose of optimal analysis of MCP encoded images.  
Additionally, we techniques are introduced which, when implemented, allow fully 
automated processing of the Modified Composite Pattern image. 
 
Keywords: Composite Pattern, Structured Light, 3D, image processing, scan 
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Chapter 1 Introduction 

 
Structured Light Illumination (SLI) techniques for three-dimensional (3D) depth 

measurement have been in development since the early twentieth century [1, 2].  With the 

introduction of computing machinery, SLI data acquisition has been an active area of 

image processing research, and a wide range of patterns and codification strategies have 

been developed.  Today, there is widespread demand for technologies with the ability to 

acquire a digital representation of the three 3D form of a real object [3-16].  In the 

entertainment industry, special effects often demand computer graphics (CG) 

representations of objects.  Manufacturing concerns will often make use of physical 

models to generate design data for parts and products or for quality control purposes [4, 

5].  Archivists, artists, and historical scholars can benefit from 3D models of various 

objects, artifacts, or sculptures [10].  3D imaging will often be used in the field of 

robotics [6-8], and even those who work in the art of photography, at both professional 

and consumer levels, may wish to simply extend the scope of their work by integration of 

real 3D data.  In order to satisfy these demands, a highly varied assortment of technical 

solutions has been developed with the aim of fast, accurate, and reliable 3D data 

acquisition. 

1.1 3D Acquisition 
The classes of available technologies can be roughly categorized according to a 

simple hierarchy, as shown in Figure 1.1.  The first distinction is drawn between contact 

scanning, which requires physically touching the object; and non-contact scanning. 

 



 

 2 

 

Figure 1.1, Hierarchy of 3D acquisition devices 
 

Contact 3D scanning machines, like all scanning machines, are highly varied in 

capacity and characteristics.  Large, industrial Coordinate Measuring Machines (CMM) 

and Universal Measuring Machines (UMM) allow extremely precise and dense 

measurements, at the cost of highly specialized operation and long scan times [17, 18].  

Stand-alone measuring probes [19, 20] have been developed for use with common 

machine tools to allow similar capabilities on smaller scales as well, yet are subject to 

many of the same drawbacks as the larger devices.  Hand-operated CMM probes [21, 22] 

allow data collection in a quick and intuitive way, but due to their manual nature, are 

often incapable of acquiring dense data.  That is, the highest possible scan density will 

often be on the order of centimeters, rather than the sub-millimeter precision possible 
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with many other devices.  Additionally, specialized scanners exist, often to acquire data 

regarding very specific objects, such as biological surfaces [23].  Examples of the wide 

variety of contact scanning devices can be seen in Figure 1.2. 

Many of the weaknesses of contact scanners have been mentioned, such as the 

lack of measurement resolution.  The slow acquisition rate of most contact scanners is 

due primarily to their inability to collect data for multiple points simultaneously.  

Additionally, a contact digitizer must actually touch the surface of the scanned object.  

They may even damage the object.  Additionally, measurement on a soft, deformable 

surface (surfaces such as gel, foams, or hair) may be rendered difficult or impossible. 

 

Figure 1.2, Examples of contact scanners [21-24] 
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Non-contact scanners attempt to overcome the weaknesses of contact digitizers, 

often with the use of cameras and illumination devices.  Non-contact 3D acquisition 

devices are most frequently classified as either passive types, which utilize only cameras 

with no additional radiation source, or active types, which require a specialized 

illumination device to acquire relevant surface data. 

Passive acquisition devices can be further categorized based on their primary 

method of operation.  Perhaps the most common and well-known type of passive 3D 

acquisition is stereo-vision.  These stereo-vision digitizers (largely inspired by biological 

stereo-vision) attempt to represent an object’s 3D form based on data acquired by two (or 

more) cameras.  These stereo-vision systems usually operate by finding the 

corresponding points on the subject surface in each available image, and then (utilizing 

the known positions of the cameras which produced these images) geometrically 

calculating the true position of that surface point relative to each camera pair in a process 

known as “triangulation.”  A different well-known passive technology is depth-of-focus 

[25-28] acquisition, in which the depth of each point on a surface is found by capturing 

numerous images of the subject under a series of different optical focus settings.  A point 

will be perfectly in focus (a characteristic calculated via any number of image processing 

techniques) only at a particular camera lens focal length, which is well-defined for each 

image.  This focal length corresponds to a specific distance from the camera lens, thereby 

allowing one to calculate the depth of each point on the object surface.  Still other 

methods make use of different characteristics of the subject [29, 30] (such as object 

silhouette, texture, shading, or motion) to attempt to define the 3D surface information. 
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As effective as these methods are, they are often subject to many of the same 

weaknesses.  Being, as they are, entirely image based, they are greatly subject to the 

surface characteristics of the target.  A major problem in stereo-vision research, for 

example, is the problem of finding corresponding points in multiple images for surfaces 

with very little in the way of identifiable features. 

Active scanning methods offer an alternative solution.  Rather than the capture-

only based approach of passive techniques, active scanners use a transmit-capture 

method.  That is, each scan consists of data transmitted (in the form of electromagnetic 

radiation, and most often visible light), reflected from the object, and then received and 

processed.  Within this there are again, two most common categories: time-of-flight 

devices where 3D surface data is calculated from the time-difference between 

transmission and reception of light (as used in LIDAR and laser rangefinder systems), 

and active triangulation based devices, in which a pattern is projected upon an object (by 

a laser, projector, or other emitter device), deformed by the subject surface, and then 

recovered and analyzed in an image. 

1.2 Structured Light Illumination 
Structured Light Illumination is one of the most accurate non-contact surface 

scanning methods under development today.  It is a commonly used method in scientific 

and industrial applications [13-16] because of its high degree of accuracy and scalability 

to different object sizes. The concept is to project a structured pattern of light onto the 

target surface and extract measurements of depth from the amount of deviation that the 

reflected light pattern undergoes.  In actual application, SLI patterns have become highly 

sophisticated and are commonly used in a sequence of multi-patterns or even multi-
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patterns of different colors. The state-of-the-art techniques can be used in the presence of 

ambient light, yield non-ambiguous depth, and when processed result in a high density of 

accurate 3-D point measurements. SLI techniques, when compared to the passive 

techniques, are more easily able to overcome the fundamental ambiguities which 

generally occur with low texture targets.  

Structured light illumination (SLI) allows one to measure the depth information of 

a surface by measuring the deformation in a projected light pattern [31].  A simple 

example would be a pattern of stripes projected onto a sphere.  When viewed obliquely, 

the light stripes on the sphere appear curved as shown in Figure 1.3.  For a given 

arrangement of the projector and camera, the variation in a pattern can be characterized 

extremely accurately, such that a precise model of the surface can be reconstructed.  Most 

modern implementations of SLI systems make use of digital projectors to illuminate the 

subject and a digital camera to capture an image of the illuminated subject, though in 

certain cases static projection devices (slide projectors, for example) may be used. 
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Figure 1.3, Pattern distortion due to subject surface 
 

 

Figure 1.4, SLI system geometry [32] 
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Mathematically, the SLI measurement process is based on triangulation.  Accurate 

results can be produced only when there is a well defined relationship between a single 

point on the projection plane and the corresponding point on the captured image, as 

indicated in Figure 1.4.  It is to establish this relationship that projection patterns are 

utilized.  A projection pattern is designed such that each pixel (or row or column, 

depending on the specific implementation) of the projection image is uniquely 

characterized, either by some characteristic intensity value sequence or by some other 

identifiable property such as a local pattern of shapes or colors.  When projected onto a 

subject, the captured image can be analyzed to locate these identifiable projection pattern 

points.  Given a fixed placement of camera and projector, the location of any given 

pattern point on the subject creates a unique triangle with dimensions defined by the 

depth of the subject surface. 

 Structured Light systems are further classified into single-frame techniques, 

which require only one image capture to calculate surface characteristics, and multi-

frame (or “time multiplexed”) techniques, which require multiple projection/capture 

instances in order to acquire enough information for surface reconstruction. 

 As they require numerous images captured sequentially, multi-frame techniques 

are often unsuited for subjects that are likely to move, such as living things.  Movement 

during the capture process will normally introduce error, and often very significant 

measurement error can be introduced by only a small amount of subject motion.  

However, multi-frame techniques also offer extremely high measurement resolution 

(measurement precision is often on the order of a fraction of a millimeter) and relatively 

fast scans when compared to contact measurement methods (a multi-frame SLI scan can 
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take anywhere from minutes for a laser-based system, to three seconds or less for a digital 

light projector (DLP) structured light system). 

 

 Binary SLI 
Multi-frame systems are further classified according to the pattern projection and 

analysis methodology used to acquire depth information.  Proposed in the late twentieth 

century [33], binary acquisition techniques utilize multiple projections of simple black 

and white stripe patterns.  In each captured image, any point on the subject will either be 

fully illuminated or fully without illumination.  Over the course of a sequence of 

projections, the sequence of illumination states for each point correspond to a binary 

“code word” which can be associated with a specific projector region.  This association 

allows for triangulation and thus, depth measurement.  In order to identify N regions, one 

must project log2 (N) patterns.   

Practical limitations on the lateral resolution of such a system are, however, 

imposed due to projector and camera pixel size as well as the resolution capabilities of 

the analysis software.  Thus it may be impractical to uniquely encode each individual 

projector column or row with a binary pattern. 

Based on the standard binary pattern concept, Gray Code patterns utilize a 

different set of code words such that each pattern region differs from the adjacent region 

by only one bit [34-37] Using this prior knowledge, analysis becomes more robust 

against noise and region identification is therefore more accurate. 
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Figure 1.5, Gray code pattern as used in SLI [38] 
 

 An alternative binary system introduces De Bruijn sequence encoding, that is, 

binary sequences wherein a subsequence of a given length occurs only once.  They are 

often employed in the form of stripe boundary codes [39, 40], that is, they define 

information only at the boundary of the binary stripes (unlike standard binary encoding 

which use the centers of the stripes, for example).  Stripe boundaries inherently carry two 

bits of information (the high/low value of both adjacent regions).  De Bruijn sequences 

allow one to properly define the binary stripe sequences necessary to unambiguously 

define unique codewords at each stripe boundary, allowing greater scan density with 

fewer pattern projections when compared to standard binary SLI. 
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Figure 1.6, De Bruijn sequence multi-frame scan example [39] 
 

 Phase Shifting Techniques 
Phase shifting techniques utilize patterns which are shifted spatially by a certain 

known amount in each frame of projection.  By utilizing the series of images captured 

during each frame of this shifting process, it is possible to calculate a unique identity 

(often represented as a “phase” measurement, corresponding to values normalized 

between 0 and 2pi) for each pixel in the projected image, and thereby, achieve the 

necessary pixel-wise correspondence between projection and capture necessary to 

complete triangulation. 

Phase Measuring Profilometry (PMP) [41], is exemplary of the phase shifting 

paradigm.  In this case, the projection pattern consists of a gray level field which varies 

sinusoidally.  In each subsequent projection, the field is spatially shifted in the direction 

of variation for one sinusoidal period.  Due to the continuously varying nature of the 



 

 12 

pattern, each projector row or column may be encoded uniquely and identified according 

to the equation 

 )22c o s (),( Nnf yBAyxI ppp
n ππ −+=  (1.1) 

where I represents the intensity value of any projector pixel at location (xp, yp), A and B 

are constants, N represents the total number of phase shifts to be performed, n is an index 

defining the frame in a projection sequence, and f indicates the sine wave frequency (in 

cycles per field-of-view).  Notice that projector intensity varies only in the y direction. 

Given a set of N patterns, a set of N captures can be analyzed according to 
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where Φ denotes a phase value between 0 and 2π, In(xc, yc) represents the intensity of 

capture n at location (xc, yc) in camera space, and is related to the projector yp coordinate 

according to 

 )2/(),( fyxy ccp πΦ=   (1.3)  

 

Figure 1.7, (left) Example PMP projection cross section and (right) resulting phase map 
cross section from image analysis [42] 
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The technique requires a minimum of three shifted patterns, and depth 

measurement accuracy increases with the number of shifts.  More recently [43, 44] PMP 

has been extended to incorporate multiple sinusoidal frequencies.  This multi-pattern 

PMP has the advantage of higher accuracy for a given number of frames and, 

equivalently, fewer necessary frames for any desired scan accuracy with respect to 

standard PMP. 

 

Figure 1.8, PMP 3D acquisition result example [32] 
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 Hybrid Systems 
 Hybrid SLI systems make use of the methodology of a passive system (commonly 

stereo-vision) but with enhancements implemented with structured light [45-47].  As 

noted in the previous section, passive systems are often limited by the characteristics of 

the subject.  Calculating disparity measurements necessary for stereo-vision 

reconstruction, for example, is quite difficult for smooth, featureless subjects (or areas of 

subjects).  It is quite common to use a projected light pattern to overcome these inherent 

ambiguities.  By projecting one or more patterns onto a subject, the systems introduce 

local variations which can be used to calculate disparity measures etc. as needed for 

depth calculation.  These systems are sometimes multi-frame systems, and sometimes 

single frame systems, depending on the particular implementation of the technology. 

 

 Active Real-Time Systems 
 Active Real-Time SLI systems are not a specific subclass of multi-frame systems.  

Rather, they may be considered the next stage of advancement in multi-frame active 

depth acquisition systems.  Using a variety of multi-frame pattern techniques [39, 48], 

these systems allow real-time acquisition of highly dense surface data (often similar to 

the results shown in Figure 1.8) through the utilization of specialized high-speed 

hardware and software.  The concept is really quite simple: multi-frame techniques work 

quite well as long as the subject doesn’t move during the scanning period.  Active Real-

Time systems work according to the same principles as standard SLI systems, but acquire 

data so fast (performing entire multi-frame scans in mere hundredths of a second) that a 

subject is unable to move enough during a scan to significantly impact the results. 
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 The data that the systems acquire is usually of a very high visual and metric 

quality.  Nevertheless, these systems are frequently limited by data throughput 

limitations.  That is, it is often difficult or impossible to actually store the massive 

amount of 3D data that these systems generate in real time.  Additionally, the hardware 

requirements often make these systems significantly more expensive than competing 3D 

imaging technologies. 

 

1.3 Single-frame Techniques 
 While multi-frame techniques are often quite effective, it is nevertheless true that 

for many scanning applications it would be ideal to capture the required surface 

information in only a single projection/image instance. Fortunately, there are options for 

single frame SLI capture, which offer not only reduced scan time, but also allow one to 

scan a moving subject. 

 

 Un-coded Methods 
 One of the most significant problems that any structured light system must 

overcome is that of ambiguity.  In order for 3D data to be properly acquired, there must 

be an absolutely certain correspondence between a pixel on the projection pattern and a 

point on the subject illuminated by that pixel.  However, consider the situation shown in 

Figure 1.7.  You can see in the left image an apparently continuous field of stripes.  

Nevertheless, as seen in the right image, this is an incorrect assessment of the true 

situation.  In actuality, the stripes that appear to be connected on either side of the 

obstruction are most certainly not connected.  It is therefore likely that the 
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correspondence between a projected stripe and a captured stripe would not represent the 

true situation, and therefore, calculations based on this correspondence would render 

incorrect depth measurements. 

 

 

Figure 1.9, Ambiguity in projected pattern due to surface shape [49] 
 

 In order to avoid problems such as these, most structured light systems use some 

method by which ambiguity can be avoided.  Often this is the motivation behind the 

development of new pattern methodologies, both single pattern as well as multi-pattern 

techniques.  Nevertheless, there are methods that simply utilize these un-coded patterns 

regardless of ambiguity.  Shapes such as stripe fields or grids are popular choices as un-

coded pattern types [50-52]. 

 Since there is little in the way of information embedded within the pattern itself, 

un-coded SLI is based entirely on creative analysis of the captured image.  Often, 

statistical approximations, artificial intelligence, and algorithms that make use of prior 

knowledge of expected pattern distortions are used in an attempt to reconstruct the 
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surface.  As such, the quality of results acquired using these systems can be 

unpredictable, though in general they tend to work best for subjects with minimal surface 

depth variation. 

 

 Neighborhood Search Methods 
Neighborhood-search methods [53-58] take a somewhat different approach. These 

techniques utilize a pattern (usually binary in nature, that is, black and white colors only) 

in which subsections of the pattern can be uniquely identified in some way. Specific 

implementations may utilize patterns of noise or streaks [56] in which a point can be 

identified according to the known local statistical characteristics of the pattern, or 

deterministic sub-patterns defined by De Bruijn binary sequences [57] or M-Arrays 

(effectively a 2D pattern based on the same principle as De Bruijn sequences, that is, an 

M-Array is a matrix in which any sub-matrix of a given size is unique)[54] wherein the 

identity of one point can be determined by the information contained in nearby points. 

Like color-multiplexed systems, the accuracy of neighborhood-search based techniques 

may be strongly dependent on subject surface characteristics. If pieces of the pattern can 

be obscured by subject features or distorted too much by local gradients, correct 

identification of the pattern points may be impossible. In addition, the primarily binary 

nature of the patterns can limit the resolution possible. Thus, only a small portion of 

surface points may be measured. 

 Neighborhood search methods may also make use of color patterns in order to 

further increase the amount of information recovered or the reliability of the scan (that is, 
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ensuring that data is recovered accurately).  Nevertheless, such problems still suffer the 

same weaknesses common to all color-based patterns. 

 

 Color Patterns  
Color patterns are very often employed in structured light technology [59-69], 

either considered as unique standalone pattern configurations, or in the form of color-

multiplexed patterns.  Color-multiplexing [64-69] simply combines individual patterns 

from some multi-pattern technique into a single pattern by coloring each differently. A 

three pattern PMP sequence, for example, can easily be combined into a single pattern by 

coloring each of the three patterns red, green, or blue. In this way, each pattern can be 

isolated independently of the others by considering only the R, G, or B channel of the 

captured image. Each channel image is effectively identical to a single frame of the 

corresponding multi-pattern PMP scan process.  

The use of colored De Bruijn sequence patterns [68, 70] is effectively another 

instance of color multiplexing.  By using color elements, the effective length of unique 

De Bruijn subsequences is increased, and thereby, the density of recovered information is 

increased far beyond what would be possible in a single binary projection. 

While the concept is simple, the number of patterns that can be combined in this 

way is usually relatively limited and analysis is plagued by non-idealities [65, 67].  

Additionally, all color patterns introduce a strong dependence on subject coloration and 

luminance properties. If a subject is strongly colored blue, for example, there may be 

insufficient information in the R and G image channels to properly reconstruct the 

surface. 
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 Yet another significant problem is the unfortunate reality of color-cross-talk.  Due 

to imperfections in the color isolation components of both cameras and projection 

devices, it is often difficult or impossible to totally isolate an individual pattern.  

Significant research [67] has gone into solving this problem. 

       

Figure 1.10, (right) shows distortion due to imperfections in projector/camera color 
filtration of (left) an ideal color multiplexed 3 channel projection pattern 

 

Figure 1.10 shows just how significant hardware distortions of a color pattern can 

be.  On the left is the conjunction of an ideal three sine wave pattern according to the 

color multiplexing methodology (one sine wave in each of the RGB color channels).  To 

the right is the unaltered shape of the recovered sine waves which resulted from a single 

projection/capture event upon the subject of a flat, white sheet of paper.  Notice that not 

only have the relative magnitudes of the projected sine waves been altered (a distortion 

known as color imbalance), but also that the shape of the sine waves themselves are 

greatly distorted due to cross talk between each color channel. 

The effects of these distortions can be seen in Figure 1.11.  A small cropped 

(nose) section of a color-multiplexed scan of a statue is shown.  Note the strong, regular 
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wavelike distortions in the recovered surface.  It can be clearly seen that the weaknesses 

inherent to color patterns are not to be ignored. 

 

Figure 1.11, Example of errors introduced to 3 pattern SLI due to color interference 
 

 Composite Pattern 
Composite Pattern (CP) [32, 42, 49, 71] is not a standalone pattern type, but is 

instead a way to combine multiple projection patterns into a single projection.  Due to the 

method of triangulation that is used in many SLI techniques, only one dimension of the 

projected pattern is normally modified for the purposes of depth calculation.  This is 

known as the “phase direction”, a term derived from phase measuring profilometry.  The 

perpendicular dimension is known as the “orthogonal direction.”  A CP projection pattern 

consists of multiple single projection patterns multiplied in the orthogonal direction by 

different (constant) frequency sine wave variation functions, essentially a form of spatial 

amplitude modulation.  These individual modulated patterns are then added together to 
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form a single pattern.  In a captured image of a subject illuminated by such a pattern, one 

can independently isolate the illumination effects of each modulated pattern by isolating 

the modulated signal envelope in the Fourier domain, thereby allowing one to acquire as 

much information in a single image as one would normally acquire in an entire SLI 

pattern sequence. 

 

Figure 1.12, Composite pattern (left) projected onto a human subject and (right) analyzed 
to create a depth map [32] 

 

 

Figure 1.13, Composite pattern (left) projected onto a human hand and (right) analyzed to 
create a depth map [32] 

 
Figures 1.12 and 1.13 show some early experimental applications of composite 

pattern multiplexing for a four pattern PMP sequence.  Notice that in comparison to 

standard PMP results (Figure 1.7) and even a color-multiplexed result (Figure 1.8) this 
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early composite pattern was quite prone to surface measurement error.  It can be seen that 

there is often significant depth error near surface edges especially due to CP component 

pattern isolation (which requires frequency domain filtering). 

During early stages of development, the most common method of correction [32, 

42] utilized a multiple-iteration dynamic programming approach.  The initial CP 

projection pattern undergoes epipolar correction to further orthogonalize the phase and 

orthogonal depth distortion.  Once a scan image is collected and depth measurements are 

made, these measurements are used to create a simulated capture image by warping and 

transforming an image of the projected pattern.  Using correspondence matching 

algorithms developed for stereo-vision problems, the two images were compared and 

point-by-point disparity is calculated.  One was able to correct the depth measurements 

by minimizing the disparity between the real and simulated images.  Early simulations 

suggested the viability of the method.  However, when put into experimental practice, 

even with post-processing the resulting reconstruction had considerable depth noise, as 

shown in Figure 1.14.  It was noted that the algorithm was still potentially sensitive to 

albedo variations. 
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Figure 1.14, (top) Ideal reconstruction of a small, flat disc, (bottom) Composite Pattern 
scan result after a single post-processing correction iteration [32] 
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 Lock and Hold Structured Light Illumination 
Like the Composite Pattern technique, Lock and Hold [72] motion capture was an 

idea inspired by communications theory [73]. The idea is that, as in the operation of a 

phase-lock loop, if one can “lock on” to an unknown signal, then the changes in that 

signal can be easily tracked by compensating for the small incremental changes that 

occur through time.  

Lock and Hold motion capture blurs the line between single frame and multi-

frame SLI.  It uses an un-coded structured light pattern (usually a pattern of stripes with 

triangular or sinusoidal cross sections) to capture the depth data of a moving surface. 

Changes in this “Hold pattern” are traced through the multiple frames of the capture 

video sequence in order to acquire a continually updated accurate depth map of the 

subject. Unlike similar systems that utilize un-coded SLI [50, 74] the system avoids 

difficulties involved with pattern ambiguity by the use of the “Lock sequence,” a 

preliminary 3D scan taken before the subject is allowed to move. Since an un-coded 

pattern has numerous identical elements, it can’t generally be used to measure absolute 

depth in the same way as a coded pattern method (such as PMP or even Composite 

Pattern) since a projected pattern point may correspond to any number of pattern points 

on the captured image (a problematic called simply “ambiguity” in common practice). By 

performing a preliminary 3D scan using PMP, the relationship between an identified 

point on the Hold pattern projection and Hold pattern capture can be unambiguously 

defined.  

A simple explanation of the Lock and Hold process is as follows: to begin, a 

standard 3D scan of a subject is taken using a method such as PMP. Immediately 

following this, the Hold pattern projection begins and the subject is allowed to move. The 
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Lock scan creates an unambiguous “phase map” which relates each point of the 

projection pattern to a single point that it illuminates on the subject image. If a Hold 

pattern is immediately projected, the first frame of the Hold capture sequence is directly 

related to the phase map. In other words, each isolated feature of the Hold pattern maps to 

a single phase value from the PMP scan. In this way, the depth of each isolated Hold 

pattern feature (i.e., “snake” shown in Figure 1.15) can be calculated using triangulation 

techniques.  

   

Figure 1.15, (left)  Example of a Hold pattern projection and (right) resulting "snakes" 
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Figure 1.16, (left) Lock scan and (right) sequence of reconstruced frames from Hold 
images 

 

Once each feature in the first Hold frame is unambiguously identified, features in 

the next frame are isolated. Then, at each identified point in the first frame, a search is 

performed in a window around the corresponding position in the next frame. If a suitable 

feature is found in that frame, it is assigned the appropriate identity. In this way features 

can be traced through the numerous frames of the Hold sequence, and a depth map for 

each frame can be calculated. A Lock scan and five samples of Hold scans are shown in 

Figure 1.16. Practical implementations of the process require additional steps, of course. 

Depending on the shape of the subject and the speed of its movements (relative to the 

capture rate of the camera), the initial tracking process may identify some features 

incorrectly. Thus, techniques for error prevention or correction are normally required for 

optimal results. However, for our purposes, a detailed description of this process is not 

necessary. 
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1.4 Motivations 
 Let us consider the ideal structured light 3D data acquisition system.  Such a 

system should be first of all accurate, able to create a data model of a subject that is 

actually representative of the physical object within a small acceptable margin of 

measurement error.  If a system cannot image the 3D surface accurately, then the data 

acquired is often simply unusable for any practical purpose.  It should also be robust, able 

to capture a good scan with minimal regard to subject or environment characteristics, and 

thereby lending itself for use in many different situations and many different subjects.  

Multi-frame techniques, such as PMP, are often quite close to ideal in these respects. 

 A perfect system would also be fast, able to collect 3D data instantaneously.  This 

would allow it to capture subjects which are unpredictable or mobile (biological subjects 

for example).  It would also be more convenient for the user, who would often not wish 

to wait for their data to be collected, and would prefer to avoid the need to take multiple 

attempts at data acquisition due to scan failures thanks to a moving subject.  Single-frame 

and real-time active systems excel in this regard. 

 Finally, the system would be simple and user friendly.  It should be inexpensive, 

easy to use and hard to use incorrectly.  In these areas, single-frame systems have a 

distinct advantage, as they can often be used with static projection systems (unlike most 

other structured light systems, which require active electronic illumination devices such 

as digital projectors).  The system should require minimal knowledge and skill on the part 

of the user. 

 Composite Pattern was developed as an attempt to create, or at least approach, 

this ideal system.  It was intended to be a method with the accuracy and robustness of a 

multi-frame system, but with the speed and versatility of a single frame system; a new 



 

 28 

form of pattern multiplexing which could avoid the problematic drawbacks inherent to 

either a color-multiplexed single pattern method (which, once again, can be clearly seen 

in Figures 1.10 and 1.11) or any passive methods, such as stereo-vision (passive methods, 

as noted in previous sections, often have difficulty resolving the correspondence problem 

for certain subjects, such as those with limited surface features). 

 The development was successful, to a certain extent.  Using CP, one could indeed 

capture 3D depth information in only a single frame, while avoiding the majority of the 

drawbacks present in a color or stereo-vision system.  However, as seen in Figures 1.12 - 

1.14, CP came with its own set of flaws.  This was to be expected, perhaps, as it was an 

unprecedented new system, but still unacceptable for many applications.  While first 

generation CP could be useful in areas such as machine vision or user interface control 

(as demonstrated specifically in reference [71]) it was considered too inaccurate for most 

matters involving human subjective evaluation (it was not an acceptable imaging solution 

for 3D graphics, for example) and likely for most forms of record-keeping or 

measurement as well. 

 Thus a second generation of development was undertaken, leading to the creation 

of the Modified Composite Pattern (MCP) method.  By introducing significant changes to 

the CP pattern design as well as additional processing steps, MCP was able to greatly 

improve the performance of Composite Pattern, creating results that were both more 

accurate as well as visually pleasing (as seen in Figure 1.17) than anything possible with 

first generation techniques. 
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Figure 1.17, MCP scan of a latex bust, (left) MCP data points with interpolated linear fill 
regions, (right) result after smoothing and other post-processing steps 

 

Nevertheless, problems still remained.  The system relied heavily on user input 

parameters.  An incorrect choice for any one of the many necessary processing 

parameters would lead to error, which was often very significant, in the output result.  

Additionally, the system, while effective, often showed a lack of robustness.  Result 

quality was often highly dependent on individual subject characteristics.  Being, as it was, 

fairly new and developed as an experimental offshoot of an already existing technique, 

the method was highly algorithmic in nature and lacked a consistent theoretical basis.  It 

was the goal of this research to overcome these systematic weaknesses. 

The research in this dissertation constitutes a third generation of Composite 

Pattern development, with the intention of further advancing the CP paradigm toward the 

final goal of creating an ideal structured light 3D acquisition technology. 
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1.5 Contributions 
 Second generation Modified Composite Pattern is frequently implemented as a 

binary SLI pattern, multiplexed according to Composite Pattern methodology.  This 

single pattern is then further altered with the addition of a stripe pattern (usually 

sinusoidal or triangular in cross-section, thereby defining a unique peak location), 

allowing improvement in the quality of contour results.  However, the process by which 

these stripes were traditionally identified was found to be problematic. 

 The stripe identification algorithm (effectively a form of local peak detection) was 

based on the original technique used in Lock and Hold structured light processing.  It 

calculated, at each pixel in the input image, a peak-to-sidelobe ratio, defined as the image 

intensity value at that pixel divided by the maximum intensity value at some specific 

lateral distance away (ideally defining the ratio between the highest and lowest points on 

the stripe cross section).  This process required the user to define a specific lateral 

distance measure, in pixels, at which to calculate this ratio.  It was observed that the most 

appropriate value for this parameter would often vary among images, and even among 

different stripes in the same image, leading to inconsistencies that would often degrade 

the quality of a recovered surface scan. 

 Additionally, the user was again forced to select an appropriate threshold 

measurement for this peak-to-sidelobe ratio measurement in order to define stripe regions 

(which could then be locally searched for the actual peak present).  Again, this ideal 

measurement was often variable, even within a single scan image.  Even small errors in 

these selected parameters could render a scan highly prone to error, potentially rendering 

the scan data unusable. 
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Figure 1.18, Adaptive threshold generation 
 

 The solution implemented in this research makes use of a linear-filter based 

locally adaptive threshold method (illustrated in Figure 1.18) which effectively eliminates 

the need for these earlier user-defined parameters.  This specifically removes a major 

source of procedural error, thereby increasing the system’s overall robustness.  The 

method is also significantly less impacted by local intensity variations, and is able to 

define usable stripe regions even in noisy or low-intensity regions, which earlier systems 

were often unable to do. 

 Early generation CP systems also required specification of detection frequencies 

by the user.  That is, the user was to observe the frequency spectrum of the CP input 

image and effectively pick out which bands constituted modulated information.  

However, in many cases this would prove difficult or effectively impossible due to object 
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features (as seen in Figure 1.19).  Incorrectly identifying a modulation frequency, even by 

as little as a few cycles per field of view, could introduce significant measurement error 

as well.  These strict requirements, including the necessity for a highly expert user, 

created severe limitations on the system, effectively rendering it unusable for practical or 

commercial scenarios. 

         

Figure 1.19, Example of stripe rotation effects 
 

 The research performed during the development of this dissertation effectively 

eliminated these problems with the inclusion of a method by which problematic subjects 

may be segmented and corrected (as displayed in Figure 1.20). 

 

      

Figure 1.20, (left) Isolated positive inclination stripe regions, (right) Isolated negative 
inclination stripe regions 
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 Detection of modulated frequency bands was also automated using an analysis-

by-synthesis envelope detection algorithm (illustrated in Figure 1.21), generating an ideal 

definition of each modulation frequency, and allowing for consistent and effective CP 

component isolation and analysis. 

 With these advances, the need for user interaction in the CP demodulation process 

can be effectively eliminated, rendering the system much more robust and easy to use, 

while simultaneously facilitating ease of further advancement. 

 

Figure 1.21, Analysis By Synthesis process,  (top) initial array A, (middle) array B, 
where B represents isolated frequency band components, after one iteration, (bottom) 

updated array C where C=A-B, where the presence of B is indicated by the dotted curve 
 
 Early generation Composite Pattern research treated the method as a typical 

structured light system.  Corrective measures such as epipolar correction were 

implemented, but were only partially effective, and largely unable to overcome the 

weaknesses inherent to the system.  However, the advent of MCP, with its unique 

characteristics, moved the CP paradigm into new and unknown territory.  As such, 
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second generation systems lacked a meaningful and consistent theoretical basis for 

development. 

 Normal SLI systems are usually concerned with overcoming ambiguity.  

However, MCP introduces a SLI methodology which effectively eliminates the problem 

of ambiguity entirely.  Each stripe in an MCP scan is uniquely identifiable, and all 

identities will occur in a known and predictable order upon the subject surface.  During 

the course of this research, it was determined that a Hidden Markov Model would most 

appropriately characterize the situation encountered in an MCP scan.  It was determined 

that optimal analysis via Viterbi sequential decoding would be an appropriate and 

effective measure for MCP.  This characterization is heretofore unknown in the context 

of SLI research.  It has proven effective in the course of this particular research and, by 

providing a new and reasonable context for theoretical development, promotes future 

progress in Composite Pattern methodology. 

 In summation, with the research performed during this third generation of 

Modified Composite Pattern development, the technique has effectively been established 

as a viable competitor with all available 3D imaging techniques and has been made 

suitable for future use and refinement toward the eventual goal that CP was created to 

achieve. 

 

1.6 Outline 
 The body of this dissertation is organized as follows: the initial chapter introduces 

the most general information regarding the research performed.  Chapter 2 discusses, in 

great depth, the MCP technique.  The method is first explained, and then characterized 
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via specific mathematical representations.  Consideration is also made for various sources 

of systematic error which one is likely to encounter.  Once the MCP pattern and 

processing methodology has been adequately explained, chapter 3 goes into detail 

regarding the actual 3D reconstruction that will be performed.  Also included is 

information regarding the specific calibration technique utilized for the current generation 

MCP technology.  Chapter 4 examines the practical stages in MCP processing.  The 

chapter also includes specific information regarding automated analysis techniques 

implemented in the course of the research.  Chapter 5 finishes the discussion of the MCP 

technique by introducing advanced post-processing and optimization techniques utilized 

to further improve depth recovery, along with a collection of scan processing results and 

tests for depth recovery accuracy.  Finally, chapter 6 concludes the dissertation and 

discusses potential avenues for further research and summary improvement of the MCP 

methodology. 
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Chapter 2 Modified Composite Pattern 

 

Modified Composite Pattern is frequently implemented as a binary SLI pattern, 

multiplexed according to Composite Pattern methodology.  This single pattern is then 

further altered with the addition of a stripe pattern, allowing improvement in the quality 

of contour results.  The inclusion of this additional pattern also adds complexity in 

processing, versus traditional CP.  

 

2.1 Introduction to MCP 
A binary code structured light pattern allows 3D reconstruction of a subject by 

encoding each point in an image of the subject with a unique value.  This value 

corresponds to a (ideally unique) point in a projector, and as such allows 3D 

reconstruction by triangulation.  Each point is encoded by projecting a sequence of binary 

images of various forms, such that for any given projection, a point may be either 

illuminated (thus being encoded with a binary 1 for that frame) or not illuminated (in 

which it is encoded with a 0 for that frame) depending on the shape of each particular 

pattern in the sequence.  The values collected during the sequence create multi-bit 

representation of a number in base 2, identified as the point’s binary code-word or code 

value.  The binary code form of Composite Pattern (CP) SLI allows a single frame 

equivalent of this process.  A visualization of a binary pattern is shown in Figure 2.1.  

Notice that the combination of binary information from each of the 4 unique pattern 

frames creates 16 uniquely valued regions (indicated as unique color combinations). 
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Figure 2.1, Visualization of binary pattern encoding 
 

The pattern modification that we use consists of a field of stripes which are most 

frequently sinusoidal or triangular, without loss of generality.  A modification pattern 

could hypothetically consist of any recognizable form, such as circles, dots, or a grid 

pattern, and the selection of stripes was simply an intuitive choice.  In a binary code 

Modified Composite Pattern (MCP) a single modulated stripe will be associated with a 

specific binary code value.  Additionally, the particular implementation utilized in this 

research places an unmodified stripe between any two binary code stripes.  Using 

Composite Pattern analysis techniques, each modulated stripe can be identified; but in 

addition to this, each unmodified stripe can be used for reconstruction as well, since any 

unmodified stripe positioned between two sequential binary-encoded stripes is uniquely 

identifiable.  The presence of unmodified stripes effectively doubles the amount of 

useable surface contour information.  An example of an MCP pattern is shown in Figure 

2.2.  
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Figure 2.2, An example of a Modified Composite Pattern 
 

In addition to these stripes, each minimum falling between two stripes (known as 

“negative stripes” or “2x stripes” due to the fact that they further double the amount of 

available information) can also be identified based on the unique combination of binary-

encoded stripe and unmodified stripe that it falls between.  It is also possible to track the 

intensity midpoints of the stripes (between each peak and trough) for a further increase in 

the number of identifiable stripes per image (and these zero-crossing stripes are known as 

“4x stripes”).  While a standard four image Binary code scan may be limited to 15 unique 

values (the ‘0000’ code word is unusable due to the presence of unmodified stripes), 

equivalent to a mere 15 points of resolution in the direction of code variation, a positive, 
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negative, and unmodified stripe pattern with 15 unique binary code values can be 

evaluated for 30, 60, or 120 points of resolution. 

Consider the binary structured light pattern pi(x,y), where i=0…N-1 for a binary 

structured light sequence of length N.  Suppose that each individual pattern pi is element-

wise multiplied by an image qi(x,y) where qi is constant in the y dimension and varies 

only in the x dimension according to  

 ( )1)2cos(
2
1)( += xfxq ii π  (3.1) 

resulting in 

 ),(),(),( yxpyxqyxp iii =′  (3.2) 

A composite pattern can be represented by 
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where M is simply a normalization constant. 

Modified Composite Pattern further alters this pattern with the addition of a 

spatial stripe pattern, g(x,y), and an additional unmodified stripe pattern f(x,y), according 

to 

 ),(),(),(),( yxfyxpyxgyxI +=  (3.4) 

where both g(x,y) and f(x,y) are constant in the x dimension, varying in the y dimension 

according to 

 



 Λ−= ∑ −

=
)(*)2()( 212

0 2 h
y

i
h

a

N

ihMyg δ  (3.5) 

and 

 



 Λ−+= ∑ −

=
)(*))12(()( 212

0 2 h
y

i
h

a

N

hiMyf δ  (3.6) 



 

 40 

where 12 += N

Yh , and Y is the y dimension maximum of the pattern space, and Ma is an 

intensity multiplier.  Here Λ represents the triangle function, and defines the shape of 

each spatial stripe.  Note that the stripe cross section can be altered by replacing instances 

of the triangle function with whichever function one desires, such as saw tooth or 

sinusoidal functions. 

 

2.2 Modulation Theory 
Consider the binary structured light pattern pi(x,y), where i=0…N-1 for a binary 

structured light sequence of length N.  Each such pattern contains inherent spectral 

information Pi(fx,fy), where Pi is the Fourier domain representation of pi.  Upon projection 

onto a target, each pattern undergoes alteration due to the characteristics of the surface.  

The resulting captured image can be approximated as 

 ),(),(),(),( yxdyxByxAyxc ii +=  (3.7) 

where 

 ( )),(),( yxpSyxd ii =  (3.8) 

Here, A(x,y) represents information included due to ambient light, B(x,y) 

represents a modification field due to target surface reflectance characteristics, and S( ) is 

an operator representing the element-wise transformation of each pattern pixel due to 

surface depth and world-camera coordinate transformation.  Allow S( ) to be defined such 

that it has the property 

 fSS =ℑ )}({  (3.9) 

Where Sf is the equivalent spectral space operator for S( ). 
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It is the recovery of the quantity di(x,y) for each pattern/image i in the sequence 

that allows one to recover the desired surface depth information according to structured 

light illumination methodology. 

 

 Composite Pattern Modulation 
Let us now consider how the MCP capture process actually functions in a 

mathematical sense.  Suppose that each individual binary pattern pi is element-wise 

multiplied by an image qi(x,y) where qi is constant in the y dimension and varies only in 

the x dimension according to  

 ( )1)2cos(
2
1)( += xfxq ii π  (3.10) 

resulting in 

 ),(),(),( yxpyxqyxp iii =′  (3.11) 

The effect of this, in the spectral domain, is an effective duplication and translation in the 

fx dimension of the baseband information Pi(fx,fy), such that 
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In other words, the pattern has been amplitude-modulated. 
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Consider now the (composite) pattern p(x,y) where 
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ii yxpyxMqyxp  (3.13) 

where M is simply a normalization constant.  In this case, the spectral domain 

representation can be shown to be 
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 Composite Pattern Capture 
Now consider the effect of projecting this pattern upon a target surface.  As in 

eqn. 3.7, the recovered information can be seen to be 

 ),(),(),(),( yxdyxByxAyxc +=  (3.15) 

where 

 ( )),(),( yxpSyxd =  (3.16) 

and the Fourier domain representation of d is 
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where Sf is the equivalent Fourier space representation of the effects of S. 

It can therefore be seen that 
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Note the effects of B in the equation above.  For now, let us assume that B consists of a 

constant value, such that 

 ),()),(( yx ffyxB δ=ℑ  (3.19) 

Let us also assume that the intensity of ambient light is so low as to make the effects of 

A(x,y) negligible.  In this case, it can be seen that 

 ),(),( yxdyxc =  (3.20) 

And thus, eqn. 3.18 reduces to 
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For clarity, let us rearrange 3.21 such that  
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 Composite Pattern Demodulation 
Now, let hi(x,y) represent the impulse response of an ideal bandpass filter applied 

to the collected image, such that 
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In other words, the filter has allowed isolation of a single modulated band component.  

Consider now the effects of multiplying the filtered image by a sinusoidal field (an image 

varying in the x dimension and constant in the y dimension), such that 
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(3.24) 

This multiplication is effectively demodulating the isolated pattern information.  

Applying a simple low-pass filter allows one to isolate the key result 

 ),(
4

),( yxifyxi ffPSMffC =′′  (3.25) 

It can be seen that 
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And thus, it is shown that by performing the prescribed series of operations, one may 

indeed recover the individual components of depth-recovery information di(x,y) from a 

captured image c(x,y) of a target subject illuminated by a composite pattern p(x,y). 

 

2.3 Systematic Interference Analysis 
One inevitable difficulty encountered in MCP processing is the necessity of 

dealing with undesirable interference at the modulating frequencies.  The primary causes 

of this are deviations from theoretical ideality, projection image gamma distortion effects, 

and also the introduction of spurious frequency modulation due to image intensity 

saturation. 
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 Deviation From Theory 
Given the theoretical representation of composite pattern processing from section 

2.2, what conclusions may be drawn regarding a real composite pattern scan? 

The first and most obvious fact is that the operator S( ) will, in practice, not be 

isolated separately from the demodulated pattern information.  That is, the goal of CP 

processing is to isolate di(x,y), and from this information, recover the depth of the 

surface.  It will not necessarily be desirable to isolate pi(x,y) directly, and as such, the 

effects of S( ) will be considered coupled to the pattern pi information throughout the 

process.  The greatest practical effect that this will have is that of altering the apparent 

modulation frequencies.  In other words, the frequencies fi used to generate the pattern 

are not necessarily the same as the frequencies needed to demodulate the pattern. 

Additionally, it was assumed that ambient light effects A and surface reflectance 

characteristics B had negligible influence on the captured image.  In a realistic scenario, 

this can’t always be ensured.  From eqn. 3.18, it can be seen that A will add a certain 

amount of extraneous information into each isolated information band.  Additionally, the 

theoretical consideration of B was such that it has influence only at fx=0 and fy=0 (that is, 

“DC”).  In reality, B is likely to have significant energy at DC (thus allowing recovery of 

pattern information according to the theoretical model), but is also likely to have energy 

at all other possible frequencies as well.  Since the spatial effect of B is multiplicative, 

frequency information contained therein results in further modulation of the pattern 

information.  Due to the use of bandpass filters in the demodulation process, most of 
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these effects will be eliminated.  However, there will still be two effects of B which may 

be potentially significant. 

 

The modulation from B may create undesirable cross talk between patterns.  

Consider the energy in the surface reflectance pattern B at fx=fi-fi-1, fy=0.  Due to the 

convolution operation seen in eqn. 3.18, this energy will modulate pattern information i 

according to 
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 (3.27) 

 

where b is some constant.  The last term is the most significant.  Note here how an image 

of pattern pi is being placed directly within the bandwidth of pattern pi-1.  The effect is to 

create instances of “false positive” detection within each isolated binary pattern image. 

Similarly, energy in B at low frequencies will create aliased images of each 

pattern which fall within its own isolated bandwidth.  Thus, it may cause spatial intensity 

distortion in the isolated pattern images, the severity of which is related to the amount of 

low-frequency energy in B itself.  The primary effect here will be the introduction of 

“misses,” that is, failed detections, within each isolated binary pattern image due to 

intensity modulation. 
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 Gamma Interference 
As shown in reference [75], gamma distortion causes significant bleeding of 

signal energy into nearby harmonic bands.  In the context of pattern modulation, gamma 

related effects are only likely to occur when using lower modulation frequencies (that is, 

a frequency low enough that modulation at a harmonic multiple is even possible for a 

specific device implementation).  Nevertheless, in a worst case scenario, the pattern 

modulation frequencies may fall on exact harmonic multiples of each other.  Kai et. al. 

have derived a simple algebraic formula to calculate the precise ratio of energy actually 

contained in these gamma induced harmonic sidebands, given as 

 1
1

++
−

=+

k
k

B
B

k

k

γ
γ

 (3.28) 

where Bk indicates the signal energy at the kth harmonic, and γ is the measure of projector 

gamma. 

Note the significance of the gamma induced interference; equation (3.5) shows 

that for a gamma value of 2 (a realistic estimate of a gamma distortion encountered in a 

digital projector) there will be an influence of 25% of the signal energy on the first 

harmonic. 

Original examples of composite pattern data used low frequency modulation, and 

were therefore highly subject to this particular type of interference.  Recent 

implementations make use of much higher modulating frequencies, thereby reducing the 

influence of gamma distorted harmonics. 
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 Saturation Interference 
Due to unpredictable surface reflectivity and lighting conditions, it is sometimes 

possible to encounter saturation or “clipping” effects in modulated pattern regions.  By 

flattening the modulated pattern signal, spurious modulation images are created, 

potentially interfering with other channel information and introducing possible errors in 

pattern analysis. 

Without loss of generality, the situation can be approximately modeled in a 1D 

case.  Consider the signal S(t), where 

 ∑
=

=
N

i
i tstS

1
)()(  (3.28) 

and each of si is a pattern signal modulated by an in-phase cosine with frequency fi. 

The distorted signal can be approximately modeled as 

 )()()()()( tbRtStRtStS +−+=′  (3.29) 

where  

 ))(max(0 tSb ≤≤   (3.30) 

and 
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Here, Π represents the rectangle function and ∗  indicates convolution. 

The values T1 and T2 are defined as 
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2 =  where { }),max( 21 Nm ffff =  (3.33) 

Now, T1 represents the period of occurrence of clipping events, under the 

assumption that saturation will occur at the maximum values of the summation.  It can be 

shown that, under summation of two in-phase sinusoidal functions, these maximum 

values (regions of constructive interference) occur with a frequency equal to the greatest 

common devisor of the additive frequencies.  The value T2 is approximated as half of the 

smallest modulating component period owing to the fact that it is the highest frequency 

component present that will define the primary visible pattern of peaks in the summation, 

and thus will approximately define an upper bound on the width of the saturated region.  

Note that, in the event that the image intensity is such that saturation occurs in regions 

other than these peak areas, the model may no longer be considered accurate. 

The significance of saturation interference can be seen under transformation to the 

Fourier domain.  In this case 
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Thus, a certain amount of signal energy is added at subharmonic frequency multiples of 

kfgcd and also, a certain amount is lost at each modulating frequency and surrounding 

±kfgcd frequencies.  The first effect creates the appearance of, sometimes strong, low 
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frequency subharmonic peaks, while the second effect can cause direct interference with 

nearby pattern channels. 

 

 Isolated Regions 
Consider the following situation: a modified composite pattern is projected upon a 

surface with significant, and very abrupt, surface variation, such as a pile of wooden 

blocks.  It is very likely, in a realistic scenario such as this, that one will encounter small, 

isolated segments of each MCP stripe.  It is desirable to know, therefore, what is the 

minimum amount of stripe information necessary to make an accurate assessment of the 

stripe’s code-word identity.  Would a stripe segment that is only a few pixels wide be 

properly recognized, for example?  And if not, then what is the smallest region that will? 

As in equation eqn. 3.7 and 3.15, a recovered MCP image can be modeled as 

 ),(),(),(),( yxdyxByxAyxc +=  (3.37) 

where 

 ( )),(),( yxpSyxd =  (3.38) 

It may be possible that c effectively contains an isolated segment of pattern p, due either 

to the effects of B, or the effects of S.  In either case, the result may be modeled by 

replacing p(x,y) with p’(x,y) where p’ is a summation of windowed patterns, that is 

 ∑
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i
i yxpwyxp

1
),(),(  (3.39) 

Where each wi (for i=1…m) represents a window function that effectively isolates, within 

pattern p, an individual pattern section isolated in the captured image c. 

Consider, for a moment, the effect of isolating any one of these windowed 

segments, that is, let 
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 ),(),( yxpwyxp qq =′  (3.40) 

where 1≤q≤m.  In this case, we have 
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Under the assumption of negligible A and constant, unit-value B, this becomes 

 ( )),(),( yxpwSyxc q=  (3.42) 

Now, based on eqn. 3.21, the spectral representation is given by 
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Which, rearranged, is eqn. 3.22 
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Note that, due to distributivity of the convolution operation, this may be written 

 




+ℑ
+



 −ℑ
+

ℑ=

∑

∑
−

=

−

=

2
),(*)(

2
),(*)(

2

),(*)(
2

),(

1

0

1

0

yixiqyixiq
N

i
f

N

i
yxiqfyx

fffPwfffPwMS

ffPwMSffC
 (3.45) 

Thus, the result of isolation of any given pattern segment can be shown to be convolution 

of the 2D Fourier transform of the window function with the original modulated pattern 

information.   
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In addition, a similar convolution takes place for all un-modulated components 

(including any DC within modulated stripes) introducing additional energy into numerous 

frequency bands. 

Due to this fact, certain assumptions can be made regarding the effect of shape or 

coloration on the recovery of pattern information.  For example, a very thin isolated 

section of the target surface would, according to the well-documented characteristics of 

spectral transformation, have a very wide-bandwidth Fourier representation.  Thus, when 

the inherently narrow bandpass filter is applied to isolate each modulation band, it will 

result in a loss of information in the windowing function.  This will cause familiar 

effects, such as ringing or “smearing” around step-edges.  On the other hand, very wide 

isolated segments would have a narrow-bandwidth Fourier representation, potentially 

resulting in much less distortion. 

In order to test the practical accuracy of this model, an experiment was 

performed.  The input image (Figure 2.3a) is first collected by projecting a composite 

pattern onto a flat, white surface.  A window was applied to the image, mimicking the 

effects of a region isolated due to subject surface variation (Figure 2.3b) and was 

processed for frequency selection and stripe peak isolation according to the MCP 

methodology.  Upon demodulation, the window is again applied to the result image, 

isolating a demodulated region as seen in (Figure 2.3c).  Isolated pixels that are within 

this windowed region “AND” within the isolated modulated stripe regions are considered 

correct, while those which fall outside (Figure 2.3d) are considered false positives.  Using 

the isolated stripe mask, the fraction of correctly identified snake pixels in the windowed 

region was recorded, as was the average length (in pixels) of the false positive regions 
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that extend beyond the window edges. An additional false positive measure (False II) 

measures the length of positives which occur inside the window, but on stripe peaks 

specifically isolated as unmodulated regions (which, by definition, should not contain 

positive information in any modulation band).  False II regions are due exclusively to the 

distortion energy introduced by the windowing function on unmodulated stripes. 

 

                         

(a)      (b) 

                        

 (c)      (d) 

Figure 2.3, (a) input test image, (b) windowed input, (c) windowed demodulated region, 
(d) inverse-windowed demodulated region 

 
The experiment was performed on two separate input images; each collected 

using a pattern type developed specifically for testing purposes.  The first input was 

collected using a pattern that contains only a single modulation frequency (but 

modulating a fixed number of stripes; 16).  The second input was collected using a 
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pattern containing four unique modulation frequencies, as is the current standard for 

MCP, but used in an ‘all on’ manner.  That is, it is equivalent to a binary pattern in which 

the only encoded value is ‘1111’.   From this, a single indicated frequency band was 

demodulated, producing results similar to those seen in Figure 2.3(b) and (c).   

Utilizing two pattern types in this way allows better isolation of effects, that is, 

one may measure separately the actual influence of the isolating window versus 

additional interference which may be caused by the influence of multiple modulation 

frequencies.  An ideally demodulated image (with all identifications correct and false 

positive region lengths of zero) may be considered the experimental control. 

Table 2.1, 92 cycles/FOV - single frequency modulated 
Window width Fraction correct False II region width False region length

301 1 19 47
201 1 30 65
101 1 25 83
51 1 13 102
25 1 6 92
15 1 4 119
7 1 2 114
3 1 1 116  

Table 2.2, 92 cycles/FOV - four frequencies modulated 
Window width Fraction correct False II region width False region length

301 1 42 77
201 1 40 85
101 1 20 91
51 1 10 94
25 1 3 69
15 1 3 128
7 1 2 107
3 1 1 110  
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Table 2.3, 115 cycles/FOV - four frequencies modulated 
Window width Fraction correct False II region width False region length

301 1 47 73
201 1 40 88
101 1 20 98
51 1 10 103
25 1 4 123
15 1 3 88
7 1 2 109
3 1 1 111  

 

Results indicate that distortion introduced due to segment isolation is much, much 

more likely to introduce false positive results than to cause failed detections.  Note that 

the results also act in accordance to predictions, in that smaller windows generally result 

in proportionally larger distortion effects.  Also of note, inclusion of multiple frequency 

bands does seem to create larger distortions as well; possibly due to cross-talk (the 

convolution of the windowing function may introduce signal energy from one modulated 

pattern into nearby energy bands, depending on its shape).  
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Chapter 3 Camera Model, Triangulation, and Calibration 

 

In order to truly understand the structured light illumination 3D recovery process, 

one must be familiar with the underlying mathematical operations being performed.  

Thus, the following section presents the explanation, from reasonably basic principles, of 

exactly how a structured light scan allows recovery of 3D surface information, and an 

explanation of the necessary calibration processes involved. 

 

3.1 World to Camera 3D Transformation 
The transformation from an arbitrary 3D world coordinate system (Xw, Yw, Zw) to 

a camera-specific 3D coordinate system (Xc, Yc, Zc) is based on the following simple 

linear tranformation 
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representing a rotation operation, and 
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representing a simple translation of the world coordinate system origin. 
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Alternatively, this may be written 
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3.2 Camera 3D to Camera 2D Transformation 
This research utilized a pinhole camera model, a simple representation of which 

can be seen in Figure 3.1.   
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Figure 3.1, Simplified camera model (Y direction) 
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Here, ax and ay represent scalar transformation factors (often taken as simply -1), f 

represents the camera focal length, xc and yc are defined as camera 2D space position 

coordinates, and x0 and y0 represent the axial origin positions for this 2D space.  Let 

 fas xx =  (4.7) 

 fas yy =  (4.8) 

By substituting eqns. 4.7 and 4.8 into eqns. 4.5 and 4.6, and rearranging, one finds 

 cccxc xZxZsX =+ 0  (4.9) 

 cccyc yZyZsY =+ 0  (4.10) 

Notice how Zc acts as a scalar multiplier affecting both xc and yc.  Thus, let us define a 

scale factor s such that 

 cZs =  (4.11) 

In this case, the transformation may be represented by 
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3.3 World to Camera 2D Transformation 
Combining eqn. 4.12 and eqn. 4.4, one finds a system representation defined by 
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Or, simplifying 
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creating a basic representation commonly known as the Hall model [76].  Note that 

camera lens distortion is not accounted for in the model.  However, as necessary, it may 

be accounted for by a corrective process at some other point in the calibration or imaging 

procedures [77-79]. 

 

3.4 Calibration 
From 4.14, we can see that 
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Rearranging, these may be expressed as 

 1413121134333231 )( mZmYmXmmZmYmXmx wwwwwwc +++=+++  (4.17) 

and 

 2423222134333231 )( mZmYmXmmZmYmXmy wwwwwwc +++=+++  (4.18) 

that is 

 wcwcwcwwwc ZxmYxmXxmmZmYmXmxm 3332311413121134 −−−+++=  (4.19) 

 wcwcwcwwwc ZymYymXymmZmYmXmym 3332312423222134 −−−+++=  (4.20) 

The significance of these representations will become clear shortly. 
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Now, define 

 [ ]Tc mmmmmmm 332114131211 =  (4.21) 

And let  

 134 =m  (4.22) 

Given i predefined points where Xw
i, Yw

i, Zw
i, xc

i, yc
i are known for all i (these points 

normally being supplied by the image of a calibration target), one can define 

 BAmc =  (4.23) 

by repeated vertical concatenation of vectors defined by 4.19 and 4.20, that is 
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 [ ]c
ii yB =2  (4.27) 

The pseudo-inverse method least squares solution estimate for mc can be found as 

 ( ) BAAAm TT
c

1−
=  (4.28) 

In a similar way, one may define a relationship between a point in world-space and the 

projector 2D pixel which illuminates it. 
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In this case, recovery of xp and yp is performed according to the structured light 

illumination method being used (that is, these values will be defined by specific 

structured light pattern code values, and must be obtained by performing a scan). 

Thus 
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Since the model for the projector is effectively identical to that of the camera, one may 

again utilize a least squares approximation to recover a calibration vector mp, allowing 

transformation from world 3D coordinates to equivalent projector space 2D.   

Defining 

 [ ]Tpppppp
p mmmmmmm 332114131211 =  (4.32) 

and letting 

 134 =pm  (4.33) 

and utilizing a scan of calibration target to define a series of i calibration points for which 

Xw
i, Yw

i, Zw
i, xp

i, and yp
i may be found, one may then form appropriate matrices Ap and Bp 

(similar to 4.24-4.27) and summarily recover mp according to 

 ( ) p
T

pp
T

pp BAAAm
1−

=  (4.34) 

3.5 World 3D Recovery 
Note that by properly aligning the camera and projector, it is possible to 

effectively remove one of the projector dimensions from consideration.  Thus, the 

following scenario assumes that the structured light method used will allow recovery of 
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only yp.  Upon successful calibration, the mc and mp transformation vectors have been 

defined.  Now, for any given point in a scan result image, one may collect values for xc, 

yc, (defined as simple camera space coordinates for the point) and yp (defined by the 

structured light pattern projection information recovered at the point). 

From 4.19 and 4.20, one may again create another useful representation 

 1434331332123111 )()()( mxmZxmmYxmmXxmm cwcwcwc −=−+−+−  (4.35) 

and similarly, one may define 

 2434332332223121 )()()( mymZymmYymmXymm cwcwcwc −=−+−+−  (4.36) 

and 

 2434332332223121 )()()( pppwpppwpppwppp mymZymmYymmXymm −=−+−+− (4.37) 

Thus, we have three independent equations with three unknowns (Xw, Yw, and Zw).  From 

eqns. 4.35, 4.36 and 4.37 we may form the following representation 
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so, let 
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and 
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Then, it can be seen that 
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and so, any world coordinate 3D point can be calculated as  
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3.6 Calibration Process Summary 
A summary of the basic SLI calibration process is as follows: first, a calibration 

target is created, consisting of i=12 or more calibration target points with Xw
i, Yw

i, and Zw
i  

coordinates known (as defined in some known coordinate system; for example, 

millimeter units as measured from an origin point defined upon the calibration object 

itself). 

Next, a SLI scan of this calibration object is acquired, creating two particular 

images: a “phase map” in which each point in the image space is marked with the 

corresponding projector yp encoded value (this is the image which may actually be 

processed to collect a 3D representation of the object), and an ‘albedo image’, which is 

normally a basic visual representation of the object (that is, a largely unaltered digital 

photograph). 

Using the albedo image, one locates the calibration target points (either 

automatically or manually) and thus acquires xc
i, and yc

i for each of the i calibration target 

points.  The yp
i encoded value of the equivalent position in the phase map is collected and 

recorded. 
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Finally, the necessary matrices (A, B, Ap and Bp, as in eqns. 4.28 and 4.34) are 

created using the collected calibration target point data, and calculation to acquire mc and 

mp is performed. 

In the specific context of research performed, the SLI method used for calibration 

purposes was multifrequency phase modulation profilometry (PMP, as described in 

chapter 1) [43].  The calibration object was a wedge shaped grid with 18 calibration 

target points, marked by circles.  During the calibration process, data regarding each 

target point or circle (including target position) was collected using a semi-automatic 

procedure implemented by a specifically designed software application shown in Figure 

3.2.  This software application performed all necessary calculations and summarily 

recorded the relevant calibration data in appropriate data files for later use. 

 

Figure 3.2, Calibration software 
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In the figure, one can see displays of the following data images (clockwise from 

the top-leftmost image): the albedo image of a calibration target, the phase image created 

from the PMP scan of the target, an isolated localized region representing the inner 

portion of a target circle, a small grid of dots representing the corresponding world-

coordinate position of the selected target circle, and finally the albedo image subsection 

containing the selected target circle. 

 

3.7 Special Modified Composite Pattern Calibration Procedure 
Calibrating for PMP scanning can be performed directly using the software and 

procedure described in the previous section.  However, due to the nature of MCP, this 

calibration method is unsuitable.  MCP does not create a dense phase image as PMP 

does, and so, finding the camera-projector correspondence for an arbitrary point on a 

calibration target is difficult and, if attempted, would require potentially detrimental 

interpolation.  Additionally, the presence of calibration targets, such as circles, in an 

MCP image will create areas of local interference during the demodulation process, 

potentially corrupting the recovered encoding information at the very spot where correct 

decoding is the most necessary.  Also, as will be discussed in a later chapter, the strongly 

angled surface presented by a calibration object can also introduce difficulties into the 

demodulation process. 

For these reasons, a slightly altered method was implemented in order to calibrate 

MCP scans.  Note that, since MCP encoded stripe peaks correspond to a single row in 

projector space, and a single PMP phase value corresponds to a single row as well, it is, 

in fact, possible to find a correspondence between MCP peak code values and PMP phase 
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values.  If one could, for a given system setup, acquire PMP calibration information as 

well as the mathematical correspondence between MCP encoding and PMP phase values, 

this would be all the information necessary to reconstruct a depth model from an MCP 

scan.   

Thus, the following procedure is performed to acquire this effective “MCP 

calibration”: first, the camera-projector system is set up with appropriate focus and 

alignment, etc. and a PMP calibration procedure is performed (thus, the system is now 

enabled for PMP scans and data reconstruction).  Next, a PMP scan of a matte-white flat 

surface is acquired, followed immediately by a MCP scan of the surface.  The MCP scan 

is then processed, yielding an image of stripes bearing base-10 encoding values.  Finally, 

a least-squares linear fit is found between each encoding value and the phase value at the 

same (xc, yc) point in the PMP phase image.  The linear fit coefficients are then recorded. 

Using this information, it is possible to transform MCP code values to PMP phase 

values and then, using the PMP calibration data for the system, calculate world-

coordinate data of the surface.  It should be noted that the process performed this way 

yields 3D data which is, at best, only as accurate as the PMP scan used in initial 

calibration.  However, any errors present in the MCP result (due to incorrect decoding) 

will adversely affect the linear fit calibration process, and so it is especially important 

that the MCP result data used in this calibration be as correct as possible, potentially 

necessitating additional post-processing correction procedures. 

 

Copyright © Charles Joseph Casey 2011 
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Chapter 4 MCP Processing 

 

The updated Modified Composite Pattern (MCP) processing is a fairly complex 

affair.  The process for early stage processing (effectively the CP demodulation and 

initial recovery of binary SLI data) is summarized in Figure 4.1.  

 

Figure 4.1, MCP flowchart 
 

Parallelograms represent data images, while hexagons represent collected data variables 

to be used in specific processes.  Rectangles represent an image processing step.  The 

dots in the operation circles represent element-wise multiplication.  The procedure can be 

effectively divided into two, largely parallel branches; a stripe detection branch, and a 

decoding branch. 
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Stripe detection utilizes an automated detection algorithm, followed by a 

frequency detection process to isolate the “stripe frequency.”  This is then used to 

perform an updated detection process, resulting in the final, accurate “stripe image.” 

Decoding begins, as seen in Fig. 5.1, with the automated detection of N 

modulation band frequencies (which may be enhanced by the use of prior knowledge of 

stripe frequency data, collected separately).  These band frequencies are used to direct a 

filtration process which isolates N individual channel images.  These images are then 

thresholded and element-wise multiplied by a constant value.  The resulting images are 

then element-wise multiplied by the binary stripe image (effectively using the stripe 

image as a binary mask), and all images thus created are finally summed together. 

The output of the process is a single image in which each isolated peak has been 

identified by its appropriate binary sequence code-word.  This “code image” is then used 

as input to a second processing stage which makes use of various operations (such as 

morphological operations and Hidden Markov Model / Viterbi best path analysis) to 

allow even more accurate recovery of 3D surface data. 

 

4.1 Peak Isolation 
The hallmark of MCP is its use of spatial domain information to enhance the 

standard Composite Pattern depth measurement techniques.  Utilizing characteristic 

information in the pattern itself, it is possible to reduce or prevent CP demodulation 

errors and simultaneously eliminate the influence of systematic errors on the recovered 

CP depth data. 
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The triangular cross section of the MCP was utilized in order to allow easy and 

accurate definition and recognition of pattern regions.  Each peak runs the full length of 

the pattern, and will be distorted as it is projected onto a target surface.  Isolation of the 

stripes on the surface can allow for recovery of 3D information in accordance with 

standard structured light triangulation methods.  Pixel-accurate isolations of the stripe 

peaks can be automatically obtained using a linear filtering process illustrated in Figure 

4.2.  Inspired by the theory of digital unsharp masking, and similar to the ring filter 

technique used in reference [80], this filtering process was deemed most suited to this 

particular application due to the limited necessity for user interaction. 

 

 

Figure 4.2, Adaptive threshold generation 
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The peak isolation process is quite simple.  The image is first strongly smoothed 

with a simple linear filter; a single-column-wide rectangle with a length equal to the 

approximate peak wavelength, with a zero-valued section, possibly as small as one pixel, 

in the center (effectively an averaging filter with a “hole”).  This smoothed image is then 

subtracted from the original, resulting in an approximate shifting of the mean of all 

stripes to zero while also enhancing the local contrast (advantageous, as it may allow one 

to reduce the loss of peak data during aggressive intensity thresholding).   

The filter essentially defines an adaptive threshold that has the additional effect of 

enhancing locally symmetric peak areas.  A simple threshold at zero operation on the 

filtered image will isolate the positive stripe regions from the negative.  The actual peaks 

can then be isolated by a local search bounded by the edges of the positive stripe regions, 

performed either on the mean-shifted filtered image or the original, unfiltered image 

(notice that the filter has an additional undesirable effect of skewing asymmetric regions, 

which may create error in identifying peak locations.  As such, it may be advantageous to 

perform final peak localization processes using the unfiltered image instead). 

 



 

 71 

 

Figure 4.3, Enhanced image 

 

Figure 4.4, Thresholded isolated region image 
The process can actually be modeled by a single filter, defined by the following 
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This can be easily shown to have a frequency response of 
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Of course, the situation could be considered in yet another slightly different way 

as well.  Rather than a two step process (creating a filtered image, then threshold), one 

could simply utilize the adaptive threshold directly, reducing this to a single step process.  

However, it was deemed potentially advantageous to have the filtered image data 

available, rather than just the thresholding result, as it allows potential utilization of 

multiple threshold values, and may also be useful during the peak isolation process. 

The peak isolation process is most effective when the size of the smoothing filter 

is roughly the size of an individual stripe wavelength.  Nevertheless, even a filter with 

poorly chosen size parameters can still be used to adequate affect.  Taking advantage of 

this fact, the implemented MCP analysis process utilizes a two step automated procedure 

for stripe detection.  An initial pass performs stripe region isolation and thresholding 

using an initial stripe wavelength estimate.  This region image is smoothed with a default 

sized moving average filter (to suppress harmonics) and transformed to Fourier space and 

analyzed to isolate the primary vertical frequency; that is, the effective stripe frequency.   

This is accomplished very easily by considering the first quadrant of the Fourier 

space representation of the thresholded region image (after removing the DC component 

of the image), and summarily finding the location of maximum value along the first 

column.  This value is then recorded as the stripe frequency and used to form a new 

estimate for stripe wavelength.  The new estimated value is used for the second filtration 

pass, allowing for optimally isolated stripe peaks. 
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The final step in stripe isolation is, as indicated previously, the application of an 

intensity threshold.  It was found, during early stages of the research, that utilization of an 

intensity threshold could often serve to demarcate certain object boundaries, and thus, 

could be useful in ensuring correct stripe identification. 

 

4.2 Surface Inclination Segmentation 
Composite Pattern Fourier domain information, which must be analyzed and 

demodulated in order to recover subject depth information, is unfortunately sensitive to 

local rotations due to surface shape.  Consider the image in Figure 4.5 (left) and a 

cropped image of the corresponding Fourier domain power spectral density Figure 4.5 

(right). 

         

Figure 4.5, Example of stripe rotation effects 
 

Note how the modulated image bands in Fourier space suffer noticeable rotation.  

If uncorrected, this information will create significant difficulties in demodulation and 

analysis, including difficulty in determining the appropriate modulating frequencies and 

in isolating the modulated information (note how the “crossing” of the bands will create 
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large amounts of inter-channel interference and will be detrimental to proper stripe 

identification). 

Thus, in order to avoid this undesirable complication, it is necessary to perform 

correction of the image in the spatial domain before significant Fourier domain analysis 

can be performed.  It is a simple task to segment the image into regions defined, for 

example, by the average local linear inclination identified in each.  By then processing 

each region individually, the maximum amount of correct encoded pattern information 

can be obtained without corruption due to frequency shifting (similar to the technique in 

reference [81]).   

By isolating the regions and dividing the original image into three or more 

inclination segmented images (one for highly positive inclination, one for highly negative 

inclination, and one for negligible inclination), appropriate rotations can be utilized to 

compensate, allowing processing of each to be performed according to the standard 

methodology.  The resulting decoded stripe identity images may then be rotated back, 

once more creating a single image that contains all necessary information for depth 

calculation. 

Isolation can be performed in the following manner: within the binary isolated 

stripe peak image Ip, at any non-zero point (x,y), consider the set of non-zero points in a 

local windowed region.  Let 

 [ ]nwwwyxW ,,),( 21=  (5.4) 

represent the collection of such points, and for all i 

 ),( ,, yixii www =  (5.5) 

represents the image space coordinates of each non-zero pixel. 
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Define a matrix X, such that for each row i 

 xiwiX ,]1,[ =  (5.6) 

and 

 1]2,[ =iX  (5.7) 

Next, define a column vector Y, such that for each row i, 

 yiwiY ,][ =  (5.8) 

One may then define the linear parameterization for this local window using the least-

squares estimation, given by 

 YXXXZ ′′= −1)(  (5.9) 

In which case element Z[1,1] represents the pixel-wise slope for the best fit linear model 

of all non-zero pixels within the window.   

Define z(x,y)=Z[1,1] thus acquired from W(x,y).  We may now define a new 

image matrix L, such that 
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Consider now three copies of image matrix Ip, appropriately named Ip1, Ip2, and Ip3.  

Given a positive inclination threshold tp and negative inclination threshold tn, one may 

form three segmented binary images in which 

 pp txyLiffxyI >== ],[1],[1  

                     pnp txyLtxyLiffxyI <>= ],[,],[1],[2  (5.11) 

 np txyLiffxyI <== ],[1],[3  
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One may now define rotation compensation values rp (for image Ip1) and rn (for image Ip3) 

according to 
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and  
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where Ln represents the set of non-zero elements in the matrix defined by Hadamard 

multiplication of matrix L and Ipn.  The value Nn represents the number of elements in 

each set Ln.  

      

Figure 4.6, (left) Isolated positive inclination stripe regions, (right) Isolated negative 
inclination stripe regions 

 

Figure 4.6 displays the results of inclination filtering, using a simple threshold at 

zero to isolate regions of positive inclination versus regions of negative inclination (note 

that only two regions, rather than three, were identified simply for demonstration 

purposes).   
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Performing morphological dilation (or closing) using a large structuring element 

on each Ip image allows the creation of three separate segmentation masks which may be 

applied to duplicates of the input image.  Each image, thus segmented, can be corrected 

using the appropriate rotation compensation factor, and summarily processed according 

to the standard MCP processing methodology. 

 

4.3 Analysis-By-Synthesis Target Frequency Isolation 
A significant portion of Composite Pattern processing is performed in the spectral 

domain.  The goal is to isolate the binary pattern information as accurately as possible in 

order to properly identify each stripe codeword identifier.  With each stripe identity 

known, the surface depth can be calculated via triangulation (as in most structured light 

implementations).  A secondary goal during project development is to design a method to 

complete the analysis process with minimal user input or observation.  Early versions of 

the process required significant user manipulation, and were thus difficult to use and 

prone to error. 

In order to recover CP depth information accurately, it is necessary to recover 

each individual pattern channel with as little error as possible.  The fundamental aspect of 

this is the accurate identification of the apparent pattern modulation frequencies.  Though 

the projected pattern modulation frequencies are known, the effects of the camera and 

projector optics will generally alter the frequencies significantly in the captured image. 

To begin, a Fast Fourier Transform is applied to the input image.  Each element is 

appropriately multiplied by its own complex conjugate in order to create a two 

dimensional power spectral density image.  All quadrants of the PSD image are then 
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averaged (utilizing appropriate cropping and element-wise ordering in order to add 

corresponding positive and negative frequency components) to create a single image as 

shown in Figure 4.7. 

 

Figure 4.7, Four quadrant composite Fourier image 
 

A simple column-wise summation process is employed (limited to vertical 

frequencies between zero and the calculated stripe frequency, though this empirically 

defined limit may need to be altered depending on circumstantial implementation 

characteristics), creating a data array similar to that shown in Figure 4.8. 
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Figure 4.8, Vertical PSD summation 
 

Note that the data averaging and summation processes can be expected to reduce the 

influence of uncorrelated noise on the underlying modulated data.  A second array is then 

created by filtering this data with a 2nd derivative filter.  Using these, the individual 

frequency elements are isolated with an analysis-by-synthesis method.  The algorithm is 

summarized as follows:  

- Isolate data array A 

- Construct 2nd derivative (discrete Laplace) filtered array D 

- Construct copy C of array A (as shown in Fig. 5.9 (top)) 

- Construct a blank data array B 

- Begin loop - end after a pre-determined number of iterations 

o Find and record the location X of the maximum value M in C 

o Find nearby upper and lower zero values Z+ and Z- in D 

o Using M, X, Z+ , and Z- , define a discrete Gaussian curve, and add this 

curve to array B (shown in Fig. 5.9 (middle)) 

o Redefine C according to C=A-B (shown in Fig 5.9 (bottom)) 

- End loop 
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Figure 4.9, Analysis By Synthesis process, (top) initial array A, (middle) array B, where 
B represents isolated frequency band components, after one iteration, (bottom) updated 

array C where C=A-B, where the presence of B is indicated by the dotted curve 
 

This process will effectively synthesize, in B, the information contained in A, 

while also collecting relevant data (thus it is “analysis by synthesis” (ABS)).  The desired 

number of isolated frequencies, collected as recorded X values, determines the number of 

loop iterations to be performed.  As part of the process, obviously incorrect frequencies 

(such as near-zero frequencies) can be eliminated from consideration. 

4.4 Channel Isolation 
Once the target modulating frequencies have been isolated, the desired pattern 

data may be isolated and demodulated.  The basic process of CP demodulation is 

explained in-depth in chapter 2.   

In the specific implantation of this project, the modulation bands are isolated 

using a Gaussian shaped bandpass filter which mimics the shape of the modulated 

energy, according to information gathered in the ABS procedure.  This choice greatly 

reduces the likelihood of inter-channel interference at the cost of reduced signal energy.  
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The result is then inverse-transformed so that further processing may be performed in the 

spatial domain.   

Note that, in contrast to the theoretical implementation, the isolated signals are not 

demodulated according to the classical methodology, and so, the resulting inverse-

transformed spatial domain images are effectively still modulated by high-frequency 

sinusoids.  This result is actually observably better than the alternative. 

   

Figure 4.10, Frequency isolation comparison of methods example 1, unshifted (left) 
versus shifted (right) 

   

Figure 4.11, Frequency isolation comparision of methods example 2, unshifted (left) 
versus shifted (right) 

 

As seen in Figure 4.10 and Figure 4.11, the act of demodulating (that is, shifting 

each band to zero frequency) the isolated frequency bands results in a significant loss of 
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information.  This is likely due to optical distortion introducing small local deviations in 

frequency within each modulated stripes. 

The “isolated-but-not-frequency-shifted” spatial images contain sinusoidal 

modulation, creating the presence of numerous small, empty sections (at the sinusoidal 

zero crossings).  These are, however, easily dealt with.  The isolated images need only be 

thresholded and summarily dilated with a very small morphological structuring element.  

This very minor correction allows easy recovery of the full stripe information. 

 

4.5 Thresholding and Initial Error Estimation 
The final stages of processing for a MCP image take place once again in the 

spatial domain.  Once the isolated pattern data images have been created, they must be 

thresholded to isolate the stripe identity code-word values.  These identity values may 

then be applied to the stripe peak mask.  This image may then be used for 3D data 

recovery.   

Modified Composite Pattern encoding is binary in nature, while in practice, 

illuminating a surface will produce an obviously non-binary image.  This is further 

complicated due to pattern modulation / demodulation.  As such, a binarizing threshold 

must be applied to the demodulated pattern images. 

At the same time, attempting to define an intensity decision boundary for 

thresholding is complicated due to the fact that key aspects of threshold definition 

(average intensity values, interference and noise levels etc.) are highly variable, even in 

different areas of a single image, due to specifics of subject and system setup.  For this 

reason, it is necessary to apply a reasonable, data specific statistical analysis and 
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thresholding method that takes into account known statistical characteristics of the image 

being processed.  These statistics can then be carried forward into the specifications of 

the HMM very easily.  Using the HMM, a more realistic image analysis can be 

performed (if necessary) using a multiple pass Viterbi analysis methodology, as will be 

explained in later sections. 

For the purposes of experimentation, the threshold level was chosen to be two 

standard deviations from the statistical mean value of the isolated spatial intensity image 

of each demodulated data channel.  This choice was made as this threshold produced 

satisfactory results during early stage testing, in addition to providing a statistically 

consistent threshold methodology, suitable for further study.  As such, a characterization 

of this threshold follows, in order to assess the suitability of the method in practical 

scenarios. 

 

 Threshold analysis 
Any demodulated MCP pattern image can be considered as consisting of two 

parts: the triangular encoded “active regions”, and low-intensity “inactive” regions which 

occur between the peaks.  Let us consider a one-dimensional image B, consisting of N 

total regions, a number a of which are active and (N-a) of which are inactive.  The 

expectation value for the region B can be calculated as the sum of the expectation values 

of the active regions and the inactive regions plus the expectation value of an additive 

noise field, that is 

 }{}{}{}{ noiseEBEBEBE ia ++=  (5.14) 
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Given that the probability of a region being active is Pa, and that the mean value of a 

given active region is Ma, it is clear that 

 aaa MPBE =}{  (5.15) 

And similarly for inactive regions 

 iii MPBE =}{  (5.16) 

And for noise, let 

 nnoiseE µ=}{  (5.17) 

Owing to the fact that an active region consists of a single symmetric triangular 

waveform, it can be shown that the mean active region value can be easily calculated as 
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which describes the mean height of all active peaks.   

From the description of the image, it can be seen that  
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aPa =  (5.20) 

And also that 
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and 
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And thus 
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2
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The variance of the image can be shown to be given by 

 2222 }{}{}}){{( BEBEBEBE −=−=σ  (5.24) 

Where 

 }{}{}{}{ 2222 noiseEBEBEBE ia ++=  (5.25) 

Under the same assumptions described for the previous equations, it can be shown that 
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It can be shown that the situation of largest variance occurs in the event in which 

half of the peaks have a large height value, while the rest have a much lower height 

(assuming an even number of active regions).  In this situation of maximum variance, the 

question becomes: what is the smallest possible value of peak that will not be thresholded 

away under an image-wide threshold of two standard deviations above the mean of the 

image?  For the sake of convenience, let the situation be defined such that the active 

region peak height mean is normalized to a value of 1.   
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 Define values x (small peak height) and Hb (large peak height) such that 

 1}{
22

22 ==+=+ HExH
a

x
a

H b
aa

b  (5.29)  

as described by the situation of maximum variance.  The situation is illustrated in Figure 

4.12 below. 

 

Figure 4.12, Peak thresholding example 
 

Similarly,  

 }{
22

2
22

HExH b =+  (5.30) 

Using equation 5.29, one may solve for the expectation of squared heights in terms of x 

only, as 

 22}{ 22 +−= xxHE  (5.31) 

According to the proposed threshold, let 

 nN
HaEx µσ ++=

2
}{2  (5.32) 

 10 ≤< x   (5.33)  

wherein peaks of height x will fall exactly on the threshold value.  

And since E{H}=1, 
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Now, define 
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which can be defined as a noise contribution term (not to be confused with the noise 

subscript n, as in μn) 

Then 
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From equation 5.31, this can be written 

 n
N
a

N
xxa

+





−

+−
=

22
2

23
]22[σ  (5.38) 

Or alternatively 
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Which simplifies to 
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Now, defining some more useful variables, let 
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One may write 5.40 as 

 vuxux +−= 222σ  (5.44) 

And making proper substitutions for x from 5.34, this becomes 

 vwuwu ++−+= )2(2)2( 22 σσσ  (5.45)  

Or 

 vwuwwu ++−++= )2(2)44( 222 σσσσ  (5.46) 

By simplifying and rearranging, one can arrive at a crucial result 

 )2()1(4)14(0 22 vuwuwwuu +−+−+−= σσ  (5.47) 

Which may be solved easily using the quadratic formula, revealing 
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Using typical values a=8 and N=32, and assuming negligible contribution from noise 

(that is, μn=0 and n=0), we find that 

  x =.6776  (5.49)  

 Hb=1.322 (5.50)  

 and so   

 95.1≈
x

H b  (5.51) 
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In other words, given maximum possible variation between stripe band peak 

heights, the threshold of two standard deviations above the mean will function 

appropriately (that is, not eliminate any signal peaks) when the maximum height is less 

than roughly 1.95 times the lowest peak height.   

This value provides an estimate of effectiveness, though in realistic scenarios, 

noise contribution is likely to reduce this allowable variation.  Additionally, blurring and 

filtration effects will create peak shapes which are not truly triangular.  Nevertheless, it is 

also true that in realistic scenarios, variation between peak heights may also be reduced 

significantly, thereby reducing the variance; and thus, reducing the corresponding 

threshold. 

 

 Error rate estimation 
Once thresholding has been performed, estimations are utilized in order to assign 

theoretical ‘false positive’ and ‘miss’ error rates to the image.  These values will then be 

used in the definition of the Hidden Markov Model emission matrix. 

Defining the false positive error rate is based on the assumption that any noise 

peaks which have been incorrectly included will have intensity values that are much 

smaller than the intensity values of rightly included peaks.  Under this assumption, and 

the assumption of a statistically normal process, we will thus consider all pixels with 

intensity below one standard deviation of the mean (of remaining thresholded pixels) to 

be introduction of false positives.  Therefore, for all patterns, the initial false positive rate 

is assumed to be roughly 15.9% (that is, the proportion of remaining peaks below one 
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standard deviation; peaks that are considered to be noise).  Due to the characteristics of 

these assumptions, this initial rate can be assumed to be a very crude estimate. 

The miss error rate is defined in a more practical way.  Given the stripe image, it 

is known approximately how many stripe pixels must be present in the image.  Prior 

knowledge of the pattern encoding allows one to define how many ‘high’ encoded stripe 

pixels should appear in each channel image.  Therefore, an estimate of the miss error rate 

is defined as one minus the ratio of actual ‘high’ stripe pixels versus the expected number 

of ‘high’ stripe pixels in each channel image. 
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Chapter 5 Error Correction and Post-Processing 

 

The previous sections have explained the theoretical operations of the Modified 

Composite Pattern method.  While it is, perhaps, well suited for tasks such as optical 

control or machine vision, the results acquired from the basic method are often 

considered inadequate from a subjective standpoint of the human viewer.  In order to 

further reduce depth recovery error, and thus improve the visible quality of the output 

model, it was necessary to implement a number of error correcting and post-processing 

procedures. 

 

5.1  Background Information 
Based on observations specific to MCP, it was found early in the research process 

that it would be necessary to consider the MCP encoding sequence in a more formal 

context.  Specifically, it was decided that the recovered MCP codeword sequences should 

be analyzed as the output of a finite state machine, specifically of the Hidden Markov 

Model subclass. 

 

 Finite State Machines 
A finite state machine (FSM, also known as a finite automaton, FA, or finite state 

automaton FSA) is theoretical system model.  It consists of a set of system states, a set of 

known transitions between states, a known starting state, a set of end states, and (where 

relevant) alphabets of input and output symbols.  The physical manifestations of these 

abstractions depend on the particular system being modeled.  For example, a computer 

program may take typed data characters as inputs.  Recognition of the input characters 
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may cause transition between states represented by changes in some numerical flag value, 

and cause the output of a pre-determined set of graphical color changes.  Physical 

systems can be modeled this way as well.  A FSA representing a door may take “open the 

door” and “close the door” actions as inputs, transitioning between an opened state and a 

closed state. 

 From the initial starting state, an input from the input symbol alphabet will cause 

a transition to one of any number of next states, from which the process of taking in 

inputs and transitioning between states may be continued until an end state is reached.  

FSAs may be classified as deterministic (in which a single input symbol is related to only 

a single possible transition from any given state) or non-deterministic (in which a single 

input symbol may be related to any number of possible transitions from a given state), as 

well as acceptors (also known as recognizers or sequence detectors, in which only end 

states generate an associated output) or transducers (in which all states, or even state 

transitions, may generate an associated output). 

 

 Hidden Markov Models 
The Hidden Markov model (HMM) is a class of statistical signal models 

frequently utilized in signal processing applications.  A Hidden Markov model is 

constructed under the assumption that an observed symbol sequence is generated, in a 

statistically well-defined manner, by an underlying hidden process.  The underlying 

process is modeled by a Markov chain, effectively characterized as a transducer-type 

finite state automaton with a known number of states N.  A Markov chain is a discrete 

stochastic process defined by the Markov assumption, that is, the probability of transition 
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from some state A to some other state B depends only on state A, and is independent of 

the path by which state A was reached.  Thus, for each state pair, there is a single 

transition probability value.  These probabilities define the HMM “transition probability 

distribution.”  Each state (or state transition as the case may be) is assumed to have a 

certain probability of generating (that is, “emitting”) one of M observation symbols.  

These probabilities define the HMM “emission probability distribution”.  Additionally, 

there is a certain probability that any individual sequence will begin with any given state, 

that is, each state has an associated probability that it is the initial state in any sequence.  

These probabilities define the HMM “initial state probability distribution”.  Together, the 

transition, emission, and initial state probability distributions (usually considered in the 

form of matrices), along with associated values N and M, define in full the HMM proper 

[82]. 

 Hidden Markov models were first introduced in their purely mathematical form in 

the mid twentieth century.  Early utilizations for speech recognition followed soon after 

[82].  HMM implementations lend themselves well to sequential symbol recognition 

problems such as speech and text recognition, and have been used in varied fields such as 

musicology [82, 83], bioinformatics [84], and image processing.   

 A particularly attractive characteristic of HMMs is their utility as a mechanism of 

machine learning.  It is possible to actively create or modify a given HMM to reflect 

training data introduced to the system.  This has been taken advantage of in the 

development of speech recognition systems [85], pattern classification and computer 

process modeling [86]. 
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 There are three problems of particular interest when utilizing HMMs.  The first is 

posed: given a particular sequence of observations, what is the probability of the 

sequence being produced by the system?  The second is similar: given a particular 

sequence of observations, what is the particular sequence of system states that is most 

likely to have produced the sequence?  The third can be summarized: given one or more 

sequences of observations and a hypothetical hidden system FSA, what are the most 

likely associated transition and emission probability distributions?  Note that the solution 

to this third problem is particularly important in the utilization of HMMs for machine 

learning systems. 

 

5.2 MCP Hidden Markov Model 
Once each channel image is thresholded, multiplied by the appropriate constant, 

and combined (the stripe image acting as a binary mask), the resulting encoded image 

(the “Code Image” in the flowchart in Figure 4.1) must then be processed using a Hidden 

Markov Model decoder. 

Consider a single column in the encoded image.  Ideally, all pixels encountered 

should correspond to the correct encoding values in the proper order.  However, in 

practice, a column will frequently contain errors such as incorrect values, missing code 

values, and additional extraneous pixels, all due to data loss from thresholding or 

demodulation, or due to undesirable noise peaks. 

However, due to prior knowledge of the encoding scheme, the proper order of 

encoded values is well defined.  Additionally, as noted in the previous section, it is 

possible to estimate the likelihood of error for any given code value.  These 
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characteristics suggest that a HMM modeling scheme may be very useful.  In this case, 

the HMM will not be used due specifically to its learning ability, but rather due to the 

applicability of the Veterbi algorithm in identifying the most likely underlying code 

structure given a sequence of (potentially corrupted) observations. 

A proper Hidden Markov Model requires an emission matrix, state transition 

matrix, and starting state matrix, in addition to the set of observations upon which it will 

operate.  In this situation, processing will be performed in a column-wise fashion.  

Observations will consist of the set of nonzero pixel values in an encoded image column. 

 

 Emission Matrix 
The system emission matrix defines the probability of observation of a given 

value for each underlying true encoded value (in terms of a specific example, the 

emission matrix value at coordinate (8,5) is the probability that signal value 5 will be 

observed, even though the actual transmitted signal value is 8).  These probabilities can 

be defined very simply from the probability approximations discussed in previous 

sections. 

Assuming statistical independence between each modulation channel 

(interference analysis can allow an estimate of just how accurate this assumption actually 

is) the probability of interpretation of each codeword can be calculated as the product of 

probabilities of interpretation for each codeword symbol.  If Y is the set of received 

symbols for each channel, and X is the set of symbols sent, then the probability of each 

codeword is defined as 
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For an example, let Pfx represent the false positive probability for channel x.  

Similarly, Pmx represents the missed symbol probability for channel x.  Consider that the 

N=4 codeword sequence {1,1,0,1} has been encoded on a given stripe.  The probability 

of receiving, on the corresponding stripe in the received image, the codeword sequence 

{0,0,1,1} is given by 

  )1|1()0|1()1|0()1|0()1100( 443322113321 PPPPP =  (6.6) 

that is 

 )1()1100( 43213321 PP fP mP mP −⋅⋅⋅=  (6.7) 

 State Transition Matrix 
According to the definition of a Markov chain, the probability of occurrence of 

symbol Xn+1, given the occurrence of the previous symbol Xn, is a unique value.  That is 

 1,1 )|( ++ = nnnn pXXP  (6.8) 

These values are collected as elements of the Hidden Markov Model state transition 

matrix.  Practically, it means this: given that encoded pattern value Xi has been found, the 

probability that the next encoded pattern value is Xj is defined by the transition matrix 

element T(i,j). 

The state transition matrix for MCP is defined by the encoding pattern used.  

Ideally, given a sequence of encoded symbols, transitions will occur only from one 

symbol to the immediate next symbol in the sequence, as in Figure 5.1. 
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s1 s2 s3 sn

 

Figure 5.1, Basic symbol sequence 
 

However, in practice, it is possible to encounter extraneous stripe pixels, 

interrupting the ideal sequence with an error value.  In order to compensate for this, one 

may consider the system to be defined by the following representation, Figure 5.2. 

e0

s1

e1

s2

e2

s3 sn

ene3

 

Figure 5.2, Symbol sequence with error states 
 

The symbols e0 through en represent potential error states, that is, extraneous pixels.  Note 

that it is allowed that any number of error pixels may be encountered between any two 

proper symbols. 

 

This interpretation of the system is more representative to the actual pattern likely 

to be encountered, and can therefore be expected to give superior results to the first 
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model.  However, it doesn’t take into account a second source of error, the possibility of 

a missed symbol.  Therefore, an even more accurate representation is shown in Figure 

5.3. 

e0

s1

e1

s2

e2

s3 sn

ene3

 

Figure 5.3, Symbol sequence with errors and misses 
 

As you can see, this is much more complicated than the initial ideal system.  Note 

that it is possible for each symbol state to transition to any other later symbol state or to 

an error state, but never to a previous state.  As such, the system can be classified as a 

left-right HMM. 

The transition probabilities in the system are not necessarily easy to define.  The 

sequence of symbols encountered in any column may well be different from the sequence 

encountered in any other column due to subject and image capture characteristics.  In 

order to find an approximation for each necessary transition, one can make use of a few 

helpful assumptions. 

First, it may be assumed that it is quite unlikely to encounter an error pixel at all, 

due to the stripe isolation process characteristics.  Therefore, any transition to an error 

state must be very small. 
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Second, one may assume that the likelihood of a single missed symbol is 

significantly greater than the likelihood of multiple missed symbols, and that the most 

likely outcome is that a symbol is not missed at all.  That is, transition probability is 

related to symbol proximity.  Therefore, one can reduce the transition probabilities 

between symbols using a scheduling method, defining transition probabilities according 

to 
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Where k is a constant, C is a normalization constant, and pe is the approximate transition 

probability to an error state. 

 

 Start Matrix 
The start matrix, the matrix of probabilities that the sequence begins at any 

particular symbol, is actually quite easy to define.  Due to the fact that no assumptions 

can actually be made regarding which symbol will be the first encountered in any given 

column, all non-error symbols (and only e0) can be considered to have equal probability. 

 

5.3 The Viterbi Best Path Algorithm 
 The Viterbi algorithm was developed in the late 1960s by Andrew Viterbi for use 

in decoding error-correcting convolution codes [87].  It is a “path finding algorithm”.  In 

the context of HMMs, it is used to determine the most likely sequence of system 

transitions responsible for an observed sequence of emitted observable signals.  This 

most likely path (also known as the Viterbi path) is given as 
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 argmax(P(O|X)) (6.1) 

where O is a sequence of observation signals and X is a sequence of underlying hidden 

states.  Due to the Markov assumption, the probability of any observation sequence is 

given by 

 P(O|X)=[P(o0|x0)P(x0)][P(o1|x1)P(x1|x0)][P(o2|x2)P(x2|x1)]... (6.2) 

Given that the set of X and O probabilities are known as given parameters of the 

HMM, it is possible to find the Viterbi path simply by calculating the probability of a set 

of observations under all possible permutations of hidden states and summarily finding 

which state sequence produces the greatest observation probability.  However, the Viterbi 

algorithm allows one to avoid the computational complexity required by this method, 

instead utilizing a much more efficient recursive process. 

Let X(t)={x0,x1...xt} define a path of t transitions.  Let S(t)={x0,x1...xn} define the 

set of hidden states which may be reached in t transitions.  Given t transitions, for the 

observation ot, for each state x in S(t), there exists one best path X(t-1) which maximizes 

 P(x|t)=P(X(t))=P(ot|x)P(x|xt-1)P(X(t-1)) (6.3) 

Paths calculated thus are called “partial best paths”.  The definition of X(0) makes use of 

starting probabilities according to 

 P(X(0))=P(o0|x0)P(x0) (6.4) 

Notice that the calculation of P(X(t)) makes use of the Viterbi path probability to 

intermediate state xt-1, that is P(X(t-1)).  Thus, the calculation of the overall Viterbi path 

may be performed recursively beginning with t=0. 

For each t, for each state in S(t), one must record both the partial best path 

probability P(X(t)), as well as a pointer value to the state xt-1.  This pointer is recorded so 
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that when the final Viterbi path probability is calculated, the actual sequence of states 

may be easily traced from the final state to the initial state while eliminating the need to 

store an entire X(t-1) state sequence for each intermediate hidden state. [88] 

It was decided that MCP be analyzed using the Viterbi algorithm due to the nature 

of any MCP scan: the scan contains a subset of a known sequence of symbols (the stripe 

code-words).  This sequence is constant and well-defined.  However, due to decoding 

errors and the nature of the photographed subject, it is possible that many of these 

symbols will be incorrectly identified or absent in the decoded image.  The goal of MCP 

processing is to recover, as well as possible, the information represented in the true 

sequence regardless of these errors.  And so, modeling the MCP scan recovery process in 

terms of HMM, and using Viterbi optimal path decoding, was deemed to be the ideal 

method of analysis. 

 

5.4 Post-Processing Operations 
 Despite the optimality of the Viterbi decoding process, intractable errors are likely 

to persist in MCP images due, if nothing else, to the unpredictable nature of visual data.  

As such, it has been necessary to implement a series of corrective functions, most 

commonly to be used as post processing.  While effective, these functions are, at present, 

largely non-automated, sometimes leaning more heavily than other functions on user 

defined parameters. 
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 Modal Filtration 
Modal filtration is, as the name implies, a nonlinear filtration process which 

simply replaces all elements within a windowed region of the code image with the modal 

value of that region (implemented to ignore background values of zero).  Based on the 

assumption that, in a small region containing multiple code-word values, the correct 

value will occur more frequently than error values, it has the helpful effect of correcting 

very small regions of incorrect coding that occur in an otherwise correctly decoded 

region.  Section 5.5 further shows how this apparently small correction can have a 

measurably significant effect. 

 

 Morphological Blob Elimination 
In the morphological blob elimination stage, the image is effectively divided into 

an array of binary component images.  Each contains a binary representation of only a 

single code-word value from the image (that is, the third image in the array would contain 

a positive value only where the pixel has a corresponding value of 3 in the code image).  

Each component image is then processed with a morphological open operation.  This has 

the effect of eliminating isolated regions smaller than the user-defined (and usually, fairly 

large) size of the structuring element.  Finally, all binary result images are once more 

combined into a new code image via simple multiplication by an appropriate base-10 

code-word value followed by addition. 

It must be noted that, due to the nature of the morphological open operation, it is 

possible to lose sizable regions of data, and the quality of the results may be influenced 

by the shape of the target subject or the incidence of intensity thresholding (which has 

often been employed as a simple method of error reduction in low-intensity areas, as 
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noted in section 4.1).  Nevertheless, when employed with a suitably sized structuring 

element, such as one derived from empirical data of the sort available in section 2.3, it is 

able to reliably eliminate decoding error due to step-edges (which notably occur 

frequently at the borders of MCP scan images).  Also note that, unlike modal filtration, 

blob elimination does not correct data, but merely eliminates it.  Thus, in order to recover 

the maximum amount of data available, it is necessary to implement an additional 

function to fill in empty stripe region areas. 

 

 Region-based Growth 
Upon completion of blob elimination, it is often the case that some pieces of the MCP 

image are left with no decoded value at all.  Yet an ideal depth map would make use of as 

much of the given data as possible.  As such, it is desirable to fill in these empty regions 

with the appropriate code-word stripe information. 

A process of expansion of existing coded stripe regions was present in earlier 

implementations of MCP.  Unfortunately, this growth process relied heavily on the 

correctness of user input for proper operation.  However, with the implementation of 

stripe localization via adaptive thresholding, it was found that these binary stripe regions 

provided an ideal path for the expansion of stripes. 

The method operates as a two-pass process.  Given three element matrices: the 

stripe image, which contains all pixels which should contain any codeword value; the 

code image, which, after blob elimination and modal processing, is expected to contain 

only the most accurately identified encoded pixels; and the binary region image, 

containing the most basic, unfiltered identification of stripe regions, the method proceeds 
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as follows: first, the stripe image is dilated by a single-column-wide structuring element 

(assuming stripes run horizontally, as in all previous examples).  This dilated stripe image 

is subtracted from the region image, and the result is then combined with the original 

stripe image to create an enhanced growth mask image.  This procedure effectively 

allows the region image to “fill in” gaps in the stripe image (occurring due to 

thresholding, for example) in a way that still preserves the consistency of the initial stripe 

results (that is, code values will only be extended into pixels that were, at the most basic 

level, still part of the same stripe). 

Next, a copy of the code image is created as an initial starting point for the output 

image (identified as the “blob image” as it contains all remaining blobs of encoded 

pixels).  Each pixel in the input image is then processed.  If pixels adjacent to the 

corresponding point are found to be empty in the blob matrix, but not empty in the 

growth mask, a growth loop initiates, propagating the value (in the blob matrix) along the 

path provided in the growth mask.  This continues until all of the pixels in the original 

image have been processed.   

Now, consider that some regions may be such that two different code identity 

stripes could be extended into it.  The result at regions such as this is entirely dependent 

on the order in which the input pixels were processed.  Thus, in order to prevent 

misidentification in these potentially problematic regions, the entire process is repeated 

with a second blob matrix, this time searching through the input pixels in the reverse 

order.  The two resulting blob matrices are then compared, and only matching pixels are 

passed as the result.  Finally, this result is multiplied by the true initial stripe mask to 

remove any extraneous pixels.  The result of the growth process is most frequently the 
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final result in the decoding phase, and may be processed to acquire the MCP depth 

image. 

 

5.5 Results 
The following results were collected for an image of a flat, white poster 

presentation board at varying stages of processing. 

 

Figure 5.4, Input image 
 

Figure 5.4 shows the initial unprocessed input image. 
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Figure 5.5, Contrast enhanced input image 
 

Figure 5.5 shows the input image, processed with the contrast enhancing filter 

(discussed in chapter 4) in preparation for thresholding and peak identification. 
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Figure 5.6, Stripe region isolated image 
 

Figure 5.6 shows the results of local adaptive thresholding, which isolates the 

regions containing stripe peaks. 

 

Figure 5.7, Isolated stripes 
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Figure 5.7 shows the pattern of isolated stripe peaks identified in the image. 

 

Figure 5.8, Spectral region 
 

Figure 5.8 shows the prepared spectral representation of the input image.  This 

sub-region (collected as described in chapter 4) is used in the collection of the individual 

modulation frequencies.  Note the obvious presence of strong modulated signal bands. 
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Figure 5.9, Plot of frequency bands (magnitude vs. frequency in cycles/fov) as used in 
ABS automated frequency selection 

 

Figure 5.9 shows the data array to be used in the analysis-by-synthesis frequency 

detection algorithm.  This plot is of particular importance, as it clearly displays some of 

the most intrusive problems encountered in Composite Pattern processing.   

Notice that, in addition to the strong modulated pattern bands (located between 50 

and 100 cycles per field of view) there is also some remaining baseband energy, located 

near DC.  This energy is particularly troublesome due to its large magnitude, and must be 

accounted for, either in the frequency detection process, or by the use of a high-pass 

filter. 

One can also see images of the modulation bands, located between approximately 

120 and 160 cycles per field of view.  In this case, these image bands lack sufficient 

energy to cause any disruption in the frequency detection process.  However, this may not 
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always be true.  Thus, one can see the importance of maximizing modulation energy and 

reducing interference. 

 

Figure 5.10, Individual isolated binary region information images  
(axes simply represent pixel coordinates) 

 
Figure 5.10 shows the set of structured light pattern information collected in the 

demodulation process, thresholded to binary values (where black indicates a high value).  

Take note of the distortion and incorrect information present around the image edges.  As 

discussed in chapter 2, step edges may lead to the introduction of artifacts in demodulated 

bands, and this fact must be accounted for in processing. 
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Figure 5.11, Initial recombined region/stripe information ("Code image") 
 

Figure 5.11 shows the results of combining the four binary regions into base 10 

code-words, and combining the result with the binary stripe peak mask (each color 

indicates a different code value).  This image was mentioned in chapter 4, specifically as 

the “code image” mentioned in Figure 4.1.  Additionally, the image was further processed 

with a basic modal filter (as discussed in section 5.4).  It was found that modal filtering 

could often improve results of further processing steps. 

 



 

 112 

 

Figure 5.12, Code image after initial HMM processing 
 

Figure 5.12 shows the code image after HMM processing.  Although the 

improvements may not be obvious due to the already high quality of the image, they can 

be seen in certain areas.  Note that, due to the extreme nature of the interference near the 

edges of the images, it was often impossible to correct the encoding errors. 
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Figure 5.13, Code information recovered for modulated and unmodulated stripe regions 
 

Figure 5.13 shows the result after additional post processing (modal filtration, 

blob elimination, and region-based growth process) and combination with the identified 

unmodulated stripe information.  Notice that stripe code-word identification is almost 

entirely free of errors after post-processing is complete. 
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Figure 5.14, Fully recovered code information, including presence of 2x and 4x stripes 
 

Figure 5.14 shows the final MCP decoding result, combined with interpolated 2x 

and 4x stripe regions (as discussed in chapter 2).  As expected, the density of the encoded 

data available is greatly increased. 
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Figure 5.15, Single column plot of phase information 
 

Figure 5.15 displays a single column of the code image, transformed (via 

appropriate scale factors, as discussed in chapter 3) into a “phase space” encoding 

representation necessary for 3D data recovery.  Note the marked linearity, as would be 

appropriate for a flat surface. 
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Figure 5.16, (left) PMP ground truth 3D, (right) recovered MCP 3D 
 

In Figure 5.16, one can see the actual 3D models acquired from the scan, the left 

being the PMP “ground truth” scan of the board, and the right being the 3D data 

recovered from MCP processing. 

 

 

Figure 5.17, Edge view of PMP board 
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Figure 5.17 shows the edge view of a section of the PMP board scan.  The 

apparent undulation is likely due to a combination of depth recovery error and actual 

surface roughness (the board, being made of corrugated cardboard, was not, itself, 

perfectly flat). 

 

Figure 5.18, Edge view of MCP 3D 
 

Figure 5.18 shows the edge view of the MCP scan 3D.  Notice that, in contrast to 

the PMP scan data, there is a marked “spread” in the model’s Z direction.  This effect is 

due to the pixel-accurate nature of the current generation MCP processing.  That is, there 

is a very slight systematic error in localization of stripe peak position, and thus, a small 

amount of systematic deviation of each stripe from the ideal depth.  The imperfection 

may be corrected using sub-pixel localization methods, or more simply, via basic 

interpolation and smoothing which would likely occur in a realistic use of the method. 
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5.6 Effectiveness of Processing 
Some results have been shown, but nevertheless, the question remains: just how 

effective are the proposed processing techniques in a quantitative sense?  To this end, an 

experiment was performed. 

Two objects were tested: a flat board (the same discussed in the previous section.  

Scan results used for the following tests are seen in Figure 5.16) and a mounted, white 

sphere.  For each, a PMP scan was performed, followed immediately by a MCP scan. 

MCP pattern modulation frequencies were isolated, in the captured image, to 78, 

92, 104, 115 cycles / fov. 

 

 MCP decoding 
The first test concerned only the effectiveness of decoding procedures for 

Modified Composite Pattern.  For each object, the final MCP decoding result was 

compared to results at various stages of processing.  Under the assumption that the final 

result is completely correct (which, as shown by results depicted in section 5.5, is not an 

unreasonable assumption), this allows one to identify the relative effectiveness of each 

processing step in defining a correctly decoded result. 

The results collected for the flat board are shown in Table 5.1. 
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Table 5.1, Testing MCP decoding process - Flat board 
Code # Original Modal HMM HMM / Modal

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0.9143 0.9158 0.9259 0.9259
5 0.9143 0.9165 0.9259 0.9245
6 0.9702 0.9724 0.9266 0.923
7 0.9964 1 0.9266 0.923
8 0.9688 0.9739 0.9253 0.9216
9 0.9448 0.9441 0.9253 0.9253
10 0.9005 0.8998 0.9259 0.9259
11 0.931 0.9303 0.9259 0.9259
12 0 0 0 0
13 0 0 0 0
14 0 0 0 0
15 0 0 0 0  

The column “Code #” represents a base 10 code-word present in the decoded image.  

Note that, due to the capture process, not all available code-words are present.  The other 

values shown represent what fraction (in comparison to the final result) of pixels is 

correctly identified at each stage. 

The column “Original” denotes the initial decoded result, before any further 

processing is applied.  The column “Modal” denotes results acquired by processing the 

original decoded result with a simple modal filter.  The “HMM” column represents the 

results of processing the modal image with the Hidden Markov Model best path 

algorithm.  The last column, “HMM / Modal” represents results of using a modal filter on 

the HMM processing result image.  Each result value is given with the implication that, 

after final post processing, all codeword pixels have been identified with 100% accuracy 

(that is, one can consider each table to have an unstated column of “Final Results” in 

which each value equals exactly 1). 
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As you can see from Table 5.1, results are mixed.  The initial decoding result is, 

in fact, very accurate.  In some cases, processing seemed to cause an overall reduction in 

correctness. 

Table 5.2, Testing MCP decoding process - Sphere 
Code # Original Modal HMM HMM / Modal

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0.8928 0.9002 0.9177 0.9177
6 0.8499 0.8594 0.8602 0.8728
7 0.8847 0.895 0.8612 0.8855
8 0.8112 0.8179 0.856 0.859
9 0.7285 0.7506 0.8709 0.8892
10 0.7448 0.762 0.8533 0.8742
11 0.7117 0.7117 0.8906 0.9002
12 0.3842 0.3863 0.8016 0.8185
13 0.9474 0.995 0.9073 0.9198
14 0 0 0 0
15 0 0 0 0  

 

Table 5.2 shows results from a more complicated target; a mounted sphere 

(shown in Figure 5.19).  Here, the data more clearly suggests the effectiveness of the 

applied techniques.  There is, in all but one case, an increase in correct identification.  In 

some cases, the increase is highly significant (code words 9, 10, and 11 all show greater 

than 10% increase in coding correctness). 
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Figure 5.19, (left) MCP result for a mounted white sphere, (right) masked PMP results 
for the same sphere 

 

Take note that data reflected for code-word 12 is, in fact, incorrect.  In the 

constructed “ground truth” processed image, growth errors created a large and observable 

incorrectly coded region of code-word 12 (the effects of which can be seen at the edge of 

the sphere in Figure 5.19(left)).  The initial estimate is, in this case, a more accurate 

representation of the true position.  This all goes to show the significant difficulties that 

can occur due to subject shape. 

While the final results of processing, as shown in Figure 5.19, are very promising, 

they are still not perfect.  It is suggested that future work be focused on further 

improvement of decoding correctness, whether via systematic improvements to the signal 

processing component (as detailed in previous chapters), improvements to the Hidden 

Markov Model implementation, or via some clever application of spatial image 

processing techniques or post-processing. 
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 Accuracy of Recovered Depth 
The second area of concern to be considered is that of measurement accuracy 

itself.  That is, assuming that decoding has been performed, how accurate can one expect 

the results to be?  How much additional spatial measurement error should one expect in 

an MCP scan reconstruction, even when decoding is performed with no incorrect 

identification whatsoever? 

As stated earlier, both the flat board and sphere were scanned twice.  For each, a 

PMP scan was performed, followed immediately by a MCP scan.  Each scan was 

processed to collect the necessary MCP coding information and 3D data according to 

standard processing procedure, but for one small difference: the PMP phase data for each 

object was multiplied by a binary stripe mask representing all points present in the MCP 

image of the object.  This allows a 1-to-1 correspondence in points between each type of 

scan, and thus allows direct comparison between them. 

 Consider first the sphere.  Let us define error terms as being the root-mean-square 

of the difference between the MCP world coordinate result and the PMP result (for all 

pixels in which an MCP result is defined).  In this case, the results shown in Table 5.3 

were collected. 

 

Table 5.3, Error results (Sphere-MCP method) 
Subject (MCP) X error (mm) Y error (mm) Z error (mm)

Sphere 1.0341 0.3388 13.0667  

As you can see from the results, significant measurement error was found in the Z 

dimension.  This error calculation is due (nearly exclusively, as it will be seen) to 

misidentification errors and edge effects which may be corrected in various ways. 



 

 123 

 When the spherical surface itself is isolated as in Figure 5.20 (thereby discounting 

edge effects and potential stripe misidentification) the actual mean squared error is 

greatly reduced, as seen in Table 5.4.  

 

Figure 5.20, (left) isolated surface region of an MCP scan of a mounted white sphere, 
(right), isolated surface region of a PMP scan of a mounted white sphere 

 

Table 5.4, Error results (Sphere-MCP method-isolated surface only) 
Subject (MCP) X error (mm) Y error (mm) Z error (mm)

Sphere (surface only) 0.0849 0.1446 1.7628  

 Now let us consider the flat board scan, in which there were no readily apparent 

misidentification errors present (as can be clearly seen in Figure 5.16).  Here, the data in 

Table 5.5 was observed. 

 

Table 5.5, Error results (Board-MCP method) 
Subject (MCP) X error (mm) Y error (mm) Z error (mm)

Board 0.0448 0.0401 0.5647  

These results are indicative of the measurement errors encountered in an ideal MCP scan.  

This particular camera/projector arrangement utilized a calibration volume with a depth 

of 84 millimeters.  Thus, the depth error introduced was roughly .67% of the maximum 

calibrated realizable depth measurement. 
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 Comparison To First Generation Composite Pattern 
 So how does this new MCP method compare to the standard CP technique?  To 

answer this question, the two techniques were directly compared in the following 

experiment. 

 A four pattern, unit-frequency PMP sequence was modulated according to the 

first generation composite pattern methodology (using frequencies 50, 100, 150, and 200 

cycles per field of view, as in reference [32]).  Similarly, a third generation MCP pattern 

was generated for a four bit binary sequence (using modulating carrier frequencies 136, 

182, 232, and 253 cycles per field of view).  Both images had dimensions of 1040 

(vertical pixels) by 1392 (horizontal pixels) and had a gamma correction of 2.3 applied 

before projection. 

 The projector used was an Infocus LP120 DLP with resolution 864x1152 and a 

field of view of 47.3 cm by 63.8 cm.  The camera was a Pulnix TM-1402CL with 

resolution 1040x1392 with a field of view 41.3 cm by 55.5 cm.  The camera and 

projector were offset (vertically) by 23.9cm, and positioned 134.6 cm from the target 

(that is, the flat board used in MCP calibration, as described in Chapter 3). 

 The first generation pattern was projected upon a flat, matte white board target.  

Following this, each modulated sinusoidal pattern was projected sequentially upon the 

same target according to the traditional PMP phase shifting method, thereby creating an 

effective “ground truth” for a four pattern unit-frequency PMP scan.  Mimicking as 

closely as possible the methodology implemented in reference [32], the captured image 

under generation one CP illumination was analyzed to generate a world coordinate 

matrix.  These world coordinates were then compared directly to the world coordinate 
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results from traditional, non-modulated PMP pattern images.  The individual sinusoidal 

pattern images and resulting phase maps from each can be seen in Figure 5.21. 

 

Figure 5.21, PMP (left) versus demodulated CP (right).  Individual patterns are shown in 
(a-d), resulting in the calculated phase image (e).  Color represents intensity. 

 
 The root mean squared coordinate error for the compared scans can be seen in 

Table 5.6. 
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Table 5.6, Error results (Generation 1 CP vs. 4 pattern PMP) 
Subject (CP vs. 4 pattern PMP) X error (mm) Y error (mm) Z error (mm)

Board 37.3001 26.3979 72.0078  
 

 Similarly, the same board was then scanned with the new third generation MCP 

pattern, followed by a full multi-frequency PMP scan to create a ground truth depth 

image (similar to the experiment documented in the previous section, see Figure 5.16 and 

Table 5.5).  The rms error of the comparison of each can be seen in Table 5.7 below. 

 

Table 5.7, Error results (Generation 3 MCP vs. Multi-frequency PMP) 
Subject (MCP vs. Multi-frequency PMP) X error (mm) Y error (mm) Z error (mm)

Board 0.7362 0.4826 2.4707  
 

 As a final test of the methodology, third generation MCP was used to scan a 

complex subject representative of a realistic subject, specifically, a latex human face 

sculpture (as shown in Figure 5.22).  An albedo image was acquired separately and used 

merely for surface coloration. 

 

Figure 5.22, (left) MCP scan image of the scuplture, (right) albedo image of the sculpture 
 

 The image was processed to recover depth, and a linear interpolation and 

smoothing process was applied to create a continuous surface.  The acquired depth model 

results are shown in Figure 5.23 
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Figure 5.23, MCP scan results for a human scultpure - multiple views 
 

As you can see, even complex subject contours can be captured very effectively using 

this new MCP methodology.  Thus, MCP can be seen, both subjectively and 

quantitatively, to be a meaningful improvement on the original CP technique. 
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Chapter 6 Conclusion and Future Work 

 

 This dissertation introduced the Modified Composite Pattern technique for 

structured light depth recovery.  A mathematical model of the pattern was developed, in 

addition to models of potential sources of systematic interference.  These were used in 

the research to guide improvements to the pattern, allowing for potential improvements in 

decoding, specifically in the reduction of gamma based pattern cross-talk.  The results of 

step-edge isolation of sub-regions of the projection pattern (an effect which is quite likely 

to occur in realistic scanning situations) were investigated, modeled, and experimentally 

quantified.  These quantified results lend themselves to the direction of various post-

processing operations.  The Hall camera model and basic calibration methodology used 

in the research were derived, and the new MCP specific calibration procedure was 

described.  An adaptive thresholding method for the isolation of MCP stripe pattern 

elements was developed.  This method also proved useful when utilized in a new stripe 

extension post-processing technique.  A statistical threshold was suggested for MCP 

images, with justifications following.  An analysis-by-synthesis envelope detection 

process was introduced, allowing fully automated recovery and demodulation of 

composite pattern scan component images; and a technique for segmentation of MCP 

images by apparent surface inclination was developed which may allow one to 

successfully recover the depth of objects that display significant local Z direction 

inclination (which is effectively impossible with only basic CP operations).  The MCP 

decoding process was considered in the context of a Hidden Markov Model, and a Viterbi 

best-path decoder was implemented.  Finally, results at each stage of MCP processing 
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were displayed, and final results of the processing were shown, and the error involved in 

the decoding and recovery of the 3D model were measured. 

 

6.1 Future Work 
Despite the success of the research already performed, the Modified Composite 

Pattern method, while apparently an improvement over standard Composite Pattern 

methods, may yet be further developed. 

 

 Improvements to the MCP Hidden Markov Model 
 The accuracy of decoding achieved by the Viterbi decoder is limited by the 

quality of the HMM representation of the system in question.  In this case, an MCP scan 

was described using a model derived by only the most basic observations available.  It is 

likely that further improvement of the accuracy of the model will allow the Viterbi 

process to be even more effective in ensuring the quality of the MCP model.   

One option for improvement of the model is the use of traditional HMM training 

sets, allowing the model to be derived in an orderly way from real results.  To accomplish 

this, one would have to collect useful results for a wide variety of subjects and somehow 

ensure their quality as training images.  As the processing method is initially imperfect 

(thus producing imperfect training images), this suggests an iterative process, gradually 

improving the model by using results of earlier, less accurate models (in conjunction with 

useful post-processing methods).   
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A second option, along the same line, could be to iteratively improve the model 

by making additional statistical observations of output results (performing essentially the 

same sorts of observations described in section 4.5) and integrating these new 

observations into the model according to some form of scheduling method.  This option 

may advantageously be performed on any MCP scan individually without the need for a 

large training set, but at the same time, can potentially carry errors as well as 

improvements into each new iteration, potentially degrading the model rather than 

improving it. 

 

 Object Segmentation 
 One extremely useful area of improvement would be the integration of object 

segmentation methods into the MCP paradigm.  Certainly, isolating individual objects in 

a scan image can lead to detrimental effects (as shown in section 3.3).  Nevertheless, if 

these step-edge effects can be eliminated from consideration (using Viterbi decoding, or 

perhaps blob-isolation or other post-processing methods), the resulting object would no 

longer be subject to the effects of ambiguous stripe ambiguity.  If the sphere in Figure 

5.19, for example, were isolated from the surrounding background before post-processing 

operations were performed, it is unlikely that it would display the misidentification errors 

present, as the stripe growth post-processing algorithm would no longer incorrectly 

extend the sphere or background stripes. 
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Appendix A: Nomenclature, Terminology, and Mathematical Symbols Reference 

 
ABS- Analysis By Synthesis 

CG- Computer Graphics 

CMM- Coordinate Measuring Machine 

CP- Composite Pattern 

DC- Direct Current - Defined as the zero frequency component of any spectrum 

DLP- Digital Light Projector 

FA- Finite Automaton 

FSA- Finite State Automaton 

FFT- Fast Fourier Transform 

FSM- Finite State Machine 

HMM- Hidden Markov Model 

LIDAR- Light Detection And Ranging 

MCP- Modified Composite Pattern 

PMP- Phase Modulation Profilometry 

PSD- Power Spectral Density 

SLI- Structured Light Illumination 

UMM- Universal Measuring Machine 

 

albedo- An image representing surface reflectance 

ambiguity- Uncertainty in camera/projector image correspondence information  

gamma- Intensity nonlinearity in a display device 

Hadamard multiplication- Multiplication of corresponding elements in two matrices 
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orthogonal direction- Direction in a structured light scan or pattern which is orthogonal to 

the phase direction 

phase- From PMP methodology of SLI, an encoding of camera/projector correspondence 

with a range of 2π. 

phase map- An image wherein each pixel value represents a phase value 

phase direction- From PMP methodology of SLI, the direction in which camera/projector 

correspondence values vary in a given SLI scanner arrangement. 

 

Λ- Canonical triangle function 

( )ℑ - Fourier transform of 

∑
B

A
- Summation of, within the range defined by lower limit A and upper limit B 

Π- Canonical rectangle function 

δ - Delta function, defined as the Dirac delta function in continuous contexts, and 

Kronecker delta function in discrete contexts 

E{ }- Expectation of 

μ- Variable representing mean value 

σ- Variable representing standard deviation 

argmax(f(x))- The result of this operation is the argument value of x which maximizes the 

function f(x). 
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