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Summary (English)

Structured light scanning is a versatile method for 3D shape acquisition. While
much faster than most competing measurement techniques, most high-end struc-
tured light scans still take in the order of seconds to complete.

Low-cost sensors such as Microsoft Kinect and time of flight cameras have made
3D sensor ubiquitous and have resulted in a vast amount of new applications
and methods. However, such low-cost sensors are generally limited in their
accuracy and precision, making them unsuitable for e.g. accurate tracking and
pose estimation.

With recent improvements in projector technology, increased processing power,
and methods presented in this thesis, it is possible to perform structured light
scans in real time with 20 depth measurements per second. This offers new
opportunities for studying dynamic scenes, quality control, human-computer
interaction and more.

This thesis discusses several aspects of real time structured light systems and
presents contributions within calibration, scene coding and motion correction as-
pects. The problem of reliable and fast calibration of such systems is addressed
with a novel calibration scheme utilising radial basis functions [Contribution B].
A high performance flexible open source software toolkit is presented [Contri-
bution C], which makes real time scanning possible on commodity hardware.
Further, an approach is presented to correct for motion artifacts in dynamic
scenes [Contribution E].

An application for such systems is presented with a head tracking approach for
medical motion correction [Contribution A, F]. This aims to solve the important
problem of motion artifacts, which occur due to head movement during long
acquisition times in MRI and PET scans. In contrast to existing methods,
the one presented here is MRI compatible [Contribution D], not dependent on
fiducial markers, and suitable for prospective correction.

Factors contributing to accuracy and precision of structured light systems are
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investigated with a study of performance factors [Contribution G]. This is also
done in the context of biological tissue, which exhibit subsurface effects and
other undesirable effects [Contribution H], and it is shown that this error is to
a large extent deterministic and can be corrected.



Summary (Danish)

Struktureret lys scanning er en alsidig metode til 3D måling, som blandt andet er
meget hurtig. Dog tager de fleste målinger stadig i størrelsesordenen sekunder at
gennemføre. Microsoft Kinect og ”time of flight”-kameraer har gjort 3D sensorer
allestedsnærværende og resulteret i et stort antal nye anvendelser og metoder.
Disse sensorer er imidlertid begrænsede i deres nøjagtighed og præcision, hvilket
gør dem uegnede til fx nøjagtig ”tracking” og ”pose estimation”.

Med den nyeste udvikling inden for kameraer og projektorer, hurtigere regne-
kraft og metoder præsenteret i denne afhandling, er det muligt at udføre struktu-
reret lys-skanninger i real-tid med 20 dybdemålinger per sekund og mere. Dette
giver helt nye muligheder for studier af dynamiske fænomener, kvalitetskontrol,
menneske-computer interaktion og mere.

Afhandlingen omhandler en række aspekter vedrørende real-tids struktureret
lys, heriblandt kalibrering, spatial kodning og bevægelseskorrektion. Kalibre-
ringsrutiner ønskes hurtige og robuste, hvilket addresseres med en ny kalibre-
ringsmetode, som gør brug af radiale basis-funktioner [Bidrag B]. Et fleksibelt
open source software program bliver præsenteret [Bidrag C], som muliggør real-
tids scanning på almindelig hardware. Desuden præsenteres en metode til korrek-
tion af bevægelsesartefakter, som optræder i dynamiske skanninger [Bidrag E].

En anvendelse af denne teknik bliver præsenteret med et system til hoved-
tracking til medicinsk bevægelseskorrektion [Bidrag A, F]. Dette har til formål
at forbedre kvaliteten i skanninger med bevægelsesartefakter, som optræder ved
lange optagetider i MR og PET scanninger. Modsat eksisterende metoder, er
denne MR-kompatibel [Bidrag D], ikke afhængig af markører, og anvendlig til
prospektiv korrektion.

Faktorer som har indflydelse på nøjagtigheden og præcisionen af struktureret lys
systemer bliver undersøgt i et studie [Bidrag G]. Dette gøres også specifikt for
biologisk væv, som bl.a. udviser ”subsurface”-effekter [Bidrag H], og det bliver
vist, at fejlen har en stor deterministik komponent, som kan korrigeres.
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Chapter 1

Introduction

Active optical methods for dense measurements of object surfaces employ one or
multiple light source and one or multiple cameras for shape acquisition. They
have a wealth of uses and applications, and have been used in areas such as
robotics, medicine, computer games, metrology and more. But only with recent
progress in sensor technology and processing power, have they become accu-
rate, fast and versatile enough to become widely used. Cornerstones of this
development were the first SL systems [PA82], invention of the Photon Mixer
Device (PMD) for Time of Flight (TOF) imaging [SXH+97], the introduction of
the Microsoft Kinect 1 single-shot structured light system, and in recent years,
the general availability of highly accurate systems (down to single digit micron)
from manufacturers like GOM, Hexagon Metrology, and Aicon 3D Systems (see
Fig. 1.1).

A number of distinct methods for active optical scene acquisition have been
developed in recent decades. These fall into two categories: range-sensors, which
rely on the finite speed of light, and triangulation based sensors which rely on
view disparity. The first group includes TOF while the latter includes laser
point and laser line scanning. Probably the most flexible group of methods is
Structured Light Scanning (SLS), which is the main focus of this thesis. This
technique has been available since the early 1980’s, and its invention can be
attributed to Posdamer and Altschuler [PA82]. A few alternative definitions of
SLS are found in literature, e.g.[Gen11, SFPL10], with disagreement about the
questions whether SLS uses exactly one or multiple cameras and whether single
pattern coding qualifies. We define SLS as follows:

SLS is the process of acquiring 2.5D depth images using an active
light source, which projects one or more patterns, and one or more
cameras, which capture images of these patterns projected onto the
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Figure 1.1: Commercial optical measurement systems. Top left: PMD TOF
camera. Top right: Microsoft Kinect 1. Bottom: GOM high-end
structured light system.

scene. The encoded images are used to determine correspondence
points, which are triangulated to yield 3D scene points.

With this definition, triangulation can occur between a camera and projector
or between two or more cameras. In the latter case, the projected light can be
considered a source of unique scene texture, which can also be categorised as
”active stereo”.

Structured light is a particularly attractive modality for optical shape acquisition
for the following reasons:

• Flexibility: many applications require specific Field of View (FOV), ac-
curacy/precision or illumination wavelength. Many of these requirements
can be met by constructing the system accordingly, and by using a pattern
coding method with the desired properties.

• Acquisition speed: in contrast to other active methods such as laser line
scanning, structured light coding schemes have been developed which en-
code a scene with multiple thousands of scene points with as little as one
static pattern. As an example, with binary coding the number of patterns
and camera frames, N , is in the order of 10, and 2N unique lines can be
encoded. In laser line scanning, 2N camera frames are needed for the same
coverage.
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• Precision: passive stereo methods generally suffer from low precision in
textureless areas. Structured light adds texture to such areas, yielding
precise point correspondences.

• Non-contact: in contrast to traditional high-accuracy measurement meth-
ods such as Coordinate Measuring Machine (CMM) in which a contact
probe touches an item to digitise it.

• Low-cost: the components comprising an SL scanner are available as com-
modity hardware, and as such, highly accurate systems can be constructed
at comparatively low prices.

Figure 1.2 shows the principle of structured light with a single projector-camera
pair. In this particular case, correspondence points are encoded using sinusoidal
patterns with the Phase Shifting (PS) method.

Projector Camera

Surface

Frame 
Sequence

Pattern 
Sequence

Q

vp

v
cup

qp
qc

uc

Figure 1.2: Principle of structured light with a single camera-projector pair.
The projector projects a series of patterns (in this case a 3-step
PS sequence), which are captured by the camera. This allows to
identify the projector’s up coordinate at that point, whose 3-D
coordinates can then be determined. Modified from [Contribution
C].

With this technique, a dense reconstruction of the surface can be obtained with
as little as 3 projected patterns and camera images. This is in contrast to laser
line scanning, where each camera image yields only reconstruction of a single line
of points on the object surface [LRG+00]. However, the triangulation principle
is the same, and as such, a SL scanner can be considered a parallelised laser
scanner.

While SL has found use in many applications, particularly for measurement tasks
requiring high accuracy, high speed or real time SL potentially enables a large
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number of whole new applications from precise object tracking, the ability to
study dynamic phenomena to human-computer-interaction, interactive games,
biometric identification and more. A medical problem, which motivated this
thesis work, is head motion during neurological Magnetic Resonance Imaging
(MRI) scans [MHSZ13]. The approach presented here to alleviate this problem
is by means of real time SL and accurate pose tracking.

Important challenges in SL, be it for accurate measurements or head tracking,
are related to materials which have non-ideal optical properties. For this reason,
the amount of error and the involved effects are also discussed in depth in this
thesis.

1.1 Scope

The thesis has the following scope:

The thesis revolves around structured light 3D scanning in real time.
It shows how such data can be use for accurate rigid tracking. A
practical use case is presented with head tracking and motion cor-
rection in medical scanners. Factors pertaining to the accuracy and
precision of structured light scans are discussed in depth.

1.2 Objectives

Motivated by the potential of real-time SL, the following objectives are formu-
lated for this thesis work:

1. To realise real time SL, capable of projecting, capturing, reconstructing
and visualising dense reconstructions of a scene.

2. To perform real time pose tracking using SL.

3. To make such a system suitable for head motion correction in medical
scanners.

4. To investigate the factors influencing measurement accuracy under ideal
conditions.

5. To characterise and correct for measurement errors on biological tissue.
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The following chapters will treat foundations relating to these objectives. The
contributions in appendices A – H, in conjunction with these chapters, aim to
fulfil the objectives.

1.3 Structure

This thesis acts as an overview and review of the current state-of-art within
SL, real-time tracking, medical motion correction and the factors influencing
SL performance. It should be self-contained, but also acts as an introduction
and explanation of the contributions found in the appendix. The structure is as
follows:

Ch. 2 introduces structured light methods on a conceptual level with the funda-
mental principles underlying it. This will provide the necessary foundation for
real time SL and also for accuracy assessment and corrections as considered in
later chapters.

In Ch. 3 a discussion of aspects relating to real time SL is provided with respect
to hardware, pattern projection and computational efficiency. Implementation
details are provided for a real time system.

Ch. 4 shows that the so-obtained data can be used for fast object tracking. The
chapter also considers filtering of the tracking signal and its validation.

Ch. 5 then shows how such object tracking can be used for motion tracking and
correction in MRI-scanners, with unique challenges and their solution.

The large amount of factors influencing accuracy and precision in SL are con-
sidered in Ch. 6.

A conclusion is lastly given in Ch. 7, which returns to the objectives mentioned
above and points towards the future of this field.
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Chapter 2

Structured Light Methods

With the definition of SLS on page 1, a discussion of the principles, theoretical
aspects, and previous work surrounding this method shall be provided. While
the field is extensive, and has seen many innovations over multiple decades,
this discussion will focus on those aspects that relate to our objectives and
contributions, with the hope of giving an overview of the field. Within this
chapter, these are questions regarding calibration and coding strategies. These
questions are important in any practical structured light system, and build the
foundation for the development of real time SLS (Ch. 3) and also the applications
presented in Ch. 4 and 5.

2.1 System Calibration

The most important factor for the accuracy that can be obtained with SL sys-
tems is a precise and accurate calibration of the camera, the projector (intrin-
sic parameters), and their spatial interrelationship – the extrinsic parameters.
Formally, both devices are often modelled using the linear projective pin-hole
model, augmented with a non-linear lens distortion model [HZ03, HS97]. The
linear camera model is

P = A [R|T ] =



fx 0 cx
0 fy cy
0 0 1


 [R|T

]
, (2.1)

in which A contains the so-called intrinsic parameters: focal lengths fx, fy and
principal point coordinates cx, cy. More elaborate camera models exist [HZ03],
however, with modern digital cameras of moderate focal length (non-fisheye),
they are rarely necessary. The extrinsic parameters are given by rotation matrix
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R and translation vector T , and determine the camera’s position and orientation
in a world coordinate system. These are usually chosen such that one camera’s
position coincides with the origin, with it’s view-direction along a principle
coordinate axis.

The linear pin-hole model above is often extended by means of 5-parameter lens
distortion parameters, k = [k1, k2, k3, k4, k5]

>, as proposed by Brown [Bro71].
Lens barrel distortion is defined by three parameter in a radial function:

s(x, y) = 1 + k1r
2 + k2r

4 + k5r
6, r2 = x2 + y2 , (2.2)

while imperfect alignment of lens elements gives rise to ”tangential distortion”,
which is modelled as

t(x, y) =

[
2k3xy + k4(r2 + 2x2)
k3(r2 + 2y2) + 2k4xy

]
, r2 = x2 + y2 . (2.3)

These functions relate the ideal, distortion-free image coordinates (u, v) to the
observed coordinates (ũ, ṽ) in the following way:

[
ũ
ṽ

]
=

[
u
v

]
+ s(x, y)

[
x
y

]
+ t(x, y), x =

u− cx
fx

, y =
v − cy
fy

. (2.4)

2.1.1 Camera Calibration

Camera calibration is the process of determining the camera and lens model
parameters accurately. With the pinhole model, this amounts to determiningA,
R, T . It is usually sufficient to estimate P , as it can be decomposed into these
three matrices. Lens distortion parameters k are often estimated separately in
a non-linear optimisation step.

In ”auto-” or ”self-calibration”, parameters are determined from normal camera
images viewing a general scene [FLM92, Har94]. Depending on the specific
method, little or no assumptions are made about the viewed scene, or the motion
of the camera between images.

The alternative is traditional offline calibration, in which specific calibration
images are taken under specific constraints. The calibration object defines a
world coordinate system such that 3D coordinates of the visual features are
known. Most of these methods work by observing a calibration object with
known visual features. This is preferred when full control over the calibration
procedure is necessary and high accuracy is demanded. An early method is
that of Tsai [Tsa86]. More intrinsic parameters were included by Heikkilä and
Silvén [HS97].
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A modern and popular method in the computer vision community is that of
Zhang [Zha99], which also is implemented in popular software libraries [Bra00,
Bou, Mat]. This calibration routine relies on observations of a planar calibration
board with easily recognisable features. It relates the 3-D coordinates of these
to the observed image coordinates projections by means of the model above, and
solves for the calibration plane extrinsics (the camera’s position and orientation
relative to the calibration board’s coordinate system), and the camera intrinsics,
A by means of a closed form solution. This is then followed by non-linear optimi-
sation with the Levenberg-Marquardt algorithm over all parameters, including
k. The objective function to be minimised is the sum of squared reprojection
errors, defined in the image plane (from [Zha99]):

n∑

i=1

m∑

j=1

∥∥pij − p̆(P j ,A,k,Ri,T i)
∥∥2 , (2.5)

where p̆ is the projection operator determining 2-D point coordinates given 3-D
coordinates and the camera parameters as defined in Eqn. 2.1. i sums over the
positions of the calibration board and j over the points in a single position.
P j are 3-D point coordinates in the local calibration object coordinate system,
P j = [x, y, 0]

>, and pij the observed 2-D coordinates in the camera. The per-
position extrinsics Ri,T i can be understood as the cameras position relative
to coordinate system defined by the calibration object. With quality lenses
and calibration targets, final mean reprojection errors in the order of 0.1 px are
usually achieved.

Zhang’s method is stable in many configurations, but works with planar 2-D
calibration objects only. Such planar calibration objects with checkerboard or
circular control point targets are very popular due to their simple construction.
For instance, Fig. 2.1 shows a planar float glass calibration target with a checker-
board pattern. Saddle points may be detected and located automatically up to
very high accuracy, and invariantly to the angle of observation.

2.1.2 Projector Calibration

In SL systems that utilise a single camera, the projector must also be calibrated.
While camera-calibration is well studied, and can be performed up to very high
accuracy, the main problem in single camera-projector SL systems is the deter-
mination of these projector parameters. Since a calibration object cannot be
directly observed by the projector, different strategies are needed to infer the
parameters of the projector.

One option is to not determine the projector parameters explicitly, but to de-
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Figure 2.1: Planar calibration target used for camera calibration according
to Zhang’s method [Zha99]. The target is made of 10 mm un-
hardened float glass with a laser-printed checker pattern glued onto
it. Float glass is temperature stable, very planar before hardening
and readily available. From [Contribution G].

code a dense structured light sequence on a reference plane [ZS94]. Subsequent
measurements are then relative to this reference. This also gives computational
advantages in point triangulation, as discussed in Sec. 2.4.2. However, it does
not provide the full projector parameterisation, which is useful in many algo-
rithms. Additionally, it is based on noisy measurements at a certain distance,
and cannot be assumed to be accurate elsewhere [MWZ13].

A number of methods for projector calibration require a calibration board to
be positioned accurately e.g. by means of translation stages or in fronto-parallel
orientation [GHYC04, CXJS09, ADP12, DRS09]. These methods are not con-
venient in many situations, where such positioning equipment is not available.

Some approaches use a flat planar board with a checkerboard pattern occu-
pying part of the space. The board’s pose is then determined using a cali-
brated camera. Feature points are projected onto it, and 3-D point coordi-
nates determined by means of ray-plane intersection or through a homogra-
phy [KMK07, SWPG05, LC08, GWH08, GWH08, OJP+10, PP10, SC08]. A
disadvantage with these methods is that a global homography is linear, and as
such cannot model the non-linear lens distortion. Additionally, it is difficult
to span the entire camera and projector FOV with feature points. Lastly, it is
difficult to automate feature point detection when multiple patterns are present.

The concept of indirectly ”capturing” images is due to Zhang and Huang [ZH06]
and adapted in a number of subsequent methods, e.g. [LSWW08, YPL+12]. A
similar method was also presented by [LS04], albeit without much detail. In
this concept, the projector encodes its coordinates onto a calibration object by
means of a SL sequence, which is then captured by the camera. The method of
indirectly capturing images using the projector allows one to establish a map-
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ping from camera to projector space, providing the homologous feature point
coordinates in the projector’s coordinate system. These can then be used as
the input to regular camera calibration for the projector, and stereo calibration
for the system. See Fig. 2.2 for a flow diagram of this approach. This concept
has the advantage that the error of camera calibration does not propagate into
projector parameter estimates, making it potentially very accurate. The disad-
vantage is that a sequence must be projected for each position and orientation
of the calibration object. In addition, coordinate conversion must be performed
robustly and accurately. To address this potential issue, Moreno and Taubin
define ”local homographies” [MT12], which provide a linear relationship between
camera and projector point coordinates in the vicinity of a feature point.

This thesis’ [Contribution B] provides a very accurate method for calibration
also based on Zhang-Huang’s method. It uses Radial Basis Functions (RBFs)
to locally translate camera to projector coordinates and estimate the feature
point locations in projector space with sub-pixel precision. This is both robust
and accurate in that the non-linearity of this translation can be accommodated
with RBFs.

2.1.3 Stereo Calibration

Stereo calibration is the process of determining relative extrinsic parameters
between two rigidly coupled cameras. These can be parameterised by means of
rotation matrix Rs and translation vector T s. This is relevant in both single-
camera SL systems, and those based on two cameras. With traditional offline
calibration (as opposed to self-calibration), the process is usually very similar
to camera calibration in that a linear initialiser is first computed, followed by
non-linear optimisation using e.g. the Levenberg-Marquardt algorithm with the
total reprojection error as the objective function. Both camera’s intrinsic pa-
rameters can be adjusted to minimise the stereo reprojection error, but often it
is beneficial to perform single camera calibrations and only estimate Rs and T s
in stereo calibration [MT12]. The stereo reprojection error to be minimised is
n∑

i=1

m∑

j=1

∥∥p1,ij − p̆(Pj ,A1,k1,Ri,T i)
∥∥2+

∥∥p2,ij − p̆(Pj ,A2,k2,RsRi,RsT i + T s)
∥∥2 ,

(2.6)
where p̆ is the projection operator, p1,ij the point coordinates as seen in the
first camera, and p2,ij are those seen in the other. i sums over the positions of
the calibration board and j over the points in a single position. Pj = [x, y, 0]

>

are 3-D point coordinates in the local checkerboard coordinate system. With
quality lenses and calibration targets, final stereo mean reprojection errors in
the order of 0.1 px are often achieved.
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Figure 2.2: Flow diagram of the projector calibration technique according to
Zhang and Huang [ZH06]. An SL sequence is projected onto the
calibration object – in this case a planar chessboard pattern target.
The resulting camera and projector coordinates are used to trans-
late the sub-pixel feature point coordinates into projector space.
The resulting points coordinates are used in camera and stereo
calibration. Modified from [Contribution B].
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2.1.4 Lens Correction

As mentioned, the lens distortion and non-linearity is usually considered to
have a radial and tangential component (see Eqn. 2.2 and Eqn. 2.3). With
the calibration method of [Contribution B], these parameters can accurately be
estimated for both camera and projector. In order to incorporate the camera
lens distortion in the reconstruction process and improve the accuracy of point
clouds, the distortion model must be applied inversely to the camera frames or
to the reconstructed points, which can be more accurate as it does not involve
interpolation in images.

Correcting for projector lens distortion is different in that the forward distortion
model must be applied to patterns before projection. For both kinds of lens
correction, warp fields can be pre-computed, which saves computing resources
considerably, as the same correction needs to be applied many times.

2.2 Coding strategies

From a computer vision perspective, the most interesting question regarding
SLS is: ”which pattern shall be used for scene coding?”. A large number of
coding strategies have been suggested. Fig. 2.3 shows a representative selection
of results obtained with different such methods.

2.2.1 Literature Overview

Since early research in structured light methods in the 1980’s the community
has proposed a wealth of coding strategies. Recent general reviews of structured
light methods are found in [Gen11] and [SFPL10]. A review of Phase Shifting
(PS) based techniques is given in [GR10]. An overview of the broader class of
3D optical methods is given in [CBS00].

Binary coding for structured light was proposed by Posdamer and Altschuler [PA82]
as the earliest method for scene recovery that can be classified as ”structured
light” according to the definition on page 1.

A different class of methods has its origin in analog optical methods such as
Moiré Tophography [MJA70], Phase Modulation Profilometry (PMP) [SLH84]
and Fourier Transform Profilometry (FTP) [TIK82, TM83, SC01]. PMP was
performed using optical interferometers to generate sinusoidal light projections
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(a) 2+1 Phase Shifting (3
patterns)

(b) 3-shift Phase Shifting
(3 patterns)

(c) 4-shift Phase Shifting
(4 patterns)

(d) Gray Coding (11 pat-
terns)

(e) 3-step 16 Periods
Phase Shifting (6
patterns)

(f) Micro Phase Shifting
(12 patterns)

Figure 2.3: Comparison of various structured light coding strategies on a plas-
tic skull with beneficial optical properties. Note that the number
of patterns is not the same, and that a small amount of spatial
smoothing was applied for the 2+1, 3-shift and 4-shift methods.
Parameters were chosen to obtain the best possible visual results.



2.3 Phase Shifting Methods 15

onto the measurement surface, which is both time-consuming and often impre-
cise. With digital video projectors, it has become significantly easier to generate
accurate fringe projection patterns, giving rise to the term ”digital fringe pro-
jection”. An overview of fringe based techniques is given in [GR10].

Recent developments which have attracted some attention include ”Modulated
Phase Shifting” [CSL08], ”Micro Phase Shifting”[GN12], ”Ensembles of Codes”[GAVN12],
and ”Unstructured Light” [CMR11, CMR14]. These mainly deal with handling
non-ideal optical properties of the scanned surfaces.

2.3 Phase Shifting Methods

Among the various coding strategies, PS based methods are particularly versa-
tile, and suitable for a wide range of applications. Their strength is the ability
to encode a scene completely with as little as three patterns (three phase steps),
and scaling arbitrarily to N steps providing increasingly more precision. The
essential phase shifting method encodes the scene close to along the epipolar
direction (as will be discussed in Sec. 2.4), which here is assumed to be the
horizontal up direction with the following N images:

Ipn(up, vp) =
1

2
+

1

2
cos

(
2π

(
n

N
− up
Np

))
, (2.7)

where n indicates the pattern index, n ∈ 1 . . . N , and Np is the number of
projector columns. The intensity of the n’th pattern as observed in the camera
can be expressed as

Icn(uc, vc) = A(uc, vc)
c +B(uc, vc)

c cos

(
2π

(
n

N
− up
Np

))
, (2.8)

in which vp
Np

denotes the corresponding phase of the sinusoidal sequence at that
particular camera pixel. Ac is the intensity of the scene including ambient
contributions, and Bc the intensity of reflected projector light. In terms of
Fourier analysis, Ac can be considered the magnitude of the constant component,
while Bc is the magnitude at the principle frequency, and θ its phase. As such, θ
can easily be extracted by means of the fast Fourier transform and scaled to the
number of projector columns. Figure 2.4 illustrates this principle. Figure 2.3b,
2.3c, and 2.3e show examples of surfaces reconstructed by means of PS-based
methods.
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where ðxp; ypÞ are the column and row coordinates of a
pixel in the projector, Ipn is the intensity of that pixel in a
projector with dynamic range from 0 to 1, and n repre-
sents the phase-shift index over the N total patterns.
For reconstruction, a camera captures each image

where the sine wave pattern is distorted by the scanned
surface topology, resulting in the patterned images
expressed as
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!
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where ðxc; ycÞ are the coordinates of a pixel in the cam-
era, while Icnðxc; ycÞ is the intensity of that pixel. The term
Ac is the averaged pixel intensity across the pattern set
that includes the ambient light component, which can be
derived according to

Ac ¼ 1
N
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Icnðxc; ycÞ: ð3Þ

Correspondingly, the term Bc is the intensity modulation
of a given pixel and is derived from Icnðxc; ycÞ in terms of
real and imaginary components where

Bc
R ¼

XN−1

n¼0

Icnðxc; ycÞ cos
!
2πn
N

"
ð4Þ

and

Bc
I ¼

XN−1

n¼0

Icnðxc; ycÞ sin
!
2πn
N

"
ð5Þ

such that

Bc ¼ ‖Bc
R þ jBc

I‖ ¼ fBc2
R þ Bc2

I g
1
2; ð6Þ

which is the amplitude of the observed sinusoid.
If Icnðxc; ycÞ is constant or less affected by the projected

sinusoid patterns, Bc will be close to zero. Thus Bc is em-
ployed as a shadow noise detector/filter [6] such that the
shadow-noised regions, with small Bc values, are dis-
carded from further processing. Of the reliable pixels
with sufficiently large Bc, θ represents the phase value
of the captured sinusoid pattern derived as

θ ¼ ∠ðBc
R þ jBc

IÞ ¼ arctan
#
Bc
I

Bc
R

$
; ð7Þ

which is used to derive the projector row according
to θ ¼ 2πyp.
If we treat the samples of a subject camera pixel as a

single period of a discrete-time signal, x½n& for n ¼
1; 2;…; N − 1, then we can define the Fourier terms,
X ½k& for k ¼ 1; 2;…; N − 1, using a discrete-time Fourier
transform. From X ½k&, we then note that Ac is related to
the DC component according to

Ac ¼ 1
N
X ½0&; ð8Þ

while Bc and θ are related to X ½1& ¼ X'½N − 1&
according to

Bc ¼ 2
N
‖X ½1&‖ ¼ 2

N
‖X ½N − 1&‖ ð9Þ

and

θ ¼ ∠X ½1& ¼ −∠X ½N − 1&: ð10Þ

Because of these relationships, we refer to the frequency
terms, X ½0&, X ½1&, and X ½N − 1&, as the principal frequency
components, while the remaining terms are referred to as
the nonprincipal terms and are the harmonics of X ½1&.

Under ideal conditions, the nonprincipal frequency
terms, X ½k& for k ¼ 2; 3;…; N − 2, are always equal to
zero, but in the presence of sensor noise, the terms
are, themselves, drawn from an additive, white-noise pro-
cess. At the same time, if a target surface is moving to-
ward or away from the camera sensor at a slow rate, then
the frequency of the sinusoid represented in the time se-
quence, x½n&, is modulated to have a slightly higher or
lower frequency, and as such, we expect the spectral
components X ½2& and X ½N − 2& to increase as the energy
in X ½1& and X ½0& becomes less concentrated. Combining
slow motion with additive noise, there exists some
threshold, T , at which the magnitude of these nonprinci-
pal frequency terms can be assumed to reside.

Given the lack of an information bearing signal on the
harmonic frequencies, one might be tempted to use these
nonprincipal frequency terms to carry additional phase
information for the purpose, for example, of phase un-
wrapping. But doing so involves the reduction in ampli-
tude of the component sinusoids to fit the assorted
signals within the dynamic range of both the camera
and projector, thereby reducing the signal-to-noise ratio
on these channels. Absent this use, if a pixel falls off the
edge of a foreground object or if there is a dramatic
change in surface texture, we expect to see a large mag-
nitude term in the harmonics as the foreground phase
term is essentially modulated by a step edge, while the
background phase term is modulated by the inverse of
this same step.

Step edges and impulses, having large high-frequency
spectral components, introduce high-frequency energy in

Fig. 1. Calibration target (left) and corresponding first harmo-
nic magnitude image (right).
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Figure 2.4: The principle in the PS scene coding technique with a single period
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the phase of the sequence observed at a specific pixel position.
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The phase of the sinusoid at the principle frequency is given by:

θ = tan−1
(∑N

n=1 I
c
n cos(2π(n− 1)/N)

∑N
n=1 I

c
n sin(2π(n− 1)/N)

)
, (2.9)

which in the minimum case of the 3-step algorithm (N = 3) yields

θ = tan−1
(

2Ic1 − Ic2 − Ic3√
3(Ic2 − Ic3)

)
. (2.10)

In most cases, a low number of phase steps is used, and multiple phases of the
sinusoidal pattern are projected, e.g. [WZO11]. Using multiple phases leads to
the so-called ”phase wrapping” ambiguity, which needs to be resolved [ZLY07].

2.3.1 Phase Unwrapping

The wrapped phase problem occurs in a number of technical problems, e.g.
magnetic resonance imaging and radar signalling. In phase shifting based SL,
it is the consequence of using multiple phases in the projected sinusoid, which
leads to ambiguity in the matching process [QTCF03, ZLY07]. The relationship
between a 2 dimensional unwrapped phase and its unwrapped counterpart is:

φunwrapped(x, y) = φwrapped(x, y) + k(x, y)2π k ∈ N . (2.11)

This process is illustrated in Fig. 2.5.
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Figure 2.5: The principle of phase unwrapping by means of a phase cue. The
bottom row plots show the phase along a single image row. Left:
the multi-period coding phase is accurate but has 2−π ambiguities.
Middle: a phase cue is created using a single-period sequence.
Right: both results are combined to yield an accurate phase using
Eq.2.11, however, unwrapping errors can occur in noisy regions
(seen as a spike).

Unwrapping methods are either spatial and based on the raw multi-phase data
or the unwrapping process is facilitated e.g. by multiplexing the signal with a
special carrier. Alternatively, one can use additional patterns that disambiguate
among the multiple phases – so-called temporal unwrapping which was originally
proposed by Huntley and Saldner [HS93].

Temporal unwrapping is generally considered robust, and can be realised in
different ways. In it’s simplest form, an additional single-phase sequence is
projected, which encodes every projector uniquely, albeit with much higher noise
than the multi-phase patterns. The so-obtained ”phase cue” is then used to add
multiples of 2π to the multi-phase information and make it continuous. One
problem with this strategy is that a low-frequency signal is used for the phase
cue, while the main coding signal is of higher frequency. Due to global light
effects and camera defocus, signals of different spatial frequency are altered
differently, especially on surfaces which exhibit sub-surface scattering effects or
reflections [NG12]. A detailed discussion of these effects will be given in Sec. 6.4.

For these reasons, temporal phase unwrapping may also be done with a sec-
ond set of high-frequency patterns, which are chosen exactly such that their
wavelength ratio satisfies the heterodyne principle [RRT97]. According to this
principle, two wrapped phases of wavelength λ1 and λ2 may be subtracted from
each other to yield a phase with the so-called beat-wavelength λb. This is illus-
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trated in Fig. 2.6. λ1, λ2 and λb satisfy

λb =
λ1λ2
λ1 − λ2

, (2.12)

which allows one to choose wavelengths such that the beat wavelength equals
the number of projector columns (or rows in the case of horizontal coding). The
so determined beat phase can be used to unwrap the first or the second wrapped
phase.

up

θ

λ1
λ2

upλb

Figure 2.6: Illustration of the beat frequency principle. The sinusoids of wave-
length λ1 and λ2 can subtracted to yield an equivalent signal
of wavelength λb which can be used for unwrapping. Modified
from [RRT97].

Both phase cue based unwrapping and unwrapping according to the hetero-
dyne principle can naturally be performed at multiple levels, which can reliably
unwrap high frequency patterns [RRT97].

In the ”Micro Phase Shifting” method [GN12], a number of sinusoidal patterns
are projected which belong to a narrow frequency band. This has the afore-
mentioned advantage that both the primary frequency signal and the additional
unwrapping patterns are affected similarly by various optical and material ef-
fects. In addition, ”Micro Phase Shifting” uses an optimal number of patterns,
which generally can be lower than with multi-frequency heterodyne patterns,
and chosen to obtain a desired trade-off between phase unwrapping robustness,
Signal to Noise Ratio (SNR), and accuracy.

2.4 Point Triangulation

Point triangulation amounts to the task of determining 3-D coordinates of points
on the scanned object surface. Mathematically, point triangulation consists of
solving for the 3D coordinates, Q = [x, y, z, 1]

>, using the camera’s projec-
tion matrix, P c, and the projector’s projection matrix, P p. The projections
of Q into camera and projector pixel-space are given by qc = [uc, vc, 1]

> and
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qp = [up, vp, 1]
>. In the most general case, both horizontal and vertical direc-

tions are encoded in a SL sequence, and up and vp are known at every camera
pixel location (uc, vc). The estimation problem is then overdetermined (3 un-
knowns and 4 constraints), and a number of different triangulation algorithms
may be used. In the simplest case, the ”direct linear transform” methodol-
ogy [HZ03] is applied to solve the overdetermined problem. This approach
is fast but purely algebraic, and hence the minimised error not geometrically
meaningful. In the ”mid-point algorithm”, Q is found as the midpoint of a line-
segment connecting the viewing rays at their closest points. These methods are
detailed e.g. in [HZ03].

2.4.1 Algebraic Triangulation

While scene coding in both horizontal and vertical directions is possible, in most
SL systems, coding is done in only one direction [Gen11]. A requirement is
that the coding method assigns unique values to scene points along the epipolar
direction. In order for to this provide most useful information, the angle between
coding direction and epipolar lines should be as small as possible, see Fig. 2.7.

Op Oc

epipolar line

coding direction

epipolar plane

α
up

vp

Figure 2.7: Relation of the coding direction to the epipolar lines as seen in
the projector. The scene must be uniquely encoded along epipo-
lar lines. For practical reasons the coding direction is along the
principle axis (e.g. up). Angle α determines the degree to which
the coding information constraints the triangulation problem, and
should ideally be 0.

For simplicity, a horizontal layout as shown in Fig. 2.7 shall be assumed in the
following. The projection of scene point Q into camera and projector space
yields

P cQ ∝ qc
P pQ ∝ qp ,

(2.13)
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where ∝ denotes proportionality or homogenous equivalence. However, in this
case only the the projector’s column coordinate up was encoded. Thus, Q is
recovered from the following homogenous equation:



P c(1)− ucP c(3)
P c(2)− vcP c(3)
P p(1)− upP p(3)


Q = 0 . (2.14)

P x(i) indicates the i-th row of the matrix. Triangulation is computationally
expensive, in that a linear system must be solved in every single camera pixel,
where resolutions of a few million pixel are not uncommon. As will be shown
in Sec. 3.4, however, solving this equation can be sped up considerably by pre-
computing part of the solution.

2.4.2 Plane-Based Triangulation

With PS-based coding methods, one can potentially forego the algebraic tri-
angulation altogether. The idea is to capture a structured light patterns on a
planar object. The resulting phase image, φ, serves as a reference. The rela-
tive height to this plane can now be determined efficiently by means of simple
trigonometry.

Camera Projector

Reference Plane

B C

A

d

L

h

Figure 2.8: The geometry in plane-based reconstruction with PS based meth-
ods. Modified from [ZS94].

Referring to Fig. 2.8, one is interested in the distance of point A to the reference
plane. The distance d between camera and projector centres, the distance to
the reference plane, L, are determined during calibration. The height h from
reference plane to point A can be found by considering similar triangles [ZS94]:

h

|BC| =
L− h
d
⇔ h =

|BC| · L
d+ |BC| , (2.15)
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where |BC| is directly proportional to the difference of measured phase at points
B and C. With this simple relation, the scene may be reconstructed very
efficiently. This has disadvantages though, in that the reference plane must
be measured for each calibration of the SLS and the phase error from reference
plane determination propagates into the final point measurements.

2.5 Contributions

SL is a well established technique with great benefits over other 3-D methods.
One often arising issue is the accurate calibration of projectors, which is neces-
sary in single projector-camera systems. A very accurate and fast method for
SL calibration was developed and is presented in [Contribution B]. It is based
on the observation of a planar calibration target which is illuminated with a
SL sequence in multiple positions as shown in Fig. 2.2. It uses a novel RBF
interpolation scheme to translate feature coordinates.

As part of the thesis work, a comprehensive open source SL software for single
camera-projector SL was developed, and is presented in [Contribution C]. The
calibration method of [Contribution B] is also implemented in this software.

In relation to calibration, a study of accuracy and precision parameters for SL,
covering among other things calibration parameters and observations in a typical
SL system was conducted and is included in [Contribution G].
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Chapter 3

Real Time Structured Light

With most commercially available structured light systems and also with most
setups described in literature, acquisition and reconstruction time is not of major
concern. Hence, speed is often traded for accuracy with a large number of
patterns in the coding sequence. As was argued in Ch. 1, with real time systems,
a plethora of new applications become available, which is the main motivation
of this thesis. Real time performance may be defined as providing dense point
clouds at refresh rates comparable to what humans are able to perceive. A
formal definition for these purposes is:

Real time structured light is the projection, acquisition, processing
and dense reconstruction of scenes with at least 10 point clouds per
second containing at least 10.000 points and with latencies below
100 ms.

There are multiple challenges with real time systems. A short discussion of the
main difficulties in the implementation of such systems shall be given in this
chapter.

Projection speed in digital consumer projectors is usually designed for 60 Hz
RGB video input. In most consumer products, various image processing (chroma
sub-sampling, sharpening, colour conversion, gamma-correction) reduce image
quality and increase latency.

Capture speed is a challenge as most industrial cameras have frame rates in
the order of 30 Hz. Most cameras expose, read-out and transmit data sequen-
tially, which sets additional requirements for projector-camera synchronisation.
A carefully designed hardware synchronisation is thus necessary if multiple pat-
terns are used in the SL sequence. With short exposure times, the projected light
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output must also be correspondingly brighter. This does not always harmonise
with human eye safety levels [Ole11].

The length of the SL pattern sequence is inversely proportional with the effective
refresh rate. This favours e.g. single-shot techniques, or 3-step phase shifting
with image-based unwrapping. These techniques also differ in decoding, which
is usually processing intensive, and not all coding strategies are suitable for this
reason.

Decoding and triangulation are other computationally expensive tasks, which
affect overall performance and latency. For instance, in PS-based methods, the
inverse tangent needs to be computed (Eqn. 2.9), and triangulation performed
(solving Eqn. 2.14) at each pixel.

Thus, the main challenges with real time SL can be summarised as follows:

• Pattern projection speed and quality, limited mainly by the speed of pat-
tern rendering and the projection hardware.

• Camera capture speed and synchronisation. The camera exposure must
be precisely controlled and synchronised with the projection of patterns.

• Permitted light output for eye-safe operation, such that camera images
are properly exposed. It is beneficial to use cameras with high sensitivity
at the illumination wavelength.

• Sequence length, which is inversely proportional to the point cloud refresh
rate obtainable.

• Computational requirements for decoding and triangulation.

This chapter introduces hardware and algorithms to overcome these challenges
and presents the contributions made to the field.

3.1 Literature Overview

Relatively few implementations of real time structured light which satisfy the
definition on page 23 have so far been described in literature.

Early real time systems mainly use one-shot strategies. The ”Rainbow 3D Cam-
era” of Geng [Gen96] uses illumination of spatially varying wavelength. Wust
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and Capson [WC91] and similarly Huang [HHJC99] utilise the three colour chan-
nels to project a 3-step PS pattern sequence onto the scene in a single projection.
Zhang et al. use a single-shot colour de-Bruin pattern [ZCS02]. An elaborate
technique with scene adaptive colour single-shot patterns is shown by Koninckx
and Gool [KV06].

An early example of a system capable of real time reconstruction with multiple
patterns is that Rusinkiewicz et al. [RHHL02], which uses multiple binary pat-
terns, and tracks stripe boundaries as a means of motion correction. An early
multi-pattern PS-based system is demonstrated by Huang et al. [HZC03]. They
use a hardware modified consumer projector with the colour wheel removed.
The accurate projection of patterns is tackled with a dedicated, analogue pat-
tern projector of Wissmann [WSF11, WFS11]. The implementation of Zuo et
al. [ZCG+12] uses a modified commercial projector. Another real time PS-
based system with an analytical method for error compensation is presented by
Weise [WLV07]. In [ZXYW14], a PS/single-shot hybrid is presented which is
able to switch between high fidelity and fast reconstruction depending on scene
motion. A review of high speed PS-based methods and implementations is given
in [SZ10].

The works of Lau and Hassebrook, University of Kentucky are influential. Their
pattern compositing technique allows for simultaneous projection and subse-
quent separation of sinusoidal patterns in a one-shot pattern [GHL03] and two-
frequency modulation halving the number of projected patterns in PS [LWL+10a].
Other contributions include gamma correction [LWL+10b] and noise modelling
for PS frequency selection [LHG03, WLL+10].

A large amount of innovation is due to the ”Multi-scale Superfast 3D Optical
Sensing Laboratory” of Zhang at Purdue University. His PhD thesis describes
the implementation of 40 Hz real time structured light using consumer hard-
ware [Zha05] and the group has presented various improvements to processing
speed, albeit with quality trade-offs [Zha10], i.e. the use of deliberately defocused
high-speed binary patterns with dithering [LZ09]. In [WLEZ13], a high speed
camera is used to capture a beating rabbit-heart at 1000 Hz. A particularly fast
image-driven phase-unwrapping technique was also developed [ZLY07]. Further
improvements include GPU processing [KHCZ14]. The focus of this work is high
speed, and few requirements are set for accuracy or permitted light intensity.

As for commercial systems, the popular Microsoft Kinect 1 sensor is an exam-
ple of a single-shot structured light systems. It provides 30 depth and colour
images per second. The single-shot pattern is a pseudo-random dot matrix pro-
jected from an infrared laser-projector. The main innovation of this sensor is a
specialised integrated circuit developed by PrimeSense, which performs feature
matching and triangulation inside the sensor with minimal power requirements.
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The infrared camera has a resolution of 640×480 px, and the standard deviation
of depth measurements is a few millimetres at 50 cm distance [KE12].

Figure 3.1: Left: infrared camera image of Kinect 1 showing the pseudo-
random dot matrix. Right: the corresponding depth map. Black
regions denote missing data due to low contrast or occlusion. (c)
Wikimedia User:Kolossos.

3.2 Pattern Projection

In order to obtain high speed while maintaining the desirable properties of PS
methods, such as high precision and accuracy, and robustness towards scene
discontinuities and varying surface colour, true gray-scale patterns must be pro-
jected onto the scene. This can be realised by means of specialised projection
hardware, such as that of Wissmann [WSF11]. Using a generic digital projection
unit provides more flexibility however. Three projection technologies are cur-
rently available in consumer hardware: Digital Light Processing (DLP), Liquid
Crystal on Silicone (LCoS) and Liquid Crystal Display (LCD) [FH09]. DLP is
most widely used as it provides very high contrast and allows for high luminous
output. It is based on a Microelectromechanical System (MEMS) called the
Digital Micromirror Device (DMD). This unit consists of a large number of
small mirrors which can be actuated electro-magnetically into one of two states,
effectively projecting light out of the projector lens, or onto a heat-sink. With
all these projection technologies, grey value projection relies on the integration
of many binary patterns in the human eye or camera. This sets constraints on
the allowable camera exposure time, as it generally needs to be a multiple of
one projected frame period.

Currently available systems can achieve up to 9, 523 Hz binary or 247 Hz 8-
bit grayscale patterns (December 2015, Texas Instruments LightCrafter 9000).
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With a 3-step PS pattern sequence, this allows for potentially 82 1
3 surface recon-

structions per second. However, to project patterns at these frequencies, they
must generally be stored in fast access memory close to the projector controller
hardware. A more generic approach, which allows for dynamic change of the
sequence is to render the patterns on a computer’s graphics unit, and transmit
them via a display interface.

3.2.1 OpenGL Based Rendering

One of the advantages of rendering the SL sequence on the fly as opposed to
storing it in hardware is the ability to adaptively adjust patterns based on
scene change or complexity. Efficient rendering of structured light patterns
requires direct access of the computer’s graphics unit. The OpenGL library is
a popular way of performing such rendering tasks with small overhead. As will
be discussed in Sec. 3.3, any delays in the rendering process can lead to loss of
synchronisation. Patterns can be efficiently rendered into offscreen framebuffers,
which are then blitted on the graphics unit under operation. Fig. 3.2 shows the
steps involved in this rendering solution.

A practical aspect of performing such pattern rendering is that the computer’s
interface should not interfere with the projection of patterns. This can be re-
alised with the X screen mechanism on the Linux operating system by config-
uring two individual X screens. This also allows for vertical synchronisation to
the projector, avoiding screen tearing. This thesis’ [Contribution C] details an
open source software platform which implements this rendering framework.

3.3 Synchronisation

An important practical aspect of SL is the correct capture of projected patterns.
In low speed applications this can be achieved by synchronising the projection
and capture loop in software. In this case, patterns are rendered and projected
by the projector. The software sleeps to accommodate latency period ω, which
is the time between rendering of the pattern until it is actually projected. This
latency is due to double buffered rendering, transmission of the video signal, ring
buffering in the projector and image processing performed by the projector, e.g.
chroma sub-sampling, sharpening, colour conversion, gamma-correction (Texas
Instruments DLPC350 documentation DLPS029B). This latency is usually in
the order of ω = 50 ms. The camera is then software-triggered, which incurs a
latency δ before image exposure begins. See Fig. 3.3 for a diagram of the timing
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Pattern computation: Ipn(up) = 1
2 + 1

2 cos
(

2π
(

n
3 − up

Np

))

Forward lens correction: kp

Defining frame buffers: glGenFrameBuffers

Rendering to frame buffers:

glBindFramebuffer(GL_DRAW_FRAMEBUFFER , 0);

glBegin(GL_QUADS)

glTexCoord2f (0, 0); glVertex2i (0, 0);

glTexCoord2f (1, 0); glVertex2i (1, 0);

glTexCoord2f (1, 1); glVertex2i (1, 1);

glTexCoord2f (0, 1); glVertex2i (0, 1);

glEnd(GL_QUADS)

Projecting:

glBindFramebuffer(GL_DRAW_FRAMEBUFFER , 0);

glBegin(GL_QUADS)

glTexCoord2f (0, 0); glVertex2i (0, 0);

glTexCoord2f (1, 0); glVertex2i (1, 0);

glTexCoord2f (1, 1); glVertex2i (1, 1);

glTexCoord2f (0, 1); glVertex2i (0, 1);

glEnd(GL_QUADS)

glBlitFrameBuffer (...);

glFinish (...);

Figure 3.2: Pattern projection and rendering pipeline. Patterns are computed,
forward lens corrected, rendered to offscreen framebuffers, and
projected in sequence very fast by blitting the buffers.
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involved in software triggered acquisition.
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Figure 3.3: Timing diagram of software triggered pattern projection and im-
age capture. ω denotes the temporal latency of pattern projection.
δ is the camera software trigger latency. Latency lengths are only
exemplary. In order to capture images correctly, each pattern
is projected twice, and captured once with an exposure time of
8.33 ms.

As is clear from Fig. 3.3 the software triggered pipeline is not entirely efficient
in time usage, and hence is not suitable for real time performance. The latency
periods can be hidden by overlapping rendering of one pattern with camera
exposure of the previous pattern. This generally requires hardware triggering
the camera or projector, as the software itself does not synchronise them. Such
hardware triggering is available in some pattern projectors or in the v-sync signal
of display interfaces such as VGA or DVI. A timing diagram using hardware
triggering and overlapped projection and exposure is shown in Fig. 3.4.

Achieving robust hardware synchronisation is more difficult than software trig-
gering. This is because the overlapped exposure must be carefully adjusted such
that projected patterns are captured faithfully, and the beginning of a particular
pattern sequence is known in the captured frames. Any missed frames or missed
rendering periods can easily lead to loss of synchronisation.

3.4 Precomputations for Point Triangulation

Plane-based calibration and triangulation (Sec. 2.4.2) has been used in previous
real time SL systems due to its computational efficiency [WZO11]. It can de-
termine a relative height from a pre-calibrated reference plane without the need
for solving a linear system in each pixel [ZS94]. This technique is cumbersome
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Figure 3.4: Timing diagram of hardware triggered pattern projection and im-
age capture. ω denotes the temporal latency of pattern projection.
δ is the camera hardware trigger latency. In order to capture im-
ages correctly, each pattern is projected twice, and captured once
with an exposure time of 8.33 ms.

however in that a reference needs to be scanned with each calibration, and the
noise from this acquisition propagates. Further, for many algorithms, the point
measurements are best expressed in the camera’s coordinate system.

A better alternative would be to perform direct algebraic triangulation according
to Eqn. 2.14. Naively solving is prohibitive however, if real time performance is
seeked in a structured light system. Restating Eqn. 2.14 for point triangulation,



P c(1)− ucP c(3)
P c(2)− vcP c(3)
P p(1)− upP p(3)


Q = 0 , (3.1)

it is apparent that after calibration, only up in the last row of the left-hand-
side changes between scans. This allows one to pre-compute large parts of the
solution, as shown by Valkenburg and McIvor [VaM98]. Defining the following
determinant

Ck
i,j,l = det







P c(i)
P c(j)
P p(l)
I(k)





 , (3.2)

where I(k) is the k − th row of a 4 × 4 identity matrix, the coordinates of
Q = [Q1, Q2, Q3, Q4]

> may be computed as

Qk = Ck
1,2,1 − ucCk

3,2,1 − vcCk
1,3,1 − upCk

1,2,2 + ucupC
k
3,2,2 + upvcC

k
1,3,2 . (3.3)

As seen from Eqn. 3.3, after pre-computation of C, Q can be found by means of
three multiplications and three additions. This solves the computational issue
with point triangulation and allows for much faster triangulation than naively
solving the linear equation at each pixel.
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3.5 System Design

As part of this thesis work, a complete real time SL system was constructed
with the hardware trigger capabilities described above. A picture of this setup
is shown in Fig. 3.5. Here the projector unit (Wintech LightCrafter4500Pro)
is outputting a trigger signal at the beginning of each pattern exposure. The
software performs fast point triangulation by means of the determinant tensor
(Eqn.3.2), and is optimised for high performance by means of parallel compu-
tation. The overall software architecture is shown in Fig. 3.6. Example results
acquired with this system are shown in Fig. 3.7. [Contribution C] of this thesis
provides details of the software system.

Figure 3.5: Hardware triggered structured light setup with a projector (Win-
tech LightCrafter4500Pro) and an industrial camera (Ximea
MQ013RG). The trigger cable contains a level shifting circuit to
translate the projector’s 5 V trigger signal into 18 V as required
by the camera.

3.6 Motion Artifacts and Correction

The fundamental assumption in scene coding with SL is that pixel-correspondence
exists within the camera frames of one sequence. This is not necessarily the case,
and even with small motion between frames, serious artifacts can result in the
point cloud (see Fig. 3.8). Only few solutions have thus far been proposed for
the motion problem. One direction of alleviating motion artifacts is to decrease
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initialize camera
intialize projector
precompute projector lens correction
prerender N frame buffers
loop

for i = 1 to 10 do
render pattern mod(i + 1, N)
capture frame i (blocking)

end for
signal frame sequence

end loop

Capture Thread

slot frame sequence
for r = 0 to Nr − 1 do

for c = 0 to Nc− 1 do
compute up using Ic1..N (r, c)
compute shading using Ic1..N (r, c)

end for
end for
signal (Up, shading)

Decoding Thread

precompute Uc, Vc

precompute determinant tensor Ck
i,j,l

slot (Up, shading)
for k = 0 to 3 do

compute Qk

end for
signal Q

Triangulation Thread

Main Thread

start capture thread
start decoding thread
start triangulation thread
slot Q

display point cloud

Figure 3.6: Diagram of the processing architecture of our real time SL system.
Arrows indicate communication between threads by means of a
signal/slot mechanism.
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Figure 3.7: Result obtained with real time SL on a mannequin head scene.
Left: 10 Hz point clouds with multi-period PS and temporal un-
wrapping (6 patterns). Right: 20 Hz point clouds with the 3-step
PS coding method. Some spatial smoothing was applied. In both
cases, quad meshes were computed for visualisation by neighbour-
connection in the organised grid (see Sec. 4.1.2), hence vertices are
original points.

the number of patterns or increase the pattern projection frequency, as this re-
duces the encoding time during which motion can occur. A high speed system
of 1000 Hz which is capable of imaging a beating rabbit heart was demonstrated
by Wang et al. [WLEZ13]. However, this puts additional demands on the hard-
ware, which are difficult to satisfy. With higher frame rate and shorter exposure
times, light intensity must increased accordingly, and a high-speed cameras em-
ployed. Additionally, in certain applications such as the one presented in Ch. 5,
eye safe illumination intensity is a limiting factor.

Rusinkiewicz et al. use binary coding, and track pattern boundaries in order
to compensate for motion during the sequence [RHHL02]. Liu et al. propose
a motion corrected binary pattern method, but also employ a high speed cam-
era and pattern projector [LGG+14]. Weise et al. provide an analysis of the
error encountered in PS based SL, and derived an image based correction strat-
egy [WLV07].

Lu et al. showed the feasibility of motion correction by means of image align-
ment [LXYG13]. In [Contribution E], this idea of image registration is employed
by using very efficient phase correlation on a modified PS based SL sequence.
This reduces motion related artifacts considerably, as seen in Fig. 3.8.
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Figure 3.8: Motion artifacts in SL and their correction. Left: SL scan of a
moving mannequin head with the 3-phase coding method. Right:
after applying the phase-based motion correction as presented in
[Contribution E]. Visualising was done as in Fig. 3.7.

3.7 Contributions

This chapter pointed to the opportunities and challenges and limitations of real
time SL. The thesis contributes to the development of this technique with the
open source real time SL software ”SLStudio”, which provides a large number
of fast coding schemes, OpenGL based rendering of patterns and fast point
triangulation. The software is presented in [Contribution C], and available at
http://github.com/jakobwilm/slstudio.

A method for the reduction of motion artifacts in dynamic scenes is a largely
unsolved problem. A novel method based on image registration is the subject of
[Contribution E]. It uses efficient phase correlation based registration on camera
frames with a modified PS method.

http://github.com/jakobwilm/slstudio


Chapter 4

Rigid Tracking using
Structured Light

Real time SL enables the recording of dynamic phenomena in 3-D. An important
class of problems is the tracking of rigid objects over time. This may be used
e.g. for robotic object pose estimation, mapping, or tracking. Such tracking
information is used e.g. in the clinical application described in Ch. 5.

When control feedback is involved, the tracking result must be available shortly
after data acquisition, which puts strict latency demands on the tracking algo-
rithm as well. In the following, it is shown how such real time tracking can be
performed, filtered to yield higher accuracy and evaluated using an alternative
tracking device.

4.1 Rigid Alignment

The foundation of tracking with SL is the alignment, or registration, of point
clouds. Considering a reference point cloud {R} to which data point cloud {D},
the alignment process estimates a rigid transformation which brings {D} into
alignment with {R}. Using a rotation matrix Ra and translation vector T a
to parameterise this transformation, Ra{D} + T a should be similar to {R},
possibly with only partial overlap.
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4.1.1 Literature Overview

The alignment of point clouds can be based on sparse point features or directly
on all available data. With point features, a small number of points are de-
tected in both point clouds and matched robustly [AL10]. Pose tracking using
regression forests was proposed in [FWGV11]. In [BKW+08], head tracking is
based on nose-detection. As these model based methods were trained on a large
amounts of sample data, they are robust, but not particularly precise. Other
alternatives consist in the registration of a sparse set of 3D geometry features,
such as spin images [Joh97] or signed distance fields [Mas01]. A general review
of point cloud registration methods is given in [SMFF07].

Using the full point cloud for registration makes use of all available data, and
as such is often superior when maximum accuracy is needed [SMFF07]. There-
fore, many applications requiring accuracy, e.g. robot localisation, are based on
Iterative Closest Point (ICP) and similar algorithms [LM94, SHK94, NDI+11].
Some modern alternatives exist for dense rigid alignment, including the ”Normal
Distributions Transform” [Mag09] which represent the point cloud as a piece-
wise smooth function. The method of Bing and Baba constructs intermediate
Gaussian mixture model representations to be be registered [JV11]. While these
methods were shown to be very powerful and more robust, especially in case of
noisy point clouds and bad initial alignment, they are computationally heavier
than the ICP.

The ICP algorithm is the most well-established method for the dense align-
ment of point clouds. It iterates over the process of finding nearest neighbour
correspondences and alignment by finding the least square rigid transforma-
tion, also known as the orthogonal Procrustes solution. ICP has been used
extensively since its introduction in the early 1990’s. The original method of
Chen and Medioni [CM91] minimised a linearised point-to-plane metric, while
the concurrent paper of Besl and McKay [BM92] minimises point-to-point dis-
tances and proposes an extrapolation strategy for faster convergence. A wealth
of literature has proposed improvements to the original ICP. These include
the use of efficient normal space based sampling [RL01], rejection of boundary
matches [TL94] (see Fig. 4.1) or the use of robust estimators such as the least
median square [TFR99] or least trimmed squares [CSK05]. It is also possible
to forego the iterative procedure of ICP, and find the optimal transformation
directly by means of non-linear optimisation [Fit03]. A comparative analysis
of many of these techniques is provided in [RL01]. Another comparison in the
context of head pose tracking was performed by the thesis author in [WOP+11].

The main computational complexity in ICP lies in the determination of nearest
neighbours. For this reason, spatial search structures such as octrees of kD-trees
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are usually employed. In cases where point data is organised in an ordered grid,
the matching can be done very efficiently using ”reverse calibration” [BL95] as
will be shown later.

Figure 4.1: Concept of edge rejection in the ICP algorithm. Point pair in-
cluding the query edge are rejected as proposed by [TL94] which
allows registration of point clouds with partial overlap.

4.1.2 Fast ICP for Tracking

Tracking by means of ICP involves defining a reference point cloud to which
others are aligned. Choosing the first point cloud (index i = 0) allows to com-
pute the necessary search structure, normals (necessary for point-to-plane), and
boundaries for ”edge rejection” (as seen in Fig. 4.1) once, and to reuse these
data structures when the current point cloud is to be registered to the refer-
ence. A good initial alignment for the registration at i = n is the result of the
registration at i = n− 1.

In order to align point clouds of approximately 300 000 points in real time, ac-
cording to the definition of real time SL on page 23, even look-ups in spatial
search structures can be prohibitive [WOP+11]. As mentioned, the task of cor-
respondence finding is computationally demanding. It is possible to exploit the
fact that point clouds from SL scanners have an inherent spatial organisation
according to the regular camera pixel grid in which they are reconstructed. Such
point clouds have been termed ”organised point clouds” [HRD+12], and are dif-
ferent from ”depth maps” in that individual (x, y, z) coordinates exist at each
pixel position (uc, vc).

In order to identify edge points in organised point clouds, a simple traversal
over the points is sufficient. Any point whose 8-neighbourhood in the grid
contains empty values can be marked as an edge point. Normal estimation
can also be performed very efficiently using the ”integral image” approach of
Holzer [HRD+12]. Finally, point matching can be done using the ”reverse cal-
ibration” technique. Considering reference point cloud {Ru,v} to which data
point cloud {Du,v} is to be registered, both of which are expressed in the camera
with matrix P c. The point match for point Du0,v0 is established by computing
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its projection
du0,v0 = [px, py, s]

>
= P cDu0,v0 , (4.1)

and matching it to
Rround(px/s),round(py/s) , (4.2)

if this point exists, and is not an edge point. While the quality of matches
obtained in this way might not be as high as with Euclidean nearest neighbours,
the speed with which they are determined is much higher. Since the estimated
transformation in tracking is usually small, this algorithm generally converges
after few iterations. Fig. 4.2 shows a tracking scene of a mannequin head which
was mounted on a motor performing a periodic movement.

Figure 4.2: Tracking based on SL and the fast ICP method described in
Sec. 4.1.2. A mannequin head is mounted to a stepper motor
and rotated back and forth. Result are computed in real time and
displayed on screen.

4.2 Parameterisation

A rigid pose has six degrees of freedom, and may be described using a number
of parameterisations, e.g. translations + Euler angles, translations + rotation
matrix, dual quaternion, or translations + unit quaternion. Euler angles pa-
rameterise the rotation using the minimum number of three parameters , but
have singularities, and their math does not lend to easy formulation of filtra-
tion, composition or extrapolation. Rotation matrices are readily composed,
but not extrapolated, and they are cumbersome in many analytical derivations,
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as their special properties must be retained (orthogonality and positive unit
determinant). Most of these issues are alleviated with quaternions. While the
dual-quaternion representation combines translation and rotation, and thereby
provides a unified algebra for roto-translations, most of these benefits can be
obtained with a combined translation vector + unit quaternion, which has bet-
ter interpretability. The representation of the current pose used here is thus as
follows:

z =

[
t
q

]
=




tx
ty
tz
qw
qx
qy
qz




, ‖q‖ = 1 , (4.3)

where t is the translation and q the quaternion. While the quaternion has
four degrees of freedom, its length is restricted to unity, thereby avoiding over-
parameterisation. The quaternion has its own specific algebra [Kui02], but can
easily be converted to other representations of rotation. For instance, the equiva-

lent axis angle representation is
([

qx√
1−qwqw

,
qy√

1−qwqw
, qz√

1−qwqw

]>
, 2 arccos(qw)

)

while a rotation matrix can be computed as

R =




1− 2q2y − 2q2z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1− 2q2x − 2q2z 2qyqz − 2qxqw
2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2x − 2q2y


 . (4.4)

Hence, the quaternion representation can be used throughout, but converted to
other representation where such are more convenient.

4.3 Kalman Filtering

The tracking method described so far is fast and robust. However, the tracking
result can contain noise. A natural question is whether physical constraints or
priors can be applied such that noise is reduced and tracking precision increased.
The Kalman filter is a hallmark of signal processing since the 1960’s [Kal60], and
provides a framework for filtering signals and sensor fusion with priors on the
signals covariance structure. This allows e.g. in GPS based tracking to include
constraints on a vehicle’s acceleration and speed, and improve the precision of
the momentary positional estimate.

The Kalman filter is based on the assumption of white noise on measurements.
If this assumption is not met, the filter may diverge or be very limited in perfor-
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mance . Additionally, due to its linear formulation, the model needs to be linear
as well. If that is not the case, linearisation can be performed, as will shown be-
low. In that case, the filter is called the Extended Kalman Filter (EKF) [EW99].
Alternatives exist, if linearisation is not possible, or unreliable, such as particle
filters [AMGC02], but these are generally much more computationally demand-
ing.

The Kalman filter formulates a measurement vector, zk, with the observable
measurements:

zk = h(sk) +ψk , (4.5)

where h(·) is the so-called measurement function, and ψk a ”measurement-noise”
vector, considered uncorrelated in time with covariance Ψ. k denotes an index,
often a time-point. sk is a state vector, which may contain observable properties
as well as non-observable properties. It is formulated as a propagation from the
last state by means of a state-transition function φ(·), and possibly a known
alteration, or control vector uk, which affects the state through b(·):

sk = φ(sk−1) + b(uk) + θk . (4.6)

θk is an addition ”process noise”, considered independent white noise with co-
variance matrix Θ.

Given measurements which can be formulated in this way, the Kalman filter can
provide statistically optimal estimates of the ”true” state. It should be noted
that the requirements of the filtering framework are:

• That the phenomenon is fully modelled, e.g. that h(·) and φ(·) faithfully
describe the physics underlying the state and measurement.

• That ψk and θk are truly uncorrelated in time (white noise). This does
not entail any requirements on the amplitude distribution other than an
expected value of 0 and finite variance.

• That the covariance-structures Ψ and Θ are given or can be estimated.

The Kalman filter performs two steps:

(1) Prediction, in which the current state and its estimated covariance is prop-
agated, and optionally a control input is applied to yield a a-priori state
estimate.

(2) Correction, where the current measurement is involved, to yield a statis-
tically optimal a-posteriori estimate.
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The seminal paper of Kalman [Kal60] describes a linear filter, in which h(·), φ(·),
and b(·) are linear functions, i.e. can be applied through matrix-vector multipli-
cation with matrices H, Φ and B respectively. In that case, the prediction and
correction steps have the following closed-form solutions:

(1) prediction:

s−k = Φsk +Buk (4.7)

P−k = ΦP k−1Φ
> + Θ (4.8)

(2) correction:

Kk = P−kH
>
(
HP−kH

> + Ψ
)−1

(4.9)

sk = s−k +Kk

(
zk − h(s−k )

)
(4.10)

P k = (I −KkH)P−k (4.11)

Matrix P k is the covariance of the estimate, and the matrix Kk the so-called
Kalman-gain, which defines the the extend to which the current measurement
influences the state estimate.

In the more general case of non-linear functions h(·), φ(·), and b(·), these func-
tions can be linearised locally, and substituted by their Jacobians in the relations
above.

In the pose signal filtering problem, the measurement vector is equal to the pose
parameterisation, 4.3. There is no control-input, and hence b(uk) = 0. In order
to model the distribution of linear and angular velocities, the following state
vector is formed:

s =




t
q
v
ω



13×1

, (4.12)

where t is the translation vector, q the unit rotational quaternion, and v and ω
are 3× 1-vectors of the current linear and angular velocities.

4.3.1 Linearised Quaternion Propagation

The functions involved in the state transition and measurement of the pose
signal parameterised using Eqn. 4.3 shall now be linearised, with the internal
state as given in Eqn. 4.12. First, it is useful to relate the quaternion to angular
velocity vector ω. Naturally, these can be obtained as the time derivates as
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follows [GA98]:
∂q

∂t
=

1

2
(0, ωx, ωy, ωz)

>
q =

1

2
Ω̃q . (4.13)

Quaternion propagation can then be done in the following way:

qk = exp
(

∆tΩ̃
)
qk−1 =

[
cos

(‖ω‖∆t

2

)
I +

2

‖ω‖ sin

(‖ω‖∆t

2

)
Ω̃

]
qk−1 ,

(4.14)
and the full state transition function function becomes

φ(s) =




t+ ∆tv

exp
(

(∆tΩ̃)q
)

v
ω


 . (4.15)

Since the measurements are simply part of the state, the measurement function
is very simple. It also conveniently takes care of quaternion re-normalisation:

h(s) =

[
t
q
‖q‖

]
(4.16)

The Jacobian of φ(·) is defined as follows:

Φ =




∂φtx
∂tx

. . .
∂φtx
∂ωz

...
...

∂φωz

∂tx
. . .

∂φωz

∂ωz
.




13×13

(4.17)

Deriving these components yields [GA98]:

∂φti
∂vi

= ∆t (4.18)

∂φq
∂q

= exp
(

∆tΩ̃
)

(4.19)

∂φq
∂ωi

=
∂ exp

(
∆tΩ̃

)
q

∂ωi

=

[
−ωi∆t

2‖ω‖ sin

(‖ω‖∆t
2

)
I4×4

+

(
ωi∆t

‖ω‖2 cos

(‖ω‖∆t
2

)
− 2ωi

‖ω‖3 sin

(‖ω‖∆t
2

))
Ω̃

+
1

‖ω‖ sin

(‖ω‖∆t
2

)
∂Ω̃

∂ωi

]
q

(4.20)
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Similarly for the measurement function h(·), we have

H =




∂htx
∂tx

. . .
∂htx
∂qz

...
...

∂hqz
∂tx

. . .
∂φqz
∂qz




7×13

, (4.21)

whose relevant components are more easily derived as

∂ht
∂t

= I
∂hqi
∂qi

=
‖q‖2 − qi
‖q‖3 (4.22)

The above filtering approach was used on data of the motorised mannequin head
setup. An example of the filtered pose signal and its unfiltered counterpart is
shown in Fig. 4.3. The covariances Ψ and Θ were set using reasonable values.

Figure 4.3: Results of applying the EKF on a pose signal obtained online on
a rotating mannequin head.

A noticeable reduction of noise is seen after applying the EKF and satisfactory
qualitative results. In the next section, the tracking and filtering approach will
be validated by means of a secondary tracking device.
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4.4 Coordinate Alignment

Since it is difficult to establish ground truth in a tracking experiment, in order
to evaluate tracking performance, a secondary, accurate device can be used. It
is not trivial however to perform such evaluation, as the tracking result will
be expressed in different coordinate systems. Fig. 4.4 shows a tracking experi-
ment on a mannequin head with SL based tracking as described above, and a
commercial marker-based tracker (Polaris Vicra).

A0

A1

B1

XA1A
−1
0

Figure 4.4: Head tracking experiment. Left: the real time SL system scan-
ning, while the head pose is also measured using the Polaris Vicra
tracker with the tracking tool attached to the top of the man-
nequin head. Right: diagram of the coordinate transformation
between both tracking systems, as used in hand-eye calibration.

With both systems observing transformations of the mannequin head in differ-
ent coordinate systems, the relation between coordinate systems may be found
by means of ”hand-eye calibration”. Referring to Fig. 4.4 (Right), the current
optical marker pose is reported as Ãi, which is a 4× 4 homogenous matrix con-
taining rotation and translation. The SL tracker determines each pose relative
to the pose at time t = 0 as B̃i. The ideal relation between these pose data is
given by rigid transformation X4×4, where the following is satisfied

(
ÃiÃ

−1
0

)
X = X

(
B̃iB̃

−1
0

)
(4.23)

AiX = XBi . (4.24)

Determining X based on a number of such relative motions is referred to as
hand-eye-calibration. A number of closed form solutions exist for this problem.
Many of these methods solve for the optimal rotation first, then for the transla-
tion, e.g. [TL89], others are simultaneous, and often based on parameterisations
with quaternions [Dan99]. A qualitative comparison of many of these solutions
is presented in [SEH12].
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The hand-eye calibration has the fundamental shortcoming that rotations and
translations have different inherent scales, and are not directly comparable.
Hence, the algebraic error minimised in these methods does not necessarily
bring 3-D points into the best possible correspondence. Hence, for the tracking
experiment shown in Fig. 4.4, the hand-eye calibration according to [TL89] was
used as a closed form initialiser to a non-linear optimisation procedure. In this
procedure, a surface point cloud of the mannequin head was used, and the Root
Mean Square Error (RMSE) of tracking as the error objective. Results after this
coordinate alignment are shown in Fig. 4.5. The obtained RMSE on tracking
deviations was below 2 mm in all cases. These results show successful rigid
object tracking using our approach.

4.5 Contributions

As was shown in this chapter, rigid pose tracking can be done fast and accurately
by means of SL, projective ICP and the EKF. The thesis contributes to SL
based rigid tracking by implementing of real time efficient rigid alignment for
streaming SL data as detailed above. [Contribution A] discusses part of the
methods described above, albeit based on a TOF sensor instead of SL. A scheme
for coordinate system alignment for the evaluation of tracking results using
hand-eye-calibration and optimisation was also described in this chapter, and it
verified the correctness and accuracy of tracking results.
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Figure 4.5: Result of tracking experiment on a mannequin head that was
moved freehand and tracked using both the Polaris Vicra marker
based system and the SL based tracking strategy. Coordinate sys-
tems were aligned using hand-eye calibration followed by RMSE-
based optimisation.



Chapter 5

Medical Motion Correction
using Structured Light

Medical brain-scanners, including MRI, Positron Emission Tomography (PET)
and Computed Tomography (CT) have ever increasing resolution and fidelity.
This enables doctors to perform better diagnosis on diseased patients. In addi-
tion, it makes possible a number of new techniques to improve the study of brain
activity and the neurological system. The benefits of increased resolution are
unfortunately dissolved in part due to patient motion while the scan is on-going.
When gross motion occurs, regular artifacts appear in the images, as seen in
Fig. 5.1. The same issues arise in radiation therapy, where a high-precision and
high-intensity photon beam is directed at cancerous tissue to destroy it. Pa-
tient motion during this procedure leads to a higher, unneeded radiation dose.
The traditional methods of avoiding these issues consists of head immobilisa-
tion with various devices, including thermoplastic face masks, vacuum pillow
(see Fig. 5.2), or even anaesthesia in un-cooperative patients or children.

Motion correction for medical imaging is a broad field with many approaches
suggested in literature. These methods can be categorised as either retrospective
(data is corrected offline after acquisition) and prospective (scan parameters are
adjusted or data is corrected on the fly). A different separation is in image based
methods, and methods based on external tracking devices, such as the one that
will be described in this chapter. Depending on the primary modality, both
retrospective and prospective motion correction methods have their merits.

In PET, a detector ring records gamma rays from positron-emitting tracers.
Both static recordings of metabolic activity and dynamic studies of tracer uptake
are conducted. Motion correction can be based on time framed reconstructions,
known as Multiple Acquisition Frames (MAF) [PT97]. This was done using an
external optical tracking device by Fulton et al. [FME+02]. This however limits
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Figure 5.1: Example of MRI brain scan (Siemens mMR T2 contrast). Left:
with patient motion the image quality is severely reduced. Right:
without patient motion the diagnostic value of the image is much
higher.

Figure 5.2: Methods of head immobilisation for radiotherapy and motion-free
medical scans. Left: vacuum pillow immobilising an infant. (c)
Dept. of Pediatric Radiology, Wilhelmina Children’s Hospital,
UMC Utrecht - Utrecht/NL. Right: thermoplastic mask for head
immobilisation. (c) MRI-P Solution, Orfit Industries n.v..
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the temporal resolution of dynamic studies, and cannot correct for fast motion.
With high-speed external trackers, potentially every single signal detection can
be motion corrected. This was demonstrated e.g. by Carson[CBLJ03]. Single
event based correction is complex though in that radio-density and scanner
geometry must be considered in the process. There is little or no benefit to
prospective correction in PET, and reconstruction is always performed offline
after data recording. The PhD thesis of Oline V. Olesen [Ole11] provides a
review of motion correction strategies for PET and proposes SL for retrospective
correction.

For CT, most often fast structural imaging is done with scan times between
fractions of a second and a few minutes. Multiple recordings may be acquired
with and without contrast agent, or along the body for a complete recording.
Image based correction methods are demonstrated in e.g. [SZRvH05, LSYX06].
Since spatial resolution is very important, also CT can benefit from motion
correction, specifically when respiratory motion is involved. Here, the ”gating”
technique is widely used, where data is collected only during the same phase of
the cardiac or respiratory cycle [DK04, BK04].

In MRI, acquisition times can be very long, and motion is often the limiting
factor for scan duration. As the MRI modality is very versatile, a wealth of
methods have been proposed with various trade-offs between contrast type, im-
age quality, scan speed, and other parameters. It has become very common
to apply so-called ”navigator” sequences within the MRI protocol to detect pa-
tient motion, and re-acquire data if necessary. These navigators add to the
collected scan time however, which makes their use prohibitive in some MRI
techniques [HMW+12].

With functional imaging techniques such as functional MRI (fMRI), the very
subtle ”BOLD-contrast” is measured, and allows to deduce which parts of the
brain are active during a certain stimulus. In diffusion MRI (dMRI), the
anisotropic diffusion coefficient of water molecules is measured to non-invasively
gain insight into the main fiber/axon directions within the brain. These modal-
ities require large amounts of data, and often, long acquisition times. Their
analysis is based on multiple recordings of the same tissue under different ac-
quisition parameters, with the assumption of stationarity. Consequently, motion
during measurement leads to artifacts in the reconstructed data, and possibly
biased data. Prospective motion correction has numerous benefits in MRI over
retrospective correction. With prospective tracking information, it is possible
to adjusts magnetic field gradients, such that the MRI-scanner’s internal coor-
dinate system effectively follows the patient’s head, as shown in Fig. 5.3. This
avoids uneven sampling of the frequency space and complex realignment proce-
dures [DZS+06].
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Figure 5.3: The prospective motion correction cycle in MRI. The scanner’s
imaging protocol is updated such that its coordinate system fol-
lows the patients head, avoiding post-process motion correction
and violations of the sampling theorem. From MacLaren et
al. [MHSZ13].

Forman et al. use a coded checkerboard marker and a single camera for tracking
in MRI [FAHB11]. Schulz et al. presented in-bore tracking of optical markers
with a single MRI-compatible camera [SSR+12]. Gholipour et al. use a magnetic
field sensor attached to the patient to track motion [GPvdK+11]. The KinetiCor
MRI tracker is a commercial offering which uses a single camera and marker
exploiting the Moiré effect. The MoTrak system of Psychology Software Tools,
Inc. uses an Radio Frequency (RF) transmitter-receiver design for MRI head
motion tracking. A review of current prospective motion correction techniques
for MRI is found in [MHSZ13].

Most all methods for non image-based motion tracking in medical scanners use
optical or magnetic field markers. This is problematic in clinical workflows,
adds to patient discomfort, and is difficult to rigidly attach to the patients
skull. Notable exceptions are the SL based system of Olesen [OJP+10] and a
Simultaneous Localisation and Mapping (SLAM) based passive stereo approach
suggested by [KSM+14].
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5.1 The Tracoline MRI System

In order to track motion for prospective motion correction in MRI without using
markers, an MRI compatible version of the real time SL system discussed in
Ch. 3 was developed. This is based on a similar system which was successfully
used for retrospective PET motion correction [Ole11], called the ”Tracoline”
system.

The approach used in ”Tracoline” is to acquire an initial reference point cloud
of the patient’s upper face, including nose and the area around the eyes. The
reference point cloud may be manually edited to remove eye regions and other
facial regions which exhibit non-rigid movement, such that the motion of these
regions does not influence the tracking result.

5.1.1 SL through Optical Fiber Bundles

A big issue with any electronic device that is used in or close to an MRI-scanner
is MRI-compatibility. MRI-compatibility can be difficult to achieve in practice
for the following reasons:

• The presence of a very strong magnetic field. The field strength of clinical
scanners is in the range 1.5 − 9 T, measured in the centre of the scanner
gantry, that is up to 3.6·105 times stronger than the earth’s magnetic field.
Due to safety precautions, this makes it impossible to have ferromagnetic
objects in the vicinity of the scanner.

• Due to the scanner’s reliance on magnetic field homogeneity, many electri-
cally conductive objects cannot be used inside the gantry because inductive
effects create local magnets which distort the recorded image.

• MRI-machines emit strong radio-magnetic signals, which interfere with
many electronic components, e.g. camera sensors and DMDs.

• Because the MRI signal is rather weak RF-waves, any device must not
produce interfering RF signals, or be shielded.

For the above-mentioned reasons, MRI examination rooms are constructed as
Faraday cages.

In order to overcome the aforementioned issues, the ”Tracoline” system encloses
the camera and projector in a Faraday cage, which is situated in the examination
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room as shown in Fig. 5.4. Coherent optical fiber bundles lead from this cage
into the gantry, where camera lenses are mounted on the fiber ends. These parts
are shown in Fig. 5.5. Hence, all sensitive electronic components are shielded
from electromagnetic influences, and the MRI scanner is protected from their
radiation. The two-view geometry resides in the scanner’s gantry, and is little
affected by the relay through fiber bundles (see Fig. 5.6).

Figure 5.4: Schematic diagram of the ”Tracoline” system for MRI motion cor-
rection. SL system components are located outside the scanner
gantry but in the examination room in a Faraday cage. Coher-
ent image fiber bundle used to relay images from the projector to
the patients face and to the camera. Data is transmitted through
optical extenders, and DC power provided through the scan room
filtering panel. Courtesy of Oline V. Olesen.

5.1.2 Near-Infrared Illumination

For the ”Tracoline” system, illumination at visible wavelengths would disturb
patients considerably. Hence, near-infrared illumination is employed. This mod-
ification gives essentially ”imperceptible” SL, which could see use in many other
areas apart from this application [FSV04].

Since projectors are not commonly available with such illumination, a com-
mercial projector (Wintech LightCrafter 4500) was retrofit with a near-infrared
LED illumination source (810 nm). The mechanism of colour modulation in this
DLP based projector is by means of temporal switching between the LEDs. The
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Figure 5.5: Left: Faraday cage for the ”Tracoline” SL system. The box con-
tains camera, projector and power supply. Right: Coherent image
fiber bundle. (c) Schott AG.

Figure 5.6: Left: image of white board captured through the coherent fiber
bundle. Right: image captured of projected checkerboard – both
light paths through optical fiber bundles.
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light of all LEDs is combined and directed towards the micromirror array by
means of dichroic mirrors, which pass certain wavelengths and reflect others.
The infrared modification uses the red dichroic mirror which is reflecting light
in a broad band above 600 nm. Hence the red LED can readily be swapped with
one of higher wavelength and a similar voltage-current curve.

Standard silicon based camera CCDs are also only sensitive within a narrow
wavelength range, covering little more than the visible range of 300 − 900 nm.
By optimising the CCD and omitting the infrared filter, silicon based CCDs can
be made sensitive up to 50% quantum efficiency at 810 nm, which is sufficient
for infrared SL.

5.2 Contributions

As discussed in this chapter, prospective motion correction has certain advan-
tages over retrospective techniques in MRI. In addition, marker-less tracking
is highly beneficial in clinical settings [Ole11]. With the real-time SL approach
elaborated in chapters 3 and 4, rigid pose tracking can be done accurately, as
also demonstrated in [Contribution A]. To solve the MRI compatibility problem,
the SL system must be made compatible with MRI scanners, which is the sub-
ject of the patent in [Contribution F]. Here the idea of relaying the SL optical
signal to and from the MRI gantry is detailed, and the overall design is covered.

Results of real time SL scans in MRI machines are demonstrated in [Contri-
bution D], which demonstrates that neither the SL nor the MRI systems are
affected, and that SL surface scans of human volunteers can successfully be
acquired while lying inside the MRI scanner.



Chapter 6

Accuracy and Precision

An important question with any measurement system is which accuracy, pre-
cision and resolution can be achieved. With SL, there is no straight forward
answer, as the attainable performance is influenced by numerous factors, in-
cluding

• Calibration quality. A discussion on calibration methods is given in Sec. 2.1.

• Camera and projector properties including sensor noise, optical distor-
tion, depth of field, and FOV. These limit the attainable precision and
resolution.

• Geometry of the system and scene, affecting view angles, triangulation
angles, and the epipolar geometry. The measurement error field is usually
not homogenous or isotropic within the FOV.

• Object radiometric properties including surface albedo, specular and dif-
fuse surface reflection, sub-surface effects. Ideal materials exhibit Lambertian-
like reflectance without sub-surface effects.

• Scene radiometric effects such as reflections. These are very dependent on
the scene coding method used.

Owing to the number of parameters, it is much more difficult to quantify the
accuracy and precision of a SL scanner compared to other measurement systems
such as CMMs. A practical approach is to scan objects, which have previously
been measured with more accurate methods. This methodology is widely used
in metrology. In current literature, accuracy assessment is most often based on
qualitative results [Güh00, SWPG05], and verifications on symmetrical geome-
tries such as planes [SCR00], spheres and cylinders [BEHB95], or by comparison
to e.g. a laser scan which is considered high quality [MT12].
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A different approach to characterising measurement systems is by means of sim-
ulation. In [MDBS14] an SL simulation framework is presented, with physically
based rendering of a scene under SL illumination, which focuses on benchmark-
ing different coding strategies with respect to defocus, sub-surface effects and
inter-reflections.

Spatial resolution has rarely been considered in literature. [GFS03] is an ex-
ception which aims to estimate a scanner’s modulation transfer function, that
is a characterisation of its response to spatial features of various frequencies.
This is realised by scanning a sharp corner artefact, which naturally contains
all frequencies.

6.1 Calibration Quality

As mentioned before, a proper camera model and calibration quality are crucial
for accurate results in SL. Considering the calibration procedures described in
Sec. 2.1, the following questions and issues arise:

• Which camera and lens model should be used for robust calibration? Some
parameters may be correlated, and ”confused” with each other, or lead to
non-convergence [RVSS10].

• How many observations of the calibration board are necessary for conver-
gence? I.e. how well are the camera model parameters observed in the
images?

• At which angles should the calibration board ideally be observed? It is
necessary to observe foreshortening to estimate focal lengths – however
control point localisation becomes imprecise at shallow angles.

The choices made to accommodate these questions are usually based solely on
simple statistics on the reprojection error, and the standard error of parameter
estimates. Fig. 6.1 shows how the reprojection error and estimation errors are
affected as the angular range of observation of a calibration board is increased.
Apart from identifying point outliers, it is difficult to conclude the proper range
from these plots. As such, the best evaluations of calibration quality are based
on the quality of outcome, e.g. the correctness of point triangulation.
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Figure 6.1: Mean reprojection error and normalised parameter uncertainties
for the calibration of a SL system. In each calibration, the number
of calibration board positions was 20, evenly distributed over the
angular range.

6.2 Industry Standards for Accuracy

Stating accuracy figures is very important where SLs systems are used in in-
dustrial settings such as quality assurance and metrology. Hence, it is very
interesting to know the exact performance of a system, and to be able to com-
pare it to that of others. This need has spawned some efforts to develop industry
standards for this purpose, but no established standard has thus far emerged.
The International Organization for Standardization (ISO) standard 10360-2 is
sometimes used, but was developed for optical probes attached to CMMs. ISO
Committee 213 Working Group 10 is working on the formulation of a suit-
able standard for optical scanners in general. The standardisation organisation
ASTM International has founded Committee E57 for the same purpose. The
only currently published industry standard (as of late 2015) is the national
German standard VDI 2634 [Gui13].

Figure 6.2: Artifacts for accuracy assessment according to VDI 2634(2). From
[Contribution G].

The VDI 2634 standard demands to scan a dumbbell and a flat artifacts (see
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Fig. 6.2) at several positions in the scanner’s FOV. A number of error measures
are determined by fitting spheres and planes to the data and determining worst
case deviations. An example is shown in Fig. 6.3, where the error in dumbbell
sphere distance, SD, is determined at seven positions in the FOV, for different
angular ranges of calibration as described in Sec. 6.1. From these results, it
can be concluded that a large angular range with much observed foreshortening
yields slightly more accurate results.

10 20 30 40 50 60 70 80

S
D

 (
µ

 m
)

-200

-100

0

100

200

300

Figure 6.3: Sphere distance errors according to the VDI 2534 standard. The
error is shown for seven different positions in the FOV and for
different angular ranges used in the calibration procedure.

[Contribution G] provides a thorough study of the various calibration factors
and their influence on the accuracy as quantified by means of VDI 2634.

6.3 System and Scene Geometry

The FOV of a SL system is given by the intersection of the projector and the
camera(s) individual FOVs. As stated above, the accuracy of SL scanners can
not be assumed isotropic within this FOV. Particularly, the triangulation angle
θ varies, such that small amounts of projector light and camera pixel noise lead
to different depth and lateral errors, as shown in Fig. 6.4.

Considering ideal image coordinates q1 and q2 in two views, and their real,
observed coordinates q̃1 and q̃2, as illustrated in Fig. 6.4. With the assumption
of parallel rays, and by simplifying such that |q1q̃1| = |q2q̃2| = ε, the width
(lateral error) and height (depth error) of the ”error parallelogram” become

εlateral =

√
2ε2

1 + cos θ
εdepth =

√
2ε2

1− cos θ
. (6.1)

These errors dependency on θ are shown graphically in Fig. 6.5.

The geometric error also has a dependency on scene geometry in that shallow
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Figure 6.4: Left: 2-D illustration of the areas projecting into individual un-
certainty regions in the camera and projector. Quadrilateral areas
illustrate that both depth and lateral resolution vary within the
system FOV. Right: considering the error in triangulation of a
point with non-ideal observations.

Figure 6.5: The lateral error εlateral (blue curve) and εdepth (red curve), as
defined by Eqn. 6.1, as a function of the triangulation angle θ.
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illumination or viewing angles on the object surface make the decoding process
less precise, since small errors in localisation lead to large 3-D errors.

6.4 Radiometric Effects

Many factors can lead to degraded performance in SL. In order to discuss this,
it needs to be considered how light interacts with an object. In reality, the
interaction between the projected light and the object is quite complex.

An example of a difficult to scan material is glass, as illustrated in Fig. 6.6. It
is common to treat such surfaces with ”dulling spray” containing small plastic
particles which increase surface roughness and create a variety of surface normals
at the microscopic levels. For even better reflectance properties, ”chalk spray”
can be used. It is seen that such treatment is strictly necessary for these objects
to yield acceptable results. These procedures add small amounts of material
to the object surface, however most often with effects much smaller than the
error [Contribution H].

The sum of light can be thought of as a collection of rays or photons. These
will penetrate a certain depth into the object, and undergo one or several of the
following effects:

• Absorption: the photon energy is absorbed by the material.

• Transmission: the ray passes through the material.

• Reflection: at the interface of two materials, grains or other substructures,
the path of the ray is redirected according to the law of reflection.

• Refraction: the path of the ray is redirected and follows the law of refrac-
tion.

From a macroscopic perspective the sum of these effects may be described as
surface scattering, i.e. reflection into many directions due to surface roughness,
subsurface scattering, which is single or multiple reflection/refraction events
occurring at a distance below the surface and absorption of light.

With SL, only those rays are observed, which, after interacting with the object,
reach the camera sensor. In a broader sense, this part of the light may be the re-
sult of multiple reflections, see Fig.6.7. Light which is reflected according to the
law of reflection, is observed as a specular highlight, while other light reaching
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Figure 6.6: SL scans of a household glass with no treatment (left), dulling
spray (middle) and chalk spray (right). Top: photograph of the
treated objects. Bottom: SL point clouds acquired with binary
Gray coding.
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the camera sensor may be diffusely reflected. For many materials, in particular
metals, the specular reflection has many times higher irradiance than diffusely
reflecting regions. In ideal diffuse reflection, the amount of light observed, or
luminance, is independent of the view direction, which is known as Lambertian
reflectance. In non-opaque material, part of the light will penetrate the object
surface. On its way into and out of the material, refraction occurs according to
Snell’s law. Inside the material, it may be reflected one or multiple times. This
is called sub-surface scattering. In homogenous half-infinite material, the prob-
ability of scattering of a single ray is characterised by the scattering coefficient.

Specular Reflection Diffuse Reflection Subsurface Scattering

η

Figure 6.7: Optical interaction between illumination and the observed surface.
Left: specular reflection at smooth surfaces. Middle: diffuse re-
flection due to surface roughness. Right: subsurface effects due to
semi-transparency. Light rays undergo refraction at the boundary,
then reflect once or multiple times.

It should be noted that sub-surface effects are wavelength dependent, with light
penetrating deeper into the object at higher wavelengths. This is seen clearly
in Fig. 6.8 which shows a sample of meat illuminated with a binary SL pattern
at different wavelengths.

Figure 6.8: The wavelength-dependency of subsurface effects shown on a sam-
ple of meat illuminated with a binary SL pattern at different wave-
lengths. Left: 630 nm (red). Middle: 550 nm (green). Right:
450 nm (blue).

One of the most direct assumptions underlying accurate SL results is that light
rays originating from the projector are reflected only at the object surface.
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Thus, for SL, the ideal situation is one where reflection occurs only at the object
surface [IKL+10]. In addition, due to the limited dynamic range of projectors
and cameras, specular highlights are often too bright for successful decoding, so
Lambertian like reflection without sub-surface effects is desired.

6.4.1 Direct and Global Light

Light captured by the camera in a SL system can be considered to be of two
origins, the direct and global illumination. Direct illumination is due to reflec-
tion of the projector light. Global illumination is indirect, and due to reflection,
sub-surface scattering and other effects. In SL global illumination is unwanted
and may lead to artifacts, noise and bias [CSL08].

A separation of the scene light into direct and global components, or ”de-
scattering”, can be done by illuminating single pixels, and observing the scene
under such illumination as in [SMK05]. A much faster separation can be ob-
tained by means of high frequency illumination, as shown by Nayar et al. [NKGR06].
This method relies on the observation that the global component can be con-
sidered invariant to spatial shifts of a high frequency illumination pattern. This
allows for direct-global separation using e.g. binary lines or a shifted checker-
board pattern. It is also possible using high frequency sinusoidal patterns. Con-
sidering the N -shift PS sequence, as described in Sec. 2.3, the observed camera
images are

Icn = Ac +Bc cos
(

2π
( n
N
− φ

))
, (6.2)

where φ is the (unshifted) sinusoidal phase at that pixel coordinate. Since
the global illumination can be considered constant under shift of the sinusoidal
patterns, separation can be achieved with [NKGR06]:

Lglobal = 2Ac −Bc Ldirect = Bc . (6.3)

The same principle of separation holds for the phase at the principle frequency,
φ. This means that direct-global separation is implicitly done with PS based
methods if their illumination patterns are of high frequency. Figure 6.9 shows
direct-global separation based on a PS sequence on a scene with concave regions.
The ”Modulated PS” method builds on this principle by modulating the patterns
such that they are high-frequent both in both horizontal and vertical directions,
which increases their separation power [CSL08]. In ”Micro PS”, high frequency
patterns are used for both coding and phase-unwrapping, making both resistant
to global effects [GN12].

The influence of direct and global light on SL results in biological tissue is
investigated in [Contribution H].
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Figure 6.9: Separation of light into direct (left) and global (right) components
by means of high frequency sinusoidal SL patterns. Clear differ-
ences are seen in the concave orbits. Some of the specular highlight
was not separated entirely.

6.5 Contributions

As shown above, accuracy and precision have many influencing factors in prac-
tical SL systems. In order to investigate which accuracy can be obtained under
ideal conditions, and which design parameters dictate this performance, a study
was performed and is presented in [Contribution G]. Here the quality of calibra-
tion and scene coding is quantified by means of industry standard VDI 2634.
This is one of few studies considering the whole scan process and quantifying ac-
curacy and precision using an established standard. As such, it provides useful
guidance to developers and users of SL systems.

I most practical scenarios, radiometric effects such as subsurface scattering play
an important role for the quality of SL results. While recent literature has begun
to address this, little work has been done to measure the error pertaining to these
effects. [Contribution H] provides a quantification of bias and variance of SL
scans of biological tissues; muscle, skin and fat, showing a clear deterministic
component, and an error model which allows to remove this bias.
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Conclusion

SL is an optical measurement method of tremendous flexibility. It offers great
advantages over many other methods of 3-D measurements for digitisation, in-
teraction, tracking and metrology. Consequently, a large body of literature has
been published on the subject, ranging from calibration to scene coding, appli-
cations and performance evaluation. This thesis has provided an overview of
the literature and common methods used for SL.

Starting with the calibration of SL systems, the fundamental principles and pre-
vious approaches were presented in Ch. 2. A method was devised and described
in [Contribution B] for the convenient and accurate calibration of such systems
based on the current best methods. This method is implemented in [Contribu-
tion C] and used in the medical tracking device presented in [Contribution D].

Real time SL is a rather new possibility, and enables many new applications.
The thesis has discussed the main challenges with real time SL in Ch. 3, and
provided new and existing methods to overcome many of these challenges.

The problem of object tracking and pose estimation was considered in Ch. 4, and
a methodology for fast tracking and filtering based on real time SL presented.
This approach is used for motion tracking in MRI scanners in Ch. 5, and enables
prospective motion correction in this setting.

Lastly, accuracy and precision parameters were considered for SL in Ch. 6. It
was shown how both geometric and radiometric factors affect SL performance,
which is important both for the medical application of this thesis, and many
other future applications of SL.

Returning to the thesis objectives of Sec. 1.2, the first objective was to realise
real time SL. This was accomplished by developing a hardware triggered setup,
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fast OpenGL-based rendering of patterns and a multi-threaded software program
to capture, decode, triangulate and visualise the result as shown in Ch. 3. The
software implementation ”SLStudio” is presented in [Contribution C], and freely
available. The problem of motion artifacts in real-time SL was addressed with
a correction scheme in [Contribution E].

Real-time pose tracking was the second objective. This problem was addressed
by implementing fast projective ICP based tracking and by employing EKF
to reduce noise in the tracking result. The correctness and accuracy of this
approach was verified by means of marker based tracker which was coordinate
aligned by means of hand-eye-calibration in Ch. 4. [Contribution A] relates to
this approach by introducing the ICP based tracking method.

The objective of making a system suitable for head motion correction in medical
scanners originally motivated this work. It was shown in Ch. 5 and [Contribu-
tion D,F] how SL can be made compatible with medical scanners, and point
clouds are generated in the strong MRI magnetic field without disturbing the
patient. An alternative approach could be based on passive stereo vision, how-
ever this is beyond the scope of this thesis. With 3-D active shape models for
initialisation and subject-specific feature tracking, very accurate head tracking
may be possible with a passive setup. This would simplify the hardware aspects,
possibly allowing to place the sensors themselves in the MRI tunnel.

For an application such as head tracking, accuracy is paramount. Thus, a thesis
objective was to investigate the factors influencing accuracy under ideal condi-
tions. Many of these factors were discussed in Ch. 6. In [Contribution G], an
investigation is made to determine which camera models, calibration routines
and scene coding strategies provide the best results as quantified by an indus-
try standard. An outlook to future work, which was outside the scope of this
thesis is the determination of SL scanner performance by means of simulation
with physics based rendering and Monte Carlo simulation. Such an approach
of obtaining ground truth was used in [MDBS14] to benchmark scene coding
methods. Similarly, it could be used to predict geometric measurement errors,
similar to the ”Virtual CMM” technique used in metrology.

Under most practical situations, and in the medical motion correction applica-
tion in particular, radiometric effects influence measurement results as shown in
Ch. 6. A study was therefore conducted on biological tissue to quantify this in-
fluence and determine its deterministic and stochastic components, contained in
[Contribution H]. Future work on this problem could include the use of models
for light transport to compensate for subsurface effects. This accounts to de-
scribing the observed measurement error using e.g. the model of Holroyd [HL11],
allowing to compensate for its effect in a future measurement.
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In summary, it can be concluded that the thesis objectives were met.
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This contribution relates to the head tracking methodology described in Ch. 4
and the medical application detailed in Ch. 5. It represents the early state of
our tracking approach, without Kalman Filtering, and using a commercially
available TOF camera instead of the real time SL system which was developed
subsequently. The commercial availability and low cost of TOF sensors makes
them potential candidates for tracking. They suffer from general biases however,
and as we explore in this study, their data quality cannot match that of our SL
based system.



Fast and Practical Head Tracking in Brain Imaging
with Time-of-Flight Camera

Jakob Wilm, Oline V. Olesen, Rasmus Ramsbøl Jensen, Liselotte Højgaard, and Rasmus Larsen

Abstract—This paper investigates the potential use of Time-of-
Flight cameras (TOF) for motion correction in medical brain
scans. TOF cameras have previously been used for tracking
purposes, but recent progress in TOF technology has made it
relevant for high speed optical tracking in high resolution medical
scanners. Particularly in MRI and PET, the newest generation
of TOF cameras could become a method of tracking small and
large scale patient movement in a fast and user friendly way
required in clinical environments.

We present a novel methodology for fast tracking from TOF
point clouds without the need of expensive triangulation and
surface reconstruction. Tracking experiments with a motion
controlled head phantom were performed with a translational
tracking error below 2mm and a rotational tracking error below
0.5◦.

I. INTRODUCTION

New opportunities for motion correction in medical imaging
have emerged with recent improvements in computer vision.
Several systems have been introduced for external motion
tracking in medical scanners, but none of them are used on
a daily basis in clinical settings with the exception of a few
research sites. The main challenges still to be overcome are
robustness and tracking accuracy and ease of operation for the
medical staff. Patient throughput has become a very important
issue nowadays and most scanning procedures do not allow
for time consuming patient preparation or complicated system
setups. As a consequence, current clinical implementations of
motion correction methods are based on image data, which
has the inherent disadvantage that intra-frame motion can not
be corrected and assumptions must be made about the nature
of the motion [1].

For these reasons, a single-vision-based motion correction
method without markers is a very attractive prospect. However,
the problem of reliably identifying and tracking natural fea-
tures has so far led most authors to propose tracking systems
with markers. Examples for MRI include multiple camera
systems [1], [2] and single camera systems with advanced
markers [3], [4]. Substituting the markers with structured
light also provides accurate tracking as demonstrated for
brain PET in [5] but structured light systems require multiple
vision/viewing angles. Commercial tracking systems are also
available (e.g. Northern Digital Inc., Claron Technology Inc.,
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(a) Camboard Nano (b) MRI scenario

(c) Surface (d) Experiment

Fig. 1. (a) Camboard Nano. (b) Camboard Nano mounted onto MRI head
coil. (c) Triangulated surface reconstruction from TOF point cloud of the
subject in (b). (d) Experimental setup of a head phantom mounted onto motion
stages. Coordinate system definitions are shown for the ground truth (GT).

Metria Innovation Inc., etc.) which are branded to be uni-
versally applicable to intra-operative tracking and rigid body
tracking in non-MRI environments.

In this work we propose a markerless head tracking solution
from a single vision by means of a time-of-flight (TOF)
camera. This technology has seen significant improvements
in terms of depth resolution and accuracy since the first
commercial systems emerged in the early 2000’s. Compared
to other depth sensors (stereo vision, structured light), TOF
cameras provide a much simpler, single-package monocular
setup with fewer issues related to occlusion. Compared to
laser range sensors, it provides faster frame rates and lower
system costs. TOF cameras have also successfully been applied
to medical imaging problems. Examples include respiratory
motion detection [6], 3D endoscopy [7], and radiotherapeutic
patient positioning [8]. However, to our knowledge, TOF
cameras have not yet been applied to tracking for motion
correction.

Currently, several manufacturers offer TOF cameras. These
include pmdtechnologies, Fotonic, SoftKinetic, Panasonic,
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Fig. 2. Correlation signal at the TOF camera CMOS sensor. Gray bars
indicate that the signal is integrated for a short time. ϕ denotes the phase
shift, which is recovered from the sampled intensities and easily converted
into a distance measure. Modified from [9].

MESA Imaging. This work is based on the Camboard Nano
(Fig. 1(a)), a reference implementation of the pmd PhotonICs
19k-S3 TOF CMOS sensor. As of Feb. 2013, this is the
smallest TOF camera on the market with a very broad field
of view, which also makes it suitable for in-bore tracking
applications such as MRI demonstrated in Fig. 1(b) and
Fig. 1(c). Further, the high frame rate of 90 fps and the
relative large resolution of 160 × 120 pixels makes this camera
favorable for head tracking.

A. TOF Principles

TOF cameras work on the principle of measuring the time
it takes photons from an active illumination source to the
reflecting object and back to the camera. Different approaches
exist to measure this timespan accurately, and the following
section will provide a brief description of phase-detection of a
modulated light source (the method employed in the Camboard
Nano).

In this method, the active near infrared illumination source
is amplitude modulated with a carrier frequency, f , in the
mega- to gigahertz range. On the receiver side, the incoming
light intensity is correlated with the emitted signal and inte-
grated four separate times per frame on a CMOS active sensor
for a short period (∼ 500µs). The samples are spaced equally
in time at intervals of π/2 and given by (I1, I2, I3, I4), see
Fig. 2. The phase shift is determined from these four samples
in every pixel as

ϕ = arctan
I1 − I3
I2 − I4

,

which can be converted into depth measurements as

D =
c

4πf
ϕ ,

where c is the speed of light. A camera-like amplitude image
can also be extracted as

A =
1

2

√
(I1 − I3)2 + (I2 − I4)2 .

Given a value of f , the maximum unambiguous depth
range of a modulated light source camera becomes c/(2f). By
phase-unwrapping methods, the depth-range can be extended
at the risk of large errors where discontinuities occur in the
depth map. Reversely, a lower modulation frequency improves

depth resolution. The Camboard Nano is designed for whole
body gesture control with a modulation frequency of 30MHz
and a FOV of 90◦ × 68◦ and an unambiguous depth range
of about 5m. This is more than required by our application,
however, slew of the illuminating LED deters from using a
higher modulation frequency in this product.

Sources of Errors: While TOF cameras combine the
advantages of active range sensors with the speed of camera
systems at an affordable price, it is known that TOF cameras
are subject to profound noise and error in the acquired range
image [10]. There are three main sources temporal and spatial
noises and an systematic depth dependent error, commonly
referred to as ”wiggling error”.

Temporal noise is typically observed in every pixel, but can
be mitigated by averaging several range images. As pointed
out by [10] and [11], it is beneficial to perform averaging in
the raw image data, which is also possible with the Camboard
Nano. Temporal noise can partly be attributed to dark current
in the CMOS, which is expected to increase as the camera
sensor temperature rises. Spatial noise is typically reduced by
convolving the acquired range image with a smoothing kernel
or an edge-preserving bilateral filtering operation. The latter is
implemented and available in the API of the Camboard Nano.

Finally, the ”wiggling error” is an important source of error
in TOF images. It is a spatial and depth dependent systematic
deviation from true distance measures [9].

In addition to TOF specific errors, the conversion of TOF
depth measurements to 3D points requires a model of ray
projection to the TOF camera. Commonly the TOF camera is
modeled as a pin-hole camera with the standard 5 parameter
model of intrinsic parameters. When wide-angle lenses are
used, a lens distortion model is usually required. Both the in-
trinsic parameters and distortion coefficients can be calibrated
based on the image of amplitudes A.

II. METHODS AND EXPERIMENTS

In order to reduce the wiggling error, depth calibration
was performed by capturing depth maps of planar surfaces
at distances of 10 – 25 cm. The precision of plane positioning
was 10µm. Wiggling error was then considered to be linear
in all pixels. Prior to the modeling the captured planes were
filtered and rotated perpendicular to the image axis using
principal component analysis. Fig. 3 shows the image plane
before and after correction at a distance of 144 mm. Point
clouds of a plan were captured at ten arbitrary positions within
the tracking depth range of 10–25 cm for evaluation of the
correction.

The TOF camera was calibrated with the Camera Calibra-
tion Toolbox for Matlab by Jean-Yves Bouguet1. It returns
camera parameters according to the pin-hole model and radial
and tangential distortion parameters. With our TOF camera,
this method leads to reprojection errors below 1 pixel.

Our TOF tracking algorithm estimates the relative pose
of the head by means of the iterative closest point (ICP)
algorithm. Considering the problem of aligning one TOF point
cloud P = {pi}, to another, Q = {qj}, where individual point

1http://www.vision.caltech.edu/bouguetj/calib doc/



Fig. 3. The TOF image plane before (left) and after (right) depth calibration
at a distance of 144 mm (where color represents the depth in mm). The
standard deviation (SD) of the depth before and after correction are 2.3 mm
and 0.74 mm respectively.

correspondences are not known. In order to address the issue
of missing point correspondence, the ICP algorithm iteratively
matches points in P to their nearest neighbors in Q to form the
pairs (pi, q̂i) for i = 1 . . . Npairs, it minimizes an error metric,
and then transforms P using the result. Our error metric is

Npairs∑

i=1

‖TTOF pi − q̂i‖2 , (1)

where TTOF is a homogenous 4 × 4 matrix representing the
rigid transformation, while pi and qi are homogenous point
vectors.

Our pose estimation procedure exploits the fact that the
point clouds are generated by projecting out from depth
measurements that lie in a regular grid. We use this spatial
arrangement to identify points that lie on the boundary of
surfaces. Such points are characterized by the fact that there
are empty entries in their 8-neighborhood in the regular grid.
Consequently, a single loop through all points allows us to
identify such points. This then makes robust alignment with
the ICP algorithm possible. By discarding point matches to
boundary points, convergence is achieved despite of partial
overlap of the surfaces. In scattered point clouds, such de-
termination of boundary points usually would require surface
reconstruction or other complex operations on the point clouds.

To evaluate our tracking performance with the TOF camera,
we employ an experimental setup as shown in Fig. 1(d). In this
setup, a phantom of a head is mounted onto a system of two
micro-translation stages and one rotation stage, which allows
us to perform exact transformations of the head pose (0.01mm
and 0.01o respectively). There spatial transformations will
be the basis of our evaluation, and we refer to them as
”ground truth” (GT). The TOF camera is mounted at a distance
of approximately 15 cm from the phantom head and offset
slightly (1 – 2 cm) from the mid-sagittal plane in the starting
position. Independently, a series of translational (50 mm) and
rotational (15o) movements were performed by the phantom,
and recovered by means of ICP alignment of the TOF point
clouds. The integration time of the TOF camera was set to a
constant value of 400 µs and the raw image data were averaged
over 4 samples.

To compare the GT with the results of the ICP alignment,
data from both has to be brought into a common coordinate
system. We do this by constructing a series of homogenous
transformation matrices, TGT,i, TTOF,i, i = 1 . . . Nposes for
the GT and the results of the ICP alignment respectively.
Rotation angles on the rotation stage are considered described
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Fig. 4. The effect of ”wiggling” correction. Left: SD of a plan at ten arbitrary
positions. Right: RMSE of ICP alignments of phantom data with and without
correction.

by Euler angle ψGT around the first coordinate axis as shown
in Fig. 1(d). We then solve for the best rigid transformation,
H, bringing the two data sets into alignment by means of a
closed form fitting procedure introduced by Shah [12]

argmin
H

Nposes∑

i=1

‖H TTOF,i −TGT,i‖ .

We then extract and compare corresponding translation vector
components and Euler angles of the two transformation series.

III. RESULTS

Fig. 4 shows the effect of correcting for the wiggling error
both on a series of planes and on the root mean square error
(RMSE) of the ICP alignments of the phantom in different
poses. The standard deviation (SD) of the point clouds to a
fitted plane was improved from a mean of 1.8mm to a mean
of 0.97mm after ”wiggling error” correction. Clearly, the
alignment RMSE was also decreased significantly (p < 1011)
as a result of the correction.

Fig. 5 shows the results of the tracking experiment.
The RMSE of translations ([Tx, Ty, Tz]) over all poses are
[1.88, 1.83, 1.10]mm and the RMSE of rotations are
[0.42, 0.16, 0.47]

◦ for rotations around x, y, and z (ψ, θ, φ)
respectively. A correlation is observed between the transla-
tional errors and the residual rotations. This is seen as an
overall bias where the rotation is slightly underestimated and
the translation is slightly overestimated. This suggests that
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Fig. 5. Tracking results of the phantom experiment. Ground truth (GT) motion is compared to our method using the TOF camera for six motion parameters:
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tracking results could potentially be improved by different
coordinate alignment.

IV. DISCUSSION AND CONCLUSIONS

We have performed an investigation to determine the useful-
ness of the newest generation of TOF cameras for rigid body
tracking, in particular 3D head tracking for motion correction
in medical imaging. A processing pipeline was presented that
corrects for the most detrimental error in TOF imaging and
utilizes the regular spatial arrangement of depth samples. The
tracking precision achieved in our experiments suggests that
head pose tracking with TOF cameras has become feasible in
cases where it is medium to large motion that needs to be
resolved. It was shown that using appropriate correction and
filtering of the TOF data, system accuracy can be improved
significantly, and as a consequence, large scale movement on
the order of millimeters can be detected. More specifically,
our experiments demonstrated that tracking RMS errors below
2mm for translational motion and below 0.5◦ for rotational
motion can be achieved in close range application with the
Camboard Nano TOF camera.

As such, we believe that TOF cameras are suitable today
for patient monitoring in imaging procedures, and possibly
for motion correction in high resolution brain imaging in
the future. We emphasize that the major advantages of the
presented TOF tracking approach is the simple and compact
design with a single vision preferable for small geometries
with limited sight just like the bore holes of a medical scanner.
Furthermore, our system does not rely on markers attached
to the subject with failure prone and time consuming marker
attachment.
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The efficient and accurate calibration of single-camera SL systems is treated in
this contribution (see Sec. 2.1 for an introduction to the topic). The approach
follows the concept of Zhang and Huang [ZH06] of letting the projector ”indi-
rectly” capture images of a calibration target and calibrate like a camera. The
main idea is to use RBFs as robust and accurate local models to translate the
feature coordinates from camera to projector space. We also provide a solution
to index diamond pixel arrays found in some DLP projectors.
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ABSTRACT

Much work has been devoted to the calibration of optical cameras, and accurate and simple methods are now
available which require only a small number of calibration targets. The problem of obtaining these parameters
for light projectors has not been studied as extensively and most current methods require a camera and involve
feature extraction from a known projected pattern. In this work we present a novel calibration technique for
DLP Projector systems based on phase shifting profilometry projection onto a printed calibration target. In
contrast to most current methods, the one presented here does not rely on an initial camera calibration, and so
does not carry over the error into projector calibration. A radial interpolation scheme is used to convert features
coordinates into projector space, thereby allowing for a very accurate procedure. This allows for highly accurate
determination of parameters including lens distortion. Our implementation acquires printed planar calibration
scenes in less than 1 s. This makes our method both fast and convenient. We evaluate our method in terms of
reprojection errors and structured light image reconstruction quality.

Keywords: Projector calibration, radial basis functions, structured-light, phase shifting profilometry

1. INTRODUCTION

While camera calibration has been intensively studied, and state of the art methods have evolved, the calibration
of projectors and camera projector systems is usually done using non-optimal methods, which sacrifice accuracy
for speed or convenience. This is despite the fact that accurate determination of the optical parameters is of
utmost importance in many applications within optical surface profilometry, stereolithography or visual display.

Current methods for projector calibration are usually relying on calibrated sensors to observe projection
output and determine the appropriate parameters. This approach has the inherent disadvantage of propagating
the sensor calibration error into the estimates of the projector parameters. A notable exception is the work of
Moreno et al.,1 which shares some properties with our proposed method.

While we do use a camera to determine world-projector relationships, we do not rely on the camera being
calibrated. As such, no calibration error is propagated.

The pinhole-model is well established for digital cameras, and due to their optical similarities to most pro-
jectors, also applicable here. The model is usually further extended with distortion parameters to account for
e↵ects that don’t follow projective geometry.

Our lens model contains ten parameters – horizontal and vertical focal lengths, fx, fy, principal point co-
ordinates cx, cy, skew coe�cient ↵c and lens distortion parameters k1 . . . k5. This is very similar to the widely
accepted model of Heikkilä and Silvén,2 and is the same as implemented in the popular camera calibration tool-
box of Bouget3 and in the OpenCV library.4 Considering a world point in the camera’s or projector’s reference
frame, Q = [xw, yw, zw]

>
, the pin hole camera projection gives the normalized image coordinates as


un

vn

�
=


xw/zw

yw/zw

�

Corresponding author: Jakob Wilm, E-mail jakw@dtu.dk, Telephone +45 45253716.



Spherical aberration gives rise to a radial distortion model according to

s(r) = 1 + k1r
2 + k2r

4 + k5r
6 ,

with r2 = x2 + y2, while the e↵ects of imperfect lens alignment are termed tangential distortion, and modelled
as

t(x, y) =


2k3xy + k4

�
r2 + 2x2

�

k3

�
r2 + 2y2

�
+ 2k4xy

�
.

This distortion e↵ect is also called decentering or thin prism distortion, and was initially described by Brown.5

The corrected normalised image coordinates of the point


un

vn

�
with radial and tangential distortion are given by
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Finally, the pixel coordinates of said point are given by
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Our method was developed for a new in-bore medical 3D scanner, which relies on accurate measurements,
and requires a convenient calibration procedure that can be carried out by non-technical personal. To fulfil
these goals, we have implemented a graphical user interface with visual feedback to ensure good coverage of the
projector FOV and detection of feature point locations. This allows us to acquire a view of a calibration target
in under one second, allowing for handheld operation of the projector or camera.

2. METHODS

Our method relies on fast acquisition of “projection sequences” with an industrial camera.

As mentioned earlier, our method does not rely on a calibrated camera. Instead we merely observe projection
output in the presence of a planar checkerboard pattern. The projector encodes its pixels by means of phase
shifting profilometry (PSP), and this allows us to establish world to projector plane correspondences.

We use a light grey checkerboard as the calibration target, which represents a trade o↵ between robustness
in corner detection and projector coordinate coding.

In recent iterations of their DLP technology, Texas Instruments has introduces DMDs with diagonal or
diamond pixel arrays. The DLPC possesses a natural indexing of mirrors in this geometry, which has unique
coordinates for every horizontal row and every other vertical column. Since we are interested in a linear mapping
of pixel indices to position, we handle the diamond pixel array by assigning unique indices to every row and every
column. With this definition, every other coordinate does indexes a “pseudopixel” – and in turn we encode only
every other coordinate. See figure 2 for an illustration of the indexing convention for the DMD employed in our
projector. It should be noted, that with this definition, calibration parameters and error estimates are expressed
in units of our “pseudopixel”, which in physical dimensions corresponds to roughly half of a mirror diagonal.

After determining world coordinates in the projector coordinate system, we calibrate it like a camera using
the method of Zhang.6

3. PHASE SHIFTING STRUCTURED LIGHT

Our encoding of projector coordinates into the projected output is realised with the gray level phase shifting
profilometry (PSP) method pioneered by Hung.7 While many methods exist for codification in structured light,8

PSP allows for dense scene encoding with a low number of patterns.
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Figure 1. Flow diagram for the calibration procedure on one frame sequence. Horizontal and vertical encoding patterns are
decoded to yield up and vp maps. The patterns are also used to extract a general shading or intensity image, from which
the chessboard corners are automatically extracted. These represent the checkerboard corners in the camera reference
frame. By means of Gaussian radial basis functions, each set of corner coordinates is translated into projector coordinates.
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Figure 2. Diamond pixel DMD geometry for the DLP3000. The indexable screen coordinates are shown in green on top
and left, while our pseudopixel coordinates are shown in blue on bottom and right. Note that in our pixel space, every
other coordinate does not index a pixel, however, we do not need a dense pixel array for all subsequent steps.

Projector pixels are encoded first by their vertical (up) and then by their horizontal (vp) coordinate. In the
case of vertical encoding, the normalized pattern intensity may be described as

Ip
n(up, vp) =

1

2
+

1

2
cos
⇣
2⇡
⇣n

3
� vp

⌘⌘
,

where n indicates the pattern index, n 2 1 . . . 3. The intensity of the n’th pattern as observed in the camera can
be expressed as

Ic
n(uc, vc) = Ac + Bc cos

✓
2⇡n

3
� ✓

◆
,

in which ✓ denotes the phase of the sinusoidal sequence at that particular point. Ac is the intensity of the scene
including ambient contributions, and Bc the intensity of reflected projector light. In terms of Fourier analysis,
Ac can be considered the magnitude of the constant component, while Bc is the magnitude at the principle
frequence, and ✓ its phase. As such, ✓ can easily be extracted by means of the fast fourier transform and scaled
to the number of projector columns. The process for row codification is the same.

In order to reduce quantification error and noise, the number of encoded phases in PSP can be increased.
The resulting map of ✓ then needs to be unwrapped in order to remove the resulting phase ambiguity. A reliable
way of unwrapping is using a single phase phase cue sequence. We employ this strategy of using six patterns
for the horizontal and six patterns for the vertical encoding with 8 phases. Thus, the total number of projected
patterns is 12 per calibration target pose. This gives us for every frame sequence the encoded projector row and
column, and by calculating Bc, a general intensity or shading image, which we use for chessboard extraction (see
Fig. 1).

4. GAUSSIAN RADIAL BASIS FUNCTIONS

After horizontal and vertical frame sequence decoding and chessboard extraction, we seek to translate the chess-
board corner coordinates from camera coordinates qc into projector coordinates qp. Collecting such coordinates
from a number of chessboard corners from multiple views allows us to calibrate the projector by treating it as a
camera and calibrate it such.

In our case, we wish to interpolate at the points determined from chessboard detection, e.g. at a sub pixel
level. While the underlying function is expected to be close to linear, due to the e↵ects of lens distortion, a more
complex function underlies the observed data.

We treat the translation of every newly extracted chessboard corner as an interpolation problem. While the
projector coordinates were estimated at regular sites, we do not employ gridded data interpolation. The reason
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Figure 3. The interpolation problem exemplified on one chessboard corner location (black crosses). Left: the window of
decoded projector columns. Right: same for projector rows.

is twofold; first we remove data by thresholding on the shading image, so we need to take care of missing data.
Secondly, we wish to benefit from the advantages of using radial basis function (RBF) interpolators. Regular
data interpolation is certainly the faster option, but in our application the complexity of RBFs does not become
prohibitive.

In the RBF framework, a function is associated with each data point, and a regular set of equations solved to
determine how each observation is explained as a linear combination of these functions. In order to ease our later
analysis, we add a linear polynomial term P (xi), such that the RBF will e↵ectively describe the deviation from
this global linear trend. To account for noisy data, we also add a regularization parameter k to our interpolator:

fi =
X

j

�j kxi � xjk + P (xi) + k�i (1)

Common choices for  (r) include a Gaussian function,  (r) = exp(�↵r2) and the socalled Thin Plate Spline,
 (r) = r2 log(r). The choice of distance function influences the characteristics of the interpolator. Therefor we
choose an RBF with a Gaussian distance function so as to give the highest weight to close neighbours while
being robust against noise in the projector coordinate estimates. An influence region of around 100 neighbors
seems reasonable, and correspondingly, as our interpolation sites are expressed in pixel coordinates, we have
found good results with ↵ = 1/5.

All observations within a window around one detected chessboard corner are used to build the RBF interpo-
lator. In practice this is done by forming the following equation from 1:
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where  contains the basis functions, P linear polynomial terms and k is the scalar parameter which controls
regularization – i.e. the balance between the exact RBF interpolator and the simple linear polynomium, in this
case a plane.

As mentioned, the underlying function is expected to have a linear trend, as without the e↵ects of lens
distortion, there is a direct perspective relationship between camera and projector coordinates.

Since we are operating with a regularized regression model, we can define a hat or smoother matrix Ĥ
according to

Ĥ
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Projector – TI LightCrafter Camera – Point Grey FL3-FW-03S1M-C
DMD Chip Exposure Bit Depth Gamma Image Sensor Exposure Bit Depth Gamma Gain
TI DLP3000 16.667 ms 8 bit 1.0 Sony ICX618 CCD 16.667 ms 8 bit 1.0 0 dB

Table 1. Data and default parameters for our DLP projector and camera during calibration.

Figure 4. Left: Physical setup for our projector calibration method with camera (left) and projector (right). The calibration
target is shown in the background. Right: corresponding frame captured by the camera.

and use the Tr(Ĥ) as a measure of the e↵ective degrees of freedom9 of our model. We therefor choose k such
that the e↵ective number of degrees of freedom is 10, i.e. a little more than the 3 defining a plane, but much
less than the 100 data points underlying each model.

5. IMPLEMENTATION

Our calibration setup is shown in figure 4. As seen, we have mounted the camera and projector in a fixed
configuration, which allows us to also perform stereo calibration and triangulation world point coordinates using
the structured light principle. Our calibration target is the checkerboard printed on a standard commercial
laser printer using PostScript and spray glued onto the glass of a picture frame. This yields a highly accurate
calibration target at a fraction of the cost of professionally manufactured o↵erings.

We use a LightCrafter DLP projector (Texas Instruments Inc.) with DLP3000 DMD (7.62 mm diagonal)
and the FireWire industrial camera (Point Grey Research Inc.) FL3-FW-03S1M-C mono with Sony ICX618
CCD (4.00 mm diagonal). Table 1 shows default acquisition parameters. Theses values are chosen as a trade o↵
between acquisition time and depth of field.

We have implemented our method as part of a complete structured light program in C++ utilizing the Qt,
OpenCV and PCL (Point Cloud Library) libraries. See figure 5 for screenshots of the user interface. To enable
fast pattern projection, we create a full screen OpenGL rendering context and upload the necessary patterns
to the GPU as textures, which are rendered as screen filling quads. The camera interface uses libdc139410 to
capture images from our FireWire industrial camera. In order to achieve a linear intensity response, we configure
the projector to not use the typical spatiotemporal algorithms for visual image enhancement, and our camera to
not perform gamma correction or signal amplification.

For each calibration pose, the corresponding series of captured frames is stored in the form of a frame sequence.
Upon request, and when at least three frame sequences have been acquired, calibration is performed.

Checkerboard corners are automatically extracted using the appropriate functions in OpenCV’s calib3d pack-
age. This returns the desired image coordinates with subpixel accuracy. If checkerboard extraction is unsuccess-
ful, the frame sequence is excluded from further processing. Otherwise, the frame sequence is decoded to yield
projector coordinates and calibrate the projector like a camera using OpenCV’s built in functions.

Accurate capture of DLP projector output requires careful synchronisation of camera and projector exposure.
While this is commonly realised using a trigger circuit, we opt for manual “software triggering”, i.e. image
projection and image capture is initiated through software commands. To account for frame bu↵ering in the
GPU and the projector and latency in camera triggering, we impose a short pause in between frames.



Figure 5. Video 1 Screenshots of our graphical user interface for calibration. Left: during calibration sequence acquisition.
Right: during parameter estimation. http://dx.doi.org/doi.number.goes.here
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Figure 6. Average reprojection errors per pose for a calibration involving 18 calibration target poses for the camera (blue)
and projector (red) respectively, measured in units of camera pixels and projector “pseudopixels” respectively.

6. RESULTS

Figure 6 shows reprojection error in a calibration involving 18 positions for the calibration target.

The individual reprojection errors are shown for the camera and for the projector on Fig. 7.

As the calibration target was moved through the intersecting FOVs of camera and projector three times,
a positional dependence is aparent. This might indicate that the 5 parameter lens distortion model is not
completely adequate. Low reprojection errors do not necessarily indicate a faithful calibration, as overfitting
might explain low values. In this calibration case, a total of 100⇥18⇥2 = 3600 constraints are given for a rather
low parametric model. No outliers are visible from the individual error plots in Fig. 7.

To measure the quality of 3D point reconstruction with our calibration method and correction for lens
distortion, we have aquired structured light images of a spherical bowling ball that has been painted to a di↵use
surface. The 2x3 PSP pattern strategy was used. We have then fitted a sphere to the resulting point cloud and
assessed the deviations and the structure of the errors in a histogram, see Figure 8.

As can be seen, errors increase towards the edges, as the angle between camera axis and normal increases.
The RMS of errors over the foreground is 0.57 mm. The error distribution is dominated mainly by triangulation
error at the edges of the bowling ball.



−2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

Error horizontal (µm)

E
rr

o
r 

ve
rt

ic
a
l (

µ
m

)

Camera

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

Error horizontal (µm)

E
rr

o
r 

ve
rt

ic
a
l (

µ
m

)

Projector

Figure 7. Individual reprojection errors with color coding corresponding to individual poses. Left: camera. Right:
projector.

u
c

v
c

 

 

1 640

1

480 −2mm

2mm

−2 −1 0 1 2

Error (mm)

Figure 8. Structured light scan of a bowling ball. Top: sphere fitted to the triangulated data. Left: Plot of the error.
Right: histogram of errors within the foreground. The RMS of errors is 0.57 mm.



7. CONCLUSIONS

We have shown a novel method and implementation of a convenient and accurate calibration method for light pro-
jectors. We utilize phase shifting profilometry for projector coordinate coding. Calibration points are translated
into projector coordinates by means of Gaussian RBFs, which o↵ers excelent trade-o↵s between accuracy and
robustness. Visual feedback and direct camera/projector control enables operators to calibrate a lightprojector
in a few minutes.

In addition, we determine projector lens distortion parameters with high accuracy and precision. Our method
calibrates a camera at the same setting, and can perform a stereo calibration between projector and camera,
which is particularly useful for single camera structured light applications.

Whilst most current methods require intricate setups or lengthy calibration procedures, we are able to cali-
brate very quick and accurately with only readily available equipment.
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In this paper, we present our software platform for real time SL as described
in Ch. 3. The software suite is generic and includes an implementation of the
calibration method of [Contribution B], and a number of different scene coding
methods. This is the first implementation capable of operating in real time and
it is released as open source. As such, the contribution will be useful both for
users with new applications of real time SL as well as research into new scene
coding methods.
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Abstract— An open-source framework for real-time structured
light is presented. It is called “SLStudio”, and enables real-time
capture of metric depth images. The framework is modular,
and extensible to support new algorithms for scene encod-
ing/decoding, triangulation, and aquisition hardware. It is the aim
that this software makes real-time 3D scene capture more widely
accessible and serves as a foundation for new structured light
scanners operating in real-time, e.g. 20 depth images per second
and more. The use cases for such scanners are plentyfull, however
due to the computational constraints, all public implementations
so far are limited to offline processing. With “SLStudio”, we
are making a platform available which enables researchers from
many different fields to build application specific real time 3D
scanners.

The software is hosted at
http://compute.dtu.dk/˜jakw/slstudio .

Keywords— Images acquisition systems and information ex-
tractionm, Image processing tools, Image and video processing,
computer vision

I. INTRODUCTION

The advent of inexpensive consumer depth sensors has
lead to much interesting research in the fields of human
computer interaction, 3D scene understanding, pose estimation
and others. These new devices are used for a plethora of
applications, ranging from scene capture and understanding
to object digitization, motion tracking, human-computer inter-
action, and many others.

Current devices do however present different trade-offs
between spatial and temporal resolution and system geometry,
cost, and features. Many new applications call for a flexible
device, which can be custom built and optimized for the
problem at hand.

Currently, few software packages are publicly available for
structured light, and to our knowledge, this is the first open-
source software with real-time performance. The hardware
components involved are rather inexpensive, such that one can
implement a megapixel resolution, 20Hz, device for under
2000 USD.

The software framework presented here is highly customiz-
able to work with cameras and projectors of different manu-
facturers, and supports a palette of scene encoding/decoding
strategies. The software, referred to as “SLStudio” is available
open-source, encouraging active community engagement.

We developed SLStudio for motion tracking and correction
in medical imaging [4], but the software has wide applicability,
including and extending those applications which currently use
off-the-shelve devices such as Microsoft Kinect, ASUS Xtion
and others.

In recent years, a number of real time dense scene aquisition
methods have emerged. Time of Flight work on the principle
of measuring the time delay between emission and receival of
light pulses or oscillations. While these sensors provide fast
update rates, they suffer from high noise and bias [2], making
them unsuitable for applications that require high accuracy.

Triangulation based methods require two viewpoints of a
scene. In the passive case, these would consitute two cameras,
and depth calculation is based on estimating disparity between
the views. These methods most often require long processing
time, however real-time implementations do exist, see e.g.
[7] and [9]. The accuracy of these methods is limited, and
especially weak in homogenous image regions.

Active triagulation methods employ laser light or projected
patterns in order to add texture to the scene, and improve the
accuracy and robustness of triangulation. The structured light
concept is especially versatile in that different projected pattern
sequences provide trade-offs between accuracy, robustness
and update frequency. Single-shot methods employ a static
pattern, and rely on neighborhood information for decoding,
hence limiting their resolution. In order to acchieve real-time
performance, however, emission and capture of light has to be
accurately synchronized, and the further processing steps need
to be optimized. For this reason, only relatively few systems
have been presented in the literature. These include the works
of Zhang [8] and Liu et al. [3]. To our knowledge, none of
these real time structured light software implementations are
publically available or open source.

II. STRUCTURED LIGHT PRINCIPLE

The fundamental principle underlying structured light meth-
ods is triangulation of corresponding points for a projector-
camera pair. This is shown schematically in figure 1. A single
camera is sufficient for scene acquisition, in that the projector
acts as a second viewpoint. The distinct advantage over two-
camera stereo is that texture is added by means of the projector
light, which aids in the determination of correspondences.
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Fig. 1. Principle of structured light scanning with one camera and one projector, as implemented in SLStudio. Object surface points are determined by
triangulating corresponding points in the camera and projector coordinate spaces.

Having control over the projected output pattern allows for
direct coding of projector coordinates into a series of camera
frames. Using an appropriate decoding method, projector
coordinates can then be determined in the camera’s view.
Finally, the triangulation principle is employed to extract
spatial coordinates, yielding 2.5D depth maps, possibly with
texture information.

A calibration is usually performed prior to scanning, as this
relates pixel coordinates to real world distances, and allows
for metric reconstructions of the scene. In the calibration
procedure, the optical properties of the projector and camera
are determined, usually aided by a calibration target such as
a black/white checkerboard with known spatial dimensions.

The steps involved in obtaining a single depth map are the
following:

1) Scene encoding in which one or both projector coor-
dinates are encoded into a sequence of patterns, which
are then projected onto the scene in succession. Pattern
strategies include Phase Shifting Profilometry (PSP),
binary Gray codes, color coding, and many others. A
review of such methods is given in [1].

2) Frame capture. One camera frame is acquired for each
projected pattern. We refer to one set of camera frames
as a frame sequence.

3) Decoding the frame sequence by means of an algorithm
that matches and reverses the action of the pattern
encoder. This determines for every camera pixel the
corresponding projector coordinates. From this step, an
intensity or shading image can usually be calculated,
which provides color or gray-scale texture for point
cloud rendering.

4) Triangulation, which is the process of turning the de-
coded projector coordinates into a metric 2.5D surface
represented by points. Geometrically, this step corre-
sponds to triangulation of points by intersecting corre-
sponding rays originating from camera and projector.
If only one projector coordinate was coded into the
frame sequence, the intersection may be found as the

solution to a linear set of three equations. With two
coordinates encoded, the system is overdetermined, and
can be solved using different triangulation algorithms.
This reconstruction of points may be followed by further
processing, i.e. surface reconstruction, in which a mesh
representation is computed.

III. IMPLEMENTATION

“SLStudio” is written in C++ and makes use of OpenCV
and Point Cloud Library for most of its computations, while
the Qt framework is used for the graphical user interface, and
multi-core processing. Figure 2 shows screenshots from within
the running program. The main program window contains a
3D point cloud display and a histogram, to aid in avoiding
over- or underexposure, and additionally, the decoded up map
and texture information.

The software is comprised of the following modules, all
implemented as abstract C++ classes, with a number of
concrete implementations:

Calibrator is a generic interface to calibration methods. A
number of patterns are provided, and the corresponding camera
frames are then used to determine the intrinsics of the camera
and projector lenses, and the geometric relation between the
two. Point cloud are expressed in the camera’s coordinate
system after calibration. We provide one calibration method,
which is highly accurate and very convenient. It captures
frame sequences of a planar checker board using PSP and
uses radial basis functions to translate world point coordinates
into projector space. Projector lens distortion is determined
and corrected for. Details are found in [6].

Projector models the interface for pattern projection. It
features a direct projection mode in which the pattern is
provided directly as a block of memory, and a deferred mode,
in which patterns may be buffered for later display. The latter
is convenient in the default OpenGL implementation, which
allows patterns to be uploaded to GPU texture memory for fast
display with vertical synchronization. This implementation has
custom, compile-time determined versions for Linux X.org,



Fig. 2. Screenshot of SLStudio while acquiring 3D point clouds, showing camera histogram, decoded phase, shading information and the main window
showing an angel figurine captured at 20 point clouds per second (640× 512 pixels).

Windows and Mac OS X, to create a second fullscreen context,
that does not interfere with the main screen, which displays
the control GUI.

The Camera class implements communication with a cam-
era. Two distinct modes are supported; software trigger and
hardware trigger. In many industrial camera, hardware trigger-
ing enables fast frame acquisition by avoiding the overhead of
initiating exposure through a software API, and having pro-
jector and camera exposure synchronized perfectly. Attention
must be paid to exposure times – for instance, in DLP (Digital
Light Projection, Texas Instruments Inc.), projected gray-
scale values will only be faithfully represented if the camera
exposure is a multiple of the single pattern exposure time.
For hardware triggering, a short electrical trigger pulse is sent
to the camera at the start of each projection. For commercial
projectors, a compatible trigger source is the analogue VSYNC
signal found in VGA and DVI cables. The class is imple-
mented as an object “factory”, to support multiple cameras
through the same interface. Concrete implementations exist
for the camera APIs of IDS Imaging, Point Grey Research
Inc., XIMEA, and the libdc1394 library for most industrial
Firewire cameras.

A Codec is comprised of matching Encoder and Decoder
classes, which have concrete implementations for different
pattern strategies. A distinction is made between coding in
one or two directions. While one is sufficient for triangulation,
two directions are used where high accuracy is mandatory.

The output of any decoding operation is termed up or vp
map, as it represent for every camera pixel coordinate the
corresponding horizontal or vertical coordinate in the projector
output. Implementations include Phase Shifting Profilometry
(PSP) with and without phase unwrapping and binary Gray
coding. The highest point cloud update frequency is acchieved
with 3-step PSP, which requires only three patterns for scene
encoding.

The Triangulator is the class involved in triangulation of
points using predetermined camera and projector parameters
and the up and/or up map obtained from decoding a frame
sequence. We have implemented fast triangulation based on up
or vp using a pre-computed determinant-tensor[5], and alge-
braic triangulation. SLStudio represents point clouds internally
in the PCL format, which can be written to disk or used for
further processing.

Our software is modular and easily extensible to fit the
specific requirements for a depth measurement device. The
preferences dialog, shown in figure 3 shows the configurable
options currently available.

The program employs task-based multithreading to share
work among the CPU cores available in a machine. The
threading structure is illustrated in figure 4. A natural division
of work is employed, which lets one thread handle the GUI and
graphical display, one thread the camera/projector calls, while
a third is responsible for frame sequence decoding and a fourth
for point cloud reconstruction. Practically, work is performed



Fig. 3. Preference window showing pattern mode selection and cam-
era/projector configuration.

Fig. 4. Illustration of threads and inter-thread communication in SLStudio.

on heap-allocated arrays, and thread-communication consists
of passing smart pointers to these to other threads for further
processing.

IV. CONCLUSION

In conclusion, we have introduced a feature-rich software
framework for real-time structured light. In our use case, it
enables dense scene acquisition with over 300.000 points at
20Hz, and allows other users to build custom low cost depth
cameras with real-time processing ability. It also provides a
platform for research in structured light by allowing users
to implement new pattern coding strategies. The software is
available open-source, and it is our hope that the community

finds it useful, and participates in the continued development
of it.
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The poster presents MRI compatibility in our SL system achieved through
shielding of the system components and optical relay of camera and projec-
tor images as detailed in Ch. 5. The system successfully acquires point clouds
inside the scanner bore, and MRI data shows no degradation in quality due to
the presence of the system.
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5/12 V DC power  is  supplied  through  capacitive  filters,  to 
avoid high frequency RF noise. 

The system was set up on  the Siemens mMR Biograph 3T 
scanner to demonstrate its feasibility in the narrow in‐bore 
geometry  further  challenged  by  the  limited  view  of  the 
standard  mMR  head  coil.  The  MRI  compatibility  of  our 
system was  initially  tested  by  acquiring MPRAGE  and  EPI 
sequences of a phantom with the surface scanner: off/out‐
bore, on/out‐bore, and on/in‐bore, respectively.  

Results and Discussion: Fig. 2 shows two snapshot surface scans of a volunteer obtained using our device. The reconstructed point 
clouds are based on our non MRI compatible system1. Fig. 3 shows the effect on a MPRAGE sequence of having the surface scanner 
off/out‐bore (left) compared to on/in‐bore (mid). The difference image (right) shows no signs of suceptibility induced distortion. The 
effect on the uniformity is investigated by determining the SNR from two EPI volumes with equal sequence parameters2. The SNRs 

are 227.3 (off/out‐bore), 227.7 (on/out‐bore), 226.3 (on/in‐bore), i.e. no impact on 
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Fig. 1. Drawing of the developed structured light system integrated with 
the mMR Biograph. In-bore: the optical end facing a subject’s head 
through the coil. Out-bore: optic fibers transmit images to and from the 
RF shielded system box (located outside if permitted by the room layout).

      
Fig.  3. MPRAGE images of a cylindrical phantom. Left to right: surface scanner off/out-
bore, on/in-bore, difference of the first two images (normalized scale as the original scale

Fig.  2. In-bore surface scans of a volunteer’s
face (point clouds with texture overlay).  
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In this contribution, an approach is presented for the correction of motion in
real time SL. This problem is discussed in Sec. 3.6. The motion is estimated
by means of fast phase correlation based image registration between sequences
and corrected to reduce artifacts significantly, as demonstrated on a recording
of a moving mannequin head. The approach is one of few current solutions to
the motion problem.
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Abstract. While the problem of motion is often mentioned in conjunc-
tion with structured light imaging, few solutions have thus far been pro-
posed. A method is demonstrated to correct for object or camera motion
during structured light 3D scene acquisition. The method is based on the
combination of a suitable pattern strategy with fast phase correlation im-
age registration. The effectiveness of this approach is demonstrated on
motion corrupted data of a real-time structured light system, and it is
shown that it improves the quality of surface reconstructions visually
and quantitively.

Keywords: 3D vision, structured light, motion correction, registration

1 Introduction

Structured light techniques are very popular for 3D scene capture, and a large
variety of variants have been proposed. See [5] for an overview. The general idea
is to aid in the detection of stereo correspondences by active projection of light
onto the scene, followed by triangulation, to yield a surface reconstruction.

In time-multiplexed or multi-pattern structured light [13], a sequence of pat-
terns is projected to generate one surface reconstruction, which encodes scene
points, thereby disambiguating the matching process. The flexible nature of of
structured light allows to choose a trade-off between number of patterns and
accuracy, and to optimise for the radiometric properties of the scene.

With advances in light projection technology and computing power, it is to-
day possible to perform structured light surface scanning with multiple patterns
in real time. This enables accurate object tracking, dynamic deformation studies,
fast object digitisation and many other applications. A general limitation with
any multi-pattern method however is the underlying assumption of no motion
between the patterns of a single sequence. A violation of this assumption often
leads to large artifacts in the reconstructed surface. Such artifacts are shown as
an example in figure 1.
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Fig. 1. Reconstructions of a phantom head using our structured light setup, showing
the effects of motion during time-multiplexing. Left: static scene. Right: slight move-
ment during acquisition.

By abandoning time multiplexing, single-shot structured light can be re-
alised [14][6]. In the case of Microsoft Kinect 1, a static pseudorandom pattern
is used. With single-shot techniques, the motion problem is avoided, but the
reconstruction quality is also not very high or lateral resolution is lowered. Mul-
tiplexing by means of wavelength is also possible, i.e. by placing different patterns
in the red, green and blue channels of the projection. This is not as robust to sur-
face reflectance properties and spectral bleeding/crosstalk may occur. A review
of single-shoot methods is provided in [20].

Time multiplexing remains the most robust technique, and is used in many
commercial products, mainly for industrial inspection and reverse engineering.
The chosen pattern strategy is important for the performance of the system, and
two classes of methods remain very popular: binary Gray-coding and phase shift-
ing profilometry (PSP). The former tends to be robust, but generally requires
relatively many patterns, worsening the effects of motion. PSP can encode the
scene unambiguously with only three patterns of a single sinusoid phase, shifted
by 0 deg, 120 deg and 240 deg respectively. Depth resolution can be improved by
using more shifts, or multiple phases, which gives a limited ambiguity that can
be resolved using a phase-unwrapping algorithm.

In the presented method, we use the modified ”2+1” phase shifting method of
Zhang and Yau [19], which according to the authors reduces the effects of motion,
and perform fast image registration on the acquired camera frames, to correct
for the synchronisation error, and vastly improve the quality of scene recon-
structions. By employing phase-based image registration, the motion correction
is efficient enough to run in real-time in our 20 Hz surface scanning pipeline.

2 Previous work

Employing more than three patterns in phase shifting profilometry allows for
sanity checking, and masking corrupted output [9]. This is at the expense of ad-
ditional patterns in the sequence, generally making it slower (but more accurate),
but it is questionable to what degree the unmasked output can be trusted.
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In [7], a motion corrected real-time method is presented, for one-dimensional
known motion.

The consequences of motion can be alleviated to some extend by running
at high frequencies. Zhang et al. have presented structured light with dithered
binary sinusoid patterns running at 1000 Hz reconstructions per second [15].
Their method requires strong projector lighting and high-speed cameras due
to the short integration time of any single camera frame, and involves quality
trade-offs making it unsuitable for many applications.

Liu et al. [10] propose motion corrected light with binary patterns and esti-
mation of a global velocity vector based on the reconstructions, while Lu et al.
show the theoretical feasibility of motion correction by means of image align-
ment [11].

3 Structured light and PSP

We use direct codification structured light, i.e. using a single camera-projector
pair as described in [16]. Projector pixel coordinates are denoted (up, vp), while
camera pixel coordinates are (uc, vc). Employing a vertical baseline, the standard
3-step PSP algorithm encodes the projected images as

Ipn(up, vp) =
1
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2
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2π
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))
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where n indicates the pattern index, n ∈ 1 . . . 3 and Np the number of projector
columns. The camera captures the n’th pattern as
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Note the dependency on the projectors horizontal coordinate, up. A
c is the scene

intensity including ambient contributions, while Bc is the modulation by pro-
jector light. Ac can be considered the magnitude of the Fourier DC component,
while Bc is the magnitude at the principle frequency, and

up

Np
its normalised

phase. In order to create correspondences,
up

Np
is extracted with the Fourier

transform and scaled by Np.

Our camera and projector pair are calibrated according to the method de-
scribed in [18]. Corresponding sets of up, uc, vc-coordinates are used to trian-
gulate object surface points as shown in figure 2. We denote one collection of
projected patterns a pattern sequence, and the corresponding camera frames a
frame set.
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Fig. 2. Principle of structured light 3d scanning shown with the 3-step PSP pattern
strategy. For each image point, the corresponding projector column coordinate, up, is
extracted, which allows for triangulation of points on the object surface.

The ”2+1” phase shifting method is a slight modification of the 3-step
method, in which one of the patterns is a constant lit image:

Ip1 (up, vp) =
1

2
+

1

2
cos

(
2π

up
Np

)
(1)

Ip2 (up, vp) =
1

2
+

1

2
cos

(
2π

up
Np
− π

2

)
(2)

Ip3 (up, vp) =
1

2
(3)

From the corresponding camera frame set, the horizontal projector coordinate
can be extracted from camera frames as

up =
Np
2π

atan2 (Ic2 − Ic3 , Ic1 − Ic3) ,

while intensity information is extracted simply as Ac = Ic3 .
The availability of these direct intensity frames, which are not corrupted by

inter-frame motion, allows us to estimate the motion, and perform a correction.
Specifically, we register intensity frames between frame sets, to estimate in 2D
a global motion trend, s = [∆x,∆y]. All frames of a set are then corrected
by interpolating from the motion trend. This removes most of motion induced
artifacts from single object sources that undergo rigid motion.

4 Phase correlation

In order estimate inter-frame motion, intensity frames are registered to each
other. While the image deformation is most accurately described by a dense warp
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field, any estimation method for such would be computationally prohibitive in a
real-time context. We therefore utilise phase correlation, also called the Fourier-
Mellin method, which can estimate a rigid transformation very quickly. It is a
long well known method that is very noise-robust and particularly efficient [8][3],
lending itself to real-time processing such as video stabilisation [4]. We use it
here to register images of two successive frame sets, in order to correct for the
misalignment of frames and the resulting artifacts in the 3D reconstruction.

In many applications, such as pose tracking, the tracked object is considered
to undergo rigid 6 DOF motion between frames. In such scenarios, fast phase
correlation registration can account for most of the misalignment, and reduce
artifacts considerably.

With two images, f1, f2, of dimensions Nx ×Ny the phase correlation tech-
nique first applies a spatial discrete Fourier transform to both images. The de-
termination of translational shift is based on the Fourier shift theorem.

Assuming only a circular translational shift, the images are given as

f2(x, y) = f1(mod(x−∆x, Nx),mod(y −∆y, Ny)) ,

and their respective Fourier spectra are related by

F2(u, v) = e−2πi(u∆x/Nx+v∆y/Ny)F1(u, v) ,

with (u, v) denoting frequency components.

The normalised cross-power spectrum is given by

P =
F1 �F∗

2

‖F1 �F∗
2 ‖

= e2πi(u∆x/Nx+v∆y/Ny) ,

with F∗ denoting the complex conjugate, and � the elementwise/Hadamard
product. The cross correlation of f1 and f2 is now calculated as the inverse
Fourier transform of P , and the shift estimated as its peak position

s = arg max
x,y

F−1(P ).

Since the discrete Fourier shift theorem holds only for circular shifts, a win-
dow function is used on the Fourier transforms. In fact, this is usually necessary,
as the edges on tiled input images provide strong high-frequency features in
Fourier domain.

To obtain the peak position with sub-pixel precision, the centroid of the
cross-correlation peak is computed by also including values from a small neigh-
bourhood around s.

It is also possible to recover scale and rotation parameters between images
in an analogue way by converting magnitude spectra to the log-polar domain
before computing the cross-power spectrum [3].
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5 Experimental setup

Our structured light setup consists of a single camera-projector pair. The cam-
era integration time is a multiple of the projector refresh period for truthful
gray-value reproduction, and a hardware trigger signal ensures accurate syn-
chronisation of camera and projector. The projector update frequency is 120 Hz,
and the camera integration time 8.333 ms. Due to trigger latency, we are able
to capture every other projector image, resulting in 60 s−1 camera frames and
20 Hz surface reconstructions per second using the 2+1 phase shifting method.

With two consecutive frame sets Ict = Ic1,t, I
c
2,t, I

c
3,t and Ict+1 = Ic1,t+1, I

c
2,t+1, I

c
3,t+1

at times t and t+1 respectively, we perform phase correlation based registration
between the flat intensity frames Ic3,t+1 and Ic3,t. This shift, s, serves as the global
motion estimate at that time point. Before reconstructing a surface from frame
set Ict+1, its frames are corrected to:

Ic1,t

(
x− 2

3
s

)
Ic2,t

(
x− 1

3
s

)
Ic3,t (x)

As noted above, phase correlation in the log-polar domain allows for de-
termination of global scale and rotation. However, in most cases of small-scale
misalignment caused by camera or object movement, a translation registration
is adequate and preferred by us due to the lower computational demands.

We carry out experiments by scanning a phantom head that is moving in a
controlled manner. It is mounted on a stepper motor that rotates back and forth
on a 36 deg arc at a constant speed of 11, 4 deg /s at a distance of approximately
20 cm to the camera. In our camera, this results in per-coordinate pixel shifts
of up to 5 px between to consecutive frames. This scenario is modelled after our
head-tracking approach used for medical imaging motion correction [12].

To quantify the quality of our motion corrected structured light approach, we
perform a tracking experiment on the phantom head. The head is held stationary
to capture an uncorrupted reference scene. The motor is then started, and the
object surface is scanned and registered to the reference by means of the iterative
closest point algorithm. We use the point-to-plane error metric [2], as it generally
converges best on this kind of data [17]. Correspondences are found by means of
back-projecting data into the camera frame [1]. The so-obtained tracking data
is used to evaluate the quality of the reconstructed object surface by means of
the root-mean-square (RMS) error of the alignment to the reference surface.
Partial overlap of surfaces is handled by removing those point correspondences
that match to the border of the reference point cloud.

6 Results

The alignment of image frames Ic1 and Ic3 during the motor controlled motion
scene is shown in figure 3. It is seen, that the global shift was estimated correctly
(see e.g. edge of iris, corners of the eye), and a large amount of misalignment
between the images is accounted for.
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Fig. 3. Registration of camera frames Ic1 (green colour channel) and Ic3 (magenta colour
channel) belonging to the same frame sequence. Left: before registration. Right: after
registration. The misalignment is most easily seen at the edge of the iris and corners
of the eye.

The effect of motion correction on the resulting surface reconstruction is
shown in figure 4.

The correction shows reduction of artifacts and distortion, especially around
the nose area.

Using the rotating phantom head described, we use phase correlation to es-
timate the translational shift between intensity frames over time. This is shown
in figure 5 with the raw shifts, and their cumulative sums. From these plots,
it becomes apparent that phase correlation faithfully and reproducibly captures
the global object movement over time.

RMS errors for the moving scene are shown in figure 6.
The static scene trace is influenced solely by image noise in the camera frames.

With corrected motion, the error increases by approximately 7% (time-averaged
RMS), while in the uncorrected case, the increase in error is over 19%. It is noted
that the increase in RMS is mainly due to large artifacts in high-frequency
regions of the camera frame. It is seen that our motion correction approach
effectively decreases these artifacts, and lowers the RMS alignment error.

The average processing time for the alignment of two camera intensity frames
(300× 200 px) was around 5 ms.

7 Conclusion and discussion

We have proposed a fast alignment strategy to reduce motion artifacts in time-
multiplexed structured light. While the method is limited to recovering a global
translational shift, this was shown to explain a large amount of the misalign-
ment, and hence reduce artifacts in the resulting surface reconstructions. The
used method was used for its robustness and computational efficiency. With its
fixed-time performance, the phase correlation technique is suitable for real-time
processing, as done in our implementation.
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Without Correction With Correction

Reference

Fig. 4. Results of performing phase correlation based motion correction on an object
moving at constant speed. Two aliased regions are highlighted in red circles. Top left:
without correction. Top right: with correction. Bottom: stationary reference scan, e.g.
no motion.
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Fig. 6. RMS error of surface alignment to stationary scene at t = 0 using ICP. Variation
in the stationary case is due to image noise. It is seen that motion corrected frame sets
result in markedly lower RMS. In the uncorrected case, RMS peaks when the object is
farthest from stationary situation. Mean RMS over time: stationary (1.12 mm), with
correction (1.20 mm), without correction (1.34 mm).

The limitation of this method is that it only accurately explains single object
translational movement. With offline-processing, a large variety of video stabil-
isation techniques can be combined with the 2+1 phase shifting method. These
include, but are not limited to subframe correlation methods, feature-based para-
metric image registration and optical flow based methods.

For many situations in which structured light is used for tracking or object
digitisation, our method promises to significantly improve reconstruction results.
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Appendix F

Method for Surface
Scanning in Medical
Imaging and Related

Apparatus

Patent No. WO 2015/071369 A1
Priority Date Nov 13, 2013

Publication Date May 21, 2015

This patent relates to the use of optical fiber bundles for the purpose of MRI
compatible SL and motion correction. It covers our implementation of an SL
system with details regarding the optical coupling of image fiber bundles to a
projector source and a camera, as described in Ch. 5.1.

























































Appendix G

Precision and Accuracy
Parameters in Structured

Light 3-D Scanning
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2. December 2015

Presentation Oral Presentation
Published in ISPRS – International Archives of the Photogrammetry, Re-

mote Sensing and Spatial Information Sciences
doi 10.5194/isprsarchives-XL-5-W8-7-2016

In this contribution, we investigate the performance of a high-precision SL sys-
tem with respect to calibration and scene coding parameters. The contribution
lies in the systematic treatment and established evaluation using an industry
standard. The parameters influencing accuracy are discussed in Ch. 6. While
these results are obtained in a highly accurate system with reconstruction times
in the order of seconds, they are valid also for real time systems.
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ABSTRACT:

Structured light systems are popular in part because they can be constructed from off-the-shelf low cost components. In this paper we
quantitatively show how common design parameters affect precision and accuracy in such systems, supplying a much needed guide for
practitioners. Our quantitative measure is the established VDI/VDE 2634 (Part 2) guideline using precision made calibration artifacts.
Experiments are performed on our own structured light setup, consisting of two cameras and a projector. We place our focus on
the influence of calibration design parameters, the calibration procedure and encoding strategy and present our findings. Finally, we
compare our setup to a state of the art metrology grade commercial scanner. Our results show that comparable, and in some cases
better, results can be obtained using the parameter settings determined in this study.

1. INTRODUCTION

Structured Light (SL) systems enable robust high quality capture
of 3D geometry, and are actively used throughout several fields.
These systems can be constructed using commercial off the shelf
(COTS) hardware, making them accessible and affordable. The
obtainable accuracy and precision of such systems vary consider-
ably, and are mainly functions of several design parameters. The
influence of these parameters has not been studied extensively in
the literature. Previously, no combined study has systematically
investigated the effect of common parameter choices on the final
result and quantified them using an established standard.

To address the lack of work in this regard, we investigate how
common design choices influence precision and accuracy. Our
analysis is based on our own active stereo-vision setup consist-
ing of two industrial cameras and a consumer projector. We
empirically show our parameter selection such that maximum
performance is obtained, and quantify using the VDI/VDI 2634
(Part 2) guideline. Finally, we compare our results to a commer-
cial metrology grade scanner (GOM ATOS III Triple Scan) as a
benchmark against state of the art, with decent results. Through-
out this study we seek to employ widely available and accepted
methods & models used in such systems to obtain easily repro-
ducible results.

The contribution of this paper lies in the attempt to quantitatively
answer the following questions

• What calibration parameters should be included in the cali-
bration procedure?

• What angular range of observations is required in the cali-
bration procedure?

• How many observations are required for calibration?

• Which SL encoding strategy is the overall best performer?

We believe this to be valuable information for practitioners want-
ing to build their own system, e.g. as part of research projects or
industrial implementations.

This paper is structured as follows. Section 2 covers related work.
Section 3 gives an overview of our experimental setup. Section
4, 5 and 6 covers our investigations on calibration parameters,
calibration observations and encoding strategies respectively. In
section 7 we compare our system to a commercial system and
finally, we conclude in section 8.

2. RELATED WORK

Much work has been devoted to the field of SL systems e.g.
(Rocchini et al., 2001), (Fisher et al., 1999), (Chen et al., 2008),
(Gühring, 2000a), (Tsai and Hung, 2005). These contributions
have mostly dealt with the methodological development of such
systems whereas less focus has been placed on quantitative ac-
curacy and precision analysis. One of the most important factors
with respect to accuracy is system calibration. While recent fo-
cus has been placed on projector-camera calibration (Zhang and
Huang, 2006), (Li et al., 2008), (Legarda-Sa et al., 2004), we
here consider an active stereo vision setup (Heikkila and Silvén,
1997), (Tsai, 1987, Zhang, 2000), without projector calibration.
Precision is considered to be mostly dependent on the encod-
ing strategy. A vast selection of methods have been proposed,
see (Salvi et al., 2004), (Gorthi and Rastogi, 2010), (Geng, 2011)
for recent surveys. While many of these methods aim to reduce
the number of patterns, the amount of outliers and computational
complexity, less focus has been placed on precision. Here, we
compare selected encoding strategies from a precision and accu-
racy perspective.

Characterising SL systems in terms of accuracy is a challeng-
ing and ongoing problem, which despite its relevance has only
seen few published guidelines and standards. The only currently
published standard is the German VDI/VDE 2634 Part 2 guide-
line (2634, 2000), (Guidi, 2013), Optical 3-D measuring systems
– Optical systems based on area scanning. This guideline aims to
capture the complex nature of such a system, using a number of
length and shape measurements throughout the scanning volume.
Researchers have already accepted this guideline for evaluation
of 3D scanning systems (Boehm, 2014), (Luhmann, 2011), (Be-
raldin and Gaiani, 2005), (Beraldin et al., 2007). We here argue
that the guideline is lacking to some extent. Firstly, it fails to cap-



Figure 1: Our structured light system setup with two high-
resolution industrial cameras, a Full HD LED projector and a ro-
tation stage mounted on a rigid aluminum mount. Specifications
are given in Table 1.

ture frequency response characteristics of SL systems using the
proposed low frequency artifacts. Lastly, the artifacts are opti-
cally ideal for SL scanning. Therefore, results only indicate ’best
case’ results, given that particular material. The standard is how-
ever well suited for relative measures e.g. for acceptance testing
and benchmarking purposes.

Limited work has been conducted on SL parameter investiga-
tions and their effect on overall performance (Lohry et al., 2009).
However, to the authors knowledge, no quantitative evaluation
has been performed on how the different SL parameters directly
influence the final results as defined by the VDI/VDE guideline.

3. EXPERIMENTAL SETUP

Our structured light setup, as seen in Figure 1, consists of two
industrial cameras (Point Grey Research GS3-U3-91S6C-C) and
a high resolution DLP projector (LG PF80G) mounted on a rigid
aluminum beam structure. Technical specifications are given in
Table 1. In addition, a high precision turntable is used in order
to provide automatic rotation of a calibration checkerboard. The
apparatus and scan objects can be fully enclosed during capture,
in order to prevent ambient light contamination.

Parameter Specification
Cameras CCD Sony ICX814 1”
Cameras Resolution 3376× 2704 px
Camera Lens Focal Length 16mm
Camera Lens Aperture 5.6
Camera Exposure 66.66ms
Projector Resolution 1920× 1080 px
Camera Baseline 450mm
Camera Object Distance ∼ 750mm
Stereo Field of View (FOV) (300× 300× 230) mm

Table 1: Technical specifications of our structured light setup.

Figure 2 shows the calibration plate and Figure 3 shows the VDI/VDE
2634(2) measurement artifacts used during this study. The arti-
facts consist of a flat white painted aluminum plate and two ce-
ramic spheres separated by a known distance. Both artifacts have
been measured according to procedure T3-01 of ISM3D using
a coordinate measurement machine (CMM), and traceability has
been established through the virtual CMM method. Specifica-
tions for nominal values and attached uncertainties are listed in
Table 2 and 3.

Figure 2: The calibration plate used in this study sitting on a rigid
wooden support frame. Manufactured from (400×280×12 mm
unhardened float-glass. A high resolution printed checkerboard is
glued on the flat surface.

Figure 3: Calibration artifacts according to the VDI/VDE
2634(2) standard. Top: painted and lapped aluminum flat. Bot-
tom: alumina-circonium ceramic spheres on a carbon-fiber rod.
Nominal values are given in table 2 and 3.

Following the VDI/VDE 2634 (2), we use four quality parame-
ters:

• Probing error form, PF , which describes the radial range of
residuals from a least squares fit sphere with up to 0.3% of
the worst points rejected.

• Probing error shape, PS , measuring the signed deviation be-
tween the least squares fit diameter and the nominal. Again,
up to 0.3% of the worst points are rejected.

• Sphere distance error, SD, denoting the signed difference
between the estimated and nominal distance between the
spheres. Up to 0.3% of the worst points are rejected.

• Flatness, F, which is the range of residuals from the mea-
sured points to a least squares fitted plane, with up to 0.3%
of the worst points rejected.

PF and PS are measured using one of the spheres at 10 positions
within the system’s FOV. SD is measured with the ball-bar at
7 positions, while F is determined using the flat in 6 positions.
These positions are illustrated in Figure 4.

Parameter Value
Center distance 198.9612 mm
Distance uncertainty 0.001 mm
Diameter ball 1 24.9989 mm
Diameter ball 2 24.9969 mm
Min. dev. from sphere 1 −0.0013 mm
Max. dev. from sphere 1 +0.0006 mm
Min. dev. from sphere 2 −0.0011 mm
Max. dev. from sphere 2 +0.0020 mm
Deviation uncertainty 0.0018 mm

Table 2: Specification of the dumbbell used for our experiments.

4. CALIBRATION PARAMETERS

The industry standard models that are essential for calibration of
an SL system contain several parameters. Which of these param-
eters to include in the calibration process is unclear. To solve for
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Figure 4: Measurement positions used throughout the paper. The outer frame represents the FOV, as seen from the cameras (Position 1
being closest). Left: ball-bar positions used for sphere distance SD. Right: positions of the flat used for the flatness error metric, F.

Parameter Value
Minimum deviation from plane −0.0030 mm
Maximum deviation from plane +0.0012 mm
Deviation uncertainty 0.0018 mm

Table 3: Specification of the flat plane used for our experiments.

the calibration parameters we employ the commonly used method
proposed by Zhang (Zhang, 2000). We use the 4 parameter pin-
hole model with the addition of up to five lens distortion parame-
ters. Hence, the camera is modeled as



fx 0 cx
0 fy cy
0 0 1


 (1)

The use of a non-unit aspect ratio (i.e., fx 6= fy), makes it pos-
sible to model non-square pixels and/or capture compound non-
uniformity in the lens. Likewise estimation of the principle point,
(cx, cy), makes it possible to describe cameras in which the prin-
ciple ray does not strike the image sensor in it’s exact center. With
quality components such as ours, we would expect these param-
eters to be unnecessary. At the same time, the inclusion of these
parameters increases the risk of false estimation, numerical insta-
bility and non-convergence. In fact, it was shown, that principle
point estimation is especially prone to misinterpretation, and that
the parameter can often be neglected in cameras of medium to
long focal length (Ruiz et al., 2002).

Radial lens distortion is modeled according to

x′ = x(1 + k1r
2 + k2r

4 + k3r
6) (2)

y′ = y(1 + k1r
2 + k2r

4 + k3r
6) , (3)

where (k1,k2,k3) are the three distortion coefficients. Tangential
distortion is modeled

x′ = x+ (2p1xy + p2(r
2 + 2x2)) (4)

y′ = y + (2p1(r
2 + 2y2) + 2p2xy) (5)

where (p1, p2) are the tangential distortion parameters. This five
parameter ”Brown-Conrady” model is widely accepted (Brown,
1966).

The stereo relationship between cameras is described using three
rotations and three translations. Due to weak inter-dependencies,
the calibration can be performed individually per camera, fol-
lowed by stereo calibration. Still, the risk of over-fitting and
converging to local minima remains, and therefore higher order
distortion parameters are used only when considered relevant. To

investigate these factors, we calibrate using 8 different configura-
tions of parameters and evaluate by means of VDI/VDE quality
parameters. Each calibration is performed using 81 observations
of the calibration board, evenly sampled in the range from −40
to 40 degrees relative to baseline.

Figure 5 shows performance results for the different calibration
parameter configurations. The baseline setting generally yields
sub-millimeter results. The free aspect ratio (fx 6= fy) and prin-
cipal point estimation degrade the performance from ”baseline”.
These results show that in a typical setup, omitting the principle
point estimation makes calibration significantly more stable. It
can be seen that by enabling the first two distortion coefficients,
significant improvement is obtained. This is especially noticeable
in the sphere distance metric, SD, being a measure of accuracy.
No significant improvement is obtained with additional distortion
parameters.

Conclusion Given our setup, only the k1 and k2 distortion co-
efficients are required for accurate calibration. The inclusion of
both aspect ratio and principle point estimation makes the cal-
ibration procedure unstable, and considerably better results are
obtained without them. With their removal, we see consistently
low results of PF , SD and F, while the estimation of sphere sizes
(PS) is biased to positive values. This indicates that one should
carefully consider which camera model is used.

5. CALIBRATION OBSERVATIONS

An important question in calibration is in which poses the calibra-
tion board needs to be observed. Viewing the calibration board
at very shallow angles means higher uncertainty in point local-
ization. In addition, the effect of non-planarity becomes larger.
However, it is necessary to observe some degree of foreshorten-
ing for focal length estimation (Zhang, 2000).

In this section we attempt to obtain the optimal angular range of
observations relative to the baseline. We tested 8 different ranges
starting from −5◦ to 5◦ relative to baseline and ending in −40◦
to 40◦. For each range, we sample evenly 11 images of the cal-
ibration board. For the rotations performed, most foreshortening
will be observed around the rotation axis, thus constraining the
focal length parameter fx well. With a fixed aspect ratio, this in
turn constraints fy also.

The results from the experiment can be seen in Figure 6. It is seen
that increased foreshortening affects the sphere distance param-
eter (SD) positively indicating better calibration. In general, the
results are quite comparable for all ranges. Comparing to Figure 5
it is also apparent that using 11 observations and 81 observations
ranging from −40 to 40 yields similar results.
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Figure 5: Results obtained with different camera and lens models. Colors represent different positions of the dumbbell or flat artifact
according to Fig. 4 (Position 1 being the leftmost bar). Baseline denotes the pinhole model with fixed aspect ratio, fixed principle point
and without distortion parameters. ”ar” adds aspect aspect ratio, ”pp” principle point determination. The other groups show results
when different combinations of lens parameters are used. From this we see significant improvements when lens distortion parameters
are added. The inclusion of both aspect ratio and principle point estimation makes the calibration procedure unstable, and considerably
better results are obtained without them.



Conclusion In terms of accuracy, it is slightly beneficial to use
a large angular range during calibration. However, even a smaller
amount of foreshortening is sufficient to accurately estimate pa-
rameters. We opt for the 80◦ range. Furthermore, the difference
between 11 and 81 observations is negligible, thus for the sake of
practicality we proceed by using the former.

6. ENCODING STRATEGIES

The encoding strategy of a structured light system determines
how correspondences are found, and can be expected to be a ma-
jor factor in system precision. We identify three main categories
of algorithms which are relevant in this setting:

• Fourier methods, prominently phase shifting (PS) methods (Srini-
vasan et al., 1985).

• Binary boundary based methods (Posdamer and Altschuler,
1982), e.g. Binary and Gray coding.

• Line shifting (Gühring, 2000b), which is the same princi-
ple underlying triangulation based laser line scanners, with
multiple lines sweeping the scene simultaneously.

Phase Shift (PS) based methods encode the scene by means of a
series of shifted sinusoidal patterns. The phase is then recovered
and matched between cameras (Kühmstedt et al., 2007). The ad-
vantage is that the scene can be densely encoded using at least 3
patterns, and more can be naturally added to increase precision.
For correct encoding, the projector-camera system should have
a close to linear intensity-response. The frequency of sinusoids
can also be altered, with higher frequencies yielding higher pre-
cision at the cost of phase ambiguities, which then have to be
”unwrapped” using additional patterns. Our PS implementation
performs 32 steps at the highest frequency sinusoidal pattern (pe-
riod 19.2 px), and unwraps the resulting phase using two sets of
lower frequency patterns (Zumbrunn, 1987). The total number of
projected patterns is 64.

Binary boundary based methods, such as the Gray Code method,
encode scene points directly by means of binary codes, which are
decoded and matched in the cameras. These methods are flexi-
ble in the number of patterns, and allow for the natural addition
of redundant information, which can then be used to reject out-
liers. Feature points locations can be estimated with sub-pixel
accuracy. Our Gray code implementation encodes uniquely ev-
ery other column in projector space, and employs patterns and
their inverse for added robustness. Boundaries are detected at the
intersection of the pattern and its inverse with subpixel accuracy.
The total number of patterns is 20.

Line shifting can be performed with a single laser line as the pro-
jection source, however with a digital projector, many lines can
be projected in parallel. Correspondence points are found at the
peak of the stripes. Several methods exist for subpixel peak detec-
tion (Trucco et al., 1998). For Gühring’s Line Shifting method,
we employ Gray codes to partition the encoded space into 256
unique regions. For each of these regions, a single projector line
then walks across it in 8 steps, resulting in a total of 28 patterns.
The peak of each single line is determined as the first derivative
zero crossing using a Gaussian derivative filter of size 5 px.

These classes of encoding strategies have fundamentally different
error characteristics. The binary and line shifting methods may
be very robust against point outliers, but PS patterns are often less
affected by projector and camera blur due to their low-frequency

Parameter PS Gray Line Shift
Number of patterns 64 20 28
Off-focus robustness Excellent Good Moderate
Precision Excellent Good Good
Accuracy Excellent Excellent Excellent
Nr. of points (sphere) ∼ 20 k ∼ 7 k ∼ 10 k
Nr. of points (flat) ∼ 450 k ∼ 150 k ∼ 250 k

Table 4: Interpretation of the algorithm performance.

nature.
The SL system is calibrated with the previously determined angu-
lar range of 80 degrees and 11 positions. Furthermore, we use the
k1,2 parameter selection, as previously identified. A comparison
of the VDI/VDE quality parameter results for these three encod-
ing strategies is seen in Figure 7. A summary of the results may
be seen in Table 4.

The precision of the different strategies can be indirectly esti-
mated from the spherical form parameter PF . This is because
the calibration spheres cover only a small part of the scanning
volume, whereas the flat plane occupies a substantial part. Flat
plane measurements will thus be more affected by the quality of
calibration and lens distortion correction. Both of which directly
affect precision and accuracy.
From the results we confirm that the PS method is more tolerant

to depth of field limitations, where positions close and far away
show no signs of degradation. The PS method also shows su-
perior precision characteristics in the PF parameter. For the PS

parameter, there is a clear bias present in both the PS and Gray
code method, whereas Line Shift appears bias free. Figure 8 illus-
trates sphere fitting results for the three methods. Here it is seen,
that PS and Gray have systematic positive residuals towards the
lateral edge in horizontal (encoding) direction. This in turn leads
to slight overestimation of sphere diameters.

Conclusion In the quality parameters PF (Spherical form) and
F (Flatness), the PS encoding strategy provides the best results
in all artifact positions. The sphere diameter is biased positively
in the PS and Gray methods, while it appears unbiased with Line
Shift. Overall it appears that the PS method is the best performing
method.

7. COMPARISON TO METROLOGY SCANNER

Finally, we have compared our system to a high-end commercial
scanner (GOM ATOS III Triple Scan), which has a FOV of 240×
320× 240mm, similar to the FOV of our system (see Table 1).

In this experiment we used the PS algorithm, and calibrated as in
the preceding experiment. Again, quality measures defined by the
VDI/VDE 2634(2) were measured. Results are seen in Figure 9.
The results show that our system is more precise and in terms of
PF and exhibits lower variance. However, a bias is present in the
PS whereas the commercial system appears free of such. It is
apparent from the sphere spacing term (SD) that the commercial
system indicates better accuracy.

Interestingly, the GOM scanner shows significant improvements
in the flatness form error metric, F, compared to the sphere form,
PF , where one would expect similar performance (as seen in our
system). Reasons for this will only be cause for speculation as the
scanning procedure and reconstruction is proprietary, that being
said, some form of smoothing favoring planar surfaces might be
at work.
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Figure 6: Results obtained with different angular ranges of the calibration plate relative to the camera baseline. Colors represent
different positions of the artifacts according to Fig. 4 (Position 1 being the leftmost bar). We see that in terms of accuracy, it is slightly
beneficial to use a large angular range during calibration. However, even a smaller amount of foreshortening is sufficient to accurately
estimate parameters.
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Conclusion Our system generally performs better in the preci-
sion characteristic, PF , while the the metrology scanner obtains
unbiased sphere diameter results and achieves higher accuracy.
Since accuracy is a deterministic noise component, this indicates
that a custom calibration method could be advantageous.

8. DISCUSSION AND CONCLUSION

In conclusion, in this paper we have shown through quantitative
analysis how the most common parameters within structured light
systems affect the overall performance. Our quantitative measure
is the accepted VDI/VDE 2634(2) guideline which nicely cap-
tures critical parameters in terms of precision and accuracy. We
perform a series of experiments on our experimental setup using
precision made calibration artifacts. We start by investigating cal-
ibration parameters as defined by the most commonly used mod-
els and follow by determining the angular foreshortening and the
amount of observations required to yield the best results. We pro-
ceed by comparing three commonly used algorithms against each
other in order to determine the best method. Finally, we compare
our setup to a metrology grade commercial scanner, using the
previously determined parameters. Our results show that com-
parable and in some cases better results can be obtained using
standard methods and models if care is taken in the parameters
choice. We expect these findings to be of help to practitioners
wanting to build their own SL systems.

Even though the VDI guideline indirectly captures some of the
error sources, such as depth of field, calibration performance and
acquisition noise, it is lacking to some extent. The calibration
shapes suggested consists of low frequency features, thus a Gaus-
sian filtering operation on the measured point cloud will yield bet-
ter results for some of the parameters. Although it is stated that all
filtering operations must be noted; In many cases these filtering
operations are required or inherent in the triangulation algorithms
at a pre point cloud level. The use of such filtering will affect the
frequency response of the system, where low-pass operations will
limit the systems capability of resolving high frequency features.
In order to better analyze a systems performance, a frequency
analysis must be conducted, indicating if any such smoothing is
taking place. Such a frequency response characterization calls
for an additional calibration artifact in the form of a high fre-
quency feature. In addition, results from the VDI/VDE only pro-
vide quantitative evaluation of the artifacts used. Thus the results
cannot be transferred to other less optically ideal materials.
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Appendix H

Structured Light Scanning
of Skin, Muscle and Fat

Technical Report DTU Compute Technical Report-2015-07
Published in DTU Orbit

The technical considers the bias and variance in SL scans of biological tissue,
related to subsurface effects as discussed in Ch. 6. This is relevant in various
industrial, life-science and medical applications of SL, where subsurface effects
bias the scan result. We quantify the amount of bias observed with different
scene coding methods, and shows how it can be removed from the scan, resulting
in a clear improvement of scan accuracy.



DTU Compute Technical Report-2015-07

Structured Light Scanning of Skin, Muscle and Fat

Jakob Wilm, Sebastian Nesgaard Jensen, and Henrik Aanæs

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Abstract

We investigate the quality of structured light 3D scanning on pig skin, muscle and fat. These
particular materials are interesting in a number of industrial and medical use-cases, and somewhat
challenging because they exhibit subsurface light scattering. Our goal therefor is to quantify the
amount of error that various encoding strategies show, and propose an error correcting model, which
can bring down the measurement bias considerably. Samples of raw and unprocessed pig tissue were
used with the number of sampled surface points Nmeat = 1.2·106, Nskin = 4.0·106 and Nfat = 2.1·106
from 8 different pieces of tissue. With the standard N-step phase shifting method, the bias and RMS
errors were found to be 0.45±0.22mm (muscle), 0.51±0.19mm (skin) and 0.14±0.16mm (fat). After
applying a linear correction model containing view, light angles and point distances, the bias was
almost completely removed on test data, and standard deviations slightly reduced. To our knowledge
this is the first quantitative study of the measurement error of structured light with biological tissue.

1 Introduction
Structured light has become a very popular and versatile method for 3D acquisition of complicated scenes.
Many applications have emerged in science and in industry, ranging from 3D model acquisition, to motion
capture and high performance metrology. This is due to it’s versatility from high accuracy to high speed,
in some cases reaching real-time performance [20]. Most structured light methods however rely on the
assumption of Lambertian (diffusely reflecting) surfaces and only direct illumination. This means that
global lighting effects such as intra-reflections, translucency and subsurface scattering disrupts structured
light based surface scanning, causing biased, noisy or missing data.

Human and animal tissue is interesting in a number of structured light applications, including head
tracking for medical motion correction [16], to robotic handling of meat in industrial settings. Each tissue
type exhibits different reflection and scattering properties that can potentially disrupt a structured light
scan. This paper documents the degree to which subsurface effects alter the accuracy of structured light
scans in three biological tissue types; pork muscle, pork skin and pork fat. We show, that the scan error
consists in part of a large deterministic part, which can be removed by means of a simple statistical error
model.

2 Structured Light 3D Scanning
The structured light principle uses a calibrated camera-projector pair to identify feature correspondences
and triangulate surface points, see figure 1. A large number of encoding strategies exist (see [5,6,18] for
recent reviews). Most current high-accuracy methods are either based on binary coding schemes such as
Gray codes [17] or based on sinusoidal patterns in so-called ”phase shifting” [19], with many alterations
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Figure 1: The structured light principle: a number of patterns are projected onto the scene, and images
are captured by a camera. Correspondences are determined by different encoding algorithms, and used
to triangulate points on the object surface. In this example, 3-step phase shifting patterns are shown.

and improvements to increase their accuracy, robustness or speed. Owing to the epipolar constraint in
a calibrated projector-camera pair, encoding needs only to be done along one spatial direction (close to
parallel to epipolar lines). With a pattern budget of N patterns, binary methods can uniquely encode
2N lines. Phase shifting methods use at least N = 3 to fully encode the scene at every camera pixel.
Additional patterns are used to increase the SNR, most often by projecting multiple phases of a sinusoid,
and additional patterns to disambiguate between these phases in ”temporal phase unwrapping”. Binary
coding methods are considered robust against many unwanted illumination effects, but do not make very
efficient use of the pattern budget, and also fail once light stripes become too narrow. Phase shifting
methods make efficient use of patterns, but provide no general means of identifying encoding errors,
possibly leading to noise or outliers.

3 Global lighting effects
Under ideal circumstances, objects to be scanned with structured light exhibit only direct reflection on
the object surface. Also, in order to not introduce under or over-saturation or bias in feature detection,
the surface reflectance ideally is high, and Lambertian, i.e. diffusely reflecting into all directions. Under
real conditions, most interesting objects exhibit global lighting effects, that is light does not reach the
camera after a single scattering event on the object surface, but does so after reflecting from a distant
scene point or is scattered below the surface (so-called sub surface scattering).

While some solutions have been proposed to mitigate subsurface scattering, defocus and global il-
lumination effects [1, 2, 7], such effects are still considered harmful, and many object surfaces need to
be treated by spraying them with ”dulling spray” in order to make structured light possible. An even
more effective way of reducing global lighting effects is by using chalk spray, which makes surfaces highly
reflective and diffuse. figure 2 shows sample images of structured light patterns projected onto our
samples before and after treatment with chalk-spray.

In particular the muscle samples show large degrees of subsurface scattering, which blurs and distorts
the structured light patterns.

4 Related works
The issue of global lighting effects in the context of structured light has been recognised by many authors,
e.g. in the acquisition of a human face reflectance field [4]. In order to reduce these in structured light
scans, polarisation has been exploited in [1]. Some recent attempts have been to design structured
light encoding strategies such that they are less susceptible to global lighting effects. The underlying
observation is, that with high-frequent patterns, global lighting effects can be considered constant, and
independent of the actual pattern. This allows for efficient separation of the observed light intensities
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(a) Raw muscle. (b) Muscle with chalk coating.

(c) Raw skin. (d) Skin with chalk coating.

(e) Raw fat. (f) Fat with chalk coating.

Figure 2: Fine grained binary structured light pattern projected onto various types of tissues. The effect
of subsurface scattering is clearly seen the pattern becomes blurred without chalk coating.

into direct and global light [15]. In modulated phase shifting [2], structured light patterns are modulated
by means of carrier patterns, such that they become high-frequent in both spatial dimensions, thereby
improving their separation power. Micro Phase Shifting [9] makes use of sinusoidal patterns in a narrow
high-frequency band, promising robustness to global lighting effects and stable phase unwrapping with an
optimal number of patterns. A newer approach is ”unstructured light” [3], in which the pattern frequency
can be high in both dimensions, however the number of patterns is not ideal, and the matching procedure
rather cumbersome. For binary boundary methods, exclusively high or low-frequency pattern schemes
can be considered robust against different global illumination effects [8].

An approach to compensate for the measurement error in isotropic semi-transparent material caused
by subsurface scattering was presented in [13]. Similarly to our approach, this work empirically deter-
mines the measurement error and explains it by means of a single variable (the projected light angle),
albeit only with a single verification object and structured light method. In [12], a Monte-Carlo sim-
ulation of the measurement situation was presented, which gives some insight into the error forming
process.

In [10], an analytical derivation of the measurement error is given for the phase shifting methods.
This error model predicts the error to decrease with increased spatial frequency of the pattern, agreeing
with the theory of direct-global illumination. The model does not however take into account the loss of
amplitude at higher frequency patterns, which increases noise in the measurement data.

Computer simulations of structured light scans were performed by [14] to benchmark encoding meth-
ods with respect to various parameters, and were found to have similar robustness to subsurface effects.
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5 Experiments
A single camera-projector system as shown in figure 1 was used for our experiments. Surface scans were
obtained from three separate tissue classes: pork muscle, pork skin and pork fat. All samples were
unprocessed and not heat-treated. For each class, 8 distinct tissue samples were measured, once in their
raw form, and once with chalk-spray applied. These samples were distinct placed independently in the
scan volume and spanned all possible view and light angles, and also varied in their distance to the
projector from approximately 200mm to 400mm. See figure 4 for an illustration of these parameters.
The latter measurements served as a reference for the evaluation of measurement error. While we cannot
assume the chalk-prepared surfaces to be noise-free, we consider them the gold-standard as they provide
very clear contrast, and virtually no subsurface effects are visible (see figure 2).

In order to verify that this procedure does not alter surface geometry, we applied two separate layers
of chalk to a sample object, and compared the scan result after each layer. The mean signed distance
was 0.037mm, indicating that chalk spraying the surfaces does not bias the result.

We analyse four different structured light methods, and use 12 patterns in each:

• Binary Gray coding [17]: one completely lit and one completely dark image were used to define the
binary threshold individually in each camera pixel. The remaining patterns were used to encode
210 = 1024 individual lines on the object surface.

• N-step phase shifting was used with 9 shifts of a high-frequency sinusoid of frequency 1/76 px−1,
corresponding to approximately 1/10mm on the object surface. Three additional patterns were
used for phase-unwrapping [11].

• Micro phase shifting [9] using the frequency vector

[1/75.02, 1/70.00, 1/71.32, 1/72.47, 1/73.72, 1/76.23, 1/77.35, 1/78.40, 1/79.22, 1/80.00] px−1

These frequencies corresponds to a spatial frequency on the object surface of approximately 1/10mm.
Slightly different from [9], the specific values were determined using a derivative free non-linear
pattern search.

• Modulated phase shifting [2] with three shifts of a sinusoid of frequency 1/76 px−1 (1/10mm on the
object surface). Each of these sinusoids was modulated in the orthogonal direction using a sinusoidal
carrier with the same frequency. Three additional patterns were used for phase-unwrapping.

Figure 3 shows the pattern sequences used in our experiments.

Gray Coding N-step PS Micro PS Modulated PS

Figure 3: Structured light patterns used in our experiments. In each case, 12 patterns were used.

While binary Gray coding and N-step phase shifting can be considered well-established ”reference”
methods, the other two phase shifting based methods are state-of-the-art and specifically designed to
mitigate subsurface effects. For every sample, we defined a binary mask within which all possible surface
points were reconstructed. This ensured that the exact same surface region was used in the evaluation
of each method.

Analysis consisted in determining the error in each surface point, by determining its’ signed distance
to the corresponding point in the chalk-sprayed reference. For Gray-code measurement, we determine
the point-to-surface distance as given in the following,

sj = min
i

[ni · (pj − pi)] , (1)
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where,

pj is the jth point in the raw point cloud,
pi is the ith point in the reference point cloud,
ni is the ith normal in the reference point cloud,
sj is the signed error at jth data point.

So for each a point we find its’ nearest neighbour in the reference cloud in terms of normal distances.
This is done as the reconstructed points are not defined in the regular camera pixel grid. As this is the
case with the other methods we can simply match points using their position in the pixel grid.

5.1 Error Model
Our principle assumption is that the error is composed of a deterministic part, which once determined
can be subtracted from future scans, in order to improve the accuracy. Previous work gives some hints as
to which parameters to include [10,13]. Considering the scan setup, as shown in figure 4, we include three
variables in our error model: the view angle (relative to the surface normal) θview, the light angle θlight,
and the distance from projector to object, d. We have tried to include many other variables, including
reflected light to view angle and coding direction normal vector angles. These variables are inspired by
the analytical error model of [10], but did not explain sufficient variance to include them in our model.

Object

Projector Camera

Figure 4: The structured light scanning setup with the parameters of our error model. The surface
normal is n, view direction v, light direction l and the projector-surface distance is d.

We construct the following linear model:

y = β0 + β1 · θview + β2 · θlight + β3 · d ,

for each of the tissue types, and fit it to a training set consisting of 90% of all observations. A test set
composed of the remaining 10% was then corrected using the predetermined model.

6 Results
The parameters obtained after fitting the error model to our data are seen in tables 1, 2, and 3. These
tables also show the mean signed distance before applying the model, εtraining. After applying the linear
model, the mean of residuals naturally is zero. We also show the standard deviation of errors before
correction using the model, σtraining, and after, σcorrected.

Figures 5, 6 and 7 show the signed error on a single sample visually before and after applying the
correction model. We see qualitatively in the signed errors of Figures 5 – 7, that a clear positive bias is
present in all scans (the raw surface is observed further away from the camera). This effect is especially
pronounced in the muscle and skin tissue classes and with the N-step phase shifting method (this is a
general observation in all muscle and skin samples). Tables 1 and 2 show that the observed bias is
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Figure 5: Signed distance (sd) between scan and reference on a single sample of muscle. Top row: before
applying the linear correction model. Bottom row: after correction.
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Figure 6: Signed distance (sd) between scan and reference on a single sample of fat. Top row: before
applying the linear correction model. Bottom row: after correction.
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Figure 7: Signed distance (sd) between scan and reference on a single sample of skin. Top row: before
applying the linear correction model. Bottom row: after correction.
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Gray Coding N-step PS Micro PS Modulated PS
Intercept 0.25 0.55 0.45 0.39
θview -0.064 -0.21 -0.15 -0.0032
θlight 0.03 0.053 0.025 -0.048
d 0.00023 3.9×10−5 5.1×10−5 −7.1×10−5

εtraining 0.32 0.45 0.38 0.33
σtraining 0.27 0.22 0.23 0.27
εcorrected -0.00097 -0.00094 0.0006 -0.0014
σcorrected 0.27 0.22 0.23 0.26

Table 1: Estimated parameters for the linear correction model for muscle and the mean bias ε and
standard deviation σ of the training set and the corrected test data set. The number of training samples
was Ntraining = 1122 534 and the number of test samples Ntraining = 124 726.

Gray Coding N-step PS Micro PS Modulated PS
Intercept 0.038 0.89 1.00 0.76
θview -0.0026 -0.15 -0.15 -0.06
θlight -0.24 -0.14 -0.12 -0.14
d 0.0013 -0.00062 -0.0011 -0.00068

εtraining 0.35 0.51 0.48 0.41
σtraining 0.19 0.19 0.2 0.22
εcorrected 0.00039 −3.7×10−5 -0.00045 0.00078
σcorrected 0.19 0.18 0.19 0.22

Table 2: Estimated parameters for the linear correction model for skin and the mean bias ε and standard
deviation σ of the training set and the corrected test data set. The number of training samples was
Ntraining = 3603 495 and the number of test samples Ntraining = 400 388.

Gray Coding N-step PS Micro PS Modulated PS
Intercept 0.082 0.041 0.04 0.07
θview -0.083 -0.19 -0.12 -0.081
θlight -0.019 0.092 0.041 0.026
d 0.00018 0.00037 0.00028 0.00014

εtraining 0.087 0.14 0.11 0.097
σtraining 0.25 0.16 0.16 0.17
εcorrected 0.00075 0.00037 5.1×10−5 -0.00046
σcorrected 0.24 0.16 0.16 0.17

Table 3: Estimated parameters for the linear correction model for fat and the mean bias ε and standard
deviation σ of the training set and the corrected test data set. The number of training samples was
Ntraining = 1868 574 and the number of test samples Ntraining = 207 619.

around 0.6mm for phase shifting based methods in muscle and skin, while it is only 0.32mm for Gray
coding. The same superiority of Gray coding is observed in the fat tissue class, albeit with generally
much lower numbers. This is presumably due to the fact that fat appears more optically dense (see
figure 2).

While some spatial structure is visible in the bias seen on Figures 5 – 7, the included variables, θview,
θlight, d, did only explain a small part of the variance. Hence, εcorrected is reduced significantly from
εtraining, while that is not the case with σcorrected and σtraining.

7 Conclusion
In this work, we performed structured light scans of biological tissue, pork muscle, pork skin and pork
fat, with a selection of reference and modern structured light methods. We used a linear error model
to describe measurement error, and found it to be composed of a significant bias (≈ 0.5mm for muscle,
≈ 0.3mm for skin, and ≈ 0.1mm for fat), which can be corrected easily. This methodology allowed us
to improve the accuracy of structured light scans, given the specific tissue type. The error correction
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method proposed is applicable to any type of homogenous material. While the linear parameters need
to be determined beforehand, and vary widely between materials, many applications do involve only
homogenous material with uniform optical properties.

As such, we consider our finding interesting information on the accuracy that can be obtained with
structured light in general, and our methodology to apply in many common scenarios.
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