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Executive Summary

This thesis investigates new phenomena due to long-range forces and their effects
on different multi-DOFs systems. In particular the systems considered are meta-
materials, i.e. materials with long-range connections. The long-range connections
characterizing metamaterials are part of the more general framework of non-local
elasticity.

In the theory of non-local elasticity, the connections between non-adjacent particles
can assume different configurations, namely one-to-all, all-to-all, all-to-all-limited,
random-sparse and all-to-all-twin. In this study three aspects of the long-range
interactions are investigated, and two models of non-local elasticity are considered:
all-to-all and random-sparse.

The first topic considers an all-to-all connections topology and formalizes the math-
ematical models to study wave propagation in long-range 1D metamaterials. Closed
forms of the dispersion equation are disclosed, and a propagation map synthesizes
the properties of these materials which unveil wave-stopping, negative group ve-
locity, instability and non-local effects. This investigation defines how long-range
interactions in elastic metamaterials can produce a variety of new effects in wave
propagation.

The second one considers an all-to-all connections topology and aims to define an
optimal design of the long-range actions in terms of spatial and intensity distribu-
tion to obtain a passive control of the propagation behavior which may produces
exotic effects. A phenomenon of frequency filtering in a confined region of a 1D
metamaterial is obtained and the optimization process guarantees this is the best
obtainable result for a specific set of control parameters.

The third one considers a random-sparse connections topology and provides a new
definition of long-range force, based on the concept of small-world network. The
small-world model, born in the field of social networks, is suitably applied to a
regular lattice by the introduction of additional, randomly selected, elastic connec-
tions between different points. These connections modify the waves propagation
within the structure and the system exhibits a much higher propagation speed and
synchronization. This result is one of the remarkable characteristics of the defined
long-range connections topology that can be applied to metamaterials as well as
other multi-DOFs systems. Qualitative experimental results are presented, and a
preliminary set-up is illustrated.

To summarize, this thesis highlights non-local elastic structures which display un-
usual propagation behaviors; moreover, it proposes a control approach that produces
a frequency filtering material and shows the fast propagation of energy within a
random-sparse connected material.



Chapter 1

Introduction to Long-Range
metamaterials

n

"The Love that moves the sun and the other stars " ', this famous quote of Dante
Alighieri, gives an idea of the astonishment of the human being facing forces that
act without there being any contact between bodies.The love of God was the only
"force” able to move the universe. Since that time, centuries passed by before
Isaac Newton and William Gilbert gave scientific definitions for the gravitational
interaction and the magnetic force respectively (they were not the only ones but
the most famous).

An important part of the modern physics is based on long-range forces as:

e gravitational forces
e magnetic forces
e electrostatic forces

These forces connect bodies distant to each other, making it possible for wireless
communication, energy transmission in the oceans, the presence of satellites in the
earth orbit and other several applications that gave birth to modern technology.
The fil rouge of this thesis are the long-range forces and their effects on different
multi — DOF's systems. In particular the systems considered are metamaterials,
namely materials with both short and long-range connections.

"...Metamaterials are obtained by suitably assembling multiple individual elements
constructed with already available microscopic materials, but usually arranged in
(quasi- )periodic sub-structures. Indeed, the properties of metamaterials do not de-
pend only on those of their component materials, but also on the topology of their
connections and the nature of their mutual interaction forces. In literature there is
currently specified a particular class of metamaterials, so called mechanical metama-
terials, those in which the particular properties which are "designed" for the newly
synthesized material are purely mechanical”". This extract from Wikipedia clarifies
what is meant for metamaterial in this work. In the last topic of the thesis a gen-
eralization from metamaterials to multi — DOF's systems is presented, introducing

YL 7amor che move il sole e Ualtre stelle” , Dante Alighieri: Paradiso XXXIII 145



several possible applications.
Appropriately designed metamaterials can affect waves of electromagnetic radiation
or sound in a manner not observed in bulk materials [1-3]. Those that exhibit a
negative index of refraction for particular wavelengths have attracted significant
research [4-6], these materials are known as negative-index metamaterials. Poten-
tial applications of metamaterials are multifold and include optical filters, medical
devices, remote aerospace applications, sensor detection and infrastructure mon-
itoring, smart solar power management, crowd control, high-frequency battlefield
communication and lenses for high-gain antennas, improving ultrasonic sensors, and
even shielding structures from earthquakes [7-9]. Metamaterials offer the potential
to create superlenses. Such lens could allow imaging below the diffraction limit
that is the minimum resolution that can be achieved by conventional glass lenses.
A form of "invisibility" was demonstrated using gradient-index materials. Acoustic
and seismic metamaterials are also research areas [9].
The long-range connections which characterize the metamaterials of this thesis are
part of the more general framework of non-local elasticity. In the theory of non-
local elasticity the connections between non adjacent particles can assume different
configurations as shown in Figure 1.1 and in this thesis the analyzed cases are: all-
with-all and random-sparse.

The common ground for the different long-range metamaterials investigated in
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Figure 1.1. Possible non local elasticity connections.

this work are the short-range elastic interactions between closest particles. Mate-
rials with this kind of template are lattices. This can be represented as a set of
elements connected in a circle (the representation is useful graphically, the system
has not to be mechanically connected necessarily in a closed chain), called ring.
Figure 1.2 represents the typical connections in a short-range interaction fashion,
where elements can communicate, i.e. exchange forces, only with those that are ad-
jacent to it (red connecting lines represent the short-range interactions). This is the
typical connectivity that mechanically represent the world of local-elasticity. The
behaviour of such a connected system is well known. One of the main characteristic
of such connected system is the chance of having travelling disturbances, i.e. waves.
Energy travels across the ring and two typical speeds can be introduced: the phase
and group velocities. The spectral properties of these kind of systems are associ-
ated to eigenvectors, the shape of which is typically an oscillating space function
that involves the whole ring. Based on this knowledge, in this thesis two different
templates of long-range connections are added and new propagation phenomena are



investigated.
The study of systems with long-range interactions begins with a short introduction
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Figure 1.2. Connectivity based on neighbors interaction, short-range classical case.

of the two main topologies of connections considered (Chapter 1), then the mathe-
matical models, necessary to describe this interaction phenomenon for the study of
propagation behavior in continuous elastic media are presented (Chapter 2). The
study starts considering the well-known Kréner-Eringen [10] integral model of non-
local elasticity, which takes into account non-local effects in solids. In this context,
the most popular approaches are the gradient (weak) and integral (strong) non-local
elasticity theories. The use of the gradient elasticity theory implies the introduc-
tion of gradients in the strain field in the stress-strain relationship, accounting for
the contributions from a generic neighbourhood in the induced stress field [11-14].
On the other hand, the integral model of non-local elasticity [15-17] accounts for
the interactions between non-adjacent elements of the solid, introducing a weighted
integral of the strain field in the stress-strain relationship. The weighting function,
dubbed the attenuation function [17], must be symmetric and has to satisfy some
specific boundary conditions. A class of attenuation functions that satisfy the afore-
mentioned requirements has recently been proposed in the scientific literature [18]
and depends on the characteristics of the material as well as on the boundaries of
the considered elastic solid.

Once the general models are defined, two specific functions that reproduce a magnetic-
like long-range force and allow obtaining an analytic solution are introduced: the
Gauss-like and the Laplace-like forces.

At the beginning of the research, the long-range forces considered were electro-
static and magnetostatic forces, but the magnetostatic interactions were the more

suitable for the realization of an experimental set-up. The magnetic dipole-dipole
HoT

4g|r|>’
distance r and is antisymmetric. Since t|he| mathematical models used to describe
these systems lead to nonlinear equations of motion, the choice of specific functions
is necessary to find an analytical solution providing the dispersion curves, . These
functions must have the same characteristics of the magnetic forces and produce a
solution for the equation of motion. These functions are indeed the Gauss-like and
Laplace-like presented in Chapter 2. These mathematical models are completely
general and reproduce decaying and antisymmetric forces without specific relations
with the kind of physical long-range force.

The first investigated topic is the study of the propagation behavior in continuous
elastic media with non-local elastic characteristic. A one dimensional model as a

interaction follows the law: F(r) = which decays with the 5 power of



waveguide is considered and unexpected results are obtained in terms of the main
propagation parameters such as the phase and group velocity. In this analysis the
long-range connections are of the kind of all-with-all and the force is homogeneous
in the media. Then two more specific applications are presented: the first one is an
attempt to obtain an optimal design of a one-dimensional waveguide with long-range
interactions in order to transmit the signal (the wave) according to desired paths,
while the second one concerns the synchronization of a one-dimensional waveguide
with long-range random elastic connections.

The first one is the natural evolution of the study about the propagation behavior in
long-range metamaterials and consists in the application of an optimization method
to obtain a passive control of the structure due only to the long-range connections
within the material (Chapter 3). The aim is to obtain some desired propagation be-
haviours through the optimal design of the material in terms of spatial and intensity
distribution of the long-range forces. Even in this case the long-range interactions
can be all-with-all but a preliminary study showed that the contribution from the
third neighbours is negligible; moreover, the spatial distribution is manually defined
to obtain a filter in the central area of the waveguide. The possibility to filter some
frequencies in specific areas of the material implies the chance of protect hypothetic
added bodies which are connected or in contact with the material’s surface. This
opportunity gives a huge scenario of applications. The chance of controlling elastic
wave propagation has become a reality in recent times due to the development of
new micro-nanotechnologies together with the new perspectives for additive man-
ufacturing machines [1, 19-22]. These opportunities disclose a new scenario for
designing innovative materials (mechanical materials) that show exceptional dy-
namic behavior. These effects can amount to special dissipation properties [23-25]
or unusual wave propagation characteristics [26-29], or special kinematic and static
properties [30, 31], also in the presence of magneto-electrical phenomena of classi-
cal, semi-classical or quantum nature [32], including important existing knowledge
about wave propagation in periodic systems.

The last topic (Chapter 4) concerns metamaterials with random-sparse long-range
elastic interactions. This work is inspired by a theory borrowed from sociology: the
small-world principle; the synergy between the long-range metamaterials and the
small-world principle leads to the study of the propagation behavior of a long-range
metamaterial with a few random connections. In this case the interaction is not
all-with-all but sparse and random, trying to minimize the number of connections
without changing the performances. The aim of this study is to obtain a faster
transmission of energy and synchronization of the system with respect to the stan-
dard waveguide. A short presentation of the experimental set-up is reported and
the comparison between the simulated and experimental results shows qualitative
similarities.

Later on the generalization from a matematerial to a multi — DOF's system is
introduced, indeed this kind of interaction has been also studied in the field of
automated vehicles and swarm of drones. The results obtained about the metama-
terials can be considered for a group of drones or an ensemble of cars. Nowadays,
in the context of non-locality and long-range actions, the connected mobility and
the multi — DOF's system synchronizations are avant-garde topics. The automated
vehicles are the future of mobility. The technology applied to the field of vehicle
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automation is developed to ideally avoid the human presence. The next step is to
allow the vehicles to communicate in a smart way to respond to external events (i.e.
hard braking, red light, accidents) as a synchronized swarm, increasing the speed of
reaction and reducing the possibility of crashes. The swarm synchronization is an
interesting topic not only for the traffic mobility but also for the increasing presence
of automated machines in every possible field of the applied engineering. AUV 2,
rovers and drones are increasingly replacing human tasks in the technical as well
as in the social sphere; they are used to monitor the seabed, port areas, to control
the cultivated fields and distribute pesticides, to monitor suspended infrastructures
and territorial boundaries. It is clear that the need to optimize the communication
between these swarms of automated systems is essential to reduce the complexity
and costs of communication software infrastructures.

Finally a general conclusion and future perspectives are presented.

To summarize:

In Chapter 1 the general introduction and the presentation of the main multi —
DOF's systems are presented.

In Chapter 2 the integro-differential model and the high-order differential model
are introduced with two specific functions of long-range force, then the study of the
propagation behaviour of a long-range metamaterial is reported.

In Chapter 3 the optimal design of a linear long-range metamaterial is carried out
to obtain a passive controlled structure.

In Chapter 4 the small-world theory is introduced and the synergy between this
topic and the metamaterial analysis led to the study of long-range purely elastic
metamaterials with sparse-random connections. A preliminary experimental set-up
is presented.

In Chapter 5 Conclusions and future perspectives are disclosed.

1.1 All-to-all interactions

As previously stated, this thesis is focused on two connectivity templates: the all-
to-all and the random-sparse. The all-to-all interactions can be reproduced through
several kind of forces, i.e. magnetostatic, electrostatic and elastic. The advent of 3D
printers or micro-nano technologies opened the possibility to realize materials with
complex connectivity schemes, but the complexity in the realization is still a limit
for practical applications. In an all-to-all template, connections are not instanta-
neous, but along them an information flows, delayed due to the connection length.
Waves exhibit unexpected behaviour changing the system connectivity. Damping
can be generated by nondissipative structures. Energy can propagate backwards
with respect to wave direction. Waves can stop or follow a pre-determined path or
localize at some points. Negative mass effect can emerge [33].

In Chapter 2 two very general model of long-range forces are chosen to represent any
kind of antisymmetric and decaying force which reproduce an all-to-all connectivity
scheme. Propagation phenomena are deeply investigated revealing:

o All-all full-range produces a phenomenon of wave stopping along a 1 Dwaveguide;

2 Automated Underwater Vehicle
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e Moreover, at some frequencies, an anomalous propagation phenomenon ap-
pears: superluminal propagation of waves along the ring can be observed,
meaning the waves transported along the ring itself reach an infinite group
velocity;

¢ Modes are localized;

e Singularity in the modal density are observed at those frequencies at which
the wave stopping is produced.

In Chapter 3 an optimal design procedure is carried on this kind of metamaterials.
A passive control due to the long-range forces within the structure allows to observe
interesting frequencies filtering effects.

1.2 Random-sparse interactions

This kind of non-locality scheme implies that a small number of connections are
present, randomly involving pair of elements along the ring, i.e. the connections
are randomly sparse.This scheme exhibits additional effects, that are based on the
small world theory, originally proposed in social sciences.

The introduced number of long-range connections to produce a significant change
from the short-range characteristic propagation is very small. Even a few percent
of activated long-range connections permit to observe the following phenomenas:

e Strong synchronization of the individuals motion, that in this study means
the motion of a large group of masses along the ring has almost the same
instantaneous amplitude.

e Very high speed of propagation of the energy along the ring, with a fast
equipartition of energy that implies a faster reduction in the displacements,
thus in the stress of the material.

In Chapter 4 the analysis of the physical phenomena due to long-range actions is
carried on a metamaterial with random-sparse connections, but the results can be
directly applied to other fields like the case of a swarm of drones or to the case
of automated mobility. Both these systems are composed of elements that need to
be connected to each other to communicate and to interact; their connection can
be all-with-all, one-to-all but are tipically optimized to introduce a lower number
of wireless connections with no reduction in the interaction performances(random-
sparse). The models for the connectivity of these systems are the same as those
used for metamaterials and this allows an almost direct application of the results
obtained for the metamaterials.



Chapter 2

Propagation behaviour of
long-range metamaterial with
all-to-all connections

Metamaterials are known to yield unexpected results in many applications. For
example, electromagnetics metamamaterials are mostly used to create anomalous
refraction index and dissipation. Several studies have demonstrated unusual wave
propagation [34] by synthesizing negative group velocity, or light stopping [35-38],
or fast light, using special dissipation and diffraction properties of electromagnetic
media [39-42]. Even an acoustic setup has been proposed in Robertson et Al. [43],
where, with electronically assisted devices, wave trains of desired spectral composi-
tion and superluminal wave propagation have been observed [44]. Waves in plasmas
and charged gases also represent a stimulating example of acoustic fields controlled
by long-range electrical interactions [45—48]. In mechanics, metamaterials intro-
duced micropolar, higher-gradient and nonlocal elasticity [10, 49-53].

In one of the rare investigations of nonlocal dispersion relationship[10], the author
identifies the long-range elastic modulus, based on Brillouin dispersion in a lattice
[54], that he compares successfully with experimental results [55]. In the landscape
of recent investigations of elastic metamaterials, the correlation between waves and
nonlocality is not directly addressed[56] and the scientific literature does not report
results on anomalous elastic wave propagation analogous to those found in elec-
tromagnetics. Even though nonlocal interactions have been investigated in several
areas [10, 29, 57-60], the lack of general results for dispersive properties in nonlo-
cal materials should not be surprising since theoretical investigations in this field
suggest complex integral-differential equations in space and differential in time to
describe the wave propagation.

In this work, the dispersion relationship is analytically determined for elastic mate-
rials with long-range yielding surprising wave propagation behaviors, namely wave-
stopping, negative and hypersonic or superluminal group velocity, as a direct effect
of nonlocality.

The approach used here considers long-range interactions by examining their con-
nectivity characteristics. Unlike in classical waves, which are borne out of particle-
particle connections between the closest neighbours, unconventional effects result
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when one-to-all particle connections are introduced, as in [piercel997resonant,
24, 61-64], and when all-to-all connections appear, as in Vlasov’s theory [65] or in
quantum physics [66, 67], or in the case of elastic materials investigated here.

The mechanism for wave-stopping, negative group velocity and hypersonic (super-
luminal) propagation is demonstrated by simple long-range forces. The particle-
particle interaction forces in this case rapidly decay with the distance and asymp-
totically vanish, as in many physical forces, namely electrostatic, magnetostatic or
gravitational.

As mentioned in Chapter 1 the most popular approaches to study non-local con-
nections are the gradient (weak) and integral (strong) non-local elasticity theories.
Two models based on these theories are exposed in the following sections 2.1 and
2.2.

2.1 Integro-differential model

Differential equations, both in space and time, are the typical ground on which
the local-elasticity operates. A theory of long-range connections leads to nonlinear
integral-differential equations to describe the wave propagation, which includes, in
general, integral convolution terms in space and time. This kind of equations is
certainly claimed in the new generation of metamaterials, where the connections
can be built up by using, for example, additive manufacturing techniques. Starting
from the Navier-Cauchy formulation, for a continuous unbounded three-dimensional
elastic solid, the equation of motion becomes:

E

o) V2u(z,t) +ﬁv \% -u(w,t))}—i—

1% utt(:c,t) —
/ Flehrdv =0 (2.1)
¢eR3

where r = ¢ 4+ u(x) — (£ + u(€)), with p, E and v the density, the Young modulus
and the Poisson ratio of the medium, respectively and V the Laplace operator.
Considering the Navier-Cauchy formulation we are assuming to apply the linear
elasticity theory implying small deformations of the solid.

The integral represents the sum of the long-range interaction forces, exerted on the
particle originally at @, due to all the other particles distributed in space, varying
with &, Figure 2.1.

In general, analytic solutions to Eq. 2.1 are not possible. However, linearization
of the force f(|r|)r, with respect to € = u(x,t) —u(&,t) and for small deformation,
permits, together with some additional hypotheses introduced later, investigation
of closed form solutions, providing important insights into the wave propagation
properties.

Taylor series of the force up to the first order in terms of € is:

F = f(Ir])r ~ (x — &) fo + hoe + foe (2.2)

where

fo=f(lz—&l) (2:3)
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Figure 2.1. From summation to integral

L 0| @-8@-8)
0=

Alr|ly |z — &
and the subscript 0 denotes quantities evaluated at € = 0 and ® is the tensor
product operator.
Therefore, the linearized integral term of equation of motion (2.1) becomes:

(2.4)

/’ [(z — &) fo + hoe + foe] dV (2.5)
£CR3

Separation of the static and the dynamic components of the displacement, u(x,t) =
v(xz) +w(z,t), leads to:

PWy + [VQW - V(V-w)| +hg-w—

2(1 + v) 1—2v

[ho * W] + fow — [foxw] =0 (2.6)

for the dynamic component, where - indicates average over R? and * indicates the
convolution operator.

In this wave-dynamics context, the discussion of v(x) it is not of interest because
the system starts the evolution from an equilibrium position. Indeed, for those
forces that obey:

é@Jx—@th:o (2.7)

v(x) vanishes and w(x,t) remains the only displacement field.

Moreover, for special choices of the function f(|r|), equation (2.6) can exhibit ana-
lytical solutions, as illustrated in section 2.3.

The integro-differential model will be used in Section 2.4 to investigate the propa-
gation phenomena in long-range metamaterials. The High-order differential model
introduced below will be used for the study in Chapter 3.



2.2 High-order differential model 11

2.2 High-order differential model

In the first half of the nineteenth century the design of structures became an intel-
lectual activity based on the rigorous application of predictive mathematical mod-
els. These models were formulated by means of a precise postulation process and
originated a series of problems or exercises directly motivated by the engineering
applications, which were solved by means of the use of the newly developed tech-
niques of mathematical analysis. The model describing the mechanical behaviour of
materials introduced by Cauchy, although very accurate for a large class of phenom-
ena, cannot be applied to all materials in every physical condition, i.e. in presence
of non-local elasticity characteristics.

More general models were formulated by Gabrio Piola [68] in the same years, but
only recently they were considered in engineering for applications. In some formu-
lations of continuum mechanics, the possibility of the dependence of deformation
energy on higher gradients of displacement was considered and applied in the field
of metamaterials. As well as for the integro-differential model it is appropriate
to start from a modified Navier-Cauchy formulation for a continuous unbounded
three-dimensional elastic solid for which the equation of motion becomes:

p uy(x,t) — 2 E Viu(x,t) + 1_12VV (\Y% ~u(az,t))]+

1+v)

n
+ Z Lop2q,20Vipgrmu =0 (2.8)

p,g,r=1

P2ptatr) ()
0x20y2022
for the long-range forces: the higher is the order of derivation, the farther the
interaction reaches. Following the same procedure of section 2.1 the equation of
motion without the static part becomes:

where V(, 4() = and the additional summation term accounts

E 1
N | v
POty VY T T

\V4 (V . w)] + Z F2p72q’2rV(2p72q72r)’w =0 (2.9)

p,q,r=1

The reason to introduce Eq. 2.9 as an alternative mathematical model to de-
scribe the long-range interactions is the limit of the integro-differential model in
terms of variety of integral function. Indeed, only a few functions f(|r|) lead to
a closed-form expression in the case of an integro-differential equation of motion.
Moreover for certain types of studies, the high-order differential approach it is more
suitable (Chapter 3).

The complex part for this formulation is to determine the I's coefficients. The
procedure to evaluate such coefficients is presented below for an unbounded one-
dimensional system for which Eq. 2.9 collapses into:

0w 0w n 92P) gy
P~ Ew +§::1r2pax(2p) =0 (2.10)
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A systematic analogy among a chain of interacting particles is described, for
linearized interaction forces, by a set of ordinary differential equations in terms
of the set of particle displacements w;(t). A continuous description is obtained
by partial differential equation, where the continuous space variable x replaces the
discrete index i to identify the displacement w(x,t) at the point z, such that w(x;, t)
= wW; (t)

To determine I'g, coefficients, Eq.2.10 is discretized as a mechanical system
consisting of M equal particles of mass m, placed at mutual initial distance d,
subjected to a set of forces Fj;, the form of which is to be determined such that, for
a vanishing d, the governing equations of the discrete system exhibits the form 2.10.
General theorems about this problem are demonstrated in [69]. Consider the i —th
particle of the system, and its interaction with 2n particles (n can be arbitrarily
large) located within the range:

[z; — nd, z; + nd]
Therefore, the interaction force between the ¢ — th and the j — th particle is:
Fij = kij (wl - wj)’ w; = w|m:id (211)

that represents a linearized version of the force, deprived of the static contribution,
as it has been illustrated also in the continuous case. To make an analogy with
the integro-differential model, the force f(|r|)r is considered in its one-dimensional,
discrete and linearized form; moreover only the dynamic contribution is taken into
account. Based on these assumptions equation 2.11 becomes:

_ [0f(1G = 5)d])

By = £l iy & (ot fo)e = | S50 =50 = 3)d) + £ = )| (wi = ;)

= kij (wl — w]’) (212)

The coefficient k;; depends on the physical nature of the considered interaction
force. Thus, the total force over the i — th particle is:

i+n
Fi= > kij(w; —wy) (2.13)

j=i—nm

This expression is the discrete counterpart of the previously analyzed continuous
convolution integral to express the long-range effect.

It is interesting to note that this force is represented by a linear combination of the
particle displacements along the waveguide, and the force (2.13) can be described
by a suitable linear combination of discretized derivatives. This allows the descrip-
tion of the long-range force through combination of derivatives of suitable orders,
that can be simply Fourier transformed to determine an analytical expression for
the dispersion relationship.

Another expression for the equation of motion is obtained through the Euler-
Lagrange approach based on the ideas of Piola [68]:
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Zn: 1)° A, (Alw), (2.14)

To define T'9, it is necessary to compare the terms which account for the long-
range forces of the discretized and continuous equations of motions. In fact, for d
smaller than the characteristic wavelength in the chain of particles, Equation 2.15
collapses into the continuous equations of motion 2.16:

d2wi dei n
Mg+ A +pzl (=1)P A, (ADw), = 0 (2.15)
0w 0w Py
prE82+Z L (2.16)
Comparing only the long-range terms:
n n 0Py
p=1 p=1
since e
w(w, t) "X wlz,t) = w;
Z (=1 Ay (Aqw), = Z T'op (AGw); (2.18)
p=1 p=1
then
Iy, = (—-1)PA, (2.19)

that defines I'y, in function of A,. To determine A, it is necessary to start from
a recursive application of the operator Ay - discretized Laplacian - which produces
any desired order of even derivatives. It is reported below the demonstration stated
in [50], which proves that any even derivative can be expressed as:

i+n
(Afw); = > K wj) (2.20)

Jj=i—n

where the Kfj coefficients are generated by the following recursive formula. For
p =1, we have

(Asw)l =d? (wi+1 + wi—1 — 211)1') =d? [(wi+]_ — wi) + (U}Z;l - wl)] (2.21)
Thus 2.20 is verified with
Kzlz—i-l Kilﬂ-_l =d? and Kzlj =0 otherwise. (2.22)

Suppose now that 2.20 is true for p =1 — 1:

(Af]%u)i = K5 (wi — w)) (2.23)
J
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Then d
(A tw) = (Ald‘lAdw) Z K5 [(Aqw), = (Aqw), |
Z Kj;'ld —wip1) +d7? (wy —wj—1) —d 7 (wi — wip1) —d 7% (w; — wi—1)]
Z Kj;'[d —wji1) = d 7 (w; — wy) +d7? (w; — wj-1) — d7* (wi — wj) ~

— d_2 (wi — wi+1) d_2 (wi — wj_l)] (2.24)

Using the change of index j +1 — j in the first term and j — 1 — j in the
second, it becomes:

(Aiflw)i = > 1K A2 (wi — wy) = K572 (wi — wi) + K1 d 7 (w; — wy) —
J
— Ki;ld72 (wi — wj) — Kf;1d72 (wi - wi+1) - K£;1d72 (wi - w¢_1)] (2.25)

Thus, 2.20 is verified with the following recursive definition of K f;l

/
Kt =d? | KL+ K — 2K = (Gie + 6im) ZKZI;} (2.26)
J

for [ > 1 and Kl{j given by 2.22 and with the é of Kroneker.
Now that 2.23 is proven it is possible to conclude that 2.13 holds with :

n

Z )P KF A, (2.27)

Equations 2.26 and 2.27 can now yield the solution to the posed problem of iden-
tifying the topology of the microstructure connections, since they provide the co-
efficients k;; only in terms of the coefficients A, that characterize the continuous
formulation of the macroscopic description of the elastic problem. Equation (2.27)
can be used to determine the coefficients A, , since the coefficients K fj are generated
recursively as in equation 2.26 and k;; is defined by the physical expression of the
force:

kij=)_ (= prAp_ZT'];‘Ap = ki=AT; - A=KT;} (2.28)

The 4 index in the equation corresponds to the ¢ — th row of the stiffness matrix,
but the coefficients k;; for any row are the same, and the coeffcients A, are deter-
mined once and for all. From equation (2.29) we can finally derive the dispersion
relationship:

1
w? = Pk* = =) Tk =0 (2.29)
p
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The practical use of this approach is simple and, although approximated, is more
general than the one defined in the previous section. We define, on a physical ba-
sis, for example using a Taylor series analysis of the electrostatic or magnetostatic
forces, the stiffness coefficients k;; appearing in equation (2.13). In this work the
high-order differential model is not used to investigate the propagation behaviours
but to develop the optimal design of long-range metamaterials (Chapter 3).

2.3 Investigations of special kernels

Until now the long-range forces were not specified, but as mentioned in advance,
it is necessary to chose suitable functions such that the equation of motion of the
integro-differential model is solved.

Specific types of forces are investigated, i.e. the force F(P, Q) is defined as the
force borne on the particle at P, because of the particle at Q (Figure 2.2). F
should guarantee the action-reaction principle holds:

F(P,Q) = —F(Q.P). (2.30)

The force between two material elements, in the initial reference configuration at

€3

Figure 2.2. Sketch of long-range interaction.

x and &, respectively, can be expressed as:
F(z +u(w,t),§+u(é 1) = f(|r))r (2.31)

where
r=x—&+u(x,t) —ulgt) (2.32)

with u(z,t) the displacement in the elastic medium.
The convention used here assumes f(|r|) is negative for repulsive force, and positive
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for the attractive case.

The long-range interaction forces are represented in this study with two families of
exponentially decaying functions, the Gauss-like and the Laplace-like, which lead
to expressions for dispersion relationships also for the integro-differential model. In
the first study presented here, the integro-differential model is considered (Section
2.1) and the one-dimensional version of (2.6) is analyzed, introducing these two
forces (see equations (2.37) and (2.42)), for which it simplifies as:

A?*w d%w

P~ EW —g(z) *w(x) =0 (2.33)
where g(z) = ho(x) + fo(x) and these cases hg = 0 and fy = 0. Since for the
aforementioned interaction forces, g(z) = 81;3(50) , equation (2.33) becomes:

0*w 0*w

where ¢, is the strain along the axis, a form consistent with the Eringen formulation
for non-local elasticity in 1D [10].
Assuming;:

+o00 .
w(z,t) = / / W (k, o)/ 520 df; doo (2.35)

or taking the Fourier transform F{-} of (2.33) with respect to x and ¢, the dispersion
relationship is obtained:
pw? —Ek2+G(k)=0 (2.36)

where G(k) = F{g(x)}. Gauss-like and Laplace-like forces unveil some general
properties of long-range interaction. These forces present three advantages: (i)
they guarantee the action-reaction principle holds, (ii) they vanish for large z, a
typical property of some long-range forces met in physics and (iii) they admit an
analytical known Fourier transform G(k).

2.3.1 Gauss-like force

The Gauss-like form is:

F(r)= Mre_(%)Q (2.37)

where p controls the intensity of the force and 8 (positive) is the interaction
length. The sign of p follows the convention stipulated in section 2.3: p can
be positive or negative, to represent attractive or repulsive actions, respectively.
Moreover, F(r) = —F(—r) and Tlggo F(r) = 0. The linearisation of F about
e =w(z,t) —w(&,t) for the Gauss-like force in 1D becomes:

T\ 2 T — 2 (z—£)2
F(o.) = fr)r = (- (5 4 [12( ) ] 55 @) - wie)
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05 Gauss-like force
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03 4
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Force amplitude [N]
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Figure 2.3. Gauss-like force.

Combining equations (2.38) and (2.33):

0w 0%w +oo _(z=€)?
it Rl BNCEUERERE

too 2 —(2=£)?
(1= 5 e-9?) ) wiapder
+oo 2 _(z—¢ 2
+“/_oo (1—/62(33—5)2)6 (5°) w(e)de = 0. (2.39)
The two first integrals are null. This means that for the third one holds:
s—£\2
+u [T (1 - @ (x — §)2> e (5%) w(§) = g(x) * w(x), for which the equation of

motion becomes:

0w 0w +oo 9 £)? .
g P [ (1€t gas=o
(2.40)

3 2
i IE_k2e *Tk and

2v2
Q=+K\V1- Xe_KTZ (2.41)

is the dispersion relation associated with (2.40), where Q = ,/%Bw, K = pk, and

For the Gauss-like force, G(k) =

= are nondimensional parameters.
X 2V2E P

X is a scale factor that relates the intensity of the long-range interaction in terms
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3

of its elastic modulus E* = (positive or negative) and the elastic modulus E.

As for pu, the sign of y controls the attraction (x > 0) or repulsion (x < 0) charac-
teristic of the force.

Note that equation (2.41) can produce, for some wavenumber and x ranges, imag-
inary values. This implies the waveguide becomes unstable with unbounded wave

amplitudes. This happens for long-range forces of negative equivalent stiffness larger
than the classical elastic one.

2.3.2 Laplace-like force

In this case, F is based on the Laplace Distribution:

|r]

F(r)y=pre 8 (2.42)
with F(r) = —F(—r) and rlggo F(r)=0.

92 2 3k2
For G(k) = 220

= , the associated dispersion relationship is:
(1+ 52k2)°

Q- 4K J1-— (2.43)
V(K2 +1)?

s Laplace-like force

Force amplitude [N]

Abscissa x [m]

Figure 2.4. Laplace-like force.

2.4 Strange propagation in long-range

Three regimes of interactions are demonstrated, according to the distance range
and the intensity of the force, quantified by the long-range elastic modulus E*: (i)
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negative group velocity and wave-stopping, (ii) hypersonic (superluminal) group
velocity and instability, (iii) eigenstates migration.

These effects are investigated in authoritative works by Brillouin, Sommerfeld and
Voigt (see [70] and citations therein) that show they fit the framework of relativity,
since group and phase velocities do not coincide with the signal velocity, which in-
deed remains always confined below the upper bound of the speed of light.

The terms hypersonic and superluminal are used in this work for sound or light,
respectively, to indicate very fast waves that can exceed the phase and group ve-
locity of sound or light, respectively, depending on the nature of the D’Alembert
waveguide.

Before introducing the studies carried out on the propagation behavior of the system
it is good to introduce some definitions:

Dispersion relation

In physical sciences and electrical engineering, dispersion relations describe the ef-
fect of dispersion in a medium on the properties of a wave traveling within that
medium. A dispersion relation relates the wavelength or wavenumber of a wave to
its frequency. From this relation the phase velocity and group velocity of the wave
have convenient expressions that then determine the refractive index of the medium.
Dispersion may be caused either by geometric boundary conditions (waveguides,
shallow water) or by interaction of the waves with the transmitting medium. Ele-
mentary particles, considered as matter waves, have a nontrivial dispersion relation
even in the absence of geometric constraints and other media. In the presence of
dispersion, wave velocity is no longer uniquely defined, giving rise to the distinction
of phase velocity and group velocity. Dispersion occurs when pure plane waves of
different wavelengths have different propagation velocities, so that a wave packet of
mixed wavelengths tends to spread out in space. The speed of a plane wave, v, is a
function of the wave’s wavelength A :

v=1v(A\) (2.44)
The wave’s speed, wavelength, and frequency, f, are related by the identity
v(A) = Af(N) (2.45)

The function f(\) expresses the dispersion relation of the given medium. Dispersion
relations are more commonly expressed in terms of the angular frequency w = 27 f
and wavenumber k = 27/\. Rewriting the relation above in these variables gives

w(k) =v(k)k (2.46)

where now f is a function of k. The use of w(k) to describe the dispersion relation
has become standard because both the phase velocity % and the group velocity fl—‘;
have convenient representations via this function.

Phase Velocity

Phase velocity is the rate at which the phase of the wave propagates in space. This
is the velocity at which the phase of any one frequency component of the wave
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travels. For such a component, any given phase of the wave (for example, the crest)
will appear to travel at the phase velocity. The phase velocity is given in terms of
the wavelength A and time period 1" as

vy =7 (2.47)

Equivalently, in terms of the wave’s angular frequency w, which specifies angular
change per unit of time, and wavenumber (or angular wave number) k, which rep-
resents the proportionality between the angular frequency w and the linear speed
(speed of propagation) vy,

== 2.48
o= (2.48)
To understand where this equation comes from, consider a basic sine wave, A cos(kx—

wt
wt). After time t, the source has produced — = ft oscillations. After the same

T
time, the initial wave front has propagated away from the source through space to
the distance x to fit the same number of oscillations, kx = wt. Thus the propaga-

tion velocity vy is vy = 2 — Y The wave propagates faster when higher frequency

oscillations are distributed less densely in space. Formally, ® = kx —wt is the phase.
Since d and k +d<I> th e velocity is dv _w
ince w=——— and k = +—, the wave velocity is vy = — = —.
dt o M T

Group Velocity

The group velocity of a wave is the velocity with which the overall shape of the
wave’s amplitudes-known as envelope of the wave-propagates through space. The
group velocity vy is defined by the equation:

o
- Ok

where w is the wave’s angular frequency (usually expressed in radians per second),
and k is the angular wavenumber (usually expressed in radians per meter). The
function w(k), which gives w as a function of k, is known as the dispersion relation.
If w is directly proportional to k, then the group velocity is exactly equal to the
phase velocity. A wave of any shape will travel undistorted at this velocity. If w is
a linear function of k, but not directly proportional (w = ak + b), then the group
velocity and phase velocity are different. The envelope of a wave packet will travel
at the group velocity, while the individual peaks and troughs within the envelope
will move at the phase velocity. If w is not a linear function of k, the envelope of a
wave packet will become distorted as it travels. Since a wave packet contains a range
of different frequencies (and hence different values of k), the group velocity v, = 3—“,;
will be different for different values of k. Therefore, the envelope does not move at
a single velocity, but its wavenumber components (k) move at different velocities,
distorting the envelope. If the wavepacket has a narrow range of frequencies, and
w(k) is approximately linear over that narrow range, the pulse distortion will be
small, in relation to the small nonlinearity.

Now that the general concepts are clear it is possible to focus on the system intro-
duced in section 2.3. As previously stated, x is the non dimensional parameter which

Vg (2.49)
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determines the regimes of propagations through the dispersion relation, indeed the
propagation behavior is discussed in terms of x which affects the dispersion equa-
tions (2.41) and (2.43). From them, with the speed of sound ¢ = ,/%, analytical

10w _d@ o _lw_Q
c@k_ldK ek K’

. . . dN
respectively, as well as for the eigenstate density — o —.
aQ — C,

Three ranges for x are discussed: (i) x < —1, (ii) —1 < x < 1 and (iii) x > 1.

forms follow for the group and phase velocity C, =

2.4.1 Propagation effects of the Gauss-like force
Negative group velocity (NGV) and wave-stopping, x < —1

The dispersion curves for y < —1 are represented in Figure 2.5 that shows both
points of minimum and maximum, for each y. Wave-stopping phenomena appear,
since at those points the group velocity C, vanishes (Figure 2.6). Moreover, the

Dispersion relationship (Gauss-like model)

<—— Wave-Stopping Line

i
-
%

o
T

NGV

©
T

Nondimensional frequency 2

_ ~ “DALEMBERT
-~ x<<-1

0 I I I I I I
0 1 2 3 4 5 6 7 8

Nondimensional wavenumber K

Figure 2.5. Dispersion curves for the Gauss-like model for different y <« —1.

part of the curves in Figure 2.5 with a positive slope are related to a conventional
dynamic behaviour, whilst the negative slope side leads to a negative group velocity,
denoted as NGV.
In Figure 2.6, the group velocity is plotted versus the wavenumber and it shows: i)
the existence of wavenumber pairs for which the group velocity vanishes, producing
wave-stopping, ii) the presence of a bandwidth of negative values of the group
velocity, iii) larger NGV bandwidth, for larger negative values of .

As shown in Figure 2.7, the phase velocity at low frequencies assumes values
considerably higher if compared with a conventional waveguide, characterised by
first neighbour interactions, and decreases with increasing the frequency.
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Group velocity (Gauss-like model)
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Figure 2.6. Group velocity for the Gauss-like model for different values of .

Phase velocity (Gauss-like model)
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Figure 2.7. Phase velocity for the Gauss-like model for different values of y.

Finally, Figure 2.8 shows the eigenstate density that exhibits two peaks. These
points correspond to the vanishing group velocity.

The singularities in the eigenstate density produce an energy storage effect into the
waveguide, preventing propagation and yielding the inception of wave-stopping. It
is possible to speak about eigenstate density and energy storage even if an infinite
structure is studied, under some hypothesis. The infinite waveguide is approximated
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by infinitesimal concentrated elements and under the hypothesis of equipartition
of energy between the modes, if there is a concentration of modes in a range of
frequency, even for infinite modes it is lawful to speak of accumulation or storage
of energy.

This apparent double nature of finite and infinite system comes from the numerical
simulation results. Since the simulations can not consider a really infinite waveguide,
natural questions arise after the wave-stopping phenomenon was found: where the
energy goes if it can not propagate?. To answer this question it was decided to
investigate the finite nature of the waveguide looking at the modes distributions.
Thus a phenomenon that is mathematically obtained by a function which holds for
an infinite structure ) o roh finds its physical explanation in its finite equivalent

g

model.

Eigenstate density (Gauss-like model)
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Figure 2.8. Eigenstate density for the Gauss-like model for different values of x.

Eigenstates migration, —1 < x <1

Wave dispersion phenomena are analysed in the range of x between —1 and 1 char-
acterized by long-range weak forces suggesting a behaviour close to the classical
D’Alembert waveguide.

Figure 2.9a, 2.9b and 2.9c show the trend of the dispersion relationship, the
group velocity and the eigenstate density, respectively. Wave-stopping effects do
not occur, and the group velocity is always positive.

For any given x in Figure 2.9c, two branches of curve are identified: the one
on the right and the one on the left with respect to the intersection with the
D’Alembert curve that is at the folding wavenumber kg. For example, for 0 <
x < 1,(Figure 2.9d), the left branch shows a higher eigenstate density with respect
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Dispersion relationship (Gauss-like model)
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to the D’Alembert case, while the right branch a lower one. This effect is called
mode-migration. A direct inspection of the analytical expressions of the eigenstate

density shows that:
ko /dN oo dN
— —1]dQ = 1——1dQ 2.50
/o (dQ ) /ko ( dQ) (2:50)
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Figure 2.9. Dispersion curves (a
Gauss-like model for x € [-1,1].

(ko) = 1. This implies that the number of the eigenstates gained by the

ay
dS)

where

long-range waveguide in the region k € [0, ko] equals the number of the eigenstates
lost in the bandwidth k € [ko, +00c]. This means an eigenstate packet migrates from

The upper limit of the integral +oo is a

high to low frequency, folding about k.
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mathematical limit which finds its physical counterpart in the wavenumber given
by the lowest wavelength due to the molecular scattering. Analogous considerations
hold for —1 < x < 0, but with an opposite flow of modes.

For all the x’s (see Figure 2.9c), the characteristic value of kg is about 1.4.

The region characterised by a richer eigenstate density tends to trap the energy,
slowing down its transport and lowering the group velocity (see Figures 2.9b and 2.9c¢).
From a mathemixtical point of view the slowdown of the group velocity it is clear
Cy
tition of energy between the modes, if some modes migrate from higher frequencies
to lower frequencies it implies that there is an high content of energy trapped at
low frequencies.

dN
because 29 & holds. Physically speaking, under the hypothesis of the equipar-

Hypersonic group velocity and instability, x > 1

For x > 1, the analysis of the dispersion equation shows the presence of an unstable
region: in it, no propagation occurs and wave amplitudes become unbounded (see
Figure 2.10). In the propagation region, the curves start with a very high slope and
the corresponding group velocity ideally becomes infinite, hence hypersonic (super-
luminal) group waves are borne.

The group velocity passes from the hypersonic (superluminal) to the standard
D’Alembert propagation, within the wavenumber bandwidth k € [~ 3, ~ 6].

Dispersion relationship (Gauss-like model)

Nondimensional frequency 2

Nondimensional wavenumber K

(a)
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Figure 2.10. Dispersion curves (a), Group velocity (b), Phase velocity (¢) and Eigenstate
density (d) for the Gauss-like model for different values of .
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2.4.2 Propagation effects of the Laplace-like force

Dispersion relationship, phase and group velocities related to the Laplace-like force
have a very similar trend with respect to the Gauss-like interaction, and three iden-
tical regimes appear (Fig. 2.11). This enforces the conclusion that the scenario
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Figure 2.11. Laplace-like propagation curves.

outlined in the previous section has a general character for long-range interaction
for those forces that satisfy the requirements as in section 2.4.

2.4.3 Space-Time visualisation

Visualisation of the wave propagation in space and time corroborates the previous
theoretical findings. Consistent with equation (2.35), which waves can be repre-
sented by the discrete approximation:

w(z,t) = g: [Wi(l) sin (k;z — w(k;)t) + VVZ@) cos (k;jx — w(k:z)t)}

(2.51)

where I/Vi(l) and WZ@) are coefficients that depend on initial conditions, and w(k;)
is specified by the dispersion relationships (2.41) and (2.43). Two different graphic
representations of the wave pattern are used, derived both from the surface w(x,t).
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Figure 2.12. 3D Surface plot of the displacement.

In Figures 2.14, 2.16 and 2.18, sections at different times of this surface are shown,
the red dot highlights the phase velocity, the green square the group velocity. Dotted
lines show these points moving in space and time.

Figures 2.15, 2.17 and 2.19 show the surface colour plot of w over the x,t plane.

Dispersion relationship (Gauss-like model)

C x=-100
— — D'Alembert ref.
x  Wave-stopping

Nondimensional frequency

3 4 5 6 7 8
Nondimensional wavenumber K

Figure 2.13. Selection of four arches (A,B,C,D) of the dispersion curve to generate the
wavetrains shown in Figures 2.14-2.17.
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Figure 2.14. Left: positive group velocity, Right: negative group velocity.

Low wavenumber

Figure 2.15. Surface colour plot of w(z,t). Left: positive group velocity, Right: negative
group velocity.

This permits to simultaneously identify the wave characteristic lines on x, t, whose
inclination remains with the phase propagation and the envelope peak regions by
shaded bands, with inclination proportional to the group velocity.
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Figure 2.16. Wave-stopping effect. Left: D’Alembert waveguide Right: Long-Range
waveguide.

Lon -range waveguide

) DAIemben waveguide

/

Figure 2.17. Surface colour plot of w(x,t). Left: D’Alembert waveguide, Right: Long-
Range waveguide.

Positive and negative group velocity, wave-stopping effects, x < —1

In Figure 2.14, the waveguide response is shown for y = —100. On the left, a
wave train packet is plotted, taking a frequency bandwidth around 2 = 10 and
wavenumber about k = 1.4 (selected along the small arch of dispersion curve about
A of Figure 2.13, i.e. in the PGV range). As it appears, positive group velocity
is observed with a value that is consistent with the findings of Figure 2.6. On the
right, another wave train is considered with same frequency bandwidth, but with
wavenumbers taken on NGV branch, along a small arch about the point B. Figure
2.14 illustrates the negative group velocity effect. Phase wave speed has different
values with respect to the group velocity and they are consistent with those pre-
dicted in Figure 2.7.

Figure 2.15 plots the same effect, but following a different representation. In the
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right plot negative slope of shaded bands corresponds to negative group velocity
(red arrow). Phase speed characteristic lines have different (positive, green arrow)
slopes, anew consistently with values shown in Figure 2.7.

In Figures 2.16 and 2.17, a wave train packet is generated using frequencies about
Q) = 12 and wavenumber K = 2 on a small arch about the point C. The left side
of Figures 2.16 and 2.17 shows standard waves, and compares with right side, re-
vealing that long-range effect produces the waves envelope that does not propagate,
providing a wave-stopping phenomenon.

Hypersonic effect, x > 1

Figure 2.18 (right) shows the hypersonic (superluminal) propagation of the envelope,
compared with the D’Alembert case (left), in which the crest remains substantially
close to the centerline. On the right, it also appears that phase velocity in the
long-range case is substantially vanishing according to Figure 2.10c.
Figure 2.19 shows shaded bands with high slope and a striped texture almost hori-
zontal for phase speed.

According to Figure 2.10b, Figure 2.19 clearly displays the hypersonic (superlumi-
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