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critical synchronization dynamics 
of the Kuramoto model on 
connectome and small world 
graphs
Géza Ódor1 & Jeffrey Kelling2*

the hypothesis, that cortical dynamics operates near criticality also suggests, that it exhibits universal 
critical exponents which marks the Kuramoto equation, a fundamental model for synchronization, as a 
prime candidate for an underlying universal model. Here, we determined the synchronization behavior 
of this model by solving it numerically on a large, weighted human connectome network, containing 
836733 nodes, in an assumed homeostatic state. Since this graph has a topological dimension d < 4, a 
real synchronization phase transition is not possible in the thermodynamic limit, still we could locate 
a transition between partially synchronized and desynchronized states. At this crossover point we 
observe power-law–tailed synchronization durations, with τt ≃ 1.2(1), away from experimental values 
for the brain. for comparison, on a large two-dimensional lattice, having additional random, long-
range links, we obtain a mean-field value: τt ≃ 1.6(1). However, below the transition of the connectome 
we found global coupling control-parameter dependent exponents 1 < τt ≤ 2, overlapping with the 
range of human brain experiments. We also studied the effects of random flipping of a small portion of 
link weights, mimicking a network with inhibitory interactions, and found similar results. the control-
parameter dependent exponent suggests extended dynamical criticality below the transition point.

Understanding the human brain, or in general neural systems is a great challenge of science, in particular the 
application of models and methods of statistical physics has been developing recently1. There are several types 
of whole brain models, ranging from continuous, integrate-and-fire models2,3 to discrete, activity spreading 
models4,5. All of them are effective ones, trying to describe different features of neural functions measurable by 
neuroscience experiments. While different versions of integrating fire models are more detailed and use larger 
parameter space, simple activity spreading models try to capture basic features, like the emergence of power-laws 
(PL) of quantities via critical behavior6. Following experiments, these are the neuron activity avalanche size and 
duration distribution tails, before finite size cutoff. Criticality in these systems can be defined by the diverging 
correlation volume, as we tune a control parameter to a threshold value.

Criticality is an attractive hypotheses, because information processing and dynamic range is optimal7,8. Neural 
activity avalanche measurements have found power-laws, which arise naturally close to a critical point of a phase 
transition9–13. The question of how a neural system would be tuned to this point has been debated. It was proposed 
to be by self-regulatory mechanisms14 leading to self-organized criticality15, or as the consequence of extended 
dynamical critical regions in spreading models16,17 in Griffiths Phases (GP)18. The measured scaling exponents 
have been found to be close to the mean-field transition values of discrete models19.

It is also known, that individual neurons emit periodic signals20, thus criticality may emerge by the collective 
behavior of oscillators at the phase synchronization transition point. However, not much is known about the 
dynamics of the synchronization or desynchronization process in these models21–23. Phase synchrony is essential 
for large-scale integration of information24,25, the role of the asynchronous state has remained more elusive26. Very 
recently theoretical analysis of the Ginzburg-Landau type equations arrived at the conclusion that empirically 
reported scale-invariant avalanches can possibly arise if the cortex is operated at the edge of a synchronization 
phase transition, where neuronal avalanches and incipient oscillations coexist27.
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One of the most fundamental models, showing phase synchronization is the Kuramoto model of interact-
ing oscillators28. This is defined on full graphs, corresponding to the mean-field (MF) behavior29, but as neural 
systems are not fully connected, we are interested in the phase synchronization transition in extended systems, 
where oscillators are located at graph points, possessing finite topological dimension d. This is defined by

N r , (1)r
d〈 〉 ~

where Nr is the number of node pairs that are at a topological (also called “chemical”) distance r from each other 
(i.e. a signal must traverse at least r edges to travel from one node to the other).

Phase transition in the Kuramoto model can happen only above the lower critical dimension dl = 430. Below 
dl = 4 partial synchronization may emerge with a smooth crossover for strong coupling of oscillators, but a true, 
singular phase transition in the N → ∞ limit is not possible. On higher dimensional full or random graphs the 
Kuramoto equation exhibits universal scaling dynamics of the phase order parameter31,32. According to the theory 
of universality classes19 this “simple” model can describe other, more complex models of the brain. Very recently 
it has been studied analytically and computationally on a human connectome graph network of 998 nodes and in 
hierarchical modular networks (HMN), in which moduli exist within moduli in a nested way at various scales33. 
As the consequence of quenched, purely topological heterogeneity an intermediate phase, located between the 
standard synchronous and asynchronous phases was found, showing “frustrated synchronization”, metastability, 
and chimera-like states. This complex phase was investigated further in the presence of noise34 and on simplicial 
complex model of manifolds with finite and tunable spectral dimension35 as simple models for the brain.

Anatomical connections36 and the synchronization networks of cortical neurons37 indicate a small-world 
topology38. Here we will investigate the characteristic times, corresponding to synchronization or desynchrozia-
tion near the transition on a large human connectome graph (KKI-18) and compare it with results, obtained on 
2d lattices with additional random, long range connections. The latter also exhibit small-world topology, because 
the 2d lattice has large clustering and the random, long range connections generate short path lengths among 
geometrically distant nodes. Our graphs are much larger than those considered before, allowing us to determine 
universal critical exponents that can be compared with experiments. Furthermore, we have heterogeneity in the 
intrinsic frequencies as well as in connection weights, which was found to be crucial in case of threshold model 
simulations39. Previously, extended discrete threshold model simulations of activity avalanches on KKI-18 did not 
support a critical phase transition39. It turned out the weight heterogenities were too strong to allow the occur-
rence of criticality. This means that only the strongly connected hubs played a role in the activation/deactivation 
processes and weak nodes just followed them. As this appears to be unrealistic and uneconomic in a brain of 
billions of neurons, an input sensitivity equilibration was assumed via variable, node dependent thresholds. This 
makes the system homeostatic and simulations proved the occurrence of criticality, as well as robust Griffiths 
effects39,40 in spreading models. Indeed, there is some evidence that neurons have a certain adaptation to their 
input excitation levels41 and can be modeled by variable thresholds42. Very recently comparison of modeling and 
experiments arrived at a similar conclusion: equalized network sensitivity improves the predicting power of a 
model at criticality in agreement with the FMRI correlations43.

Even more naturally, homeostasis can be achieved in real brains via inhibitory neurons44–48, suppressing com-
munications. This provides an alternative way for modifying the positive, undirected links of the KKI-18 graph to 
test the phase synchronization of the Kuramoto model in the presence of random, negative couplings.

Models and Methods
We consider the Kuramoto model of interacting oscillators28, with phases θi(t) located at N nodes of networks, 
which evolve according to the dynamical equation

∑θ ω θ θ= + −t K W t t( ) sin[ ( ) ( )]
(2)

i i
j

ij j i,0


Here, ωi,0 is the intrinsic frequency of the i-th oscillator, drawn from a Gaussian distribution with zero mean 
and unit variance and the summation is performed over other nodes, with connections described by the weighted 
adjacency matrix Wij. The global coupling K is the control parameter of this model, by which we can tune the 
system between asynchronous and synchronous states. We follow the properties of the phase transition through 
studying the Kuramoto order parameter defined by

R t
N

e( ) 1 ,
(3)j

N
i t

1

( )j∑= θ

=

which is non-zero, above a critical coupling strength, K > Kc tends to zero for K < Kc as ∝R N1/  or exhibits a 
growth at Kc as

= η−
↑R t N N t f t N( , ) ( / ), (4)

z1/2 

in case of an incoherent initial state, with the dynamical exponents z  and η. In case of a coherent initial state it 
decays as:

= δ−
↓

R t N t f t N( , ) ( / ), (5)
z

characterized by the dynamical exponent δ. Here f↑ and f↓ denote different scaling functions.
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We have also investigated the de-synchronization duration distributions by starting the system from fully 
synchronous or asynchronous states, near Kc by measuring the time tx until R(tx) first fell below the threshold 
value: =R N1/T , related to the synchronization noise in the incoherent phase (see Fig. 1). For this measure-
ment we performed ≃104 runs, using independent random ωi,0 intrinsic frequencies and applied histogramming 
with increasing bin sizes: Δtx ∝ tx

1.12 to estimate the probability distribution p(tx).
The following graphs have been considered:

 1. 2d lattices with additional, random long-range connections such that 〈k〉 = 5 (2dll). We used periodic 
boundary conditions, simulating high dimensional graphs with supposedly mean-field behavior.

 2. Weighted, symmetric large human connectome graph: KKI-1849 downloaded from the Openconnectome 
project50.

 3. KKI-18, with 5% of the links turned to inhibitory: KKI-18-I

We applied the fourth order Runge-Kutta method from Numerical Recipes51 and the boost library odeint52 to 
solve Eq. (2) on various networks. Step sizes: Δ = 0.1, 0.01, 0.001 have been tested, but finally Δ = 0.1 precision 
found to be sufficient. Generally, the Δ < 0.1 precision did not improve the stability of the solutions, but caused 
smaller fluctuations due to the chaotic behavior of Eq. (2) which could be compensated by averages over many 
independent samples with different ωi,0. The criterion ε = 10−12 was used in the RK4 algorithm and we paral-
lelized the RK4 for NVIDIA graphic cards (GPU), by which we could achieve a ~×40 increase in the throughput 
with respect to a single 12-core CPU. It is important to note, that first we verified the parallel GPU code, by 
comparing results on smaller sizes with those, obtained by the serial CPU program. Algorithmic and benchmark 
details will be discussed elsewhere53.

We measured the Kuramoto order parameter with a fixed K, by increasing the sampling time steps 
exponentially

= + .t 1 1 08 , (6)k
k

which is a common method in case of PL asymptotic time dependences. In practice we estimate tx = (tk + tk−1)/2, 
where tk was the first measured crossing time. The initial conditions were generally θi(0) ∈ (0, 2π] phases, with 
uniform distribution, describing fully disordered states. However, for comparison we also performed runs start-
ing from the fully synchronized state: θi(0) = 0. Probability distribution tails were fitted using the least squares fit 
method above thresholds, fixed by visual inspection of the results. To see the corrections to scaling we determined 
the effective exponents of R as the discretized, logarithmic derivative of Eq. (4) at these discrete timesteps tk, near 
the transition point

η =
〈 〉 − 〈 〉

−
.+

+

R t R t
t t

ln ( ) ln ( )
ln( ) ln( ) (7)

k k

k k
eff

3

3

Here the brackets denote sample averaging over different initial conditions.
The KKI-18 graph has been downloaded from the Open Connectome project repository50. This network was 

generated from Diffusion Tensor Imaging (DTI)54, approximating the structural connectivity of the white matter 
of a human brain. It comprises N = 836733 nodes, connected via 41523931 undirected edges, and several small 
sub-components, which were ignored here. Note, that results are not sensitive to removing the disconnected 
sub-components or deleting as much as 20% of the unidirectional links making up this graph. Solving (2) on 
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Figure 1. Evolution of R(t) for single realizations on the KKI-18 graph at K = 1.7. The dashed line shows the 
threshold value R N1/ ( ) 0 001094= = . , where we measure the characteristic times: tx of first cross.
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this graph allows running extensive dynamical studies on present day CPU/GPU clusters, large enough to draw 
conclusions on the scaling behavior without very strong finite size effects. These connectomes of the human brain 
possess 1 mm3 resolution, using a combination of diffusion weighted, functional and structural magnetic reso-
nance imaging scans. They are symmetric, weighted networks, where the weights measure the number of fiber 
tracts between nodes. The large graph “KKI-18” used here is generated by the MIGRAINE method, described 
in55. They exhibit hierarchical levels by construction from the Desikan cerebral regions with (at least) two quite 
different scales. The graph structure can be seen on the Fig. 2, where the modules were identified by the Louvain 
algorithm56, then the network of modules was generated and finally visualized using the Gephi tool57. This iden-
tified 144 modules, with sizes varying between 8 and 35202 nodes.

In49 it was found that, contrary to the small world network coefficients, these graphs exhibit topological 
dimension slightly above D = 3 and a certain amount of universality, supporting the selection of KKI-18 as a rep-
resentative of the large human connectomes available. This dimensionality suggests weak long-range connections, 
in addition to the D = 3 dimensional embedding and warrants to see heterogeneity effects in dynamical models 
defined on them.

To keep the local sustained activity requirement for the brain4 and provide a homeostatic state, we modified 
KKI-18 by normalizing the incoming weights of node i in39: ′ = ∑ ∈ .W W W/i j i j j i i j, , neighb of ,  at the beginning of the 
simulations.

In addition, it is well known that excitation is balanced globally by the inhibitory cells, which is assumed to 
be a 20% fraction of all neurons. However, the vast majority of inhibitory connections are local as these cells have 
small dendritic and axonal trees58. Their range coincides roughly with the 1 mm3 of voxels in the connectivity data 
of KKI-18. The tracts, obtained by DTI are in contrast mostly excitatory axonal fibers; middle and long range con-
nections are made by axons of pyramidal cells, which are excitatory. But these axons still could target excitatory 
and inhibitory cells in a voxel’s area. To model this, we flipped the signs of weights of 5% randomly selected links 
i as W″i,j = −W′i,j, creating thus a modified graph called: KKI-18-I. Such links are against local synchronization 
and can be considered as an inhibition mechanism of possible information retrieval mechanism via resonance59.

Results
The 2dll graph. First we studied the growth of R(t) on the 2dll model of linear size L = 6000 by starting from 
states of oscillators with fully random phases and by averaging over 5000–10000 ωi,0 realizations up to t = 103. As 
Fig. 3 shows power-law growth of synchronization emerge up to t ≃ 100 in the coupling region: 0.477 ≤ K ≤ 0.478. 
Following that the R(t) curves veer up or down, depending on being super or sub-critical. Note, that for t ≳ 800 
the curves begin to break down, owing to the finite size effect, when the growing correlation volume: ξ ∝ tz  
exceeds the system size N = L2. Looking at the effective exponents defined by (7) one can estimate the critical 
point: Kc = 0.4775(3), as we expect in the asymptotic 1/t → ∞ limit constant local slopes. Off-critical cases exhibit 
up or down veering curvatures. Here one can read-off the asymptotic value: η = 0.55(10), on the local slope inset 
of Fig. 3, which is different from the MF value η = 0.75, expected for the Kuramoto model31 by scaling relations. 
The obvious discrepancy can be the consequence of very strong corrections-to scaling or some other quench 
disorder effect discussed further in32. Note, that in31, in case of fully connected graphs, the η = 0.75 exponent 
could hardly be seen, probably as the consequence of finite size and time limitations. While31 achieved sizes 
N ≤ 819200, here we provide results for much larger systems, containing N = 36000000 nodes, but without full 
topological order.

Instead of going into the details we just show that the relaxation time distributions, both for growth and for 
decay result in a robust fat tail behavior at the critical point, characterized by τt = 1.6(1) (see Fig. 4). The evolu-
tion of single realizations, in case of growth runs are shown on Fig. 1. The dashed line denotes the threshold at 
which the first passage time tx is measured. We have also measured tx in the case of fully coherent initial states in 
systems up to tmax = 104. Figure 4 shows the tails of p(tx) around the critical point for incoherent initial conditions 
for L = 6000 and for coherent initial state with with L = 1000. In the latter case the decay occurs following a long 
transient time, thus the time is divided by a factor 100, but one can observe the same type of PL tails at K ≃ 0.477.

Figure 2. Network of the modules of the KKI-18 human connectome graph. The size of circles is proportional 
with the number of nodes.
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With this precision one cannot see a difference in the numerical scaling behavior at the critical point, but we 
note that the τt = 1.6(1) estimate is slightly above that one could obtain using the scaling relation

1 1 5, (8)tτ δ= + = .

connecting dynamical exponents, see for example19. Note, that the δ = 0.6(1) result is in agreement with those 
of the extensive decay results, presented in32 and suggest that δ ≃ η on this scale, ruling out possible strong arti-
facts of the threshold value selection.

the connectome graph. Normalized, positive weights. In case of the KKI-18 graph first we determined 
the crossover point via the inflexion condition, which separates up (convex) and down (concave) veering curves 
of the growth runs (see Fig. 5). As we can see, the transition is much smoother than what we obtained in the 2dll 
graph. The lower inset of Fig. 5) shows the steady state values R(t → ∞) as the function of K, with a very low level 
of synchronization above the transition. This smooth crossover behavior is not surprising, as the topological 
dimension of this graph is: d = 3.05 < dl = 449. This behavior is in agreement with PET and fMRI studies, which 
suggest that the magnitude of activity change from rest to task is rather small. Looking at the shapes of the R(t) 
curves and the saturation level of the corresponding local slopes we can estimate this crossover at: Kc = 1.65(5), 
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Figure 3. Growth of the average R on the 2dll model near the synchronization transition point for K = 0.477, 
0.4773, 0.4775, 0.478 (bottom to top curves). Inset: the corresponding local slopes defined by (7).
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with an effective scaling exponent ηeff ≃ 0.6(1). This exponent value is smaller than the η = 0.75 MF value for the 
Kuramoto model, but close to our 2dll graph results.

Having determined the transition point we run the numerical solver at control parameter values below Kc, by 
starting with thousands of random initial states and measuring the first crossing times tx, when R fell below: 

= .N1/ ( ) 0 001094 (see Fig. 1).
Following a histogramming procedure, with PL growing bin sizes in tx, we obtained the distributions p(tx), 

which exhibit PL tails, characterized by the exponents 1 < τt < 2 (see Fig. 6). Here the almost ~1/t decay at Kc ≥ 1.7 
marks synchronized phase, with singular behavior; at Kc one obtains τt ≃ 1.2.

The τt = 1.2(1) is out of the range of neuro experiments: 1.5 < τt < 2.413, but a good agreement/overlap can be 
found in the sub-threshold region. To investigate the effects of inhibition as in39 here we also studied the modified 
KKI-18 graph, in which we flipped a small fraction of weight links randomly.

Inhibitory weights. We repeated the analysis of the previous section for the KKI-18-I graph, possessing 5% inhib-
itory link fraction symmetrically: W″ij = W″ji = −W′ij. First we located the transition point as shown on Fig. 7.

The crossover to synchronization occurs at Kc = 1.9(1), slightly higher than in case of the KKI-18 network. The 
tails of the p(tx) probability distributions exhibit PL-s with 1 < τt ≤ 2 in the 1.4 < K < 1.8 region. These exponent 
values overlap the range of experiments (see Fig. 8).

The large variation of τt below the transition, suggests the strong disorder may cause some GP effects, but in 
the lack of true phases we can only claim resemblance with recent results on power-grid networks60, where we 
pointed out a relation to a phenomena called frustrated synchronization33,35.

We have redone this analysis for another random 5% inhibitory link graph sample and arrived to the same 
results. In39 the robustness of GP in case of the threshold model dynamical behavior has been tested by the 
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random neglection of 20% of links in one direction. Here we considered the situation of the neglection of all links 
in one direction: W″ij = −W′ij, W″ji = 0. Even in this extreme anisotropic case one case find a similar extended 
scaling region below a very smooth crossover as shown in the Supplementary Material.

Finally, we considered graphs with 5, 10, 20% inhibitory node assumptions, by flipping signs of (out or in) 
link weights of these randomly selected sites. Note, that nodes here represent big bunches of neurons. We show 
the duration distribution results here for one of the 5% inhibitory node case, when signs of out links are reversed. 
Below the synchronization transition point, which is at Kc = 1.7(1) we can find again a region: 1.35 < K < 1.7, 
where PL tailed de-synchronization duration durations emerge as before (see Fig. 9), characterized by the expo-
nents 1 < τt < 2.

We have also studied the synchronization behavior on graphs with fully inhibited node cases of 5, 10, 20%, by 
flipping the weight signs of in-links. Even without weight normalization this produces crossovers at Kc ≃ 0.18 with 
ηeff ≃ 0.23(5), different from the η ≃ 0.6 value we found up to now. The tails of the p(tx) probability distributions 
exhibit PL-s with well inside the range of experiments (see Supplementary Material).

conclusion and Discussion
Brain experiments support evidence for power-law distributed activity avalanches. These have been explained 
mainly by discrete, threshold type of models, showing exponents close to the MF values, in agreement with 
neuro measurements. Oscillatory activity is widespread in dynamic neuronal networks20. The Blue brain project61 
suggests that the cortical dynamics operates at the edge of a phase transition between an asynchronous phase 
and a synchronous one with emerging oscillations62. A recent MF theory showed the emergence of scale-free 
avalanches at the edge of synchronization27.

An extension, taking into account network heterogenities of a large human connectome is provided here, 
within the framework of the Kuramoto model. We determined the phase synchronization transition points and 
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provided characteristic time exponents, which describe synchronization or de-synchronization events. We found 
good agreement with the neuro-experimental values in an extended range below the crossover point. We investi-
gated the case, when 5, 10, 20% fraction of the randomly selected links or nodes are set inhibitory. The obtained τt 
duration exponents have been found to be invariant for these fractions and are in the range of experiments. This 
conclusion has already been derived within the framework of discrete threshold models39,40.

At the transition point the Kuramoto model on these homeostatic KKI-18 network exhibits: τt = 1.2(1), well 
below the results for the 2dll graph, τt = 1.6(1), which is expected to be a system of MF interactions. However, 
even for this MF like model the dynamical exponents were found to be slightly away from the Kuramoto MF 
values31. This can be the result of enormous corrections to scaling, or due to quenched heterogeneity effects of the 
2dll graph. The details of this problem is discussed in32. The effective growth exponent on the investigated con-
nectome networks is η ≃ 0.6, near to the 2dll graph results, except for the node inhibited case, where ηeff ≃ 0.25(5) 
has been found.

Although in the KKI-18 graph the topological dimension is below dl = 4, a crossover behavior can clearly be 
identified. Around this smeared transition we found scale-free de-synchronization ‘avalanche’ tails, like in case of 
the dynamical criticality of GP, pointing out relation to possible frustrated synchronization effects33,35. Modules 
of the connectome graph enhance rare-region effects or frustrated synchroniztion domains.

As it was discussed in39 such coarse grained connectomes suffer possible sources of errors, like unknown 
noise in the data generation; underestimation of long connections; radial accuracy, influencing endpoints of the 
tracts and hierarchical levels of the cortical organization; or transverse accuracy, determining which cortical area 
is connected to another. Still important modifications, such as inhibitory links, directedness, or random loss of 
connections up to 20% confirmed the robustness of dynamical scaling, suggesting that fine network details may 
not play an important role. It is also important, that the PL tail in the weight distribution is similar to what was 
obtained by a synaptic learning algorithm in an artificial neural network63. A very recent experimental study has 
provided confirmation for the connectome generation used here64. Those results suggest that diffusion MRI trac-
tography is a powerful tool for exploring the structural connectional architecture of the brain.

From a neuroscience point of view one may find the Kuramoto model too simplistic to describe the brain. 
However, at least in the weak coupling limit equivalence of phase-oscillator and integrate-and-fire models has 
been found65, that may hold for the sub-critical region, where we observed the dynamical scaling. At critical-
ity universal scaling is expected to hold and thus the exponents obtained for this model can well describe the 
synchronization transition of other, more complex models. We believe that investigating a basic model is an 
important and necessary first step for neuroscience as this can provide a representative for a whole class of more 
real ones.

An interesting continuation of this work would be the study of the frequency entrainment of oscillators, which 
can exhibit real phase transition at d = 3.05 of the KKI-18 graph, or consideration of more complex models or 
graphs than the ones investigated here. Another open point could be the determination of avalanche sizes in these 
synchronization processes. The codes and the graphs used here are available on request from the corresponding 
author.
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