61,789 research outputs found

    Working memory revived in older adults by synchronizing rhythmic brain circuits

    Full text link
    Published in final edited form as: Nat Neurosci. 2019 May ; 22(5): 820–827. doi:10.1038/s41593-019-0371-x.Understanding normal brain aging and developing methods to maintain or improve cognition in older adults are major goals of fundamental and translational neuroscience. Here we show a core feature of cognitive decline—working-memory deficits—emerges from disconnected local and long-range circuits instantiated by theta–gamma phase–amplitude coupling in temporal cortex and theta phase synchronization across frontotemporal cortex. We developed a noninvasive stimulation procedure for modulating long-range theta interactions in adults aged 60–76 years. After 25 min of stimulation, frequency-tuned to individual brain network dynamics, we observed a preferential increase in neural synchronization patterns and the return of sender–receiver relationships of information flow within and between frontotemporal regions. The end result was rapid improvement in working-memory performance that outlasted a 50 min post-stimulation period. The results provide insight into the physiological foundations of age-related cognitive impairment and contribute to groundwork for future non-pharmacological interventions targeting aspects of cognitive decline.Accepted manuscrip

    Fast Synchronization of Perpetual Grouping in Laminar Visual Cortical Circuits

    Full text link
    Perceptual grouping is well-known to be a fundamental process during visual perception, notably grouping across scenic regions that do not receive contrastive visual inputs. Illusory contours are a classical example of such groupings. Recent psychophysical and neurophysiological evidence have shown that the grouping process can facilitate rapid synchronization of the cells that are bound together by a grouping, even when the grouping must be completed across regions that receive no contrastive inputs. Synchronous grouping can hereby bind together different object parts that may have become desynchronized due to a variety of factors, and can enhance the efficiency of cortical transmission. Neural models of perceptual grouping have clarified how such fast synchronization may occur by using bipole grouping cells, whose predicted properties have been supported by psychophysical, anatomical, and neurophysiological experiments. These models have not, however, incorporated some of the realistic constraints on which groupings in the brain are conditioned, notably the measured spatial extent of long-range interactions in layer 2/3 of a grouping network, and realistic synaptic and axonal signaling delays within and across cells in different cortical layers. This work addresses the question: Can long-range interactions that obey the bipole constraint achieve fast synchronization under realistic anatomical and neurophysiological constraints that initially desynchronize grouping signals? Can the cells that synchronize retain their analog sensitivity to changing input amplitudes? Can the grouping process complete and synchronize illusory contours across gaps in bottom-up inputs? Our simulations show that the answer to these questions is Yes.Office of Naval Research (N00014-01-1-0624); Air Force Office of Scientific Research (F49620-01-1-03097

    Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs

    Get PDF
    The hypothesis, that cortical dynamics operates near criticality also suggests, that it exhibits universal critical exponents which marks the Kuramoto equation, a fundamental model for synchronization, as a prime candidate for an underlying universal model. Here, we determined the synchronization behavior of this model by solving it numerically on a large, weighted human connectome network, containing 804092 nodes, in an assumed homeostatic state. Since this graph has a topological dimension d<4d < 4, a real synchronization phase transition is not possible in the thermodynamic limit, still we could locate a transition between partially synchronized and desynchronized states. At this crossover point we observe power-law--tailed synchronization durations, with τt≃1.2(1)\tau_t \simeq 1.2(1), away from experimental values for the brain. For comparison, on a large two-dimensional lattice, having additional random, long-range links, we obtain a mean-field value: τt≃1.6(1)\tau_t \simeq 1.6(1). However, below the transition of the connectome we found global coupling control-parameter dependent exponents 1<τt≤21 < \tau_t \le 2, overlapping with the range of human brain experiments. We also studied the effects of random flipping of a small portion of link weights, mimicking a network with inhibitory interactions, and found similar results. The control-parameter dependent exponent suggests extended dynamical criticality below the transition point.Comment: 12 pages, 9 figures + Supplemenraty material pdf 2 pages 4 figs, 1 table, accepted version in Scientific Report

    Long-range forces in controlled systems

    Get PDF
    This thesis investigates new phenomena due to long-range forces and their effects on different multi-DOFs systems. In particular the systems considered are metamaterials, i.e. materials with long-range connections. The long-range connections characterizing metamaterials are part of the more general framework of non-local elasticity. In the theory of non-local elasticity, the connections between non-adjacent particles can assume different configurations, namely one-to-all, all-to-all, all-to-all-limited, random-sparse and all-to-all-twin. In this study three aspects of the long-range interactions are investigated, and two models of non-local elasticity are considered: all-to-all and random-sparse. The first topic considers an all-to-all connections topology and formalizes the mathematical models to study wave propagation in long-range 1D metamaterials. Closed forms of the dispersion equation are disclosed, and a propagation map synthesizes the properties of these materials which unveil wave-stopping, negative group velocity, instability and non-local effects. This investigation defines how long-range interactions in elastic metamaterials can produce a variety of new effects in wave propagation. The second one considers an all-to-all connections topology and aims to define an optimal design of the long-range actions in terms of spatial and intensity distribution to obtain a passive control of the propagation behavior which may produces exotic effects. A phenomenon of frequency filtering in a confined region of a 1D metamaterial is obtained and the optimization process guarantees this is the best obtainable result for a specific set of control parameters. The third one considers a random-sparse connections topology and provides a new definition of long-range force, based on the concept of small-world network. The small-world model, born in the field of social networks, is suitably applied to a regular lattice by the introduction of additional, randomly selected, elastic connections between different points. These connections modify the waves propagation within the structure and the system exhibits a much higher propagation speed and synchronization. This result is one of the remarkable characteristics of the defined long-range connections topology that can be applied to metamaterials as well as other multi-DOFs systems. Qualitative experimental results are presented, and a preliminary set-up is illustrated. To summarize, this thesis highlights non-local elastic structures which display unusual propagation behaviors; moreover, it proposes a control approach that produces a frequency filtering material and shows the fast propagation of energy within a random-sparse connected material

    Beta-rhythm oscillations and synchronization transition in network models of Izhikevich neurons: effect of topology and synaptic type

    Get PDF
    Despite their significant functional roles, beta-band oscillations are least understood. Synchronization in neuronal networks have attracted much attention in recent years with the main focus on transition type. Whether one obtains explosive transition or a continuous transition is an important feature of the neuronal network which can depend on network structure as well as synaptic types. In this study we consider the effect of synaptic interaction (electrical and chemical) as well as structural connectivity on synchronization transition in network models of Izhikevich neurons which spike regularly with beta rhythms. We find a wide range of behavior including continuous transition, explosive transition, as well as lack of global order. The stronger electrical synapses are more conducive to synchronization and can even lead to explosive synchronization. The key network element which determines the order of transition is found to be the clustering coefficient and not the small world effect, or the existence of hubs in a network. These results are in contrast to previous results which use phase oscillator models such as the Kuramoto model. Furthermore, we show that the patterns of synchronization changes when one goes to the gamma band. We attribute such a change to the change in the refractory period of Izhikevich neurons which changes significantly with frequency.Comment: 7 figures, 1 tabl

    Using Auditory Steady State Responses to Outline the Functional Connectivity in the Tinnitus Brain

    Get PDF
    BACKGROUND: Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions. METHODS AND FINDINGS: Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions. CONCLUSIONS: To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com
    • …
    corecore