23 research outputs found

    Indoor Positioning System (IPS) for Guiding the Location Inventory Goods in Buildings

    Get PDF
    Now is the spatial era, where position plays a role in providing information about the existence of objects on earth. Utilization of a variety of devices requires demands on location automation that are fast and accurate. Positioning technology, known as Location-Based Services (LBS), is highly dependent on the Global Satellite Satellite System (GNSS). Now for automatic positioning also started using the Indoors Positioning System (IPS), where GNSS signals that cannot be reached inside the building can be replaced with Bluetooth and Wifi devices installed in the building. This is very important because activities in buildings are the same as benefits outside the building, such as position interests, spatial patterns, guidance or navigation, etc. for a variety of very broad interests such as smartcity, airports, hospitals, hotels, museums, parking lots, shops, exhibition and others. This research aims to utilize IPS as a means of positioning and guiding inventory objects in building space, which can be developed for various applications. Just as GPS uses satellites for reference positions, IPS also requires a number of iBeacon devices installed at a known position to communicate and determine the location of the receiving device (smartphone). Position information from the device will then be sent to the server and then mapped to the information system. Objects targeted by tracking can already be mapped using IPS based on coordinates obtained from the system, and will then be compiled as an object inventory database. Furthermore, a smartphone is used as a guide to see realtime position and then can track the goods based on coordinates in the inventory database. &nbsp

    Indoor location based services challenges, requirements and usability of current solutions

    Get PDF
    Indoor Location Based Services (LBS), such as indoor navigation and tracking, still have to deal with both technical and non-technical challenges. For this reason, they have not yet found a prominent position in people’s everyday lives. Reliability and availability of indoor positioning technologies, the availability of up-to-date indoor maps, and privacy concerns associated with location data are some of the biggest challenges to their development. If these challenges were solved, or at least minimized, there would be more penetration into the user market. This paper studies the requirements of LBS applications, through a survey conducted by the authors, identifies the current challenges of indoor LBS, and reviews the available solutions that address the most important challenge, that of providing seamless indoor/outdoor positioning. The paper also looks at the potential of emerging solutions and the technologies that may help to handle this challenge

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    GPS without satellites

    Get PDF
    Nowadays, there have been great advances in the location technology. The personal positioning oers a very interesting eld of research because the user walking has an unpredictable behaviour and it is dicult to assume predened routes or to take into account other implemented location techniques for vehicles or robots. An approach for integration between inertial navigation systems (INS) and GPS is presented. GPS is a navigation aid accurate and reliable but susceptible to interference like multipath. An INS is very accurate over short periods, but its errors drift unbounded over time. Blending INS with GPS can remedy the performance issues of both. GPS is often combined with other sensors like accelerometers, gyroscopes or magnetometers. The data fusion from these sensors is very important because they allow us to calculate the position and orientation constantly. In this project we are interested in analysing the system behaviour when the signal GPS is unavailable as when the signal is blocked or in indoor environments. The analysis will be carried out through the assessment of a Dead Reckoning algorithm to improve the position information. The system was tested both indoor and outdoor of the Thales building. The personal positioning system is made up of: a receiver GPS, an electronic compass, and the IMU. There are many types of integration methods, and sensors vary greatly, from the complex and expensive, to the simple and inexpensive, in this project it has been used low cost sensors in a loosely coupled approach. A Kalman alter for closed loop integration between GPS and INS is done. The lter propagates and estimates the error states, which are fed back to the INS for correction of the internal navigation states. The integration algorithm has been implemented on Matlab. The algorithm receives the GPS and inertial measurements via serial port to later process all the data. The algorithm has been used to experimentally test and compare navigation performance

    Magnetometer-enhanced personal locator for tunnels and GPS-denied outdoor environments

    Full text link

    Positioning algorithms for RFID-based multi-sensor indoor/outdoor positioning techniques

    Get PDF
    Position information has been very important. People need this information almost everywhere all the time. However, it is a challenging task to provide precise positions indoor/outdoor seamlessly. Outdoor positioning has been widely studied and accurate positions can usually be achieved by well developed GPS techniques. However, these techniques are difficult to be used indoor since GPS signals are too weak to be received. The alternative techniques, such as inertial sensors and radio-based pseudolites, can be used for indoor positioning but have limitations. For example, the inertial sensors suffer from drifting problems caused by the accumulating errors of measured acceleration and velocity and the radio-based techniques are prone to the obstructions and multipath effects of the transmitted signals. It is therefore necessary to develop improved methods for minimising the limitations of the current indoor positioning techniques and providing an adequately precise solution of the indoor positioning and seamless indoor/outdoor positioning. The main objectives of this research are to investigate and develop algorithms for the low-cost and portable indoor personal positioning system using Radio Frequency Identification (RFID) based multi-sensor techniques, such as integrating with Micro-Electro-Mechanical Systems (MEMS) Inertial Navigation System (INS) and/or GPS. A RFID probabilistic Cell of Origin (CoO) algorithm is developed, which is superior to the conventional CoO positioning algorithm in its positioning accuracy and continuity. Integration algorithms are also developed for RFID-based multi-sensor positioning techniques, which can provide metre-level positioning accuracy for dynamic personal positioning indoors. In addition, indoor/outdoor seamless positioning algorithms are investigated based on the iterated Reduced Sigma Point Kalman Filter (RSPKF) for RFID/MEMS INS/low-cost GPS integrated technique, which can provide metre-level positioning accuracy for personal positioning. 3-D GIS assisted personal positioning algorithms are also developed, including the map matching algorithm based on the probabilistic maps for personal positioning and the Site Specific (SISP) propagation model for efficiently generating the RFID signal strength distributions in location fingerprinting algorithms. Both static and dynamic indoor positioning experiments have been conducted using the RFID and RFID/MEMS INS integrated techniques. Metre-level positioning accuracy is achieved (e.g. 3.5m in rooms and 1.5m in stairways for static position, 4m for dynamic positioning and 1.7m using the GIS assisted positioning algorithms). Various indoor/outdoor experiments have been conducted using the RFID/MEMS INS/low-cost GPS integrated technique. It indicates that the techniques selected in this study, integrated with the low-cost GPS, can be used to provide continuous indoor/outdoor positions in approximately 4m accuracy with the iterated RSPKF. The results from the above experiments have demonstrated the improvements of integrating multiple sensors with RFID and utilizing the 3-D GIS data for personal positioning. The algorithms developed can be used in a portable RFID based multi-sensor positioning system to achieve metre-level accuracy in the indoor/outdoor environments. The proposed system has potential applications, such as tracking miners underground, monitoring athletes, locating first responders, guiding the disabled and providing other general location based services (LBS)

    Filtering and Tracking for Pedestrian Dead-Reckoning System.

    Full text link
    This thesis proposes a leader-follower system in which a robot, equipped with relatively sophisticated sensors, tracks and follows a human whose equipped with a low-fidelity odometry sensor called a Pedestrian Dead-Reckoning (PDR) device. Such a system is useful for "pack mule" applications, where the robot carries heavy loads for the humans. The proposed system is not dependent upon GPS, which can be jammed or obstructed. This human-following capability is made possible due to several novel contributions. First, we perform an in-depth analysis of our Pedestrian Dead-Reckoning (PDR) system with the Unscented Kalman Filter (UKF) and models of varying complexity. We propose an extension that limits elevation errors, and show that our proposed method reduces errors by 63% compared to a baseline method. We also propose a method for integrating magnetometers into the PDR framework, which automatically and opportunistically calibrates for hard/soft-iron effects and sensor misalignments. In a series of large-scale experiments, we show that this system achieves positional errors of less than 1.9% of the distance traveled. Finally, we propose methods that allow a robot to use LIDAR data to improve the accuracy of the robot's estimate of the human’s trajectory. These methods include: 1) a particle filter method and 2) two multi-hypothesis maximum-likelihood approaches based on stochastic gradient descent optimization. We show that the proposed approaches are able to track human trajectories in several synthetic and real-world datasets.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113500/1/suratkw_1.pd

    Seamless Navigation, 3D Reconstruction, Thermographic and Semantic Mapping for Building Inspection

    Get PDF
    We present a workflow for seamless real-time navigation and 3D thermal mapping in combined indoor and outdoor environments in a global reference frame. The automated workflow and partly real-time capabilities are of special interest for inspection tasks and also for other time-critical applications. We use a hand-held integrated positioning system (IPS), which is a real-time capable visual-aided inertial navigation technology, and augment it with an additional passive thermal infrared camera and global referencing capabilities. The global reference is realized through surveyed optical markers (AprilTags). Due to the sensor data’s fusion of the stereo camera and the thermal images, the resulting georeferenced 3D point cloud is enriched with thermal intensity values. A challenging calibration approach is used to geometrically calibrate and pixel-co-register the trifocal camera system. By fusing the terrestrial dataset with additional geographic information from an unmanned aerial vehicle, we gain a complete building hull point cloud and automatically reconstruct a semantic 3D model. A single-family house with surroundings in the village of Morschenich near the city of Jülich (German federal state North Rhine-Westphalia) was used as a test site to demonstrate our workflow. The presented work is a step towards automated building information modeling

    Novel Methods for Personal Indoor Positioning

    Get PDF
    Currently, people are used to getting accurate GNSS based positioning services. However, in indoor environments, the GNSS cannot provide the accuracy and availability comparable to open outdoor environments. Therefore, alternatives to GNSS are needed for indoor positioning. In this thesis, methods for pedestrian indoor positioning are proposed. With these novel methods, the mobile unit performs all the required positioning measurements and no dedicated positioning infrastructure is required.This thesis proposes novel radio map configuration methods for WLAN fingerprinting based on received signal strength measurements. These methods with different model parameters were studied in field tests to identify the best models with reasonable positioning accuracy and moderate memory requirements. A histogram based WLAN fingerprinting model is proposed to aid IMU based pedestrian dead reckoning that is obtained using a gyro and a 3-axis accelerometer, both based on MEMS technology. The sensor data is used to detect the steps taken by a person on foot and to estimate the step length and the heading change during each step.For the aiding of the PDR with WLAN positioning, this thesis proposes two different configurations of complementary extended Kalman filters. The field tests show that these configurations produce equivalent position estimates. Two particle filters are proposed to implement the map aided PDR: one filter uses only the PDR and map information, while the other uses also the WLAN positioning. Based on the field tests, map aiding improves the positioning accuracy more than WLAN positioning.Novel map checking algorithms based on the sequential re-selection of obstacle lines are proposed to decrease the computation time required by the indoor map matching. To present the map information, both unstructured and structured obstacle maps are used. The feasibility of the proposed particle filter algorithms to real time navigation were demonstrated in field tests
    corecore