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Abstract 

Position information has been very important. People need this information almost 

everywhere all the time. However, it is a challenging task to provide precise positions 

indoor/outdoor seamlessly. Outdoor positioning has been widely studied and 

accurate positions can usually be achieved by well developed GPS techniques. 

However, these techniques are difficult to be used indoor since GPS signals are too 

weak to be received. The alternative techniques, such as inertial sensors and radio-

based pseudolites, can be used for indoor positioning but have limitations. For 

example, the inertial sensors suffer from drifting problems caused by the 

accumulating errors of measured acceleration and velocity and the radio-based 

techniques are prone to the obstructions and multipath effects of the transmitted 

signals. It is therefore necessary to develop improved methods for minimising the 

limitations of the current indoor positioning techniques and providing an adequately 

precise solution of the indoor positioning and seamless indoor/outdoor positioning. 

The main objectives of this research are to investigate and develop algorithms for the 

low-cost and portable indoor personal positioning system using Radio Frequency 

Identification (RFID) based multi-sensor techniques, such as integrating with Micro-

Electro-Mechanical Systems (MEMS) Inertial Navigation System (INS) and/or GPS. A 

RFID probabilistic Cell of Origin (CoO) algorithm is developed, which is superior to 

the conventional CoO positioning algorithm in its positioning accuracy and continuity. 

Integration algorithms are also developed for RFID-based multi-sensor positioning 

techniques, which can provide metre-level positioning accuracy for dynamic personal 

positioning indoors. In addition, indoor/outdoor seamless positioning algorithms are 

investigated based on the iterated Reduced Sigma Point Kalman Filter (RSPKF) for 

RFID/MEMS INS/low-cost GPS integrated technique, which can provide metre-level 

positioning accuracy for personal positioning. 3-D GIS assisted personal positioning 

algorithms are also developed, including the map matching algorithm based on the 

probabilistic maps for personal positioning and the Site Specific (SISP) propagation 

model for efficiently generating the RFID signal strength distributions in location 

fingerprinting algorithms. 

Both static and dynamic indoor positioning experiments have been conducted using 

the RFID and RFID/MEMS INS integrated techniques. Metre-level positioning 

accuracy is achieved (e.g. 3.5m in rooms and 1.5m in stairways for static position, 
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4m for dynamic positioning and 1.7m using the GIS assisted positioning algorithms). 

Various indoor/outdoor experiments have been conducted using the RFID/MEMS 

INS/low-cost GPS integrated technique. It indicates that the techniques selected in 

this study, integrated with the low-cost GPS, can be used to provide continuous 

indoor/outdoor positions in approximately 4m accuracy with the iterated RSPKF. 

The results from the above experiments have demonstrated the improvements of 

integrating multiple sensors with RFID and utilizing the 3-D GIS data for personal 

positioning. The algorithms developed can be used in a portable RFID based multi-

sensor positioning system to achieve metre-level accuracy in the indoor/outdoor 

environments. The proposed system has the potential applications, such as tracking 

miners underground, monitoring athletes, locating first responders, guiding the 

disabled and providing other general location based services (LBS). 
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Chapter 1 Introduction 

Precise positioning is a challenging task in surveying and mapping, robotic control 

and personal guidance and tracking. To date, geodetic grade GPS systems such as 

the Trimble R8, can provide centimetre level accuracy in real time over a large area 

using real-time kinematic (RTK) or network-based RTK techniques. However, the 

major drawbacks of high accuracy GPS systems are that they are either too 

expensive, too heavy or too clumsy (e.g. large volume). An essential requirement for 

GPS positioning is its direct reception of GPS signals, without which proper use in 

indoor and signal-obstructed areas containing major human activities is not possible. 

Some alternative techniques, including Micro-Electro-Mechanical Systems (MEMS), 

Inertial Navigation System (INS) and the radio frequency identification (RFID) 

positioning technique have recently become the focus of interest from the positioning 

community. This is because they satisfy the requirements of personal guidance and 

indoor tracking applications due to their indoor positioning capability, simple 

infrastructure, portable device size and relatively low cost (Zhu et al., 2009). 

1.1 Applications of Indoor Positioning Techniques 

The potential applications of indoor positioning techniques, when using MEMS INS 

and RFID include: 

(a) Tracking miners underground; 

(b) Monitoring athletes; 

(c) Locating first responders; 

(d) Guiding the disabled; and  

(e) Providing other general location based services (LBS). 

For the mining industry, it is very important to know the positions of the miners 

underground, in order to prevent them from moving into hazardous environments, as 

well as rescuing them from dangerous situations should this situation arise. One 

remarkable attempt to track and visualise miners underground was conducted by 

RMIT University in cooperation with China University of Mining and Technology 

(Zhang et al., 2009). A prototype of an intelligent response and rescue system was 

developed based on the RFID/INS positioning and 3-D visualisation techniques. 



 

4 

Other relevant research of indoor positioning techniques involves a MEMS INS/low-

cost GPS-based motion capturing device for assisting with athlete training 

programmes (Wu et al., 2008; Wu, Zhu et al., 2007) and an RFID/Pedestrian Dead 

Reckoning (PDR) integration system for locating first responders in hazardous 

environments (Miller et al., 2006). For general LBS, mobile phone positioning has 

been recently extensively investigated by, for example, Retscher et al. (2005) for 

positioning in the metropolitan area of Hong Kong  and Chen et al. (2009) for the 

Shanghai EXPO 2010 through a 3-D personal navigation system. Besides the 

numerous potential applications, there are extraordinary challenges for developing 

and refining indoor positioning techniques. 

1.2 Current Challenges in Indoor Positioning 

Even though outdoor positioning problems have been generally solved by the 

application of Global Navigation Satellite Systems (GNSS), there are still a number of 

challenges in indoor positioning. The main challenges are positioning accuracy, 

system simplicity, device portability and cost reduction. 

1.2.1 Positioning Accuracy 

The first challenge for the indoor positioning is accuracy. Most indoor positioning 

applications require very high accuracy (e.g. metre-level or higher). This is 

determined by the dimensions of indoor environments. For example, considering the 

normal width of a corridor which is about 2 to 3m, a positioning system with 10m 

accuracy is most likely to locate a mobile user in the corridor to wrong adjacent 

rooms. Most of the stand-alone low-cost indoor positioning techniques do not provide 

high accuracy. For instance, the MEMS INS, which is less prone to environmental 

effects, can provide relative accurate positions in a short term (a few seconds) but it 

drifts quickly (about 100m in 30sec). Other techniques, such as radio frequency 

based positioning techniques, are highly affected by complex indoor environment 

layouts. 

1.2.2 System Simplicity 

The challenge of simplicity includes both infrastructures and algorithms. In indoor 

positioning, the obstruction from surrounding objects in complex environments is a 

major problem for signal-based positioning techniques, such as ultrasonic, infrared 
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and radio frequency positioning techniques. In order to overcome this limitation and 

cover the positioning area seamlessly, either high transmission power or a large 

number of transmitters is required. Consequently, the simplicity of the devices and 

the simplicity of the systems in these instances are not satisfactory. 

1.2.3 Device Portability 

A major area of indoor positioning applications is personal positioning. The size and 

weight of the device for mobile users is a critical issue. Unlike vehicle or robot 

mounted devices, personal positioning devices must be small in size and light in 

weight. However, small size always requires increased device sophistication. The 

accuracy and the cost need to be compromised with the device portability, which is a 

challenge when selecting a technique that can satisfy all the requirements for 

personal indoor positioning. 

1.2.4 Cost Reduction 

The last challenge for indoor positioning is cost. Even though there are some 

techniques that can provide an accurate (centimetre-level or higher) positioning 

capability, such as Ultra-wide Band (UWB) positioning techniques, the tremendous 

cost (tens of thousand Australian dollars) is a major challenge for wide-spread uses 

of the techniques and delivering them into the marketplace.  

1.3 Objectives of the Research 

The aim of this research is to develop algorithms for RFID-based multi-sensor 

personal positioning techniques. The algorithms developed considered factors that 

would compensate for the limitations of low-cost sensors, such as RFID, MEMS INS 

and low-cost GPS. Metre-level accuracy was sought by applying these algorithms to 

the test bed for personal positioning applications. 

Based on this aim, the following hypothesis was formulated: 

Positioning algorithms can be developed to achieve metre-level accuracy 

indoor/outdoor in low-cost RFID-based multi-sensor personal positioning platforms. 

In order to test this hypothesis, the following research objectives were set: 

(a) To investigate the techniques which can be used for low-cost personal 

positioning; 
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(b) To investigate and develop the algorithms for RFID positioning techniques;  

(c) To develop algorithms for RFID-based multi-sensor integrated techniques 

in order to improve positioning accuracy and reliability; 

(d) To investigate the feasibility of applying algorithms developed to RFID-

based test platforms for indoor/outdoor seamless positioning applications; 

and 

(e) To provide the means of using geospatial information to improve the 

positioning accuracy of RFID-based test platforms that are specific to 

personal positioning applications. 

The associated research questions are: 

(a) Which techniques can be used in low-cost RFID-based multi-sensor 

personal positioning platforms? 

(b) What are the pros and cons of the existing received signal strength (RSS) 

based algorithms? 

(c) What algorithm/algorithms based on RSS are suitable for RFID positioning 

techniques? 

(d) How can multi-sensor integration compensate for the limitations in RFID-

based positioning techniques? 

(e) Is it feasible to use the RFID-based multi-sensor personal positioning 

techniques developed for indoor/outdoor seamless applications? And, 

what algorithms can be used in these applications? 

(f) What are the performance differences when using geospatial information 

to aid positioning performance in conventional vehicle and personal 

applications? What can be improved when using geospatial information to 

aid positioning performance that is specific to personal applications? 

(g) Can geospatial information be used to improve other aspects of RFID-

based positioning techniques, such as generating a database for location 

fingerprinting algorithms? 
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1.4 Contributions of the Research 

The specific contributions of this research are: 

(a) Intensive reviews and comparisons of current indoor and personal 

positioning techniques; 

(b) Optimal selection and integration of the techniques (e.g. RFID, MEMS INS 

and low-cost GPS) for a low-cost personal positioning system; 

(c) Evaluations of Kalman Filters (KF), such as KF, linearized KF, extended 

KF and sigma point KF, for data fusion; 

(d) Evaluations of RSS based positioning algorithms, including the Cell of 

Origin (CoO), trilateration and location fingerprinting algorithms; 

(e) Evaluations of RFID signal propagation characteristics, such as path loss, 

directional patterns and multipath effects; and 

(f) Development of RFID-based multi-sensor indoor/outdoor positioning 

algorithms, such as the probabilistic CoO algorithm, the integrated 

INS/RFID location fingerprinting algorithm, the integrated GPS/RFID/INS 

seamless positioning algorithm and the probabilistic map based map 

matching algorithm for personal positioning. 

1.5 Overview of the Thesis 

This thesis comprises of eight chapters. 

The first chapter outlines key research question and provides a brief introduction to 

the research objectives and a general overview of this thesis. 

Chapter 2 describes the current techniques used in indoor and personal positioning 

and comprehensive comparisons of these techniques are made. A discussion of the 

feasibility of using an RFID-based multi-sensor technique for personal positioning is 

also provided, according to reviews and evaluations of current techniques. 

Chapter 3 concentrates on the algorithms related to RFID positioning techniques, 

including KF and RSS-based positioning algorithms (CoO, trilateration and location 

fingerprinting). 

Chapter 4 discusses the key aspects of RFID positioning techniques, such as path 

loss models, directional patterns of the signal strength and multipath effects. This 
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chapter also provides evaluations of RSS-based positioning algorithms used for 

stand-alone RFID positioning techniques. 

Chapter 5 concentrates on the improvements to RFID-based positioning techniques 

using multi-sensor integrated methods, like probabilistic CoO algorithms and 

INS/RFID location fingerprinting algorithms. 

Chapter 6 provides information on the development of the iterated reduced Sigma 

Point Kalman Filter (SPKF) and its applications for RFID-based multi-sensor 

seamless positioning techniques. 

Chapter 7 discusses the utilization of 3-D indoor Geographical Information Systems 

(GIS) for the RFID-based positioning techniques, including map matching algorithms 

for personal positioning and a site specific propagation (SISP) model for RFID 

location fingerprinting. 

Chapter 8 presents results and conclusions from this research, and provides areas 

that need further investigation in future. 
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Chapter 2 Indoor Personal Positioning Techniques  

– an Overview 

The demand for providing positional information has grown rapidly.  With the advent 

of geolocation-empowered consumer electronics there is common consensus that 

the addition of location information has significantly enriched the information provided 

to the end-users.  This has been especially true for indoor and personal applications 

of electronically-provided position. Tremendous research has been conducted related 

to developing methods and techniques for these applications. For example, The 

Olivetti Research Laboratory (Want et al., 1992) developed the Active Badge system 

using the infrared CoO technique for locating staff in a building. Judd (1997) 

introduced a dead reckoning module for enhancing the tracking capability of 

personnel when GPS signals are blocked or unavailable.  AT&T (Harter et al., 1999) 

produced a centimetre-level accuracy ultrasonic positioning system, Active Bat, for 

indoor applications based on the ‘Time of Arrival’ (ToA) technique. Krumm et al. 

(2000) used the vision-based positioning technique to locate people. Arc Second 

(2002) produced the Indoor GPS system using the ‘Angle of Arrival’ (AoA) technique 

by infrared laser beams to achieve a millimetre-level of accuracy. Unlike GNSS, such 

as GPS, GLONASS and GALILEO that are widely used for outdoor positioning 

applications, there is no mature technique suitable for the majority of indoor 

positioning applications to date. This is because of the cost, accuracy required and 

the harsh indoor environment for implementing positioning techniques. 

This chapter will provide a brief review of existing techniques for both indoor and 

personal positioning. An RFID-based multi-sensor integrated technique for personal 

positioning is also proposed. 

2.1 Review of Indoor Positioning Techniques 

Broadly speaking the mainstream techniques used for indoor positioning include (Zhu, 

Zhang, Wu and Cartwright, 2007): 

(a) Assisted GPS (A-GPS) techniques; 

(b) Inertial navigation techniques; 

(c) Infrared positioning techniques; 
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(d) Radio-based positioning techniques; 

(e) Ultrasonic positioning techniques; and 

(f) Vision-based positioning techniques. 

All these techniques, developed for indoor or personal positioning applications, have 

their own pros and cons. The following provides an outline over each of these 

techniques. 

2.1.1 Assisted GPS Techniques 

One of the pioneering developments is to calculate positions by processing weak 

GPS signals indoors using the A-GPS technique implemented in the receivers used. 

The first receiver using this technique was developed in the late 1990s (Moeglein and 

Krasner, 1998). This technique uses satellite ephemeris, a priori position and/or a 

priori time through an alternative communication channel (e.g. cell phone) to 

enhance the positioning performance. It makes the receiver capable of finding the 

correct frequency and code-delay in a smaller search space than other receivers 

without assistance. Consequently, the A-GPS receivers receive and process satellite 

signals more easily and quickly than the conventional GPS receivers (Diggelen, 

2009). It also makes the A-GPS more sensitive to weak GPS signals so that the 

receivers can be used for indoor positioning using existing GPS infrastructures and 

conducting indoor/outdoor seamless positioning using a single device for end users. 

However, the major limitations of this technique are multipath effects and cross 

correlation problems in high-sensitive signal processing process. Firstly, due to high 

sensitivity of GPS signals, A-GPS can not only receive GPS signals from line of sight 

but also the signals penetrated through and/or reflected from the surrounding 

environments. These multipath effects can sometimes degrade the positioning 

accuracy into 100m level or even worse in complex indoor environments (Larson et 

al., 2008). Secondly, the signal strength from satellites received by A-GPS can be 

various between -160dBm and -123dBm depending on the complexity of the 

environments. This large difference in signal strength may lead to a false peak in 

correlation (a cross-correlation peak rather than an autocorrelation peak) for the 

satellites with a low signal strength and consequently degrade the positioning 

accuracy to several kilometres (Misra and Enge, 2006). Accordingly, A-GPS is not 
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suitable for accurate indoor positioning even though it is relatively low-cost and 

simple. 

2.1.2 Inertial Navigation Techniques 

Two well known inertial navigation techniques are INS and Dead Reckoning (DR), 

where the current position is calculated from a known previous position with inertial 

measurements, such as velocity and rotation rate in INS or distance and orientation 

in DR. In the early stages of navigation system’s development, DR was widely used 

due to its simplicity in distance calculation but it was limited by its kinematic 

accessibility and accuracy for vehicle navigation. Another limitation is that it can only 

deal with one dimensional rotation and two dimensional translations. In order to 

achieve high accuracy in a highly kinematic environment, INS was introduced in the 

end of the 19th Century (see Table 2.1) (King, 1998). However, traditional INS with a 

high cost and large volumes were impractical for personal positioning. These 

techniques were introduced into personal positioning only after the development of 

MEMS when the cost and size of these instruments were dramatically reduced over 

the past decade. Table 2.1 provides a synopsis of milestones in INS developments. 

This newly introduced technology, MEMS, provides sensors with physical dimensions 

of millimetre-level by using silicon or quartz to build up the mechanical structures 

(Titterton and Weston, 2004). However, the current limitation of the MEMS INS for 

personal positioning is its accuracy. The stabilities of the scale factor and bias are 

normally two and five orders lower than the highly accurate mechanical ones 

respectively. It always causes rapid and extremely high positioning errors in 

applications within a short timeframe (e.g. drifting over 100m in 60 seconds). 

Some research (Judd, 1997; Mezentsev et al., 2005) indicates that DR can achieve 

better precision than INS for personal positioning since it represents distance by the 

product of the number of steps and step length. In this case, the errors are largely 

related to the estimation of step length rather than the double integration of the 

acceleration. Consequently, the drifts of estimated position become slow. 

In addition, Mezentsev et al. (2005) state that these errors in both INS and DR are 

hard to detect and are even harder to correct without any external corrections. 

Consequently, most positioning systems developed with these technologies are often 

coupled with other positioning technologies, such as the infrared technique (Lee and 
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Mase, 2001), GPS (Retscher and Thienelt, 2004) and RFID (Miller et al., 2006), 

allowing frequent corrections to be made. 

Table 2.1 The milestones of INS developments  

(King, 1998; Schmidt, 2009) 

Time Developments 
Scale factor 

stability (ppm) 
Bias stability 

(deg/hr) 
Parts 

end of the 19th 
Century 

simple gyro-assisted magnetic compasses N/A N/A N/A 

early 20th 
Century 

stand-alone gyro compasses N/A N/A N/A 

1940s 
advanced inertial instrument technology 

for missile guidance (Germany) 
N/A N/A N/A 

first Schuler-tuned INS by MIT N/A N/A N/A 
early 1950s 

development of the floated-rate integration 
gyro 

0.1-10 0.00001-0.01 125 

development of the dynamically-tuned 
gyro (DTG) 

1-over 1000 0.0001-100 70 

research on high-accuracy 'Hemispherical 
Resonator' vibratory gyro (HRG) 

N/A N/A N/A mid-1960s 

research on the Ring Laser Gyro (RLG) 0.1-1000 0.0001-10 44 

strapdown systems became practicable N/A N/A N/A 

research on nuclear magnetic resonance 
(NMR) gyros 

N/A N/A N/A 1970s 

development of fiber-optic gyro (FOG) 0.1-1000 0.0001-10 30 

late 1980s integration with GPS N/A N/A N/A 

1990s development of MEMS gyro 10-over 1000 0.1-10000 3 

2.1.3 Infrared Positioning Techniques 

The infrared technique, which was first used in indoor positioning in the Olivetti 

Research Laboratory’s Active Badge in 1992, has been well advanced since it has a 

relatively inexpensive unit cost. It also makes the most of these positioning systems 

easy to be installed in a defined area with adequate placements and density of 

infrared sensors (Want et al., 1992). According to the transmitting power and the 

propagation characteristics of conventional infrared signals, the most popular method 

used in infrared positioning systems is CoO, which can only provide an approximate 

position within the sensors’ detectable area or cell. This method does not usually 

provide continuous position due to two main reasons. First, the discontinuous 

coverage of the cells can eliminate the conflict of receiving signals caused by 

overlapped cells. Secondly, the small cell size is always applied to increase the 
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precision of the retrieved positions from cells. However, the smaller the cell size, the 

larger the number of sensors that is needed to cover the entire area. Consequently, 

the CoO infrared positioning technique is always used as active landmarks, providing 

accurate positions when particular transmitters are detected (Lee and Mase, 2001; 

Tenmoku et al., 2003a, 2004, 2003b, 2003c).  

Between 2003 and 2004, two different groups of researchers improved the CoO 

infrared positioning techniques’ accuracy and continuity by retrieving the positions 

from overlapped transmission coverage via different approaches. Hallaway et al. 

(2003) used eight directional receivers placed at 45° in each plane to receive signals 

from different transmitters simultaneously. Jung and Woo (Jung and Woo, 2004; 

Jung and Woo, 2005a, 2005b) grouped the transmitters and made them emit signals 

group-by-group in a high frequency to avoid conflicts. Both approaches obtained 

continuous positions at metre-level accuracy by analysing a combination of the 

received signals. These new methods were recognised as zones of influence (ZOI) 

and are discussed in details in Chapter 3.  

The most accurate and continuous infrared positioning technique used so far is Arc 

Second Indoor GPS which increases accuracy by completely changing the 

transmitted signals. Instead of the conventional omni or directional signals, two fan-

shaped rotational infrared laser beams and a strobe light are transmitted to 

implement the AoA method (Arc Second, 2002). The vertical angle is calculated from 

the time between receiving two tilted laser beams and the horizontal angle was 

estimated by the time between the strobe light and laser beams. The experiments 

show that this technique can achieve 5-arcsecond accuracy within a range of 50m. 

That is equal to approximately 7 centimetres at the most in linear measurement error 

(Arc Second, 2004). However, the cost of achieving this accuracy is considerable. In 

addition, as one of the infrared positioning techniques, the Arc Second Indoor GPS 

still requires line of sight observations and is also affected by sunlight and other 

sources of infrared radiations (Hightower and Borriello, 2001). 

2.1.4 Radio-based Positioning Techniques 

Radio-based positioning techniques, such as those employed by cell phones 

(Trevisani and Vitaletti, 2004), WiFi (Li et al., 2005), Zigbee (Mok and Retscher, 2008) 

and pseudolites (Barnes et al., 2003), are some of the most commonly used 

positioning techniques due to their relatively high transmission power and the 
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requirements of dedicated devices (Christ and Lavigne, 2000). The positioning 

methods used in radio-based techniques include: 

(a) CoO; 

(b) AoA; 

(c) ToA and time difference of arrival (TDoA); 

(d) RSS-based trilateration; and 

(e) Location fingerprinting. 

2.1.4.1 Cell of Origin 

CoO is the method that is usually used in low-cost radio-based techniques. It can 

neither provide accurate time measurements nor stable and long-range signal 

strengths. Some pioneer implementations, such as the European E112 mandate, 

were applied to cell phone positioning. Trevisani and Vitaletti (2004) evaluated the 

performances of CoO and claimed that even though the accuracy was not impressive, 

it (CoO) was still superior, due to its low-cost and simplicity. 

2.1.4.2 Angle of Arrival 

The directional patterns of RF signals have been also investigated for positioning 

purposes. Researchers tried to implement this method in cell phone positioning with 

the directional antennae (Drane et al., 1998; Li, 2006). Kim et al. (2004) proposed a 

method that uses a three-orthogonal-antennae array to measure the relative angles 

for positioning. They conducted simulations in a defined area (5m×5m) and average 

centimetre-accuracy was achieved. But in some particular directions errors could be 

up to 1 metre. Yet no real-world implementations have been done. Li et al. (2007) 

identified that the orientation of mobile users and environmental dynamics can be the 

major influences on the variation of direction patterns. In addition, multipath effects 

can also cause the patterns to be unpredictable. All the negative effects make the 

implementation of positioning based on direction patterns difficult in a real-world 

situation. 
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2.1.4.3 Time of Arrival and Time Difference of Arrival 

High performance radio-based positioning techniques can use modulated information 

on carrier frequencies to calculate ToA or TDoA for positioning purposes, such as the 

case in cell phone positioning (Krasner et al., 2002). Both methods require extremely 

accurate synchronisations in all base stations in order to achieve accurate time delay 

for distance measurements. For example, one microsecond in time is equal to 

hundreds meters in distance due to the fact that signals travel at the speed of light. A 

later method, the TDoA, is superior to the ToA because it eliminates the mobile 

users’ clock errors by differencing ToA between base stations and mobile users. 

Positioning pseudolites - devices that mimic positioning satellites’ functionalities - is 

another radio-based technique that uses ToA or TDoA for positioning. These 

techniques are more specific to measurement times than cell phones, but are usually 

more complex and more expensive as well, for example, the systems of HAPPI (Ford 

et al., 1996), asynchronous pseudolite navigation system (Yun and Kee, 2002), 

LOCATA (Barnes et al., 2003) and WASP (Sathyan et al., 2009). Each of these 

systems claims sub-meter-level accuracy for indoor positioning. However, the 

general technical problems for pseudolite systems include system synchronisation, 

near/far problems and multipath effects which impose further challenges and, 

apparently, the cost of developing a system also degrades the positioning accuracy 

in harsh environments. 

One superior radio-based positioning technique using TDoA, which is not prone to 

multipath effects, is UWB. It was originally developed between the 1960s and 1970s 

for land mine detection and ground penetrating radar and it has been used for 

communication applications since the late 1990s. Due to its unique characteristics it 

has also been investigated for positioning applications over recent decades (Bellusci 

et al., 2009; Opshaug and Enge, 2001; Parikh and Michalson, 2008; Yan and 

Bellusci, 2009). According to the literature, multipath effects can be minimised using 

the leading edge detection method in UWB. The idea is that UWB transmits short 

discrete pulses instead of continuously modulated signals and detects the leading 

edge of the first returned signal. According to the geometry of paths, this leading 

edge will not be corrupted, even though the rest of the first returned signals are 

corrupted by multipath effects (Fontana, 2002). In Opshaug and Enge’s simulations 

(2001), the performance of UWB was proved to be ten times better than using GPS 
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in the same multipath-affected environments. The limitation of UWB is its extremely 

wide bandwidth, which is over 500MHz. This makes UWB signals significantly raise 

the noise levels for other radio systems (Dafesh et al., 2004), such as GPS.  This 

eventually makes UWB hard to be integrated with other positioning techniques. In 

addition, some extra work is required to avoid signal jams (Chiu and O'Keefe, 2008; 

MacGougan and Klukas, 2009). 

2.1.4.4 RSS-based Trilateration 

Where precise distances cannot be measured using ToA or TDoA, the RSS-based 

trilateration can be used according to the relationship between the signal strength 

and the distance from the transmitter to the receiver. In general, physical or statistical 

models are used to estimate distances and then trilateration is used to determine 

mobile users’ positions according to distance and known transmitter coordinates. 

Details of this method are discussed in Chapter 3. The typical applications of this 

method include positioning using cell phone (Zhu, 2006) and WiFi (Li B et al., 2008). 

The key challenge of this method is to accurately model the relationship between the 

RSS and distance in complex environments. 

2.1.4.5 Location Fingerprinting 

This method is designed to overcome the difficulties of modelling the relationships 

between the RSS and distance for RSS-based positioning techniques such as WiFi 

positioning (Frank et al., 2009; Li et al., 2005; Wayn et al., 2009). Positions are 

retrieved by matching the real-time collected RSS with the values in previous 

measured databases. According to the literature (also see Chapter 3), various 

matching methods have been developed, including deterministic methods and 

probabilistic methods. 

2.1.4.6 Limitations of Radio-Based Positioning Techniques 

Radio-based positioning techniques are superior due to their relatively high 

transmition power and indoor coverage range. These techniques do, however, have 

limitations. For RSS-based systems, the instability of RSS caused by environment 

dynamics is one of the main drawbacks. For timing systems that use ToA or TDoA, 

synchronising different components in the system is a major concern. Usually, highly 

accurate clocks or networks are engaged to maintain synchronisation and 
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consequently accurate time measurements. Other problems that occur in the timing 

systems are near/far problems (Cobb, 1997), weak signal acquisition and multipath 

effects (Dedes and Dempster, 2005). All of these detrimental effects degrade the 

positional accuracy, especially in indoor environments. Lehner and Steingaß (2003) 

identified that by increasing the bandwidth of the spread spectrum multipath effects 

can be reduced. This idea has been proven to be effective in the developments of 

UWB positioning techniques. However, the cost of this improvement and the side-

effects, such as interference due to the wide band, are tremendous. 

2.1.5 Ultrasonic Positioning Techniques 

The ultrasound technique used in AT&T Active Bat (Harter et al., 1999) and MIT 

Cricket (Priyantha, 2005) which measures ToA through ultrasound pulses, can 

achieve much higher accuracy with low-cost devices than the systems that use radio 

frequency signals (Priyantha, 2005). In addition, the ultrasound technique can 

overcome some drawbacks of the radio-based positioning technologies, such as 

multipath effects (ibid.). 

Active Bat works in a base station mode. This suggests that the positioning 

information is processed and displayed in the central computer rather than on the 

user’s handset. The central base station sends radio signals to let the user’s 

transmitter emit an ultrasonic pulse which is in turn received by a receiver matrix. The 

distances between the transmitter (on the user side) and the receiver matrix (in the 

defined area) are then calculated and the position of the mobile user is determined 

(Harter et al., 1999). After a distance-measuring pulse has been emitted from a user, 

the base station waits for reverberations of the pulse to die out before triggering 

another user to avoid the collision of multiple users’ ultrasonic pulses. This time 

interval is usually up to 20ms, implying that there may be up to 50 time slots per 

second per base station. In this case, the system cannot provide frequent positioning 

information to users when the number of users becomes large. 

Cricket is superior to Active Bat. It works in a handset mode. In this case positions 

are calculated in the user’s handset by measuring the distances between the handset 

and beacons that periodically transmits RF messages and ultrasonic pulses at the 

same time. This active-beacon passive-listener architecture has advantages in the 

areas of system scalability and user privacy protection (Priyantha, 2005). 
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The advantage of the ultrasonic positioning technique is the ultrasound’s relatively 

slow propagation speed which can increase the measuring accuracy of signal 

propagating durations and eliminate the multipath effects. It is due to the fact that 

ultrasound travels at the speed of sound (340.29m/s at sea level). The duration of a 

wide pulse caused by multipath effects will be no more than a few milliseconds, 

which is less than 1mm in distance with respect to the speed of sound. Both Active 

Bat and Cricket claim centimetre-level accuracy (Harter et al., 1999). However, most 

of these systems always need to establish a complex infrastructure in a large defined 

area. In most cases the level of transmitting power of ultrasound is set to a low-level 

so that a low power consumption and a long life circle can be achieved. This leads to 

an affective range of a single beacon of only a few metres. To cover a floor level of a 

building as big as 20×50 m 2 , dozens of beacons need to be established. In addition, 

indoor objects will cast a shadow from the ultrasonic signals emitted by the 

transmitters and thus degrade accuracy (Harter et al., 1999). 

2.1.6 Vision-based Positioning Techniques 

There are two categories of vision-based positioning techniques - passive and active. 

The former uses the multiple fixed imaging sensors to detect and locate mobile users 

in environments, such as pFinder (Wren et al., 1997), EasyLiving (Krumm et al., 2000) 

and ADVISOR (Siebel, 2003). In contrast, the active technique uses imaging sensor 

or sensors mounted on mobile users to identify their locations according to the 

images of surrounding environments. One example of active technique is the 3-D 

map matching technique proposed by Olesk and Wang (2009).  

Both techniques are based on computer vision algorithms and are not prone to 

problems like sensor drift errors in the inertial navigation systems and multipath 

effects in radio-based positioning methods. In addition, the sensors used in these 

techniques usually have longer effective ranges than that of infrared and ultrasonic 

positioning techniques. Nevertheless, the following two major drawbacks limit the 

wide usage of these techniques - reliability and computational complexity. One of the 

major problems affecting reliability is the need to identify the target object or 

background objects. Siebel (2003) identified that background instability and the low 

contrast between the targets and the background could generate challenges in 

vision-based tracking. For example, in the case of outdoor personal tracking, trees 

waving in the wind and moving vehicles could make it difficult to separate people 
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being tracked from a background, since most solutions assume static backgrounds. 

Another challenging situation is tracking people in a poorly illuminated room. The 

dark environment will degrade the contrast between the targets and the background 

and consequently make the extraction of the targets difficult. Even though much 

research (Siebel, 2003; Wren et al., 1997) has focussed on overcoming these 

limitations in vision-based tracking and positioning by introducing accurate statistical 

and physical models into the target extracting areas. The subsequent computational 

burden associated with complex models limits the use of those accurate methods in 

real applications.  

2.2 Comparisons of Indoor Positioning Techniques 

Table 2.2 shows the comparisons of the RFID positioning technique and other 

popular indoor positioning techniques using MEMS INS, DR, infrared, ultrasound, 

pseudolite, UWB, WiFi and vision-based techniques. 

According to the above comparisons, the radio-based, infrared and ultrasonic 

positioning techniques generally suffer from similar problems, such as multipath 

effects, obstructions and interferences. This is due to the fact that they use similar 

positioning methodologies. Radio-based positioning techniques are superior to the 

other two techniques due to their high transmission power, leading to a large 

coverage and high-penetration capabilities (Zhu, Zhang, Wu and Cartwright, 2007). 

The positioning methods used by various radio-based techniques have also been 

compared in the literature. Mok et al. (2007) in their primary tests indicate that the 

UWB techniques can achieve decimetre-level accuracy, which is ten times better 

than the other radio-based ToA techniques, which are prone to multipath effects. 

However, this improvement results in a tremendous cost burden due to the fact that 

the state-of-art technologies are used. For low-cost radio-based devices, Li et al. 

(2006) identified that location fingerprinting methods are superior to trilateration 

methods. This is because it is difficult to establish an accurate model for signal 

propagation methods due to the complexities and dynamics in the surrounding 

environments. Gallagher et al. (Gallagher, Li et al., 2009; Gallagher, Tan et al., 2009) 

showed that metre-level accuracy can be obtained indoors in static environments 

using the WiFi location fingerprinting method, which is suitable for personal 

positioning applications.  
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Table 2.2 The comparisons of various indoor positioning techniques 

Positioning 
Methods 

Examples Effective Range Complexity of 
Instruments 

Positioning 
Accuracy 

Assisted GPS Snap 

Track 

• Global • Portable device Hundreds of 
metres 

MEMS 
INS 

• Unlimited range • Portable device Accuracy 
degrades with 
time 

Inertial navigation 
techniques 

PDR • Unlimited range • Portable device Accuracy 
degrades in 
steps 

CoO 
Active 
Badge 

• Line of sight • Few number of 
transmitters required 

Locating people 
in a room 

ZOI 

UbiTrack • Line of sight • Few number of 
transmitters required  

• Specific methods 
required to avoid 
conflicts 

Metre-level 
Infrared 
positioning 
techniques 

AoA 
Indoor 

GPS 

• Line of sight • Few number of 
transmitters required 

Millimetre-level 

Ultrasonic 
positioning 
techniques 

ToA 
Active Bat 

& Cricket 
• About 5 metres for 

a single transmitter 
• Line of sight 

• A large number of 
devices required 

Centimetre-
level 

Cell 
phone 

• A few kilometres 
• Non-line of sight 

• Few number of cells 
required 

Hundreds of 
metres 

CoO Passive 
RFID 

• Less than 5 
metres 

• Discrete cells 

• A large number of 
devices required 

Metre-level 

LOCATA • Over 20 metres for 
a single transmitter 
indoor 

• Non-line of sight 

• Few number of 
transmitters required, 
hard to synchronize 
the system 

Metre-level 

ToA 
/ 

TDoA 
UWB • Over 20 metres for 

a single transmitter 
indoor 

• Non-line of sight 

• Large device 

• Few number of 
transmitters required 

• Hard to synchronize 
the system  

Decimetre-level 

WiFi • Over 20 metres for 
single transmitter 
indoor 

• Non-line of sight 

• Few number of 
transmitters required  

• Existing access points 
can be used 

• Require external 
power supply 

Metre-level 

Radio-
based 
positioning 
techniques 

RSS 

Active 
RFID 

• Over 20 metres for 
single transmitter 
indoor 

• Non-line of sight 

• Few number of 
transmitters required 

• No external power 
supply required for 
tags 

Metre-level 

Vision-based 
positioning 
techniques 

pFinder • Line of sight • Complex algorithms 
based on computer 
vision 

Sub-metre-level 
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In contrast, the inertial navigation and vision-based positioning techniques are two 

unique techniques which are almost unaffected by the signal propagation problems 

that occur in radio-based, infrared and ultrasonic positioning systems. However, the 

inertial sensors contain significant drifts. The accumulated errors quickly increase, 

either with time in INS or with moving steps in DR (Judd, 1997; Mezentsev et al., 

2005). Vision based positioning techniques do not have these accumulated errors, 

but their applications are limited by the complex computer vision algorithms and 

expensive vision sensors required. In these circumstances, these two techniques, 

inertial navigation techniques and vision-based positioning techniques are not widely 

used as stand-alone solutions. 

2.3 RFID-Based Multi-sensor Positioning Techniques 

As a result of the comparisons, multi-sensor integration was selected for developing 

a metre-level accuracy personal navigation technique in this research. RFID was 

used as the fundamental component of this indoor/outdoor personal positioning 

technique. It was an essential element for providing positions using RSS-based 

algorithms. 

2.3.1 Using RFID for Positioning 

The RFID technique was originally designed as a contactless and low energy 

consumption device to replace conventional smart card systems which were prone to 

problems of wear and damage by frequent contacts (Finkenzeller, 2003). Previously, 

the major application of this technique was for transferring object identification to 

monitoring sensors in logistic industries. Since RFID techniques use a radio 

frequency (RF) interface to implement the contactless functionality, it provides not 

only the ability to identify, but also to locate the targeting objects by analysing the 

signals received. From the literatures (Finkenzeller, 2003; Retscher et al., 2006), 

typical applications of RFID are listed below. 

(a) Security/access control; 

(b) Asset management; 

(c) Transportation; 

(d) Supply chain management; 

(e) Point of sale; 
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(f) Rental item tracking; 

(g) Toll collection; 

(h) Automobile immobilisers; 

(i) Baggage handling; 

(j) Animal tracking; 

(k) Real time location systems; and 

(l) Many other applications. 

These applications have already shown the changes of the RFID usages from a 

stand-alone identification system (its original design) into a system that can be used 

for tracking and positioning, such as those listed in items (f), (j) and (k) above. The 

benefits using RFID in indoor/outdoor personal positioning include: 

(a) Simplicity (of the system); 

(b) Low-cost (of the device); 

(c) High portability; 

(d) Ease of maintenance (battery free for passive tags and built-in battery for 

active tags); 

(e) Capability of providing both identification and location; 

(f) A long effective range (up to 100m for a single transmitter in free space); 

and 

(g) RF signals - which have the capability of penetrating a few obstacles. 

Despite of its limitations of one-way communication links and unstable RSS, RFID 

offers the potential for the provision of personal positioning.  This is due to its ever-

decreasing cost and size of the device. 

2.3.2 Advantages of Integrated Positioning Techniques 

In personal positioning research, one of the main topics was the trade-off between 

the simplicity of the technique used and the accuracy and reliability it can provide. 

Higher accuracy device is usually more complicated and involved in a higher cost – 

this is “you get what you pay for” (keynote speech “Beyond GPS”, of the IGNSS 2009 

conference). Techniques like RFID, which are low-cost and small in size, cannot 



 

23 

always provide accurate solutions. In contrast, accurate positioning techniques are 

usually more expensive and more complex. 

One emerging solution is to use a hybrid system - integrating multiple sensors to 

compensate for the limitations in each single technique. In the Pedestrian Navigation 

Systems in Combined Indoor/Outdoor Environments (NAVIO) research project 

(Retscher, 2007a, 2007b) an integrated low-cost GPS, DR module, digital compass, 

biometric pressure sensor and WiFi positioning system was developed for seamless 

pedestrian positioning applications. Every sensor or sub-system played a unique role 

in situations where the rest sensors became less reliable. For example, the low-cost 

GPS was for outdoor horizontal positioning, the biometric pressure sensor was for 

vertical measurements, the digital compass was for measuring orientations and the 

WiFi was for indoor positioning. The information collected was fused together by 

Kalman filtering and metre-level accuracy could be obtained in both indoor and 

outdoor applications. 

In this research, an integrated low-cost GPS and MEMS INS device (Wu, Zhang et 

al., 2007), MinimaxX (see Figure 2.1), was combined with RFID to enhance the 

accuracy and reliability of the RFID positioning indoors. The proposed roles of 

sensors in personal positioning systems are listed below (Table 2.3). 

 

Figure 2.1 The front view and back view of minimaxX 

 (It contains a low-cost GPS, a tri-axis accelerometer, a 

tri-axis gyroscope and a tri-axis magnetometer. The 

dimension of the module is approximately 8�5�2 cm) 
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Table 2.3 Roles of sensors used in the proposed personal positioning system. 

 RFID MEMS INS Low-cost GPS 

indoor 
• To provide continuous 

positions using RSS-
based algorithms. 

• To provide high sampling 
rate orientations, velocities 
and relative positions; and 

• To provide constraints for 
RFID solutions. 

• N/A. 

outdoor 

• To provide instant 
positioning corrections as 
active landmarks; or 

• To provide ranging 
information using RSS-
based algorithms 

• To provide high sampling 
rate orientations, velocities 
and relative positions 

• To provide continuous 
absolute positions. 

2.4 Summary 

This chapter has presented an overview of and made a comprehensive comparison 

of typical indoor positioning techniques, including assisted GPS, inertial navigation 

systems, infrared positioning, radio-based positioning, ultrasound positioning and 

vision-based positioning. Each of these techniques have their own pros and cons. 

Inertial sensors are less prone to the effects from surrounding environments, but 

contain significant drifts. The infrared positioning technique is low-cost but is limited 

by the accuracy achievable. Radio-based techniques provide a relatively large 

coverage using a small number of devices, but they have serious multipath effects. 

Ultrasound positioning technology is superior in cost and is less affected by multipath 

effects, but restricted by its effective transmission ranges. Vision-based positioning 

does not need user-mounted mobile devices; however, complex algorithms are 

required. 

This chapter has also shown the need to study the RFID-based multi-sensor 

techniques for personal positioning due to their unique advantages. The key 

advantages of using RFID are its powerful RF signals, low-cost and small size. The 

limitations of its unstable RSS can be compensated by developing algorithms for 

integrating other sensors, such as MEMS INS. 

A general understanding of the positioning algorithms for the RFID-based multi-

sensor positioning technique will be provided in the next chapter. 
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Chapter 3 Positioning Algorithms 

Mobile users’ positions can be displayed on the screens of personal digital devices or 

the contrail monitors when an appropriate positioning technique is applied to them. 

Positioning algorithms are the initial part of the positioning techniques behind the 

screen, which convert the measurements of positioning device into positions. 

The first section of this chapter will provide an overview and evaluations of the 

algorithms used for state estimation of the system and multi-sensor integration. 

These algorithms were implemented using different forms of KF in this research. KF, 

least square adjustment, Extended KF (EKF) and linearised KF are also compared in 

this section. The RSS-based positioning algorithms, including CoO, RSS-based 

trilateration and location fingerprinting are introduced in the second part of this 

chapter and their characteristics are compared. 

3.1 Kalman Filter 

An initial task in positioning is to estimate the system states, such as positions, 

velocities and orientations based on noisy observations. One solution is to predict a 

state and its uncertainty then make corrections according to the observations.  This is 

done to separate the signals from noises based on the theories of least square 

adjustment, probability and dynamic systems. This is a recursive system and its 

solution to the discrete linear filtering problem was developed by and hence named 

after R.E. Kalman (1960). This technique is now widely used in the areas of 

automation and navigations in its original form and further developed forms (e.g. EKF 

or SPKF) (Grewal and Andrews, 2001). 

The core components of KF are two mathematical models, the dynamic model and 

the measurement model. The dynamic model describes the changes of the estimated 

states in a stochastic process and the later one represents the relationship between 

the states and the measurements. In general, the dynamic model and the 

measurement model are listed as Equation (3.1) and (3.2) respectively. 

1 1 1( )
k k k k

x f x w− − −= + , (0, )
k k

w N Q∼

ɶ

 ( 3 . 1 ) 

( )
k k k k

z h x v= + , (0, )
k k

v N R∼
ɶ

 ( 3 . 2 ) 
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where,  

k
x  is the state vector at epoch k ; 

k
w  is the zero-mean white Gaussian process noise with process noise 

covariance 
k

Q
ɶ

 at epoch k ; 

( )
k

f •  is the state transition function at epoch k ; 

k
z  is the measurement vector at epoch k ; 

k
v  is the zero-mean white Gaussian measurement uncertainty with 

measurement uncertainty covariance 
k

R
ɶ

 at epoch k ; and 

( )
k

h •  is the measurement function at epoch k . 

In a linear system, the dynamic model and measurement model can be written as: 

1 1 1k k k k
x x w− − −= Φ ⋅ +

ɶ
, (0, )

k k
w N Q∼

ɶ

 ( 3 . 3 ) 

k k k k
z H x v= ⋅ +

ɶ
, (0, )

k k
v N R∼

ɶ
 ( 3 . 4 ) 

Where the state transition function and measurement function are replaced by the 

state transition matrix 
k

Φ
ɶ

, and measurement sensitivity matrix 
k

H
ɶ

, respectively. 

The goal of KF is to obtain an optimal linear estimate based on the observation, 
k

z  

(see Equation (3.5)) as follows (Grewal and Andrews, 2001). 

1ˆ ˆ
k k k k k

x K x K z
+ −= ⋅ + ⋅
ɶ ɶ

 ( 3 . 5 ) 

where, 

ˆ
k

x
+  and ˆ

k
x

−  are the posterior and priori estimates of the state vector, 
k

x , 

respectively; 

1

k
K
ɶ

 and 
k

K
ɶ

 are the weights of ˆ
k

x
−  and the observation, 

k
z , respectively. 

This estimate should satisfy the orthogonality condition that the products of the 

estimation error, ˆ
k k

x x
+− , and measurement vector 

i
z , 1, ,i k= …  are zero-mean (see 

Equation (3.6)). 

ˆ[( ) ] 0T

k k i
E x x z

+− ⋅ = , 1, ,i k= …  ( 3 . 6 ) 
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Eventually, it yields that: 

1

k k k
K I K H= − ⋅
ɶ ɶ ɶ ɶ

 ( 3 . 7 ) 

The coefficient, 
k

K
ɶ

, specifically, is called Kalman gain.   

Accordingly, KF can be implemented via two steps: the measurement update; and 

the time update, with a set of five equations (Welch and Bishop, 2006) (see 

Equations (3.8) - (3.12)).  

The measurement update equations are: 

1[ ]T T

k k k k k k k
K P H H P H R

− − −= ⋅ ⋅ ⋅ ⋅ +
ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 ( 3 . 8 ) 

ˆ ˆ ˆ[ ]
k k k k k k

x x K z H x
+ − −= + ⋅ − ⋅

ɶ ɶ
 ( 3 . 9 ) 

[ ]
k k k k

P I K H P
+ −= − ⋅ ⋅
ɶ ɶ ɶ ɶ ɶ

 (3 .10) 

The time update equations are defined as: 

1 1
ˆ ˆ

k k k
x x

− +

− −= Φ ⋅
ɶ

 (3 .11) 

1 1 1 1

T

k k k k k
P P Q− +

− − − −= Φ ⋅ ⋅Φ +
ɶ ɶ ɶ ɶ ɶ

 (3 .12) 

where,  

k
P
ɶ

 is defined as the error covariance matrix of the state vector 
k

x  (see 

Equation (3.13)). 

( )T

k k k
P E x x≡ ⋅ɶ ɶ
ɶ

 (3 .13) 

ˆ
k k k

x x x≡ −ɶ  (3 .14) 

3.1.1 Comparisons of KF and Least Square Adjustment 

As well as KF, Least Square adjustment is a conventional and widely used technique 

for state estimation. It was first described by Gauss in 1794. The idea is to find the 

optimal estimation x̂  to minimise the sum of the squared residuals, 

2

1

ˆ( )
k

i i

i

z z
=

−∑ (Ghilani and Wolf, 2006). Consequently, the solution comes out as 

Equation (3.15). 

1ˆ ( )T Tx H H H Z−= ⋅ ⋅ ⋅
ɶ ɶ ɶ ɶ

 (3 .15) 
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where, 

i
z  is the measurement; 

ˆ
i i

z z−  is the residual; 

Z
ɶ

 is a set of measurements, 
i

z ; and 

H
ɶ

 is the measurement sensitivity matrix. 

Sorenson (1970) proved that the KF is equivalent to the least square adjustment 

when the state is constant and there is no error in the dynamic model. The following 

derivations describe this statement in detail and show the relationship between KF 

and the weighted least square adjustment in the case of the constant state. 

In the KF, substituting Equation (3.8) into Equation (3.9) yields: 

1ˆ ˆ ˆ[ [ ] ] [ ]T T

k k k k k k k k k k
x x P H H P H R z H x

+ − − − − −= + ⋅ ⋅ ⋅ ⋅ + ⋅ − ⋅
ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 (3 .16) 

Multiplying 
k

H
ɶ

 on both sides of Equation (3.16) and rearranging it gives: 

1 1ˆ ˆ[ [ ] ] [ ] [ [ ] ]T T T

k k k k k k k k k k k k k k
H x R H P H R H x H P H H P H R z

+ − − − − − −⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 (3 .17) 

Defining 1,kW
ɶ

 and 2,kW
ɶ

 as coefficients of the terms ˆ[ ]
k k

H x
−⋅

ɶ
 and 

k
z  respectively gives: 

1

1, [ ]T

k k k kW R H P H R
− −≡ ⋅ ⋅ ⋅ +

ɶ ɶ ɶ ɶ ɶɶ
 (3 .18) 

1

2, [ ]T T

k k k k k k kW H P H H P H R
− − −≡ ⋅ ⋅ ⋅ ⋅ ⋅ +

ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ
 (3 .19) 

where, 

1, 2,k k
W W I+ =

ɶɶ ɶ
 (3 .20) 

Substituting Equations (3.18) and (3.19) into Equation (3.17) yields: 

1, 2,
ˆ ˆ[ ]k k k k k k kH x W H x W z

+ −⋅ = ⋅ ⋅ + ⋅
ɶ ɶɶ ɶ

 (3 .21) 

Substituting Equation (3.11) into Equation (3.21) yields: 

1, 1 1 2,
ˆ ˆ[ ]k k k k k k k kH x W H x W z

+ +
− −⋅ = ⋅ ⋅Φ ⋅ + ⋅

ɶ ɶ ɶɶ ɶ
 (3 .22) 

Substituting Equation (3.21) into Equation (3.22) yields: 

1

1, 1 1 1 1 1, 1 1 1 2, 1 1 2,
ˆ ˆ[ ( ) [ [ ] ]]T T

k k k k k k k k k k k k k k kH x W H H H H W H x W z W z
+ − −

− − − − − − − − −⋅ = ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅
ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ  

 (3 .23) 
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Rearranging Equation (3.23) yields: 

1

1, 1 1 1 1 1, 1 1 1

1

1, 1 1 1 1 2, 1 1 2,

ˆ ˆ( ) [ ]

( )

T T

k k k k k k k k k k k

T T

k k k k k k k k k k

H x W H H H H W H x

W H H H H W z W z

+ − −

− − − − − − −

−

− − − − − −

⋅ = ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅
ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

 (3 .24) 

Substituting Equations (3.11) and (3.21) into Equation (3.24) and rearranging yields: 

1 1

1, 1 1 1 1 1,2 2 1 1 1 1 1,1 1 0 0

1 1

1, 1 1 1 1 1,2 2 1 1 1 1 2,1 1

1,

ˆ ˆ[ ( ) ] [ ( ) ] [ ]

[ ( ) ] [ ( ) ]

[

T T T T

k k k k k k k k

T T T T

k k k k k k

k k

H x W H H H H W H H H H W H x

W H H H H W H H H H W z

W H

+ − −

− − − −

− −
− − − −

⋅ = ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅Φ ⋅

+ ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅

⋯
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

⋯
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

ɶɶ

1 1

1 1 1 1 1,3 3 2 2 2 2 2,2 2

1

1, 1 1 1 1 2, 1 1

2,

( ) ] [ ( ) ]

[ ( ) ]

T T T T

k k k k

T T

k k k k k k k k

k k

H H H W H H H H W z

W H H H H W z

W z

− −

− − − −

−
− − − − − −

⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅

+

+ ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅

⋯
ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ

⋯

ɶ ɶ ɶ ɶ ɶɶ ɶ

ɶ
 (3 .25) 

Rearranging Equation (3.25) yields: 

1
1

1, 1 1 1,1 1 0 0
1

1
1

1, 1 1 2,
1 1

2,

ˆ ˆ( [ ( ) ]) [ ]

(( [ ( ) ]) )

k
T T

k k k i k i k i k i k i k i
i

k jk
T T

k i k i k i k i k i k i j j
j i

k k

H x W H H H H W H x

W H H H H W z

W z

−
+ −

− + − + − − − −
=

−−
−

− + − + − − − −
= =

⋅ = ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅Φ ⋅

+ ⋅ ⋅Φ ⋅ ⋅ ⋅ ⋅ ⋅

+ ⋅

Π

Σ Π

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶ ɶ ɶ ɶɶ ɶ

ɶ

 (3 .26) 

where, 

0x̂  is the vector of the initial state; 

0Φ
ɶ

 is the state transition matrix for the initial state; 

 the first term refers to the initial state; 

 the last term refers to the last measurement; and 

 the terms in between are the rest of the measurements. 

Given the condition of the state, vector x  is a constant, the state transition matrices 

become identity matrices and the measurement sensitive matrices at every epoch 

become constants (see Equations (3.27) and (3.28)). 

i
IΦ =

ɶ ɶ
, 0,1, ,i k= …  (3 .27) 

i
H H=
ɶ ɶ

, 1, ,i k= …  (3 .28) 

Consequently, 

1

1 ( )T T

k i k i k i k i
H H H H I

−

− + − − −⋅ ⋅ ⋅ =
ɶ ɶ ɶ ɶ ɶ

 (3 .29) 
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Equation (3.26) can be written as: 

1, 0
1

1

1, 1 2,
1 1

2,

ˆ ˆ( ) [ ]

(( [ ) )

k

k k
i

k jk

k i j j
j i

k k

H x W H x

W W z

W z

+

=

−−

− +
= =

⋅ = ⋅ ⋅

+ ⋅ ⋅

+ ⋅

Π

Σ Π

ɶ ɶɶ

ɶ ɶ

ɶ

 (3 .30) 

Defining Z
ɶ

 as a vector of measurements as well as the term for the initial state on 

the right side of Equation (3.30) and W
ɶ

as the coefficients of each term (see Equation 

(3.31) and (3.32)), we have 

1,
1

1

1, 1 2,1
1

1

1, 1 2, 1
1

2,

( [ )

( [ )

k

k

i

k

k i
i

k i k

i

k

W

W W

W

W W

W

=

−

− +
=

− + −
=

 
 
 
 

⋅ 
 ≡
 
 
 ⋅
 
 
 

Π

Π

Π

ɶ

ɶ ɶ

⋮ɶ

ɶ ɶ

ɶ

 (3 .31) 

0

1

ˆ

k

H x

z
Z

z

⋅ 
 
 ≡
 
 
 

ɶ

⋮ɶ
 (3 .32) 

Equation (3.30) can be written as: 

ˆ T

k
H x W Z

+⋅ = ⋅
ɶ ɶɶ

 (3 .33) 

Its solution is: 

1ˆ ( ) ( )T T T

k
x H H H W Z

+ −= ⋅ ⋅ ⋅ ⋅
ɶ ɶ ɶ ɶɶ

 (3 .34) 

This solution is similar to the solution of a least square adjustment except that the 

observations are weighted by the matrix W
ɶ

. Experiments are designed to validate 

this outcome. 

In the experiments, a KF was defined to calibrate the accelerometers in INS. 

According to the calibration, a linear relationship was established between the 

accelerometer’s digital outputs and the accelerations measured in m·s-2 (see 

Equation (3.35)). The vertical component of the gravity was used as a reference in 

this calibration. The KF was used to determine the scale factors and offsets in this 
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relationship in real time. 1000 samples were taken, half of which were aligned with 

the direction of the gravity and the other half were aligned with the opposite direction 

of the gravity. 

DN fα β= ⋅ +  (3 .35) 

where, 

DN  is the accelerometer’s digital output; 

f  is the acceleration in m·s-2; 

α  is a scale factor; and 

β  is an offset. 

The state vector of KF is: 

x
α

β

 
=  
 

 (3 .36) 

The observation vector is: 

[ ]z DN=  (3 .37) 

The dynamic model of KF is: 

1 1k k k
x x w− −= + , (0, )

k k
w N Q∼

ɶ

 (3 .38) 

2

2

0

0
kQ

α

β

σ

σ

 
=  
  ɶ

 (3 .39) 

where, 

2

ασ  and 2

βσ   are the variances of the scale factor and the offset respectively, both are 

in the order of 10 4− . 

The measurement model is: 

REF

k k k
z f vα β= ⋅ + + , (0, )

k k
v N R∼

ɶ
 (3 .40) 

2

k DNR σ =  
ɶ

 (3 .41) 

where, 

REF

k
f  is the reference acceleration at epoch k ; and 
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2

DN
σ  is the variance of accelerometer’s outputs in the order of 10 1− . 

0

0

( )

( )

zREF

k

z

g k k
f

g k k

≤
= 

− >
 (3 .42) 

where, 

z
g  is the vertical component of the gravity; and 

0k  is the epoch at which the accelerometer changes from aligning with 

positive gravity to aligning with negative gravity. 

Figure 3.1 shows the weights on the observations changed with respect to time in KF.  

 

Figure 3.1 Weights of the observations in KF and the sum of the weights 

((a) The weight of the initial state falls rapidly to the level of 

10 5−  within a few epochs; (b) The sum of weights for 

observations aligned with +g which converges to a new level 

when the observations aligned with –g are included; (c) The 

sum of weights for observations aligned with –g; (d) The sum 

of weights for all the terms in KF equals to one constantly.) 
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The weight of the initial state drops quickly to the order of 10 5−  and can be ignored 

with the increase of the number of observations (see Figure 3.1 (a)). This means that 

the initial values of KF provide very subtle effects on the results. Figure 3.1 (b) and (c) 

presents the changes of weights for the observations aligned with the direction of the 

gravity and aligned with the opposite direction of the gravity respectively. The plots 

show that the weights are redistributed when the new statues are included and the 

values of the weights are converged to a new level quickly. According to the 

Equations (3.18) and (3.19), the values of the newly converged weights are 

controlled by the covariance matrices, Q
ɶ

 and R
ɶ

. Figure 3.1 (d) indicates that the 

summary of the weights equals to one constantly. That is to say the weights of the 

observations, W
ɶ

, are normalized all the time. The parameters were also estimated by 

the unweighted least square adjustment based on the following function. 

1ˆ ( )T Tx H H H Z−= ⋅ ⋅ ⋅
ɶ ɶ ɶ ɶ

 (3 .43) 

where, 

1

1

1

1

g

g
H

g

g

 
 
 
 

=  
− 
 
 
− 

⋮ ⋮

ɶ

⋮ ⋮

; and 

Z
ɶ

 is a set of observations. 

Figure 3.2 shows the comparison of the results from KF and unweighted least square 

adjustment. The results from the least square adjustment are very close to those 

estimated by KF and all fall into the 95% confidence intervals. Accordingly, the result 

from KF can be similar to the result from the unweighted least square adjustment and 

can be identical if the same normalised weights are applied to the observations. It 

indicates that it is feasible to use KF to estimate the constant state in real time. 
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Figure 3.2 The estimated values of the offset and scale factor via 
KF and least square adjustment respectively 

(The error bars show the 95% confidence interval of the 

outputs from KF according to the error covariance 

matrix of state vector. All the outputs from least square 

adjustment (dots) fall into the 95% confidence intervals 

and they are very close to the outputs from KF 

(squares).) 

One benefit of using KF rather than using least square adjustment in practice is to 

save computational memories. The KF updates the estimated state only based on 

the current observations, the Kalman gain and the covariance matrices in real time. 

In contrast, the least square adjustment estimates the state based on all the 

observations at once in the post process. Furthermore, the anomalies in KF can be 

detected in real time since those observations with significant errors will cause the 

redistribution of the weights and apparently the variance of the estimated states. The 

operator can determine whether to wait for more good observations or redo the 

experiment immediately. However, the anomalies will not be detected in the data 

acquisition stage by using least square adjustment and, sometimes, it will required to 

repeat the experiments and the data again in order to achieve optimal results. 

3.1.2 Comparison of Linearised KF and Extended KF 

Many navigation problems are non-linear. Although KF was designed for linear 

problems, there are two simple approaches to adapt KF for non-linear problems, the 

linearised KF and the EKF. This section will present a comparison of using linearised 
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KF and EKF for personal positioning applications. Other complex solutions, such as 

SPKF, will be discussed in Chapter 6. 

In the linearised KF, a nominal state vector, nom
x , is used to generate the linearised 

perturbed dynamic model (see Equation (3.46)) (Grewal and Andrews, 2001). 

1 1( )nom nom

k k k
x f x− −=  (3 .44) 

nom
x x xδ ≡ −  (3 .45) 

1

1
1 1

nom
k

k
k k k

x x

f
x x w

x
δ δ

−

−
− −

=

∂
≈ ⋅ +

∂
, (0, )

k k
w N Q∼

ɶ

 (3 .46) 

where, 

xδ  is defined as the perturbation from the nominal state vector, nom
x ; and 

1

1

nom
k

k

x x

f

x
−

−

=

∂

∂
 is the Jacobian matrix of partial derivative of the non-linear dynamic 

model ( )f •  with respect to the state vector x  at the nominal state nom
x . 

Consequently, the time update and measurement update functions of the linearised 

KF becomes:  

1 1
ˆ ˆ

k k k
x xδ δ− +

− −= Φ ⋅
ɶ

 (3 .47) 

nom
k

k
k

x x

f

x =

∂
Φ ≈

∂ɶ
 (3 .48) 

ˆ ˆ ˆ[ ( ) ]nom

k k k k k k k k
x x K z h x H xδ δ+ − −= + ⋅ − − ⋅

ɶ ɶ
 (3 .49) 

nom
k

k
k

x x

h
H

x =

∂
≈

∂ɶ
 (3 .50) 

The state transition matrix, Φ
ɶ

, and the measurement sensitivity matrix, H
ɶ

, are all 

replaced by the Jacobian matrix of partial derivatives of the non-linear models with 

respect to the state vector at the nominal state. 

Schmidt (1970) introduced another approach, the EKF, formally called Kalman-

Schmidt filter. Instead of using perturbation theory in linearised KF, EKF directly 

evaluates the partial derivatives at the estimated values of the state variables (see 

Equations (3.51) - (3.54)).   
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1 1
ˆ ˆ( )

k k k
x f x
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∂
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 (3 .54) 

where,  

ˆˆ ( )
k k k

z h x
−=  (3 .55) 

Grewal and Andrews (2001) describe the pros and cons of using a linearised KF and 

EKF. They state that the EKF is superior to a linearised KF in solving non-linear 

problems. It is because that the EKF only applies linear approximation over the 

ranges of state space. In contrast, a linearised KF uses linear approximations over 

both the range of trajectory perturbations and state estimation errors. Therefore, it 

always contains larger nonlinear approximation errors than using EKF but the trade-

off is the computational efficiency. In a linearised KF, the computations of 

measurement sensitivities, state transition matrices and Kalman gains respected to 

nominal states can be precomputed. This feature can reduce a large amount of 

computational load dealing with big datasets. 

Simulations of using two RTK GPS receivers to estimate pedestrian orientations 

outdoors were designed and a comparison between a linearised KF and EKF was 

conducted by these simulations (see Figure 3.3). The basic idea is to use RTK GPS 

receivers to obtain centimetre-level positions of the pedestrian’s right and left 

shoulders then the orientations can be calculated based on the pedestrian’s 

shoulders’ positions at the same time. Whereas the problem is that two RTK GPS 

receivers work individually and do not provide simultaneous positions. Normally, 

there is a time gap less than one second between the two adjacent outputs from two 

receivers so KFs for non-linear problems are engaged in fusing the asynchronous 

data. 
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Figure 3.3 Experiments of estimating pedestrian’s orientations 
using two RTK GPS receivers 

(Two RTK GPS receivers are used to evaluate the 

performances of the linearised KF and EKF and also 

the feasibility of using high accuracy GPS to estimate 

pedestrian’s orientations. Two receivers are mounted 

on the right-hand-side and left-hand-side of the 

pedestrian respectively.) 

The state vector is: 

x

y

L

R

p

p

v
x

l

l

ψ

 
 
 
 

=  
 
 
 
 

 (3 .56) 

where, 

x
p  and 

y
p  are the horizontal coordinates of the pedestrian in x and y axes 

respectively; 

v  is the speed of the pedestrian; 

ψ  is the orientation of the pedestrian; and 

L
l  and R

l  are the widths of the left shoulder and right shoulder of the pedestrian 

respectively. 



 

38 

The observation vector is: 

L

x

L

y

R

x

R

y

p

p
z

p

p

 
 
 =
 
 
  

 (3 .57) 

where, 

L

x
p  and L

yp  are the x and y coordinates measured by the left RTK GPS; and 

R

x
p  and R

yp  are the x and y coordinates measured by the right RTK GPS. 

It is assumed that the speed and orientation of the pedestrian do not frequently 

change so the dynamic models are: 

, , 1 1 1sin( )x k x k k k pxp p v t wψ− − −= + ⋅∆ ⋅ +  (3 .58) 

, , 1 1 1cos( )y k y k k k pyp p v t wψ− − −= + ⋅ ∆ ⋅ +  (3 .59) 

1k k v
v v w−= +  (3 .60) 

1k k
wψψ ψ −= +  (3 .61) 

1 L

L L

k k l
l l w−= +  (3 .62) 

1 R

R R

k k l
l l w−= +  (3 .63) 

where, 

t∆  is the time interval between two adjacent observations; and 

w•  is the zero-mean white Gaussian process noise with respect to each state 

variable. 

The measurement models are: 

sin( )
2

L
x

L L

x x p
p p l v

π
ψ= + ⋅ − +  (3 .64) 

cos( )
2

L
y

L L

y y p
p p l v

π
ψ= + ⋅ − +  (3 .65) 

sin( )
2

R
x

R R

x x p
p p l v

π
ψ= + ⋅ + +  (3 .66) 
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cos( )
2

R
y

R R

y y p
p p l v

π
ψ= + ⋅ + +  (3 .67) 

where, 

v•  is the zero-mean white Gaussian process noise with respect to each state 

variable. 

Figure 3.4 shows the simulated pathway and the pedestrian’s orientation. The 

pedestrian walked towards the north about 60m in one minute. Then two slight turns 

were made, one 15˚ clockwise turn start from 10s and one 15˚ counter clockwise turn 

start from 30s, and one relatively sharp turn of 30˚ clockwise, start from 45s. The 

standard deviations in the orders of 10 1− ˚ and 10 2− m/s respectively were set to the 

orientation and walking speed of the pedestrian in the simulation. 

 

Figure 3.4 The simulated path of the pedestrian and his/her orientation 

(The simulation lasted one minute. Three turns were made 

by the pedestrian, two 15˚ turns one from 10s to 20s to the 

right and one from 30s to 40s to the left respectively and 

one 30˚ sharp turn from 45s to 50s to the right.) 

Figure 3.5 shows the errors in position and orientation estimated by the linearised KF 

and EKF respectively. The errors in position using both algorithms are similar and 

acceptable except that the estimations from the linearised KF became slightly large 

when the pedestrian made the sharp turn. It is because that the nonlinearity between 

the observations and the estimated positions are not significant. Both the linearised 

KF and EKF can deal with this simple relationship well. However, EKF provide much 

better estimation in orientation than using the linearised KF. The Root Mean Square 
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Error (RMSE) is only 2.6˚ using EKF but the errors are up to 30˚ using the linearised 

KF. It is because that the nonlinearity becomes significant when establishing the 

relationship between the observed positions and the estimated orientation (see 

Equations (3.64) - (3.67)). The estimations from the linearised KF converge much 

slower than using EKF and eventually lead to large errors. It is concluded that the 

linearised KF can be used in the situation where the nonlinearity is not significant 

since it can provide equivalent results with EKF and consumes less computational 

power. The EKF is required to provide reliable estimations when the nonlinearity 

becomes significant. In this research, the efficiency was not a primary concern and 

the EKF was preferred due to the small number of states to be estimated and the 

significant nonlinearity between the parameters.  

 

Figure 3.5 Errors in position and orientation estimations by a linearised 
KF and EKF respectively 

(The red lines refer to the EKF errors and the blue lines refer 

to the linearised KF errors.) 

3.1.3 Integration using KF  

Previous experiments have also indicated that KF can be used as a tool to integrate 

the observations. This functionality of KF has been frequently mentioned in literature 

(Brown and Hwang, 1992; Grewal and Andrews, 2001; Retscher, 2009, 2007b). 

Retscher (2007b) developed a knowledge-based KF for a multi-sensor personal 

positioning system to fuse the observations from GPS, PDR, compass and barometer 

for outdoor positioning and later (Retscher, 2009) included WiFi and RFID for indoor 

positioning. A positioning accuracy of 1 to 2 metres was achieved by correctly 

weighted the observations and the state estimations in KF. 

The following example shows the integration of gyroscope and magnetometers to 

estimate pedestrian’s orientations using EKF. Both gyroscope and magnetometers 
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can be used to estimate the orientations and rotation rates stand-alone but each of 

them has their unique limitations. On one hand, the gyroscope measures the rotation 

rate according to a series of physical phenomena, such as gyroscopic inertia, angular 

momentum and precession. This sensor can be treated as a self-contained sensor 

which is not significantly affected by the surrounding environments so that it can 

provide reliable rotation rate measurements. However, an integral of the 

measurements is required when it is used to estimate the orientations. Apparently, 

the errors from the noise and bias of the gyroscope are accumulated and lead to 

significant drifts in the orientation estimation. On the other hand, the magnetometers 

can measure the orientation according to the geomagnetic vector directly. It does not 

contain the accumulative errors but the geomagnetic vector is not stable and the 

magnetometers are very sensitive to the metal or electronic devices nearby. These 

detrimental effects can cause a relatively large noise in the orientation estimation 

using magnetometers. Accordingly, the integration of gyroscope and magnetometers 

may decrease the noise level of orientation estimation caused by the noises in 

magnetometers and constrain the drifts caused by the accumulated errors in the 

gyroscope. 

The EKF used for the integration is described as follows. The state vector is: 

x
ψ

ψ

 
=  
 ɺ

 (3 .68) 

where, 

ψ  is the orientation; and 

ψɺ  is the horizontal rotation rate. 

The dynamic models are: 

1 1k k k
t wψψ ψ ψ− −= + ∆ ⋅ +ɺ  (3 .69) 

1k k
wψψ ψ −= + ɺ

ɺ ɺ  (3 .70) 

where, 

t∆  is the time interval between two adjacent observations; and 

w•  is the zero-mean white Gaussian process noise with respect to each state 

variable. 
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The measurement vector is: 

x

y

z

m

z m

ψ

 
 

=  
  ɺ

 (3 .71) 

where, 

x
m  and y

m  are the measurements from x-axis and y-axis magnetometers 

respectively; and 

zψɺ  is the horizontal rotation rate measured by the gyroscope. 

The measurement models are: 

sin( ) cos( ) x

x N E

k AGRF k AGRF k m
m m m vψ ψ= ⋅ + ⋅ +  (3 .72) 

cos( ) sin( ) y

y N E

k AGRF k AGRF k m
m m m vψ ψ= ⋅ − ⋅ +  (3 .73) 

z

z

k k v
ψ

ψ ψ= +ɺ ɺ  (3 .74) 

where, 

N

AGRF
m  and E

AGRF
m  are the North and East components of the geomagnetic vector; 

and 

v•  is the zero-mean white Gaussian process noise with respect to 

each measurement variable. 

Figure 3.6 shows the results using EKF to integrate the gyroscope and 

magnetometers. The high-frequency variations in the magnetometers’ observations 

caused by the instability of the geomagnetic vector and the effects from the 

surrounding environments are filtered and the drifts of the gyroscope are also 

minimised. 
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Figure 3.6 Integrated gyroscope and magnetometers’ results 

(Plot (a) shows the estimations of orientation using 

gyroscope (red), magnetometers (green) and EKF 

integration (blue) respectively. Plot (b) shows the 

estimations of rotation rate using gyroscope (red), 

magnetometers (green) and EKF integration (blue) 

respectively. The rotation rate estimated by the 

gyroscope (red) and the integration method (blue) are 

very close to each other.) 

In summary, KF is superior in real-time estimation and data fusion. It provides the 

optimal estimation by the weighted observations and estimations of the current and 

previous epochs. It also considered the uncertainties of the measurements and the 

states based on the covariance matrices. For non-linear problems, EKF, which only 

applies linear approximation over the ranges of state space, is better than the 

linearised algorithms. In the following chapters these algorithms will be used for 

positioning and multi-sensor integrations. 

3.2 Positioning Algorithms based on Received Signal Strength 

Another category of algorithm included in this research is the positioning algorithm for 

RFID technique. RFID positioning is a radio-based technique but due to the RFID 

systems simplicity and limited quality, the accurate time measurements via 

modulated radio signals or wide band radio pulses are not applicable. RSS becomes 

the major resource for positioning functionality in RFID systems. 
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The positioning algorithms used in RSS-based techniques include: 

(a) CoO; 

(b) RSS-based trilateration; and 

(c) Location fingerprinting. 

The following sections will provide a brief description and comparison of these 

algorithms. 

3.2.1 Cell of Origin 

The simplest algorithm used in RSS-based positioning techniques is CoO. It has 

been widely used in infrared-based and radio-based techniques, such as Active 

Badge system, cell phone positioning and RFID positioning. 

CoO provides the estimated positions of a mobile user, 0p̂ , bases on the received 

signal, 0( )Z p , using the following formulae. 

1{ , , }
n

D p p≡ …  (3 .75) 

( ) { }
c c

Z p s≡ , 
c

p D∈ , 1, ,c n= …  (3 .76) 

0( ) ( )
c

Z p Z p=  (3 .77) 

0
ˆ

c
p p=  (3 .78) 

where, 

0p  is the true position of the mobile user; 

c
p  is the centre’s position of the cell c ; 

D  is a set of cell centres’ positions, p , in the defined area; and 

( )
c

Z p  is the signal, 
c

s , transmitted from the cell c . 

When the mobile user’s observed signal, 0( )Z p , at the position, 0p , aligns with a 

signal, ( )
c

Z p , from the cell c , the position of the cell centre, 
c

p , is assigned to the 

mobile user as its approximated position (see Equation (3.78)). 

The conventional CoO can only provide an approximate position within the sensors’ 

detectable area - the cell. This method does not usually provide continuous positions. 

Firstly, the discontinuous coverage of cells can eliminate conflictions of receiving 
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signals caused by the overlapped areas. Secondly, the small cell size (normally less 

than 1m in radius) is always applied in order to increase the precision of positions 

retrieved from cells. However, the smaller the cell size, the larger the number of 

sensors to cover the entire area. 

Between 2003 and 2004, two different groups of researchers improved the CoO 

positioning techniques’ accuracy and continuity by retrieving the positions from 

overlapped transmitting coverage via different approaches. Hallaway et al. (2003) 

used multiple directional transmitters and receivers to avoid the conflictions of 

receiving the signals from multiple transmitters and detect the overlaps of the 

transmitting coverage. This method refined the resolution by different combinations of 

overlapped cells, zones of influence (ZOI). A metre-level accuracy is claimed. (Jung 

and Woo, 2004; Jung and Woo, 2005a, 2005b) grouped the omni transmitters and let 

them work in turn to avoid any conflict. The experimental results showed that this 

method can improve the positioning accuracy by 4 to 9 times comparing with those 

from the non-overlapped cases. 

The approaches based on overlapped transmitting coverage or ZOI can be 

summarised as follows 

1{ , , }
n

D p p≡ …  (3 .79) 

,1 ,( ) { , , }
ii i i m

Z p s s≡ … , 1, ,i n= …  (3 .80) 

00 0,1 0,( ) { , , }
m

Z p s s≡ …  (3 .81) 

0 0( ) ( ) ( ) ( )c iZ p Z p Z p Z p− ≤ − , 
c

p D∈ , 
i

p D∀ ∈  (3 .82) 

0
ˆ

c
p p=  (3 .83) 

where, 

c
p  is the position of ZOI’s centre; 

D  is a set of positions of ZOIs’ centres, p ; 

( )
i

Z p  is a combination of signals, s , which can be received at position 
i

p ; and 

0( )Z p  is a combination of signals received by the mobile user at position 0p . 

The ultimate goal of this algorithm is to find the most likely combination of signals 

between the one that is received by the mobile user and the one defined by the 
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overlapped ZOIs (see Equation (3.82)). The user’s estimated position is assigned as 

the centre of the most likely ZOI (see Equation (3.83)). 

Figure 3.7 shows a comparison of different CoO positioning approaches. It includes 

the conventional CoO methods using both small and large cells and the ZOI method.  

 

(a) (b) (c) 

Figure 3.7 The CoO infrared positioning techniques 

((a): overlapped large cells; (b): small cells as active 

landmarks to provide accurate positioning corrections; 

(c): directional overlapped cells (the ellipses) which 

divide the area into over 50 ZOIs (the ZOIs filled with 

different colours indicate the different combinations of 

the signals from the transmitters); the black dots refer to 

the transmitters; the pink areas refer to the cells covered; 

the dark red areas refer to the overlapped areas of cells; 

and the green areas refer to the uncovered areas of the 

system.) 

Figure 3.7 (a) simulates the scenario of using high-powered transmitters to establish 

large cells (with the radius over tens of metres) covering the entire defined area (four 

adjacent hexagons). Theoretically, this technique can cover a large area with a small 

number of transmitters. However, it has two major problems. First, large cells 

generate some overlapped areas along the boundaries of the cells in order to cover 

the entire area. Complex techniques are required to avoid the conflictions of 

receiving the signals from multiple transmitters in these overlapped areas when the 

mobile user uses a single receiver only. Second, the accuracy of this technique is low. 

It is generally equal to the radius of the cells since the mobile users’ position within a 

cell is determined as the centre position of the cell. Consequently, the smaller the cell 

the higher the accuracy. Figure 3.7 (b) shows the technique where a small size of 

cells (normally less than 1m in radius) is used. These small cells can provide sub-

metre level positions when a receiver falls into the cell. They usually work as active 
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landmarks to provide positioning corrections. However, as shown in the figure, it 

needs more cells to cover the entire area of interest if a small number of cells is used. 

Other positioning techniques are required when the continuous positioning is needed. 

Figure 3.7 (c) simulates the directional overlapped cells used in ZOI. The overlapped 

cells divide the area into over 50 ZOIs with different combinations of 11 elliptical cells. 

The average size of ZOIs is equivalent to the size of small cells. Instead of 

discontinuous coverage using small cells, ZOIs can continuously cover the entire 

area. It improves both accuracy and continuity by only adding a few numbers of 

transmitters and receivers. The main drawbacks of ZOI are its complexity in receiver 

designs that are employed to avoid conflicts and the limited scalability of the system. 

3.2.2 RSS-based Trilateration 

Trilateration is a conventional algorithm used in surveying, as well as in the RSS-

based techniques. This algorithm was first introduces by Dutch astronomer and 

mathematician, Willebrord Snellius, in order to determine the radius of the Earth in 

the 17th century (Rapp, 1991). It is used to determine the position of the intersection 

of at least three spherical surfaces given the centres and radii of those spheres. 

This algorithm used in the RSS-based techniques is based on the nature of the RSS 

which varies with the changes of distance between transmitters and receivers. 

Theoretically, the RSS decreases with the transmitted energy propagating into the 

space. In physics and radio communication technology, this trend has been well 

studied (Feuerstein et al., 1994; Rappaport, 1996). A number of models, called path 

loss models, have been developed to establish the relationship between the RSS 

and the propagating distance. These models are discussed in Chapter 4 in detail. 

When the assumptions of the model can be accepted, the distances between 

transmitters and the receiver can easily be calculated according to the RSS by 

inverting the model. However, the limitation is that most of these theoretical models 

are subject to free space propagation or signal propagation in a simple construction 

with a limited number of reflections and obstacles. In real terms, the environment can 

be tremendously complex and it is far beyond the assumptions or conditions listed in 

the physical or theoretical models. For example, in an office building, metal window 

frames and pipes passing through rooms can be reflectors of RF signals. Cabinets, 

timber walls and people can cause up to 10dB extra path loss when the signals 

penetrate through them. These detrimental effects will degrade the accuracy of the 
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distance estimated using the inversed path loss models. One alternative method is to 

use regression models based on the previous measured RSS for establishing the 

relationship between distance and RSS. This method considers the effects on RSS 

from environments using statistical methods and apparently increases the accuracy 

of modelling the RSS trend in the specific areas where the RSS data were collected 

for the regression. 

By solving the distances, the mobile user’s position can be calculated according to 

the known transmitters’ coordinates and the measurements of ranges between the 

transmitters and the receiver attached to mobile users. Either the technique of KF or 

least square can be applied to derive the users’ positions. The measurement model 

is described as the following equations: 
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0 ,0

,0

x

y
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p p
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 
 
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 
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, ,0 , ,0 , ,0( ) ( ) ( )
i x i x y i y z i z i

d p p p p p p ε= − + − + − + , 1, ,i n= … , (0, )
i i

N Rε ∼  (3 .87) 

where, 

0p  is the 3-D position of the mobile user; 

i
p  is the locations of the transmitters with known positions; 

z  is the estimated distances calculated by ranging models; 

i
R  is the covariance matrix of measurements; and 

i
ε  is the associated measurement noise with zero-mean normal distribution. 

The major error sources in RSS-based trilateration come from the geometry of the 

fixed transmitters and the environments which affect signal propagation. The latter 

error source has been discussed in previous sections, including the reflectors and 
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obstacles which cause the RSS misalignment with the model’s estimations then, 

subsequently, degrade the positioning accuracy. The former error source is similar to 

the concept of dilution of precision (DOP), used in GPS positioning. An even 

distribution of transmitters can provide a small value of DOP and a better estimation 

of position. In contrast, an odd distribution can cause the anomaly of DOP in some 

locations and degrade the positioning accuracy in those areas. 

3.2.3 Location Fingerprinting 

Location fingerprinting was first developed for an indoor RF-based positioning system, 

RADAR (Bahl and Padmanabhan, 2000). This algorithm can provide continuous 

positions and is more robust to environmental effects on the RSS than using the 

RSS-based trilateration algorithm. This is because the location fingerprinting 

algorithm constructs a searching space according to the previously-measured RSS 

distributions, which is called fingerprinting maps, for positioning. This process is 

called the training phase.  The advantage of conducting the training phase searching 

space, or the training phase database, is that it can be used to consider a great 

number of detrimental effects from the surrounding environment, such as reflections 

and obstructions, into the fingerprinting maps and thus increases the accuracy for 

finding the best matching position based on RSS in the positioning phase. This is 

superior to the RSS-based trilateration algorithm, which uses either empirical or 

theoretical models to represent the relationship between the RSS and the distance, 

since the effects from environments are, sometimes, too complex to be modelled. 

3.2.3.1 Training Phase 

Construction of a fine fingerprinting map is essential for the location fingerprinting 

algorithms. However, this usually leads to tremendous workloads. Various devices 

and algorithms have been developed to simplify this procedure, such as the data 

logging device (Li et al., 2009), which can automatically store the reference positions 

and the RSS, and the spatial interpolation methods (Lee et al., 2008). This generates 

the fine-grid map based on a number of observations. Li (2006) stated that the 

interpolation was an important tool for constructing the fine fingerprinting maps based 

on the known RSS at a few points. This method for cell phone positions was also 

investigated and it was shown that the workloads for constructing training phase 
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maps can be reduced. Our research also investigated the interpolation methods and 

compared the differences of using the interpolation in different extents of areas.  

Three interpolation algorithms were investigated in this research for generating a 

fine-grid RSS distribution (1m×1m grid) in the defined area, including: 

(a) Kriging; 

(b) Polynomial regression; and 

(c) Nearest neighbour. 

Kriging is an interpolation method which uses the regression method to improve the 

prediction based on the assumptions that the interpolated values are continuously 

changed and spatially correlated. The idea was first presented by D.G. Krige in his 

Master’s thesis which approached this research in a mining context (Krige, 1951). 

The theory was later further developed by the French mathematician Matheron and 

named after the pioneering plotter, Kriging (Cressie, 1990). 

The Kriging algorithm is a linear predictor used to predict 0( )Z p  at a known location 

0p  based on the observations 1{ ( ), , ( )}
n

Z Z p Z p≡ …  from a stochastic process (see 

Equation (3.88)). 

( ) ( ) ( )Z p p pµ δ= + , p D∈  (3 .88) 

where, 

D  is the set of positions where the observations are conducted; 

( )Z p  is the observation at position p ; 

( )pµ  is the mean value of the observation at position p ; and 

( )pδ   is a zero-mean stochastic process with known covariance function 

( , ) cov( ( ), ( ))
i j i j

C p p Z p Z p≡ , ,
i j

p p D∈ . 

There are three kinds of Kriging algorithms that can be used to solve different 

problems, including: 

(a) Simple Kriging, 

(b) Ordinary Kriging, and 

(c) Universal Kriging. 
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In simple Kriging, the mean value of the data set is assumed to be a known constant, 

( )pµ µ= . Then the predictor is obtained as a linear predictor (see Equation (3.89)). 

0

1

ˆ ( ) ( )
n

i i

i

Z p Z p kα
=

= ⋅ +∑  (3 .89) 

where, 

0
ˆ ( )Z p  is the estimated value at position 0p ; and 

i
α  and k  are the parameters in the linear predictor. 

The parameters are determined by minimising the mean-squared prediction error, 

2

0 0
ˆ( ( ) ( ))E Z p Z p− . It yields the optimal predictor as shown in Equation (3.90). 

1 1

0
ˆ ( ) ' (1 ' )Z p c C Z c C I µ− −= ⋅ ⋅ + − ⋅ ⋅ ⋅

ɶ ɶ
 (3 .90) 

where, 

0 1

0

( , )

( , )n

C p p

c

C p p

 
 ≡  
  

⋮  

1 1 1

1

( , ) ( , )

( , ) ( , )

n

n n n n n

C p p C p p

C

C p p C p p
×

 
 ≡  
  

⋯

⋮ ⋱ ⋮
ɶ

⋯

 

1

1

1
n

I

×

 
 ≡  
  

⋮  

In universal Kriging, the mean is assumed to have been modelled by a function of the 

location (see Equation (3.91)). In ordinary Kriging, the mean of the data set is 

assumed to be unknown. Types of estimators, such as the best linear unbiased 

estimator, can be engaged to estimate the mean in the procedure of ordinary Kriging 

and this method can be treated as a subset of universal Kriging. 

0

( ) ( )
m

k

k

p f pµ β
=

= ⋅∑  (3 .91) 

where, 
k

β  is the parameter in the model and ( )f p is a function of location p . 
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In Li’s research (Li, 2006), universal Kriging was used to establish the RSS 

distributions of cell phone or WiFi in a large scale. It is assumed that those RSS 

distributions in the large scale (e.g. hundreds or thousands of metres) have 

significant trends since the RSS will decrease when the signal travels over a certain 

distance. However, this assumption may not be applicable when the RF signals are 

reflected and/or obstructed by the surrounding environments over a short distance 

(say, a few metres), for example in the RFID indoor positioning. Figure 3.8 shows the 

differences of the results between a simple Kriging and a universal Kriging 

interpolation for RFID indoor positioning. The experiments were conducted in an 

8m×10m room with windows and whiteboards on the walls and a few hydraulic pipes 

on the ceiling. Twelve measurements were conducted on the nodes of a 1.4m×1.4m 

grid in the middle of the room as the reference points for interpolations. The rest of 

the measurements on the nodes of a 1m×1m grid in the room were used as the 

evaluation values. The experiments show that the simple Kriging interpolation 

provided 1dBm higher accuracy for generating the RSS distribution than using the 

universal Kriging interpolation. The major differences between these two interpolation 

methods appeared in the boundary areas where contains less reference points (see 

Figure 3.8). This is because in this case the trend of the RSS is disrupted by the 

reflections and obstructions of the surrounding environments and could not be easily 

modelled using simple mathematical models (e.g. high-order polynomials) in the 

universal Kriging interpolation. According to the experiments, simple Kriging 

interpolation is more efficient and accurate for generating the RSS distribution in 

small scale (e.g. a few metres) indoor environments than using the universal Kriging. 

The universal Kriging is used when the data has a strong trend and the trend can be 

modelled (e.g. large scale RSS propagations in a cell phone or WiFi system). Figure 

3.9 shows the variation of the RSS in an 8m × 10m room using a simple Kriging 

interpolation based on a 1.4m×1.4m observation grid. 
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Figure 3.8 The differences between the simple Kriging and universal 
Kriging interpolations 

(The comparison is based on the identical data sets of 

measured RSS in the middle of a closed room. Subtle 

differences of the interpolated values within the areas of 

reference points were found, but significant differences, 

up to 3dB, were found in the boundary areas that did not 

have reference points.) 

 

Figure 3.9 A sketch plot of RSS interpolation using a simple Kriging 
algorithm 

(This experiment was conducted in an 8m×10m room with 

a ceiling height of 3.5m. There were windows with metal 

frames in the location where x=8m, a whiteboard on the 

wall where y=0m and pipes on the ceiling. A 1m×1m grid 

is set in the room. Half of the RSS values on the gird 

nodes were used for the interpolation and the rest were 

used for evaluations. ) 

Another method widely used in the interpolation is polynomial regression. It was first 

designed by Gergonne (1815; Stigler, 1974). This method uses a high-order 
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polynomial to model the relationship of variables. The interpolation algorithm can be 

expressed by the following function: 

( ) ( , ) ( )Z p f p pβ δ= + , p D∈  (3 .92) 

where, 

( )Z p  is the RSS at position p  in the defined area D ; 

( , )f p β  is the nth order polynomial with coefficient β ; and 

( )pδ  is a higher order term or noise in the interpolation. 

The goal is to obtain the optimised β̂  to minimise the sum of squared residuals 

described by the following equation: 

2

1

ˆ( ( ) ( ))
n

i i

i

Z p Z p
=

−∑  (3 .93) 

Then the interpolated value of the RSS, 0
ˆ ( )Z p , at position 0p  is given by: 

0 0
ˆˆ ( ) ( , )Z p f p β=  (3 .94) 

The same dataset used for Kriging interpolation was used to evaluate the 

performance of polynomial regression interpolations. Considering the computational 

complexity, a third-order two-dimensional polynomial was applied (see Equation 

(3.95)). 
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 (3 .95) 

Figure 3.10 shows that the interpolation using the polynomial regression algorithm 

provides a similar RSS maximum and minimum location with the one using the 

Kriging algorithm, but the interpolated surface calculated by the polynomial 

regression is smoother and contains fewer details of variations. This is due to the 
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simplicity of the polynomial model used. Since the higher-order terms are discarded 

from the model, the higher-frequency variations are withdrawn. 

 

Figure 3.10 A sketch plot of RSS interpolation using a polynomial 
regression algorithm 

(This experiment is conducted in an 8m× 10m room 

with the ceiling height of 3.5m. There is a line of 

windows with metal frames in the location where 

x=8m, a whiteboard on the wall where y=0m and 

pipes on the ceiling. A 1m×1m grid is set in the room. 

Half of the RSS values on the gird nodes are used for 

interpolation and the rest are used for evaluations. ) 

Nearest neighbour interpolation is a simple method which originally comes from the 

Voronoi diagram (Voronoi, 1907). It is superior to the simplicity of implementations 

but not always as accurate as other algorithms. The goal of nearest neighbour 

interpolation is to find the point 
c

p  in the defined area, D , which has the minimum 

distance from the interpolated point 0p  (see Equation (3.96)). 

0 0c ip p p p− ≤ − , 
c

p D∈ , 
i

p D∀ ∈  (3 .96) 

Then the value of RSS at point 
c

p  is assigned to the estimation (see Equation (3.97)). 

0
ˆ ( ) ( )

c
Z p Z p=  (3 .97) 

Figure 3.11 presents the RSS distribution using nearest neighbour interpolation 

based on the same reference dataset for Kriging and polynomial regression 

interpolations. This algorithm provides a discrete result of the RSS distribution 

instead of a smooth surface. The interpolated RSS changed suddenly in the 
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boundaries of the interpolating cells. Since the RSS is a continuous variant in the 

space without the obstacles, this interpolation method may lead to large errors in 

boundary areas of the interpolating cells. 

 

Figure 3.11 A sketch plot of RSS interpolation using the nearest 
neighbour algorithm 

(This experiment is conducted in an 8m× 10m room 

with a ceiling height of 3.5m. There is a line of 

windows with metal frames in the location where 

x=8m, a whiteboard on the wall where y=0m and 

pipes on the ceiling. A 1×1 grid is set in the room. 

Half of the RSS values on the gird nodes are used for 

interpolation and the rest are used for evaluations. ) 

Table 3.1 shows a performance comparison using different interpolation algorithms 

generating the RSS distributions. This evaluation is based on the observations in the 

8m×10m room mentioned before. A 1m×1m grid is set in the room. Half of the RSS 

values on the gird nodes are used for interpolation and the rest are used for 

evaluations (see Figure 3.9, 3.10 and 3.11). The RSS measured from 16 RFID 

transponders around the room were included. 
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Table 3.1 The performance analysis of using different interpolation algorithms 

generating RSS distributions 

(The values presented in this table are the errors of RSS in dB with 

95% cumulative percentage. Interpolating results from 16 tags are 

validated using Kriging, polynomial regression and nearest 

neighbour algorithms respectively.) 

Tag ID  Errors using Kriging 
(dB) 

Errors using Polynomial 
Regression (dB) 

Errors using Nearest 
Neighbour (dB) 

Over all 10.4 10.3 13.7 

Min 5.5 4.9 8.2 

Max 13.7 14.1 17.3 

200.168.200 8.5 6.6 9.2 

200.168.201 7.2 5.3 10.8 

200.168.202 7.5 7.5 13.2 

200.168.203 8.6 10.2 12.7 

200.168.204 12.2 12.9 17.3 

200.168.205 5.5 4.9 8.2 

200.168.206 11.8 9.1 13.9 

200.168.207 13.7 14.1 10.4 

200.168.208 7.5 6.6 12.1 

200.168.209 8.1 7.9 14.9 

200.168.210 8.3 10.8 15.0 

200.168.211 10.4 10.3 12.1 

200.168.212 9.4 10.2 14.8 

200.168.213 13.6 13.7 13.7 

200.168.218 8.8 9.3 14.5 

200.168.220 9.7 8.2 14.1 

In general, both simple Kriging and polynomial regression interpolations provide 

compatible results (see Figure 3.12), which are between 10.3dB and 10.4dB. In spite 

of the efficiency, the nearest neighbour interpolation algorithm provides less accurate 

results than the other two methods evaluated in this research. According to the 

comparison, the Kriging interpolation can provide more detailed variations than using 

the polynomial regression. This is due to the fact that the details are diminished with 

the removal of the higher-order terms in the polynomial regression and only the 
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large-scale trend can be represented. In location fingerprinting algorithms, the 

patterns of the detailed variations are essential to conduct the matchings in the 

positioning phase. In most cases, it relies more on the patterns of RSS variations but 

not the exact RSS values to find the best matching RSS vector. The Kriging 

interpolation is preferred for constructing the RSS distributions in the location 

fingerprinting’s training phase even though the polynomial regression can provide a 

similar accuracy with the Kriging interpolation, 

 

Figure 3.12 RSS interpolation accuracy using different algorithms  

(It is based on the RSS interpolation from 16 tags. 

The Kriging, polynomial regression and nearest 

neighbour are validated respectively.) 

3.2.3.2 Positioning Phase 

Based on the RSS distributions measured in the training phase, mobile users’ 

positions can be estimated by either the deterministic approach or the probabilistic 

approach. 

The deterministic approach was developed for the first RF-based location 

fingerprinting system, RADAR (Bahl and Padmanabhan, 2000). It is to find the point 

c
p  in the defined area, D , which has the minimum distance between the vector of 

observations in positioning phase, 0( )Z p , and the vector of observations in training 

phase, ( )
i

Z p , 1, ,i n= …  (see Equation (3.98)). The mobile user’s position is assigned 

by the selected point, 
c

p  (see Equation (3.101)). 
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0 0( ) ( ) ( ) ( )c iZ p Z p Z p Z p− ≤ − , 
c

p D∈ , 
i

p D∀ ∈  (3 .98) 

1{ , , }
n

D p p≡ …  (3 .99) 

1{ ( ), , ( )}
n

Z Z p Z p≡ …  (3.100) 

0
ˆ

c
p p=  (3.101) 

where, 

Z  is a set of vectors with training phase observations; 

D  is a set of positions in the defined area; 

0( )Z p  is the RSS observed in positioning phase at position 0p ; 

0p̂  is the estimated position of the mobile user; and 

•  is the distance between two vectors. 

The position can also be estimated by a weighted summary of positions in the 

defined area (see Equation (3.102)). The summary of weights equals to one and 

values are according to the distances between the vector of observations in 

positioning phase 0( )Z p , and the vector of observations in training phase, ( )
i

Z p , 

1, ,i n= … . 

0

1

ˆ ( )
n

i i

i

p W p
=

= ⋅∑  (3.102) 

0( ( ) ( ) )i iW W Z p Z p= − , 1, ,i n= …  (3.103) 

1

1
n

i

i

W
=

=∑  (3.104) 

where, 
i

W  is the weight at point 
i

p  and ( )W •  is a function used to calculate the 

weight. 

The error sources in the positioning phase of the deterministic approach has been 

discussed by Dempster et al. (2008) and they include the RSS directional patterns 

and the RSS variations. The former is mainly caused by the antenna gains and the 

obstacles of the mobile user who is always on one side of the antenna. In practice, 

the antenna gain problem can be partially resolved by matching the RSS with 

different orientations (e.g. 0˚, 90˚, 180˚ and 270˚). This matching method can also 
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minimise the effects caused by the obstacles in front of the mobile user. It is because 

of this that the mobile user can only block a small amount of the signals from a few 

transmitters which are behind the receiver. The rest of the detectable transmitters are 

not prone to this effect. By changing the orientation and increasing the number of 

observations, the number of unaffected RSS will be increased and eventually the 

positioning accuracy will be increased. The latter is due to the environmental 

dynamics (see Chapter 4). In contrast, effects are difficult to be minimised by 

increasing the number of observations since some changes of the environments can 

last for a long period of time (e.g. to keep the door open for a while or people to stay 

between the transmitter and receiver for a while) and, consequently, the RSS 

distribution will be changed and the positioning accuracy will be affected in this 

period. The solution of this problem for the deterministic approach is to resample the 

RSS for the training phase fingerprinting maps after the environments have changed. 

It makes the implementations of the deterministic approach difficult in the dynamic 

environments. In addition, the RSS errors in the training phase, which is up to 10dBm, 

is another major error source causing the uncertainties in matching. 

Another approach of location fingerprinting, the probabilistic approach, was 

introduced by Castro et al. (2001) using a Bayesian network to find the most possible 

location according to the received WiFi signals. This approach was further developed 

by Roos et al. (2002). The statistical model, which includes the probabilities of RSS, 

was used instead of the empirical models. It is superior to the deterministic approach 

in dealing with the small amount of RSS variations caused by the environmental 

dynamics. The algorithm based on the Bayes’ law is given by Equation (3.105). 

( ) ( )( )
( )

( ) ( )

i ii
i

P p P Z pP p Z
P p Z

P Z P Z

⋅∩
= = , 

i
p D∈  (3.105) 

where, 

( )iP p Z  is a conditional probability of the mobile user at position 
i

p  when he/she 

observes RSS Z ; 

( )
i

P p  is a prior probability of the mobile user at location 
i

p ; 

( )iP Z p  is a conditional probability of the mobile user observing RSS Z  when at 

position 
i

p ; and 

( )P Z  is a probability of the mobile user observing RSS Z . 
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In Equation (3.105), ( )P Z  is independent of location, p , so ( )P Z  can be treated as a 

constant. ( )
i

P p  can be assigned if the prior information of mobile user’s location can 

be obtained. Otherwise, a uniform distribution can be assumed on ( )
i

P p . ( )iP Z p  

can be expressed as a joint probability of RSS at the mobile user’s position, 0p , 

equalling to the RSS in the training phase at position, 
i

p  (see Equation (3.106)) 

0 1 1 0 0( ( ) ) [( ( ) ( )) ( ( ) ( ))]i i n i nP Z p p P S p S p S p S p= = ∩ ∩ =…  (3.106) 

where, 

0( )
j

S p  is the RSS from the tag j  measured at user’s position, 0p ; and 

( )
j i

S p  is the RSS from the tag j  measured at position 
i

p  in the training phase. 

If the RSS from each transmitter measured is independent from each other, Equation 

(3.106) can be expressed as the marginal probability of 0( ) ( )
j i j

S p S p= . 

0 0

1

( ( ) ) [ ( ) ( )]
n

i j i j

j

P Z p p P S p S p
=

= =∏  (3.107) 

The conditional probability of the mobile user at position 
i

p  when receiving RSS 

0( )Z p  can be simplified as the following Equation (3.108). 

0 0

1

( ( )) [ ( ) ( )]
n

i j i j

j

P p Z p c P S p S p
=

= ⋅ =∏  (3.108) 

where, c  is a constant. 

The estimated position of the mobile user, 0p̂ , will be the most possible position, 
c

p , 

where 0 0( ( )) ( ( ))c iP p Z p P p Z p≥ , 
c

p D∈ , 
i

p D∀ ∈  or the conditional probability can 

be used as weights to calculate a weighted estimation. 

The probabilistic approach enhances the reliability of using location fingerprinting 

algorithms in the dynamic environments by introducing the probabilities of RSS into 

the algorithms. However, it is still affected by the other two error sources in the 

deterministic approach, the directional patterns and the errors in training phase 

fingerprinting maps. 
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3.2.4 Comparison of RSS-Based Positioning Algorithms 

According to the investigations, a comparison of the RSS-based positioning 

algorithms is provided in Table 3.2. The conventional CoO is the simplest method 

among all the algorithms investigated but it can not provide continuous positions. 

There is a trade-off between the accuracy and the number of the cells for covering an 

area. It can either provide accurate positions (metre-level) with small cell sizes and a 

large number of cells or provide approximate positions (tens or hundreds of metres) 

with large cell sizes and a small number of cells. The ZOI partially solves this 

problem by determine the positions based on the overlapped cells. Specific devices 

are required to avoid the conflictions of receiving the signals from multiple 

transmitters. Trilateration is another simple positioning algorithm and can provide 

continuous positions. However, to accurately estimate the distance according to the 

RSS is a challenge in complex and dynamic environments. The reflections and 

obstructions of the signals will significantly affect the relationship between the RSS 

and the transmitter to receiver distance. In a complex environment the location 

fingerprinting algorithm can provide more accurate positions than using trilateration 

by matching the RSS patterns in the searching space according to the 

measurements in the training phase (Mok and Retscher, 2007). The only benefit 

using trilateration instead of location fingerprinting is to avoid the tremendous 

workloads in the training phase. However, the interpolation methods can also reduce 

these workloads in the location fingerprinting training phase. The investigations of the 

Kriging, polynomial regression and nearest neighbour algorithms were carried out. It 

shows that the simple Kriging interpolation can provide better solutions for location 

fingerprinting in the small-scale indoor environments (a few hundred square metres) 

in which the RF signals are highly affected by the reflectors and obstacles. 

In summary, every positioning algorithm investigated has its unique pros and cons. 

These are summarised in Table 3.2. The CoO is superior due to its simplicity and the 

probabilistic approach of the location fingerprinting is less affected by complex and 

dynamic environments. Detailed investigations and evaluations of these RSS-based 

positioning algorithms for RFID positioning are provided in the next chapter. 
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Table 3.2 A comparison of RSS-based positioning algorithms 

Algorithm Advantages Disadvantages 

CoO • Simple algorithms • Discrete positions 

• The accuracy and coverage areas 
depend on the size of cells 

ZOI • Simple algorithms 

• Higher accuracy than 
conventional CoO 

• Specific devices are required to 
observe the overlapped ZOI 

RSS-based 

trilateration 

• Continuous positions 

• No training phase required 

• Inaccurate distance estimations 
based on RSS caused by the 
environmental effects  

Deterministic  

location 

fingerprinting 

• Continuous positions 

• Considering the environmental 
effects in the training phase RSS 
distributions 

• Inaccurate in a dynamic 
environment due to the RSS 
variations 

• Affected by the RSS directional 
patterns 

• Affected by the errors in the 
training phase 

Probabilistic 

location 

fingerprinting 

• Continuous positions 

• Considering the RSS variations 
caused by the environmental 
dynamics in the probabilistic 
distributions of RSS 

• Affected by the RSS directional 
patterns 

• Affected by the errors in the 
training phase 

3.3 Summary 

The first part of this chapter provided an overview of KF and its related principles. It 

showed that KF is a superior tool for estimating the states by separating the signals 

from noise according to the uncertainties of the predictions and observations. 

Experiments and simulations were conducted to evaluate the KF’s functionalities of 

state estimation and data fusion. The results indicated that KF can provide similar 

estimations to those from least square adjustment and is more efficient. KF is also 

considered to be an effective algorithm for multi-sensor integration, which weighs the 

observations according to covariance matrices. For the non-linear problems, EKF is 

superior to the linearised KF by only applying linear approximation over the ranges of 

state space. 

The second part of this chapter focused on the algorithms for RSS-based positioning. 

An introduction and comparison of the algorithms, including the CoO, RSS-based 

trilateration and location fingerprinting, were first provided. The CoO can provide 

accurate and discrete positions on correction spots or the approximate positions in 
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large areas depending on the cell size. The RSS-based trilateration can provide 

continuous positions but the accuracy of the position is highly affected by the 

reflections and obstructions of the signals by the surrounding environments. The 

location fingerprinting algorithms on the other hand can provide more accurate and 

continuous positions than using RSS-based trilateration by considering the 

detrimental effects from surrounding environments in its training phase fingerprinting 

maps. In addition, the probabilistic approach is superior to the deterministic approach 

in dynamic environments by introducing the probabilities of RSS into the location 

fingerprinting model. 

RSS-based positioning algorithms will be validated by RFID positioning technique in 

the next chapter. KF and its related principles for the multi-sensor integration will be 

investigated in Chapters 5 and 6. 
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Chapter 4 RFID Positioning 

The RFID market has expanded quickly over the last two decades and the areas of 

applications have increased exponentially, particularly in everyday use. Positioning 

using RFID has recently become an attractive research topic due to its unique 

features, such as external-power-free tags, size and portability. In our research, the 

unique contributions in long-range RFID positioning include: 

(a) A probabilistic CoO algorithm for integrated RFID/MEMS INS positioning 

(Zhu, 2008); 

(b) A 3-D location fingerprinting algorithm for integrated RFID/MEMS INS 

positioning (Zhang et al., 2008); and 

(c) An Iterated Reduced Sigma Point Kalman Filter for RFID/low-cost GPS 

seamless positioning (Peng et al., 2009). 

4.1 Introduction to RFID Positioning Techniques 

A typical RFID system has three components: a transponder or tag (located on the 

object to be tracked); an interrogator or reader (which receivers the information from 

tags); and a control unit (which operates the system and processes the information) 

(Finkenzeller, 2003). The basic idea of the RFID technique is to transfer the 

information of identification from an electronic data-carrying device - the RFID tag - to 

an RFID reader via a RF interface. The technique can be classified into two systems 

- passive and active - depending upon the signals transmitted and the tag structures. 

A passive RFID tag contains very simple components to respond with its information 

of identification to the signals triggered from a RFID reader. It does not contain an 

electronic power source itself. The energy for the RFID tag’s circuit is transmitted 

from the RFID reader via magnetic or electromagnetic fields over a short range (less 

than 3m). Its reading range is limited by the range of energy transition. In contrast, 

active RFID tags have a longer reading range (over 15m) due to built-in batteries. In 

positioning applications, RSS is the major observation component in RFID systems. It 

is used to determine either the appearance of a mobile user in the reading range 

(Abowd et al., 2004) or the distance between transmitters and receivers (Hightower 

et al., 2000). 
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4.1.1 Historical development of RFID Positioning Techniques 

RFID research for positioning began in the late 1990s through investigating position 

solutions using trilateration algorithms (Hightower et al., 2000). It has quickly become 

an attractive system for location based services due to its unique features, such as 

its high penetratability of signals, low power consumption, simplicity of use and 

relatively low-cost. 

The feasibility of using RFID for positioning was first investigated using a commercial 

long range active system in order to develop a new positioning system – SpotON 

(Hightower et al., 2000). This was one of the early investigations of RFID positioning. 

The system used for evaluation claimed a reading range of 4.5m. A second-order 

polynomial regression method was used to model the RSS changes relative to 

distances in the system. It indicated a 3m accuracy. Also, an 0.05 to 0.1Hz update 

rate could be obtained by RFID trilateration algorithms, which was similar to the 

system’s reading range. This was not suitable for personal indoor positioning 

applications in large areas (e.g. in a floor of a building). The RFID positioning 

performance was constrained by the technology as well as the nature of the 

trilateration algorithm at the time. Bekkali et al. (2007) improved RFID trilateration 

algorithms by indirectly measuring the tag-to-tag distances instead of tag-to-reader 

distances. The algorithm was called the inner-tag distance measurement. This 

algorithm calculates distances between tags having unknown positions and tags with 

known positions, according to tag-to-reader distances. It then determines the 

unknown positions by the tag-to-tag distances. The advantage of this algorithm is 

that many of the correlated errors in the tag-reader distance measurements can be 

removed. However, the main disadvantage of the method is that the signal directional 

patterns become a major error source that could not be reduced. An additional 

probabilistic mapping method was required to achieve better performance. Another 

effort to improve the performance of RFID trilateration algorithms was conducted by 

Retscher and Fu (2008). A calibration method was used according to the previous 

measurement method to increase the accuracy of distance estimation. 

In summary, trilateration algorithms are highly dependent on the accuracy of distance 

measurements, but accuracy degrades significantly due to the inherent detrimental 

effects of the RFID indoor positioning technique, like environmental dynamics and 

signal directional patterns. Instead of minimising these detrimental effects, other 
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positioning algorithms have been investigated including CoO and location 

fingerprinting (Ni et al., 2004; Tenmoku et al., 2004). 

The benefit of the CoO method is its simplicity of use, as active landmarks either 

provide approximate positions in large areas or accurate positions over an extremely 

small range (e.g. within a few metres). Tenmoku et al. (2003a; Tenmoku et al., 2003b, 

2003c) used a passive RFID system as outdoor landmarks to provide accurate 

positions in a wearable augmented reality system. Its RFID positioning algorithm also 

used the CoO method in a small cell size. It can provide accurate discrete positions. 

The benefit using passive RFID in their system was battery-free tags, which are easy 

to maintain outdoors. Chon et al. (2004) proposed a method using RFID to frequently 

provide sub-metre positions when there are no GPS signals available, for instance, a 

vehicle travelling in a tunnel. The CoO algorithm was again used and much work had 

been done on improving communication speeds in order to avoid the missing scans 

of RFID tags. Bohn (2006) introduced an accurate passive RFID positioning method 

using super-distributed tags (39 tags/m 2  on average) on a floor. The algorithm used 

was similar to CoO, which estimated the mobile user’s position through the tags in 

the reading range. This method claimed 0.15m accuracy with 5Hz update rate, but 

the high-density tags that needed to be placed limited the use of this method in large 

areas. Fu and Retscher (2009b) introduced the RFID Time-Based CoO Positioning 

algorithm for the accurate determination of the time it took for a mobile user to pass 

through the centre of a cell. 

One of the limitations in the CoO algorithm is the compromise between the cell size 

and accuracy. Some efforts have been made to overcome this limitation. For 

example, Vries (2005) introduced a positioning algorithm for a long range active 

RFID, WeightedTracker. This algorithm can be treated as the CoO that applies RSS-

based weights on all observed cell center positions. A 4m positioning accuracy was 

achieved. A few other attempts have also been carried out using various integrations 

of sensors. For instance, Miller et al. (2006) proposed an integrated RFID/PDR 

method for locating first responders in indoor environments. This is pioneering 

research using RFID-based integration techniques for personal positioning. The 

RFID CoO algorithm was used to provide positioning corrections in order to constrain 

errors in PDR. 

In addition, the location fingerprinting algorithms can also provide continuous and 

reliable positions using the RFID technique. One remarkable contribution in this area 
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of RFID positioning was made by Ni et al. (2004). They developed the LANDMARC 

system based on a deterministic location fingerprinting algorithm. Their invention 

used a dense RFID tag array to achieve a real-time training phase RSS distribution 

simultaneously with the measurements of mobile users’ RSS. Therefore, this method 

alleviates the problems caused by environmental dynamics and reduces the 

workloads in training phase measurements. However, its limitation is the complexity 

for establishing the tag array in a large experimental area. 

Table 4.1 below provides a brief overview of the major developments in the past 

decade (2000-2009). The systems and algorithms used and the performances of 

each development are listed. 

Table 4.1 The historical development of the RFID positioning techniques – in brief. 

Time Authors System used 
Positioning algorithms for 
RFID-based system 

Performance 

2000 Hightower et al. • Long range active 
RFID 

• Trilateration 
• Regression model for 

path loss 

3m accuracy and 
0.1-0.05 Hz update 
rate 

Tenmoku et al. 

• Passive RFID 
• Inertial sensor 
• Camera 
• Infrared system 
• Pedometer 

• CoO 
working as  
landmarks to provide 
accurate positions 

2003 

Ni et al. • LANDMARC 
(active RFID) 

• Deterministic location 
fingerprinting 

• Real-time measured 
training phase RSS 

1m accuracy (50%) 
and 0.1Hz update 
rate; 
accommodate 
environmental 
dynamics 

Chon et al 
• RFID 
• GPS 

• CoO 
seamless positioning 
for vehicle 

2004 
Abowd et al. 

• Passive RFID 
• Camera 

• CoO 
working as  
landmarks to provide 
accurate positions 

2005 Vries et al. • Active RFID • Weighted CoO 4m accuracy 

Miller et al. 
• RFID 
• PDR 

• CoO 
• Integration with PDR 

Using RFID to 
constrain errors in 
PDR  2006 

Bohn et al. • Super-distributed 
passive RFID 

• CoO 
0.15m accuracy and 
5Hz update rate 

Bekkali et al. • RFID 
• Trilateration based on 

inner-tag distances 
• Probabilistic RFID map 

Sub-metre level 
accuracy 

2007 

Retscher et al. 
• Long range active 

RFID 
• PDR, GPS 

• CoO 
• Multi-sensor Integration 

seamless positioning 
for pedestrian 

Fu et al. • Long range active 
RFID 

• Trilateration calibrated 
based on prior samples 

Sub-metre level 
accuracy in static 
positioning 2008 

Zhu et al. 
• Long range active 

RFID 
• MEMS INS 

• Probabilistic CoO 
• Integration with MEMS 

INS 

Adjustable cell size 
for CoO algorithm 
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2008 Zhang et al. 
• Long range active 

RFID 
• MEMS INS 

• Location fingerprinting 
• Integration with MEMS 

INS 
• Probabilistic map 

matching 

1.7m accuracy in 
real-time positioning 

Fu et al. 
• Long range active 

RFID 
• MEMS INS 

• Time-based CoO 
• Integration with MEMS 

INS 

1m accuracy in post 
processing 

2009 

Peng et al. 
• Long range active 

RFID 
• low-cost GPS 

• Distance estimation 
• Integration with low-cost 

GPS 

2.2m accuracy; 
seamless positioning 
for vehicle 

4.1.2 Evaluation of the Long Range RFID Used 

The RFID system used in this research was an intelligent long range system 

produced by Identec Solutions. It consists of an i-Card III interrogator (reader) and i-

Q transponders (tags) (see Figure 4.1).  

 

Figure 4.1 RFID interrogator and transponder used in the research 

(i-Card III interrogator (left) and i-Q transponder (right) 

of the Identec Solutions long range active RFID system) 

The i-Card III interrogator is an RFID reader working on 915MHz frequency.  It is the 

size of a PCMCIA card with a 6cm omni antenna (Identec Solutions, 2004b) and the 

i-Q transponders are the active tags with built-in batteries which can last up to six 

years under 1Hz scanning frequency (Identec Solutions, 2004a). The dimensions of 

the tags are 131mm×28mm×31mm. It is claimed that the reading range of this RFID 

system is up to 100m in free space and the reader can detect the RSS over -85dBm. 

In practice, the maximum reading range is about 30m due to the effects from the 

surrounding environments (reflections and obstructions). This system also contains 

an anti-collision multi-tag-handling algorithm to avoid the potential scanning collisions. 

Figure 4.2 shows the instability of the RSS in static environments. The data is 

collected at 300 positions in different environments, including outdoor open areas, 

indoor large rooms (8m × 10m), indoor corridors (2m × 40m) and indoor stairways. 

There are 100 scans at each position. It indicates that the RSS in the static 
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environments are very stable. The average is approximately ± 0.8dBm at a 95% 

confidence interval. This value does not change much with different environments 

and different distances between the RFID reader and tags. This refers to a relatively 

stable transmitted power in the RFID system.  

 

Figure 4.2 The instability of the RSS in static environments 

(The RSS were measured at 300 positions in 

different environments, including outdoor open areas, 

large indoor rooms (8m × 10m), indoor corridors 

(2m × 40m) and indoor stairways. There were 100 

scans at each position. The error bars indicate the 

RSS instability at each position. The red lines 

indicate the average instability at all the positions.) 

However, RSS can be dramatically changeable in dynamic environments. Figure 4.3 

shows the RSS measured at the same position in different contexts (static 

environments and dynamic indoor environments). In the static environments, the 

distribution of RSS aligned well with the associated Gaussian distribution but in the 

dynamic environments, the distribution was disturbed and several peaks were 

observed. The mean RSS value also shifted away from the one measured in the 

static environment. This was caused by moving obstacles and reflectors, such as the 

people passing through the areas between the RFID reader and the tag scanned, 

during the surveying process. It indicates that RSS measurement is sensitive to the 

dynamics of surrounding environments. 
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Figure 4.3 Comparisons of the RSS values in both static and the 
dynamic environments 

(The bars show the probabilities of observing certain 

values of RSS and the lines are the associated 

Gaussian distributions with the same means and 

variations of the measurements.) 

4.2 Characteristics of Radio Frequency Propagation In RFID System  

The signals transmitted by RFID systems are done at radio frequencies. They are 

transmitted via an antenna into the space with different signal strengths in different 

directions. The signal is quite powerful and it can propagate through the space and 

penetrate through some obstacles, such as bricks, wooden walls and human bodies. 

It also has the property of being reflected by metal objects.  

The characteristics of the signal propagation in the RFID system investigated in this 

research include: 

(a) Path loss patterns; 

(b) Directional patterns; and 

(c) Reflectional patterns. 

4.2.1 Path Loss 

In general, the power of the RF signals decreases when it propagates into space 

(Rappaport, 1996). The trend of this process can be mathematically modelled. The 
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simplest model, which represents this process without reflections and obstructions, is 

called the free space propagation model. It is given by: 

2

2 2
( ) ( ) 10 lg( )

(4 )

t r
t r
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PL d S S d
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λ
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⋅ ⋅
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where, 

t
S  is the strength of the signal transmitted; 

( )
r

S d  is the RSS from the distance d ;  

t
G  is the antenna gain of the transmitter; 

r
G  is the antenna gain of the receiver; 

λ  is the wavelength of the transmitted signal; and 

( )PL d  is the path loss at distance d . 

This model is only valid in the far-field (Fraunhofer region) of the transmitting antenna. 

The Fraunhofer distance which defines the boundary of the region is given by: 

22
a

f

D
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λ
=  ( 4 . 2 ) 

where, 
f

d  is the Fraunhofer distance and 
a

D  is the largest physical linear dimension 

of the transmitting antenna. 

For the free space propagation model, 
f

d  must satisfy 
f a

d D≫  and 
f

d λ≫ . 

However, it is usually difficult to measure the transmitted signal strength. Hence the 

estimated RSS, ( )
r

S d , is calculated based on the RSS measured at the reference 

distance, 0( )
r

S d , rather than the transmitted signal strength. This model is given by: 

0
0( ) ( ) 20 lg( )

r r

d
S d S d

d
= + ⋅ , 0 f

d d d≥ ≥  ( 4 . 3 ) 

where, 0d  is the reference distance and 0( )
r

S d  is the RSS at the reference distance. 

In reality, the RF signal strength is affected significantly by the propagation media 

and the surrounding environments, and it may not exactly follow the trend described 

in the free space propagation model. Some efforts have been made to adjust the free 

space propagation model to reality, such as the log-distance path loss model 

(Rappaport, 1996). This model introduces a parameter, called the path loss exponent, 
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to adjust the trend of the model according to different kinds of propagation media and 

is given by Equation (4.4) below. 

0
0( ) ( ) 10 lg( )

d
PL d PL d

d
γ= + ⋅ ⋅  ( 4 . 4 ) 

where, 

0( )PL d  is the path loss at the reference distance; and 

γ  is the path loss exponent. 

Some typical values of the path loss exponent are presented in the literature 

(Rappaport, 1996) (also see Table 4.2). In free space, the path loss exponent equals 

2, which aligns the log-distance path loss model with the free space propagation 

model. In lossy environments, such as outdoor and indoor non-line-of-sight areas, 

the path loss exponent increases and its normal range is between 2 and 6. In the 

indoor line-of-sight area, especially in corridors, this value can fall to less than 2. This 

is caused by surrounding structures (waveguides) forcing the RF to propagate along 

the directions of the structures instead of propagating uniformly into the space.  

Table 4.2 Typical values of the path loss exponent cited by Rappaport (1996) 

Environment Path loss exponent 

Free space 2 

Outdoor 2.7 to 5 

Indoor line-of-sight 1.6 to 1.8 

Indoor non-line-of-sight 4 to 6 

Figure 4.4 shows a log-distance path loss model generated by outdoor observations 

of RFID RSS in which the path loss exponent equals 2.3. The 90% confidence level 

of the modelled path loss varies between 9.1dB and 10.1dB within 25m. These 

uncertainties may be due to the signals being reflected from the environment, the 

changes of the antenna orientation and the variations of the transmission power. 
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Figure 4.4 A log-distance path loss model and its 90% confidence level 
based on the observations in open areas 

(The plot at left shows the path loss model (blue line) 

established based on the observations (blue dots) in open 

areas and its 90% confidence interval (red lines). The 

distances between the RFID reader and tag ranging from 

0.9m to 21.5m which are measured by RTK GPS. The plot at 

right shows the size of the 90% confidence level changing 

with distance. The error varies between 9.1dB and 10.2dB.) 

4.2.2 Directional Patterns 

As noted from the observations, the RSS measured can be misaligned with empirical 

path loss models. One of the major causes is related to the relative directions 

between the transmitter and the receiver. Theoretically, it is due to the antenna gain 

patterns, obstructions and reflections between the transmitters and receivers in 

different directions.  

In practice, the antenna gain patterns can be precisely measured in a laboratory, but 

the exact effects from the environment between the transmitters and receivers are 

not easy to be modelled and separated from the RSS directional patterns. In this 

research, a statistic model was used to investigate the effects on the directional 

patterns of RSS in combination, instead of modelling them separately. 

A ratio was introduced to relate the RSS from one particular orientation to the mean 

value of the RSS from multiple directions (see Equation (4.5)). An ellipse was used to 

model the change of the ratio with the orientation (see Equation (4.6)). 
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where, 

( )
r

S d  is the average RSS value at distance d ; 

( , )
r

S d θ  is the RSS observed at distance d  with the relative orientation θ ; 

( , )r d θ  is the ratio between the average RSS and the RSS observed with the 

relative orientation θ  at distance d . It is represented by an ellipse model 

(see Equation (4.6)); 

( )a d  is the semi-major axis of the ellipse model; and 

'( )e d  is the second eccentricity of the ellipse model, which is 
2 2

'
a b

e
b

−
= . 

A non-linear least square adjustment was used to estimate the parameters (see 

Equation (4.7)) based on the observations from different orientations (e.g. 0˚, 45˚, 90˚, 

135˚, 180˚, 225˚, 270˚ and 315˚ respectively).  
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where, 

J
ɶ

 is the Jacobian matrix of the ratio with respect to the second eccentricity’s 

square and the semi-major axis; 

2' nom
e  is the nominated value of the second eccentricity’s square; and 

nom
a  is the nominated value of the semi-major axis of the ellipse model. 

The experiments were conducted outdoors and indoors with different distances 

between the RFID reader and tag (1.5m, 3.5m, 4.5m and 5.4m in outdoor 
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environments and 1.5m, 2.5m, 3.5m, 4.5m and 5.4m in indoor environments) 

respectively. Observations from eight orientations (0˚, 45˚, 90˚, 135˚, 180˚, 225˚, 270˚ 

and 315˚ in the arbitrary coordinates) were selected (see Figure 4.5 and Figure 4.6 

respectively). 

 

Figure 4.5 The directional patterns and the models used to represent 
the patterns of RSS in outdoor environments with different 
distances between the RFID reader and tag 

(The RSS from eight relative directions (0˚, 45˚, 90˚, 135˚, 

180˚, 225˚, 270˚ and 315˚) and four distances (1.5m, 3.5m, 

4.5m and 5.4m) between the reader and tag were measured 

in outdoor environments.) 
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Figure 4.6 The directional patterns and the models used to represent 
the patterns of RSS in indoor environments with different 
distances between the RFID reader and tag 

(The RSS from eight relative directions (0˚, 45˚, 90˚, 135˚, 

180˚, 225˚, 270˚ and 315˚) and five distances (1.5m, 2.5m, 

3.5m, 4.5m and 5.4m) between the reader and tag were 

measured in indoor environments.) 

The experiments showed that RSS variations due to directional patterns can be up to 

20dB. The ellipse model developed can be used to estimate the RSS directional 

patterns with the RMSE up to 3.4dB within 5.4m in both indoor and outdoor 

environments respectively (see Table 4.3). It is also shown that a trend exists 

between the accuracy of the models and the distances from transmitters to receivers. 

The shorter the distance, the more accurate the RSS estimation. This is due to the 

effects from the surrounding environments, since the longer the distance the more 

reflectors and obstacles between the transmitter and the receiver are needed. 

Apparently, the detrimental effects on the RF signals from those objects will disturb 

the RSS measurements dramatically in different orientations and the ellipse model 

cannot be used directly. It also indicates that the ellipse model developed is not 

applicable for estimations where there is a large distance between the transmitter 

and receiver. Another limitation of the ellipse model is that there are no significant 

trends of the estimated parameters with the increase of the distance in the models 
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(see Figure 4.7 and Figure 4.8). The parameters in the ellipse model vary with the 

distance and the context of the environments. 

 

Figure 4.7 The estimated parameters of the ellipse models 
based on the observations in the outdoor 
observations 

(left: semi-major axis; right: second eccentricity.) 

 

Figure 4.8 The estimated parameters of the ellipse models 
based on the observations in the indoor 
environments 

(left: semi-major axis; right: second eccentricity.) 

 

Table 4.3 The errors of the ellipse models 

Distance between Tx and Rx (m) 1.5 2.5 3.5 4.5 5.4 

Indoor RMSE (dB) 0.8 1.9 1.8 1.8 2.7 

Outdoor RMSE (dB) 2.3 N/A 1.9 2.5 3.4 
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In summary, the ellipse model developed can be used to estimate RSS directional 

patterns with small RMSE (less than 3.4dB) in short distances (within 5.4m) both 

indoors and outdoors. However, the increase in errors with the increase in the 

distances between the transmitter and receiver makes the model inapplicable to 

large-distance observations. In addition, the unpredictable parameters in the model 

make it difficult to be applied to various positions and in the context of the particular 

environments of use. The directional patterns of the RSS are too difficult to be 

accurately modelled due to environmental complexities. One practical solution to 

minimize the detrimental effects from the RSS directional patterns is to include 

observations from different orientations for positioning. Nevertheless, in dynamic 

positioning, positions are resolved in real time. It is impracticable to let the mobile 

user collect RSS from different orientations at every point. Eventually, the positioning 

errors caused by RSS directional patters cannot be minimized. Therefore, using 

standalone RFID positioning for dynamic positioning cannot achieve high accuracy 

due to the directional patterns of RSS. 

4.2.3 Multipath Effects 

Another detrimental effect, which is difficult to be modelled, is multipath effect. This 

phenomenon is mainly caused by reflections of the RF signals, which make the 

received signals a combination of signals from both direct and indirect paths. Since 

the paths are site-specific and the signals are electromagnetic waves, the 

combination of the signals will lead to an unpredictable variation of strength in the 

space. 

The ground reflection model is the simplest model for representing multipath effects 

caused by the ground surface only. The model simulated the combination of two rays 

from the transmitter (see Figure 4.9), one from the line-of-sight and the other from the 

single reflection of the ground surface (Feuerstein et al., 1994). The transfer 

functions of the rays are given by Equations (4.9) and (4.10). This model can be used 

to simulate RFID propagation process in the outdoor open areas. 
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Figure 4.9 A schematic plot of the ground reflection model 

(Tx refers to the RFID tag; Rx refers to the RFID reader and 

the arrow lines refer to RF propagation paths.) 
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where, 

j  is the imaginary unit; 

Γ  is the reflection coefficient; 

0( )dδ  is the path difference between the line-of-sight ray and the reflected ray at 

the reference distance 0d  (see Equation (4.11)); and 

( )dδ  is the path difference between the line-of-sight ray and the reflected ray at 

the distance d (see Equation (4.12)). 

2 2 2 2
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The path loss of the ground reflection model is given by: 
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Figure 4.10 shows a comparison of propagation models and outdoor observations in 

the open areas. The log-distance model and the ground reflected model are 

generated based on observations. It shows that the RSS observations are scattered 

around the estimated values of the log-distance model (red line) but have a 

significant drop between 2m and 3m. The variations of the RSS observations also 
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show a similarity with the ground reflected model since the conditions in the outdoor 

open areas are similar with that of the ground reflected model. However, in the 

metropolitan areas or indoors, the number of RF reflectors needed can be enormous 

and the conditions of the environments can be very complex. This will make the RSS 

estimation very difficult. Some techniques, such as using the site specific propagation 

model for simulating the RF reflections in complex environments, are discussed in 

Chapter 7. 

 

Figure 4.10 The comparison of the log-distance path loss model, the 
ground reflected model and the observations in outdoor 
environments 

(The RSS is measured in the open areas outdoor within 

10m from the transmitter. The log-distance path loss 

model (red line) and the ground reflected model (blue line) 

are generated based on the same dataset.) 

4.3 CoO Positioning Algorithms in RFID Positioning 

CoO positioning is one of the algorithms used in RFID systems. Passive RFID 

systems with less than a 3m reading range can be used as accurate landmarks, 

providing positioning references with conventional CoO algorithms. Active RFID 

systems with longer reading ranges provide approximate positions using large cell 

sizes (e.g. tens of metres) or positioning references like those available from passive 

RFID systems using small cell sizes. 
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4.3.1 Deterministic CoO Algorithm 

The conventional CoO algorithm has been extensively studied by Fu and Retscher 

(2009b) using the identical RFID system that was used in this research. They placed 

seven tags along a 200-metre trajectory. The experiments showed that the 

deterministic CoO algorithm can achieve 20m accuracy by using the largest cell size 

in the RFID system (20m radius). This method is only suitable for application where 

high accuracy is not required. By setting the RSS threshold to -45dBm, metre-level 

reference positions can be achieved when the mobile user passes over certain tags. 

Fu and Retscher (2009b) also improved the continuity and accuracy of the RFID 

deterministic CoO algorithm by integrating it with INS and introducing the time-based 

CoO algorithm. In their time-based CoO algorithm, the exact time when the mobile 

user passes through the cell centre was determined by the mean time of the mobile 

user moving into the cell, rather than arbitrarily assigning the cell’s central position to 

all of the epochs within the cell. By introducing this into deterministic CoO algorithms 

and using an RSS threshold of -45dBm, they claimed a 1m accuracy using the time-

based CoO algorithm in the RFID positioning system. However, this algorithm is 

based on the assumption that the mobile user passes through a cell with a constant 

speed. It can only be applied in post processing since it requires all epochs of the 

mobile user in a certain cell to determine the exact time when the mobile user is at 

the cell centre. In addition, the compromise between the cell size and the accuracy is 

another problem in the deterministic CoO algorithms, as these values have to be 

fixed in a deterministic CoO positioning system. 

4.3.2 Probabilistic CoO Algorithm 

Rather than using a fixed solid cell in the deterministic CoO, an adjustable ring-

shaped cell was developed using the probabilistic CoO (Zhu, 2008). The radius of the 

ring was determined by a RSS-based ranging model: 

0 0 0( ( ))t rd p p f S d ε= − = + , 2(0, )Nε σ∼  (4 .14) 

where, 

0d  is the distance between the transmitter and the receiver; 

0p  is the position of the receiver; 
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t
p  is the position of the transmitter; 

0( )
r

S d  is the RSS at the distance, 0d , from the transmitter; and 

ε  is the zero-mean Gaussian noise in the ranging model with the variance, 

2σ . 

The probability of the mobile user’s position is given by the joint probability of the 

mobile user at position p  and the distance from the mobile user to the transmitter 

equals 0d , 

0 0 0( ) ( ( )) ( ) ( )P p p P p d d P p P d d= = ∩ = = ⋅ =  (4 .15) 

2

0( ) ( , )P d d N d σ= ∼  (4 .16) 

where, 

0( )P p p=  is the probability of the mobile user’s position; 

( )P p  is the probability of the mobile user at position p ; and 

0( )P d d=  is the probability of the distance from the mobile user to the transmitter 

equalling 0d . 

Figure 4.11 shows a typical procedure of the probabilistic CoO algorithm. The result 

of this algorithm is given by the joint probabilities of the RFID-based and the external 

sensor based probabilities. The RFID-based probabilities, 0( )P d d= , are calculated 

using the RSS-based ranging model. The probabilistic distribution is like a crater, 

where the centre is the position where the RFID tag is detected. The peak is a ring 

with the centre of the RFID tag and the radius of the estimated distance is 

determined according to the RSS-based ranging model. The probabilities decrease 

along both normal directions from the peak according to the uncertainties of the 

ranging model. External sensor based probabilities, ( )P p , are determined by sensors, 

such as PDR, INS or GPS. Its peak is the position estimated by external sensors and 

the slope of the decrease depends on the measurement uncertainties of these 

sensors. 
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Figure 4.11 A schematic plot of the probabilistic CoO algorithm 

(The probability of RFID probabilistic CoO algorithm is a 

round-shape distribution with the radius of the distance 

estimated by RFID and centre of the RFID tag. The 

position is determined by the joint probability with the 

observations from other sensors, such as INS.) 

The advantage using the probabilistic CoO is that this approach does not identify the 

mobile user’s position as being at the centre of the cell. However, it estimates the 

probability of the distance between the rover and the centre of the cell based on RSS 

measurements (Zhu, 2008). The improvement provides an adjustable cell in real-time 

positioning. It solves the problem between the cell size and the accuracy in the 

deterministic CoO algorithm. However, it can not be implemented using RFID stand-

alone, as some external sensors are required for generating joint probabilities. 

4.3.3 Evaluations of RFID CoO Algorithms 

An evaluation of RFID CoO algorithms was conducted in Yarra Bend Park, in 

Melbourne, Australia. Seven RFID tags were placed in an open area with different 

intervals. The positions of the tags were accurately measured using a Trimble R8 
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RTK system. This RTK system was also used as a reference to evaluate the RFID 

positioning algorithms (see Figure 4.12). 

 

Figure 4.12 The experiments for RFID CoO positioning 

(The experiments were conducted in open areas in Yarra 

Bend Park, in Melbourne, Australia. One MEMS INS, one 

RFID reader and seven RFID tags were used for the 

experiments and RTK GPS was used as a reference 

system.) 

The comparison of the RFID deterministic CoO with different cell sizes and the 

comparison of the RFID deterministic CoO and the probabilistic CoO algorithms were 

conducted. The cell sizes were defined by RSS thresholds. Four thresholds (-50dBm, 

-60dBm, -70dBm and -80dBm) were selected with reference to small and large cells. 

The higher the threshold, the smaller the cell size. The results are provided in Table 

4.4. It indicates that there is a compromise between the accuracy and the 

accessibility of using RFID deterministic CoO in an area having a fixed number of 

RFID tags. Where the cell size is biggest (threshold=-80dBm), the largest number of 

observations are accepted, but the RMSE is only 9.7m. With the smallest cell size 

(threshold=-50dBm), the accuracy is as high as 2.6m, but only six observations were 

possible. The comparison between the deterministic CoO and the probabilistic CoO 

shows that the probabilistic CoO improves the accessibility of the observations, which 

is as same as the largest number in deterministic approaches. However, the 
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probabilistic approach cannot provide standalone positions. Further analysis of the 

accuracy of the probabilistic approach is provided in the following chapter. 

Table 4.4 Comparison of the stand-alone CoO 

(The probabilistic CoO cannot provide the position 

determinations stand-alone. Its accuracy is analysed in 

Chapter 5.) 

Method RMSE (m) Number of Observations 

Deterministic CoO (threshold=-80dBm) 9.7 33 

Deterministic CoO (threshold=-70dBm) 5.6 23 

Deterministic CoO (threshold=-60dBm) 2.9 9 

Deterministic CoO (threshold=-50dBm) 2.6 6 

Probabilistic CoO N/A 33 

4.4 Trilateration Algorithms in RFID Positioning 

The first continuous positioning algorithm investigated in the RFID positioning 

systems is trilateration. The mobile user’s position is estimated according to known 

positions of the RFID tags and the distances between the tags and the reader. The 

accuracy of this algorithm is highly dependent on the accuracy of distance estimation. 

According to experiments (Fu and Retscher, 2009a), this accuracy in the RSS-based 

RFID positioning system is significantly affected by the ranging model and also the 

effects of the surrounding environment. 

4.4.1 Ranging Models in RFID Positioning 

The distance between the transmitter and receiver can be estimated using the RSS 

by inversing the path loss model (see Equation (4.17)), which represents the 

theoretical relationship between these two variables: 

0( ) ( )

10

0
ˆ 10

r rS d S d

d d γ

−

⋅= ⋅  (4 .17) 

where, 

d̂  is the estimated distance from the transmitter to the receiver; 

0d  is the reference distance; 

0( )
r

S d  is the RSS at the reference distance; 
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( )
r

S d  is the observed RSS; and 

γ  is the path loss exponent. 

Table 4.5 The values of the path loss exponent in different 

environments according to experiments undertaken. 

Environments Path Loss Exponent  

Corridor 0.6992 

Outdoor 2.3313 

The experiments were conducted in both outdoor and indoor environments. The 

parameters of the inverse path loss model, such as 0d  and γ , were estimated using 

least square adjustments according to observations. The results showed that 

observations in outdoor environments present a clear logarithmic relationship with 

the path loss exponent 2.3313 (see Table 4.5). The 90% confidence level of distance 

estimation varies between 5.05m and 5.35m using the inverse path loss model in 

outdoor experiments (see Figure 4.13). In contrast, when using the inversed path 

loss model, the value varies between 32.15m and 32.26m in indoor experiments (see 

Figure 4.14). 

 

Figure 4.13 An inverse path loss ranging model based on 
observations in open areas and its 90% confidence level 

(The plot at left shows the inversed path loss ranging 

model (blue line), which was established based on 

observations (blue dots) in open areas and its 90% 

confidence interval (red lines). The plot at right shows the 

90% confidence level of the estimated distance changing 

with distance. It varies between 5.05m and 5.35m.) 
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Figure 4.14 An inverse path loss ranging model based on indoor 
observations and its 90% confidence level. 

(The plot at left shows the inverse path loss ranging model 

(blue line), which was established based on the 

observations (blue dots) in indoor corridors and its 90% 

confidence interval (red lines). The plot at right shows the 

90% confidence level of the estimated distance changing 

with distance. It varies between 32.15m and 32.26m.) 

The error analysis indicates that the inverse path loss model gives larger errors in 

indoor environments than in outdoor environments. This is mainly due to the 

reflections of RF signals from indoor walls, which form a structure called a waveguide. 

This structure forces the spherical RF signals to propagate in particular directions. 

For example, the signals will mainly propagate in the two directions along an indoor 

corridor. Path loss trends and RSS variations are both affected. 

Regression models can sometimes provide more accurate estimations than inverse 

path loss models, since the presentation of the model can be specified according to 

environments.  A general presentation of the regression model is shown in Equation 

(4.18): 

ˆ ( ( ))
r

d f S d=  (4 .18) 

where ( )f • is the regression model to convert the path loss, ( )
r

S d , to the distance, d . 

Figure 4.15 shows the regression model for indoor RSS-based distance estimation. A 

linear model is used to estimate the range between the transmitter and the receiver 

(see Equation (4.19)). 
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( )
r

d c S d ε= ⋅ + , 2(0, )Nε σ∼   (4 .19) 

where, 

c  is a coefficient of the linear model; and 

ε  is a zero-mean Gaussian noise with the variance, 2σ . 

The results show that at a 90% confidence level the error of the estimated distance 

varies between 6.74m and 6.86m when using the linear regression model. This is 

about five times more accurate than using the inversed path loss model for the same 

dataset in indoor environments. 

 

Figure 4.15 A regression ranging model based on the observations 
indoor and its 90% confidence interval 

(The plot at left shows the regression ranging model (blue 

line) established based on observations (blue dots) in 

indoor corridors and its 90% confidence interval (red lines). 

The plot at right shows the size of the 90% confidence 

interval changing with distance. The errors change 

between 6.74m and 6.86m.) 

4.4.2 Multipath Effects in RFID Positioning 

Another detrimental effect on the RSS-based trilateration method is the variations of 

RSS caused by multipath effects. These effects can cause the non-monotonous of 

the relationship between the distance and the RSS and make trilateration 

impracticable for the RSS-based techniques. The effects can be significant in indoor 

environments where many reflectors are used. Even in open areas, it can also cause 
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fluctuations of RSS in areas near the transmitter. The range of affected areas in open 

areas can be simulated using the ground reflection model. 

According to the simulations (see Figure 4.16), in open areas the variation of RSS 

caused by multipath effects only occurs in the areas near the transmitter. There is 

always a distance between the transmitter and the receiver after which the 

relationship between the distance and the RSS is monotonous. The range of the area, 

in which the RSS fluctuates, varies according to the different combinations of the 

transmitter and the receiver heights. Generally, the higher the device mounting, the 

larger the area of RSS fluctuation. 

 

Figure 4.16 A schematic plot of the ground reflection model simulated RSS 

(This experiment simulated the RSS in the open area where 

the RF signal is only reflected by the ground. The RSS 

fluctuates in the areas near transmitters due to the RF signal 

reflections. The frequency of this fluctuation decreases with 

the increase of the distance from the transmitter, so there is a 

point after which the RSS decreases monotonously.) 

Further calculations were delivered to represent the variation of this range outside 

which the trilateration can be applied in outdoor open areas. Figure 4.17 shows a 

corn-shaped surface of the value of this range according to the different 

combinations of the transmitter and receiver heights, which usually appear in 

personal positioning applications. In the RFID positioning system using 915MHz RF 
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signal, the range can be up to 37m when a transmitter and a receiver are both at 2m 

above the ground. The RSS fluctuation can theoretically be avoided if the transmitter 

and receiver are mounted lower than 0.3m above the ground. In normal cases, where 

transmitters and receivers are mounted at the waist level (e.g. 0.9m above the 

ground), the range is 7.5m. The simulations indicated that multipath effects can 

greatly affect the performance of RSS-based trilateration algorithm. Theoretically, this 

can be avoided in outdoor open areas if the devices are mounted very low. However, 

in practice, this causes some wiring and installation problems. In indoor 

environments this creates more serious problems, where the presence of more 

reflective objects, results in multipath being more detrimental to the accuracy of 

positioning, which cannot be completely avoided. 

 

Figure 4.17 The minimum distances for the monotonous RSS-distance 
relationships in open areas simulated by the ground 
reflection model 

(The surface (at left) refers to the distances after which 

there exist monotonous relationships between the RSS 

and the distance with different combinations of transmitter 

and receiver heights in a ground reflection context. The 

contour plot (at right) is the top view of this surface.)  

4.4.3 Analysis of the Performance Using Trilateration in RFID Positioning 

The experiments and simulations conducted indicate that selecting appropriate 

ranging models and minimising multipath effects are the two critical aspects in RFID 

trilateration. However, both of these aspects are challenging in practice. 
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Some research undertaken indicated that there is no universal model for the RSS-

based distance estimation that can be readily applied (Fu and Retscher, 2009b). At 

times, the regression models will perform better than the inverse path loss models 

(Mok and Retscher, 2007). This is because RSS is affected significantly by an 

environment. The distribution of RSS is dependent on an environment. Regression 

models, according to RSS samples at a site, can include more specific environmental 

effects into the estimation than when theoretical models are used. Fu (2008) 

developed an RFID trilateration algorithm for static positioning. The regression 

ranging model and the calibration procedure are used to estimate distances between 

the RFID reader and tags. Four directional observations, each for one minute, are 

taken to determine positions. She claimed sub-metre level accuracy. However, in 

dynamic positioning, multi-directional observations associated with long observation 

times for every epoch, are not practical. Here, positioning accuracy will be lower. The 

study conducted in this research indicates that the variation of the RSS based on a 

single-directional short-term (1sec) observation is very large. Even using appropriate 

models, a 90% confidence interval can be around 6m, which is not suitable for 

trilateration algorithms.  

Another detrimental effect is multipath. According to experiments (Fu, 2008; Li, 2006; 

Mok and Retscher, 2007; Zhang et al., 2008) it is very significant and cannot be 

avoided. Simulations indicate that even on an ideal environment (e.g. open areas 

with no obstructions and only one significant reflection) this effect can still cause the 

non-monotonous relationships between the RSS and the distance. Simulations also 

indicate that with normal setups for personal positioning applications (waist mounted 

sensors) the distance estimation is better when implemented 7.5m away from the 

transmitter, so that effects caused by multipath can be minimised. In indoor 

environments, it is even harder to mitigate these effects. 

In summary, the RFID trilateration algorithm can only be used for static positioning 

applications due to the limitations of ranging models and the effects of multipath, 

which are challenging in dynamic positioning applications. 

4.5 Location Fingerprinting Algorithms in RFID Positioning 

Another type of RSS-based continuous positioning algorithm, which is more robust 

against the effects from environments, is the location fingerprinting algorithm. This 

algorithm uses the match between prior RSS-distribution and real-time 
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measurements to determine the mobile user positions. The advantage of this 

algorithm is that it considers environmental effects prior to RSS-distribution. However, 

to generate the prior RSS-distribution always requires tremendous workload. 

4.5.1 RFID Location Fingerprinting Algorithms for 2-D Indoor Positioning 

RFID location fingerprinting experiments in 2-D indoor environments were conducted 

in an 8m×10m room at RMIT University. There are a number of windows with metal 

frames on the side walls, two whiteboards on the front wall and a few hydraulic pipes 

on the ceiling (see Figure 4.18). The RFID reader was connected to a laptop and 

placed on a trolley with the antenna height at 1.2m. 16 RFID tags were placed on the 

walls and ceiling of the room (see Figure 4.19).  

In the training phase, both the means and variances of RSS were measured using 

100 scans at each node on a 1m×1m grid (refer to Chapter 3) in static environments. 

The fingerprinting maps were constructed using observations and refined into the 

0.1m×0.1m grid by the simple Kriging interpolation method. 

 

Figure 4.18 The experiments for RFID indoor positioning 

(The experiments were conducted in an 8m × 10m 

classroom in the city campus of RMIT University, 

Melbourne, Australia. 16 RFID tags were mounted on the 

walls and ceiling.) 
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Figure 4.19 The site setup for the 2-D RFID indoor positioning 
experiments 

(Sixteen RFID tags were used to cover the experimental 

room. They are divided into four groups (identified by 

colours) and scanned group by group to avoid conflictions. 

Eight tested positions in the centre, side and corner of the 

room are used for the evaluations respectively.) 

Both the deterministic approach and the probabilistic approach were investigated in 

the experiments conducted. The RFID tags were separated into four groups for 

scanning. In every scan only one group of RFID tags were used so as to avoid 

scanning collisions and the time prolonged. The RSS were measured at eight 

positions in the room. Eight scans were taken at every point. The results of the 

experiments show that the positioning RMSE of the location fingerprinting algorithms 

in the room varies from 3.5m to 4.4m (see Figure 4.20). Positioning accuracy can be 

improved by increasing the observations obtained from different RFID tags. However, 

increasing the number of observations from the same tags does not significantly 

improve the accuracy. In addition, there is a minimal difference between the 

deterministic approach and the probabilistic approach in static environments. 
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Figure 4.20 RMSE of the RFID 2-D static indoor positioning tests 

(Both the deterministic approach and the probabilistic 

approach of location fingerprinting algorithms were used. 

Single scan: RSS from tags in one group were used for 

each position determination; 4 scans: RSS from all the 16 

tags (each tag scanned once) were used for each position 

determination; 8 scans: RSS from all the 16 tags (each tag 

scanned twice) were used for each position determination.) 

4.5.2 RFID Location Fingerprinting Algorithm for 3-D Indoor Positioning 

The experiments of RFID location fingerprinting algorithms for 3-D indoor positioning 

were conducted in a stairway between different levels in a building at RMIT 

University. Eight RFID tags are placed on the walls (see Figure 4.21) to cover the 

three levels of the experimental areas. Six tested positions on the level 10, level 11 

and the intermedia level between 10 and 11 are used for evaluating the algorithms 

(Zhang et al., 2008). 
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Figure 4.21 The site setup of the 3-D RFID indoor positioning experiments 

(Eight RFID tags are used to cover two levels in the stairway. Six 

tested positions were used for the static positioning evaluations.) 

The fingerprinting maps in the training phase were constructed using observations of 

RSS means and variances at twelve positions along the stairway. The maps were 

then interpolated into the 1m × 1m × 1m uniform grid using simple Kriging 

interpolations. In addition, the RSS was measured in four directions: 0˚, 90˚, 180˚ and 

270˚, so as to evaluate the effects from directional patterns on the location 

fingerprinting algorithms (see Figure 4.22). 

 

Figure 4.22 A schematic plot of the training phase measurements in 
the stairway 

(The upper four plots show the RSS from tag 

0.200.168.210 measured by a RFID reader with different 

orientations. The lower four plots show the sigma values 

of the RSS measured with different orientations 

respectively.) 
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The results (see Figure 4.23 and Figure 4.24) show that a positioning accuracy better 

than 2.5m can be achieved using 3-D location fingerprint algorithms. By using 

multiple scans both in number and in directions, accuracy can be improved to 0.8m. 

It also indicates that the accuracy can be improved significantly by using the 

deterministic approach rather than the probabilistic approach, with increased 

observation numbers in static environments. This is due to the lower sensitivity to the 

variations of the RSS measurements in the probabilistic approach than those in the 

deterministic approach. This low sensitivity in the probabilistic approach not only 

makes it less prone to dramatic RSS variations in dynamic environments, but also 

less sensitive to the subtle changes of RSS in multiple observations for static 

positioning. 

 

Figure 4.23 RMSE of the RFID 3-D static indoor positioning tests 

(Both deterministic and probabilistic approaches of 

location fingerprinting algorithms are used. Single scan: 

RSS from tags in one group (4 tags) are used for each 

position determination; 2 scans: RSS from all the 8 tags 

(each tag scanned once) are used for each position 

determination; 6 scans: RSS from all the 8 tags (each tag 

scanned three times) are used for each position 

determination.) 
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Figure 4.24 RMSE of the RFID static indoor positioning tests with 
multi-direction observations 

(Both deterministic and probabilistic approaches of 

location fingerprinting algorithms are used. Single 

orientation: the observation from only one orientation is 

used for each position determination; four orientations: the 

observations from four orientations (0˚, 90˚, 180˚ and 270˚) 

in the arbitrary coordinates are used for each position 

determination.) 

4.6 Comparison of RFID Positioning Algorithms 

When comparing standalone RFID positioning algorithms, the deterministic CoO 

algorithm is the simplest positioning algorithm and less prone to environmental 

effects. However, the major limitations of this algorithm are the lack of capability to 

provide continuous positions and the compromise between the coverage size and 

positioning accuracy. In contrast, the probabilistic CoO algorithm developed 

overcomes the limitation of the conventional CoO by introducing an adjustable cell 

according to RSS-based distance estimation. However, it cannot be implemented on 

its own. External observations for generating the joint probabilities are required. The 

trilateration algorithm is one of the algorithms which can provide continuous positions 

with a stand-alone RFID system.  However, it faces a number of detrimental effects, 

such as the accuracy of the path loss model, the effects from the signal directional 

patterns and the multipath effects. These detrimental effects make the trilateration 

algorithm site-specific. The regression path loss models based on RSS samples at 
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the site and on-line calibrations are required to achieve the metre-level accuracy (Fu, 

2008). However, RSS is not stable in dynamic environments. This makes the 

regression path loss models and on-line calibrations unreliable in dynamic positioning. 

Consequently, it limits the use of RSS-based trilateration algorithms in practice. 

According to this research, the most practicable algorithm for standalone RFID 

positioning is the location fingerprinting algorithm. In contrast to the trilateration 

algorithm, the location fingerprinting algorithms tackles the problems by considering 

most environmental effects with previously measured RSS distributions 

(fingerprinting maps). Normally, a positioning accuracy better than 5m can be 

achieved using the standalone RFID location fingerprinting algorithm. But, the major 

limitation is the misalignment of RSS distributions between the training phase and the 

positioning phase caused by environmental dynamics. This research, as well as 

others (Fu and Retscher, 2009a), indicate that positioning accuracy can be improved 

by using the probabilistic approach, including observations from multiple directions 

and increasing the number of observations. However, collecting multiple 

observations is not practicable for dynamic positioning, as mobile user positions need 

to be estimated in real-time for dynamic positioning. There are no adequate epochs 

for collecting multiple observations at each position for the mobile user. Therefore, 

the probabilistic approach of the location fingerprinting algorithm is optimal for the 

RFID dynamic positioning. 

4.7 Summary 

This chapter provided a brief history of RFID positioning developments and reported 

investigations into the detrimental effects on RFID positioning (limitations of the RSS-

based ranging models, RSS directional patterns and the multipath effects) and the 

development of standalone RFID positioning algorithms. From experimental results it 

shows that it is challenging to use trilateration algorithms based on tag-reader 

distances in RFID dynamic positioning due to the limitations of the RSS-based 

ranging models and the detrimental effects from the environments. In contrast, CoO 

algorithms are less prone to detrimental effects and can provide reliable discrete 

positions. The probabilistic CoO algorithm developed is superior to the deterministic 

CoO algorithms as it solves the problem between cell size and accuracy in the 

conventional CoO algorithms by using adjustable cells. For RFID continuous 

positioning, location fingerprinting algorithms can be used. A static positioning 

accuracy of 4.4m and 2.5m can be achieved in rooms and in stairways respectively. 
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The accuracy can be further improved by increasing the number of static positioning 

observations. The analysis showed that the probabilistic approach of the location 

fingerprinting algorithm is less prone to the noisy measurements in dynamic 

environments and it is optimal for RFID dynamic positioning. 

The next chapter discussed the feasibility of improving positioning accuracy by using 

multi-sensor integrated techniques. 

 



 

101 

Chapter 5 Multi-sensor Integrated Positioning 

The concepts of INS and DR have been used for centuries, from conventional 

gimballed INS to fiber-optic gyroscopes and resonating beam accelerometers, then 

to the MEMS sensors. As development occurred, the cost and size of the systems 

were dramatically reduced (Barbour and Schmidt, 2001). MEMS sensors in coin-

sized chips, costing around AUD 10, can be widely used in personal positioning 

applications, for example, monitoring a human’s daily activities for physiological 

research (Najafi et al., 2003). The high noise level and fast drift in these sensors can 

be constrained by sensor integration (Eskin, 2006; Li D et al., 2008), such as GPS. 

This chapter introduces these techniques and the integrations with RFID positioning 

techniques for indoor personal positioning. In the first part of this chapter, the 

theoretical analyses and experiments covered include: 

(a) stand-alone MEMS INS; 

(b) stand-alone PDR; 

(c) integrated GPS/INS; and 

(d) integrated GPS/PDR. 

These were conducted to enable the selection of a technique to integrate with an 

RFID system for multi-sensor integrated indoor personal positioning. In the remainder 

of the chapter, other experiments for testing RFID-based multi-sensor integrated 

positioning algorithms developed are covered. These are: 

(a) integrated INS/RFID deterministic CoO positioning; 

(b) integrated INS/RFID probabilistic CoO positioning; 

(c) 2-D integrated INS/RFID location fingerprinting positioning; and 

(d) 3-D integrated INS/RFID location fingerprinting positioning. 

5.1 Existing Applications Using INS and PDR for Personal Tracking and Indoor 

Positioning 

Early research using the MEMS sensors for personal tracking and indoor positioning 

were about PDR (Judd, 1997). In the early 2000s, a series of research activities were 

conducted related to foot-mounted PDR, due to its easy implementation and 
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relatively slower drift speed, compared to INS (Foxlin, 2005; Jirawimut et al., 2003; 

Stirling et al., 2005). In 2008, Tomé and Yalak (2008) significantly improved 

orientation estimations in PDR using an adaptive EKF developed. In the same year, 

Beauregard et al. (2008) decreased the post processing positioning error to the sub-

metre level by using a backtracking particle filter, where a long-range geometrical 

constraint was applied according to the cooperation between maps and historical 

trajectories. 

In contrast, MEMS INS is not widely used in personal tracking systems as the stand-

alone MEMS INS drifts too quickly to be applied. However, with careful design and 

the application of frequent constraints, the performance of MEMS INS can be greatly 

improved. Krach and Roberston (2008) developed a foot-mounted INS which was 

constrained by the map matching method using particle filters. The technique 

achieved metre-level accuracy for personal positioning indoor, but the convergence 

procedure takes over 1 minute to perform. As well, Williams et al. (2009) developed 

another algorithm for personal positioning using INS. Their experiments showed that 

the algorithm that integrated the conventional INS and the gyroscope-free INS could 

provide better results than the stand-alone INS algorithm for personal positioning. 

5.2 Introduction to INS and PDR 

INS and PDR techniques for personal positioning are similar to conventional 

techniques that use inertial sensors, but they contain more significant noise 

generated by MEMS sensors and the general dynamics from mobile users. This 

section provides information on positioning principles and the error models related to 

MEMS INS and PDR respectively. 

5.2.1 Principles and Error Models related to INS 

The principles of INS navigation has been developed over many years. INS 

estimates relative position using acceleration and rotation rates measurements 

based on a series of physical principles. 

5.2.1.1 Navigation 

Acceleration measured by INS on the Earth’s surface is a combination of the 

system’s acceleration, gravity and the acceleration caused by the rotation of the 
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reference frame with respect to the inertial frame (Titterton and Weston, 2004). 

Accordingly, the navigation equation in the navigation frame is given by the following 

Equation (5.1). 

(2 )n n b n n n n

b ie en
v C f v gω ω= ⋅ − ⋅ + × +ɺ

ɶ
 ( 5 . 1 ) 

where, 

n
vɺ  is the acceleration in the navigation frame; 

n

b
C
ɶ

 is the Direction Cosine Matrix (DCM) transforming the vector from the 

body frame to the navigation frame; 

bf  is the acceleration in the body frame; 

n

ie
ω  is the rotation rate vector of the Earth frame with respect to the inertial 

frame; 

n

en
ω  is the rotation rate vector of the navigation frame with respect to the Earth 

frame; 

n
v  is the velocity in the navigation frame; and  

ng  is the gravity in the navigation frame. 

For the short-term navigation, the effects from the Earth rotation are so small that 

these terms can be safely ignored. The navigation equation is simplified as Equation 

(5.2) 

n n b n

b
v C f g= ⋅ +ɺ

ɶ
 ( 5 . 2 ) 

For the attitude determination, the DCM is updated according to the rotations (see 

Equation (5.3)). 

1 exp[ ]
k k

C C σ−= ⋅ ×
ɶ ɶ

 ( 5 . 3 ) 

where, 

k
C
ɶ

 is the DCM at epoch k ; 

1k
C −
ɶ

 is the DCM at the previous epoch; 

exp[ ]•  is the exponential term of the matrix; and 

σ ×  is the skew symmetric matrix (see Equation (5.4)). 
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where, 

δφ  is the change of the pitch angle between two epochs; 

δθ  is the change of the roll angle between two epochs; and  

δψ  is the change of the yaw angle between two epochs. 

5.2.1.2 Calibration 

In this research the measurements of acceleration and rotation rates come from the 

MEMS sensors, including the Kionix KXM52 tri-axes accelerometer (Kionix Inc., 

2006), Analog Devices ADXRS300 gyroscopes (Analog Devices Inc., 2004) and 

Hitachi Metals HM55B magnetometers (Hitachi Metals Ltd., n.d.). These sensors 

output the binary data from a serial port so that calibration is needed to enable the 

transformation of these data into appropriate units (see Equation (5.5)). 

DN REFα β= ⋅ +  ( 5 . 5 ) 

where, 

DN  is the digital outputs from the sensor; 

REF  is the reference value; 

α  is the scale factor of the linear transformation; and 

β   is the offset of the linear transformation. 

A simplified calibration method was developed for MEMS INS sensors, based on the 

KF (see Chapter 3). Unlike the highly-accurate calibrations that can be done using 

accurate and costly equipment, such as rate table and vibration table in laboratory 

settings, a simplified method is based on gravity and the geomagnetic field (see 

Figure 5.1). 

For accelerometers, the vertical component of gravity is used as a reference. The 

value is defined as being 9.8m/s 2  instead of the value obtained from the accurate 

gravity model, as Equations (5.6) and (5.7) (Titterton and Weston, 2004). This is 

because accelerometers used in this research have a resolution in the order of 110− , 
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but the effects from latitude and height on gravity are both in the order of 310−  for 

personal navigation near the Earth’s surface. Therefore these subtle terms can be 

safely ignored. 

3 2 6 2(0) 9.780318 (1 5.3024 10 sin 5.9 10 sin 2 )g L L− −= ⋅ + × ⋅ − × ⋅ ⋅  ( 5 . 6 ) 

3 2(0)
0.0000030877(1 1.39 10 sin )

dg
L

dh

−= − − ×  ( 5 . 7 ) 

where, 

(0)g  is the gravity at the sea level; 

L  is the latitude; 

(0)dg  is the change of the gravity from the sea level; and 

dh  is the change of the height from the sea level. 

For magnetometers, the vertical component of the geomagnetic field can be used as 

a reference. This value is estimated by the Australian Geomagnetic Reference Field 

(AGRF) model, a mathematical model used to estimate the geomagnetic field 

according to position and time in Australia and some surrounding areas. This model 

has been improved and updated every five years since its deployment in 1985. This 

has been done to track as accurately as possible unpredicted variations of the 

geomagnetic field, caused by magnetic storms, the rotation of the Earth, the Moon 

and the Sun (Luyendyk, 1997) (Geoscience Australia, 2005). For implementations in 

other areas, the International Geomagnetic Reference Field (IGRF) model can be 

used (Maus, 2005). However, in practice, the measurements of magnetometers 

contain more errors emanating from sensors and the surrounding environment 

(Moafipoor et al., 2007). These error sources apparently cause some misalignment 

between the modelled values and the measured geomagnetic field component (see 

Figure 5.1). 

For gyroscopes, first-order differentiations of the orientations estimated by 

magnetometers are used to reference the rotation rate. Due to the variation of the 

geomagnetic field and the noise in orientation determination, this rotation rate 

reference contains significant noise (see Figure 5.1). This leads to low accuracy 

estimations of gyroscope scale factors. Consequently, overestimated observation 

covariance is assigned to the KF in order to filter out part of significant noise. 
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Figure 5.1 The calibration of the MEMS INS sensors 

(The left axes (blue) show the references in the calibration, 

including the vertical components of gravity and the 

geomagnetic field vector and the rotation rates estimated 

by magnetometers. The right axes (red) show digital 

output from the sensors.) 

5.2.1.3 Alignment 

The purpose of alignment is to estimate the relationship between the body frame and 

the navigation frame in the initial state (Jiang, 1998). This relationship is represented 

by the DCM (see Equation (5.8)). 

11 12 13

21 22 23

31 32 33

n

b

c c c

C c c c

c c c

 
 =  
  

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

 ( 5 . 8 ) 

where, 

ij
c
ɶ

 is the component of the DCM in row i , column j . 



 

107 

The value of every component is listed in Equations (5.9) - (5.17). 

11 cos cosc θ ψ= ⋅
ɶ

 ( 5 . 9 ) 

12 cos sin sin sin cosc θ ψ φ θ ψ= − ⋅ + ⋅ ⋅
ɶ

 (5 .10) 

13 sin sin cos sin cosc φ ψ φ θ ψ= − ⋅ + ⋅ ⋅
ɶ

 (5 .11) 

21 cos sinc θ ψ= ⋅
ɶ

 (5 .12) 

22 cos cos sin sin sinc φ ψ φ θ ψ= ⋅ + ⋅ ⋅
ɶ

 (5 .13) 

23 sin cos cos sin sinc φ ψ φ θ ψ= − ⋅ + ⋅ ⋅
ɶ

 (5 .14) 

31 sinc θ= −
ɶ

 (5 .15) 

32 sin cosc φ θ= ⋅
ɶ

 (5 .16) 

33 cos cosc φ θ= ⋅
ɶ

 (5 .17) 

where, 

φ  is the pitch angle; 

θ  is the roll angle; and 

ψ  is the yaw angle. 

Since the DCM is an orthogonal matrix, its inverse matrix is equal to its transpose 

(see Equation (5.18)). 

b nT

n b
C C=
ɶ ɶ

 (5 .18) 

where, 

n

b
C
ɶ

 is the DCM for transforming the vector from the navigation frame to the 

body frame; 

Theoretically, the relationship between two coordinates can be determined by two 

non-parallel vectors. For high-accuracy INS, the vector of the gravity, sensed by 

accelerometers, and the vector of the Earth rotation rate, sensed by the gyroscope, 

are selected (Schimelevich and Naor, 1996). However, for the MEMS INS, the Earth 

rotation rate is too subtle to be detected by gyroscopes due to their high noise level. 

Instead, the vectors of the gravity and the geomagnetic fields are used. 
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The gravity measured by accelerometers in the stationary status is given by Equation 

(5.19). Accordingly, the three terms, 31c
ɶ

, 32c
ɶ

 and 33c
ɶ

, can be determined based on the 

accelerations measured and the vertical component of the gravity since the Easting 

and Northing components of the gravity are zero. 

[ ]
31

32

33

b

x E

b b

y n N U

b

z U

f g c

f C g c g

f g c

  −   
     = ⋅ − = ⋅ −     
     −    

ɶ

ɶ ɶ

ɶ

 (5 .19) 

where, 

b

x
f , b

yf  and b

z
f  are the measured accelerations of the x, y and z axis in the body 

frame respectively; and 

E
g , 

N
g  and 

U
g  are the easting, northing and up components of the gravity 

respectively. 

The geomagnetic field vector measured by magnetometers is given by the following 

Equation (5.20). 

b AGRF

x E

b b AGRF

y n N

b AGRF

z U

m m

m C m

m m

   
   

= ⋅   
   
   

ɶ
 (5 .20) 

By rearranging the Equations (5.9) - (5.17) the following equations can be achieved. 

12 23 31 33 21c c c c c= ⋅ − ⋅
ɶ ɶ ɶ ɶ ɶ

 (5 .21) 

22 33 11 13 31c c c c c= ⋅ − ⋅
ɶ ɶ ɶ ɶ ɶ

 (5 .22) 

32 13 21 23 11c c c c c= ⋅ − ⋅
ɶ ɶ ɶ ɶ ɶ

 (5 .23) 

Consequently, the Equation (5.20) can be rearranged as the Equation (5.24). 

31 33 32 11

32 33 31 12

33 32 31 13

b AGRF AGRF AGRF AGRF

x U E N N

b AGRF AGRF AGRF AGRF

y U N E N

b AGRF AGRF AGRF AGRF

z U N N E

m c m m m c m c c

m c m m c m m c c

m c m m c m c m c

   − ⋅ − ⋅ ⋅  
     − ⋅ = ⋅ − ⋅ ⋅     
     − ⋅ − ⋅ ⋅     

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ

 (5 .24) 

where, 

b

x
m , b

ym  and b

z
m  are the measured magnetic vector of the x, y and z axes in 

the body frame respectively; and 
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AGRF

E
m , AGRF

N
m  and AGRF

U
m  are the easting, northing and up components of the 

geomagnetic vector respectively. 

Accordingly, the terms, 11c
ɶ

, 12c
ɶ

 and 13c
ɶ

, can be determined from the measured 

magnetic components and the geomagnetic field vector. In addition, the remainder of 

the terms in the DCM can be calculated using Equations (5.21), (5.22) and (5.23) 

respectively. 

Figure 5.2 shows results of the alignment using this method. When compared to the 

estimations of the pitch angle and roll angle, there are significant variations of a few 

degrees in the yaw angle. This is mainly due to the uncertainties of the magnetic 

measurements. According to the accuracy required in personal positioning, this 

method can provide efficient and effective results for the MEMS INS alignment. 

 

Figure 5.2 The schematic plots of the INS alignment results in three Euler 
angles respectively 

(Plots (a), (b) and (c) are the pitch angle, roll angle and the 

yaw angle estimated by the simplified alignment respectively.) 

5.2.1.4 INS Error Models 

The positioning equations in INS are given by Equations (5.25), (5.26) and (5.27) 

(Titterton and Weston, 2004). 

0
ˆ ˆ( )p p p v tδ= + + ⋅  (5 .25) 

0 0
ˆˆ ( ) n

v v v f tδ= + + ⋅  (5 .26) 

ˆ ˆ ( )n n b b

b
f C f fδ= ⋅ +

ɶ
 (5 .27) 

where, 

0v  is the initial velocity; 
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0vδ  is the error of the initial velocity; 

v̂  is the estimated velocity; 

bf  is the acceleration in the body frame; 

bfδ  is the error of the acceleration in the body frame; 

ˆ nf  is the estimated acceleration in the navigation frame; 

ˆ n

b
C
ɶ

 is the estimated DCM which is a function of Euler angles, 

φ

θ

ψ

 
 
 
  

; and 

t  is the time between the epoch of the initial state and the estimated epoch. 

 

Figure 5.3 The schematic plots of the white noises in acceleration, the 
random walk noises in velocity and the significant drifts in 
position of INS 

((a): the acceleration measured with white noise; (b): the 

velocity based on the integral of the acceleration; and (c): 

the position based on the double-integral of the 

acceleration.) 

It indicates that the position can be calculated by the double-integral of the measured 

acceleration with respect to time, so the Gaussian noise in the acceleration becomes 

a random-walk noise in velocity and a significant drift in position (see Figure 5.3). In a 

two-dimensional strapdown INS that provides the horizontal positions like a PDR, the 

positioning error model can be written as: 

2 2 2 3

0 0 0 cos sin
2 2 2 6

n b b n

x x x y x y y

t t t t
p p v t f f f fδ δ δ δψ δ ψ δ ψ δψ= + ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ɺ  (5 .28) 

2 2 2 3

0 0 0 sin cos
2 2 2 6

n b b n

y y y x x y x

t t t t
p p v t f f f fδ δ δ δψ δ ψ δ ψ δψ= + ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ɺ  (5 .29) 
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where, 

0x
vδ  and 0y

vδ  are the errors of the initial velocity; 

0δψ  is the error of the initial orientation; and 

δψɺ  is the error of the rotation rate along the z-axis. 

It is assumed that the variances of accelerometer bias are same, 2 2
b b
x yf f

σ σ= . The 

positioning variance is given by: 

4 4 6
2 2 2 2 2 2 2 2 2

0 0 0
4 2 36

b

n n

p p v f

t t t
t f fψ ψσ σ σ σ σ σ= + ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅ ɺ  (5 .30) 

where, 

2

0v
σ  is the variance of the initial velocity; 

2

0ψσ  is the variance of the initial orientation; 

2
b

f
σ  is the variance of the acceleration in the body frame; and 

2

ψσ ɺ  is the variance of the rotation rate along the z-axis. 

 

5.2.2 PDR Principles and Error models  

5.2.2.1 Introduction to PDR 

Another technique used for personal positioning applications based on MEMS 

sensors is PDR. This technique uses accelerometers mounted on the mobile users to 

detect the number of user steps. Relative positions are estimated by the step 

numbers detected combining with the orientations and the measured or modelled 

results of step lengths (see Figure 5.4). 
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Figure 5.4 The schematic plots of the step detection, step 
length estimation and orientation estimation in PDR 

((a): the mobile user’s steps detected according to 

the variations of the vertical acceleration measured; 

(b): the mobile user’s step lengths estimated; (c): 

the orientations of the mobile user.) 

The most challenging elements in PDR are to correctly detect the user steps and 

estimate step length. For steps, these are usually detected according to the 

acceleration patterns collected from mobile users’ moving body parts. The most 

common body parts for mounting the accelerometers are the feet and the waist (see 

Figure 5.5). The advantage of waist-mounted sensors is low noise, since many high-

frequency shocks are absorbed by leg joints. However, the trade-off is the smooth 

and less detailed signals which will sometime cause underestimation of step 

numbers. In contrast, foot-mounted sensors can collect more detailed data, but with 

higher noise levels, which will lead to overestimation. For step length, there are 

mainly two kinds of estimating methods: to indirectly estimate the step length based 

on statistical models using certain parameters, such as the length of the mobile 

users’ legs, step frequencies, and step patterns (Rose and Gamble, 2006); and to 

physically measure the step length according to distance measurements (e.g. from 

GPS), single integral of speed or double integral of acceleration (e.g. from 

accelerometers). Each method has its pros and cons. The statistical method contains 

less error in long-term estimation, but it cannot deal well with the anomalies of the 

mobile user movements. The direct measurement method can physically measure 

step lengths, but it has more noise associated with the measurement of each step, 

which accumulates in positioning estimations. 
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Figure 5.5 A schematic plot of the PDR data with the devices mounted 
on the waist and foot respectively 

(The plot shows the vertical accelerations measured by the 

foot-mounted sensors (blue) and the waist-mounted sensors 

(green). Six stages of a walk circle can be detected by the 

foot mounted-sensors. (a): initial swing; (b): mid swing; (c): 

terminal swing; (d): initial double support; (e): single limb 

stance; (f): second double support.) 

5.2.2.2 PDR Error Models 

The observation model of the PDR is given by Equation (5.31). 

0 0
ˆˆ ˆ( )p p p n lδ= + + ⋅  (5 .31) 

where, 

p̂  is the estimated position; 

0p  is the initial position; 

0pδ  is the error of the initial position; 

n̂  is the estimated step number; and 

l̂  is the estimated step length. 

In detail, the errors in step number determinations, step length calculations and 

orientation estimations are given by Equations (5.32), (5.33) and (5.34). 
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n̂ n nδ= +  (5 .32) 

where, 

n  and nδ  are the true value and the error of the step number respectively. 

ˆ ˆ ( )n n b b

b
l C l lδ= ⋅ +

ɶ
 (5 .33) 

where, 

b
l  and b

lδ  are the true value and the error of the step length in the body frame 

respectively; and 

ˆ n

b
C
ɶ

 is the DCM used to transform the measurements from the body frame to 

the navigation frame. 

For simplicity, the step length is only measured in the forward and backward 

directions of the body frame ( b

x
l ) and the platform does not contain the rotations in roll 

and pitch angles. Eventually, The DCM, n

b
C
ɶ

, is simplified by a function of the 

horizontal orientation, ψ . 

ψ̂ ψ δψ= +  (5 .34) 

where, 

ψ̂  is the estimated orientation; and 

δψ  is the error of orientation. 

The error models in the 2-D coordinates are given by the Equations (5.35) and (5.36) 

respectively. 

0 cosn n b

x x x y yp p n l n l n lδ δ δ δψ δ ψ= + ⋅ + ⋅ ⋅ + ⋅ ⋅  (5 .35) 

0 sinn n b

y y y x xp p n l n l n lδ δ δ δψ δ ψ= + ⋅ + ⋅ ⋅ − ⋅ ⋅  (5 .36) 

where, 

x
pδ  and 

y
pδ  are the positioning errors in x and y axes respectively; 

0x
pδ  and 0y

pδ  are the errors of the initial position; 

n

x
l  and n

yl  are the step length in the navigation frame; and 

b

ylδ  is the error of the step length in the forward axis of the body frame. 
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The positioning variance of PDR is given by: 

2 2 2 2 2 2 2 2 2

0 b

n n

p p n l
l n l nψσ σ σ σ σ= + ⋅ + ⋅ ⋅ + ⋅  (5 .37) 

where, 

2

pσ  is the variance of the estimated position; 

2

0pσ  is the variance of the initial position estimated; 

2

n
σ  is the variance of the step number estimated; 

2

ψσ  is the variance of the orientation estimated; and 

2
b

l
σ  is the variance of the step length estimated. 

5.3 Evaluation of INS and PDR 

According to the literature consulted (see Section 5.1), both MEMS INS and PDR are 

used in personal tracking and indoor positioning applications. Analyses and 

experiments are provided in the following section to provide support related to the 

selection of a proper technique for integrated personal positioning techniques in this 

research. 

According to the error models (see Sections 5.1.1.4 and 5.1.2.2), positioning 

variance is a second-order polynomial of the step number in PDR and a sixth-order 

polynomial of the observation time in INS. This indicates that drifts in INS are 

generally faster than drifts in PDR, when the sensors with the same noise level are 

used. It also means even if the mobile user does not move, the INS will still drift over 

time, leading to large positioning errors. Field tests were conducted to compare 

MEMS INS, PDR and integrated methods with low-cost GPS so as to validate the 

above analysis. The selected site for the testing was an outdoor open area (see 

Figure 5.6). The device used was a MinimaxX (Wu et al., 2008), which contained a 

low-cost GPS receiver (Fastrax, 2007) and a MEMS INS. 

The drift between the stand-alone MEMS INS and the stand-alone PDR were 

calculated and are shown in Figure 5.7. The figure shows that the INS started drifting 

from the beginning of the experiment, but the PDR only drifted after the mobile user 

started to move (80 seconds after the experiment began). At the end of the 

experiment, it was found that the INS drifted almost twelve times further than the 
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PDR. These empirical results agree well with the analysis according to theoretical 

error models. 

 

Figure 5.6 The reference track and the estimated positions by 
integrated GPS/INS and integrated GPS/PDR respectively 

(The satellite image in the background is sourced from 

GoogleEarth (URL: http://www.google.com/earth/index.html 

Access date: 28 Jul 2010). The reference track is a pre-

defined trajectory for the mobile user.) 

 

Figure 5.7 A comparison of the drifts in MEMS INS and PDR 

(The blue line shows the positioning drifts in MEMS INS 

starting from the beginning of the experiment. The red line 

shows the positioning drifts in PDR starting from the 

beginning of the mobile user’s movements.) 
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The differences between the positioning errors for integrated GPS/INS and integrated 

GPS/PDR were also calculated (see Figure 5.8). The figure below shows that by 

providing the frequent constraints from the external sensors, such as GPS, the large 

drifts in both INS and PDR can be constrained and integrated INS and integrated 

PDR can provide the equivalent positioning accuracy.  

 

Figure 5.8 The error analysis of the integrated GPS/INS 
and integrated GPS/PDR methods 

((a): Easting errors, (b) Northing errors) 

In summary, both MEMS INS and PDR can provide better results for personal 

positioning by integrating with external sensors, like GPS, which can provide frequent 

constraints. According to positioning mechanisations, even though the PDR has a 

slower drift than MEMS INS, in the long-term, without any constraints, it contains a 

major limitation that is not sensitive to the smooth movements of the mobile users, 

such as a mobile user who may be moving on an escalator or in a lift. These results 

suggest that the integrated positioning method based on MEMS INS can provide 

more reliable estimations in a wider range of circumstances than that is based on 

PDR. As a result, the MEMS INS was selected for further testing in this research. 

5.4 Integration of RFID and MEMS INS 

According to current research (Grejner-Brzezinska et al., 2007a, 2007b; Kim, 2004; 

Zhao et al., 2009), multi-sensor integrations can provide more accurate and reliable 

estimations by constraining the results with redundent observations. It can also 

sigificantly reduce the cost and volume of the entire positioning system. For example, 
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integrated positioning algorithms based on INS and GPS have been extensively 

studied for vehicle navigation and robot positioning (Brown and Lu, 2004; Godha and 

Cannon, 2005a, 2005b; Godha et al., 2006; Wang et al., 2009a, 2009b; Zhou et al., 

2009) since INS is not prone to signal propagation problems (e.g. obstructions and 

multipath effects) and it can achieve frequent constraints when GPS is available. 

However, the results achieved from integrated MEMS INS algorithms for indoor 

personal positioning have not been extensively studied. As a consequence, RFID 

positioning techniques were integrated with MEMS INS and used for further testing of 

the algorithms developed in this research, so as to obtain reliable integrated 

positioning estimations. The algorithms tested include: 

(a) Integrated INS/RFID CoO algorithms; and 

(b) Integrated INS/RFID location fingerprinting algorithms. 

5.4.1 Integrated INS/RFID CoO Algorithms 

A unique advantage of INS is that it can provide high-frequency and continuous 

positions. Therefore, the integration of INS/RFID CoO can improve the continuity of 

the RFID CoO stand-alone. In this research a 2-D reduced INS algorithm was used 

and both the RFID deterministic CoO and the RFID probabilistic CoO algorithms 

were tested for multi-sensor integrated methods. 

5.4.1.1 Reduced INS Algorithm for 2-D Personal Positioning 

In order to reduce INS sensors’ noise, a reduced INS, which includes one forward 

accelerometer, one gyroscope and two horizontal magnetometers, are often used for 

2-D personal positioning. The measurement vector includes sensor outputs (see 

Equation (5.38)). 

T
b b b

x y y
z m m fψ =  ɺ  (5 .38) 

where, 

bψɺ
 

is the rotation rate along z axis; and 

y
f  is the acceleration in the forward axis.

 

The measurement model is given by: 

,sin( ) cos( )
x

b AGRF AGRF

xk N k E k m km m m vψ ψ= − ⋅ + ⋅ +  (5 .39) 
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,cos( ) sin( )
y

b AGRF AGRF

yk N k E k m k
m m m vψ ψ= ⋅ + ⋅ +  (5 .40) 

,

b

k k kvψψ ψ= +ɺ ɺ  (5 .41) 

, ,y k k f kf f v= +  (5 .42) 

where, 

f  is the magnitude of the acceleration; and 

,kv•  are the zero-mean white Gaussian measurement uncertainties in the 

magnetic field components, rotation rate and acceleration respectively. 

The state vector includes horizontal coordinates, velocities and accelerations in 

easting and northing respectively (see Equation (5.43)). 

[ ]
T

x p v f ψ ψ= ɺ  (5 .43) 

where, 

p  is the position vector; 

v  is the velocity vector; and 

f  is the acceleration vector. 

The constant acceleration model is used as the dynamic model. 

1 1 , 1k k k p k
p p v t w− − −= + ⋅ ∆ +  (5 .44) 

1 1 , 1k k k v k
v v f t w− − −= + ⋅ ∆ +  (5 .45) 

1 , 1k k f k
f f w− −= +  (5 .46) 

, 1k k k
t wψψ ψ −= ⋅∆ +ɺ  (5 .47) 

1 , 1k k k
wψψ ψ − −= + ɺ

ɺ ɺ  (5 .48) 

where, 

k
p , 

k
v , 

k
f , 

k
ψ  and 

k
ψɺ  are the position, velocity, acceleration vectors, orientation 

and rotation rate at epoch k  respectively; 

,kw•  is the zero-mean white Gaussian process noises in the 

position, velocity, acceleration and orientation; and 
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t∆  is the time between the epoch 1k −  and k . 

5.4.1.2 Integrated INS/RFID Deterministic CoO Algorithm 

For the integrated INS/RFID deterministic CoO algorithm, the identical dynamic 

model and measurement model of the reduced INS algorithm were used outside the 

RFID cells. Inside the cells, the positions of the cells’ centres were used for correcting 

INS drifts. Eventually, the measurement vector and measurement model became: 

[ ]b b T

x y y cellz m m f pψ= ɺ  (5 .49) 

,cell k p k
p p v= +  (5 .50) 

where, 

cell
p  is the position estimated by deterministic CoO algorithm; and 

,p k
v  is the measurement uncertainty in the position. 

5.4.1.3 Integrated INS/RFID Probabilistic CoO Algorithm 

For the integrated INS/RFID probabilistic CoO algorithm, an EKF was used to 

integrate the observations from reduced INS and RFID (see Figure 5.9). The 

estimated positions using the RFID probabilistic CoO algorithm and the average 

velocity between two estimations were used as constraints (Zhu, 2008). The 

measurement vector and measurement model are given by: 

T
b b

x y y CoO
z m m f p vψ =  ɺ  (5 .51) 

,CoO k p k
p p v= +  (5 .52) 

,k v k
v p v= +ɺ  (5 .53) 

where, 

CoO
p  is the position estimated by probabilistic CoO algorithm; 

v  is the average velocity; and 

k
pɺ  is the true velocity. 

The models of the Integrated INS and RFID Deterministic CoO Algorithm are used 

when the mobile user is close to the cell centre (i.e. the RSS is over -50dBm), as 
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distance estimation is not accurate within this range due to significant multipath 

effects (see Chapter 4). When an RFID signal is not available, identical models of 

reduced INS algorithm are used. 

 

Figure 5.9 The flow chart of the Integrated INS and RFID Probabilistic 
CoO Algorithm 

(When the RFID is available, the constraints generated from 

RFID CoO algorithms are used to constrain drifts in the 

reduced INS. Probabilistic CoO models are used in the far 

areas of the cell where there are less multipath effects from 

ground reflections. Deterministic CoO models are used in 

near areas affected more significantly by multipath effects.) 

5.4.1.4 Evaluation of Integrated INS/RFID CoO Algorithms 

Experiments to evaluate integrated INS/RFID CoO algorithms were conducted at 

Yarra Bend Park, Melbourne, Australia. Seven RFID tags were placed in a U-shape 

trajectory in outdoor open areas. The cell centres were placed with different intervals 

(20m intervals in the east part and 50m intervals in the west part of the trajectory). 

The MEMS INS and RFID integrated system was used to implement the algorithms 

(see Figure 5.10) including: 

(a) the 2-D reduced INS algorithm; 

(b) the integrated INS/deterministic CoO algorithms with the small cell size 

(RSS threshold = -50dBm); 
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(c) the integrated INS/deterministic CoO algorithms with the large cell size 

(RSS threshold = -80dBm); and 

(d) the integrated INS/probabilistic CoO algorithm. 

A GPS RTK system (Trimble R8) was mounted on the mobile user as well to provide 

the centimetre-level reference positions for comparison purpose. 

 

Figure 5.10 The experimental site for the evaluations of the integrated 
INS/RFID CoO algorithms 

(The satellite image in the background comes from 

GoogleEarth (URL: http://www.google.com/earth/index.html 

Access date: 28 Jul 2010).) 

The results show that all of the integrated INS/RFID CoO algorithms constrain INS 

drifts significantly. The accuracy of integrated INS/RFID deterministic CoO algorithms 

is highly dependent on the size and distribution of the cell. The accurate positions of 

the cell centres can be used to constrain INS drifts when using small cells (e.g. RSS 

threshold = -50dBm). However, the cells have to be densely distributed to provide 

frequent corrections (at least 0.2Hz) to the INS sensors. Otherwise, the dramatic 

drifts of INS can significantly degrade the positioning accuracy of the integrated 

algorithm within the large spacings between cells (see Figure 5.10). An alternative is 
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to use large cells (e.g. RSS threshold = -80dBm) to provide continuous cell coverage 

and, consequently, the frequent corrections to INS. However, the limitation of this 

approach is that large cells cannot provide corrections as accurately as the small 

cells. This is because it arbitrarily assigns the cell centre position to the mobile users’ 

positions when they appear in the cell. As a result, when the cells become larger, this 

algorithm becomes more inaccurate. From experiment results, even though the 

integrated algorithm with large cells can better constrain INS drifts and provide more 

accurate positioning than the algorithm with small cells (see Table 5.1 and Figure 

5.11), the former cannot provide reasonable and continuous trajectories. All 

estimations are highly constrained near cell centres when using the integrated 

algorithm with large cells (see Figure 5.10). This is a response to the nature of the 

deterministic CoO algorithm. It is a great challenge to the compromise between 

accuracy, continuity and the number of cells for deterministic CoO algorithms. In 

contrast, the INS/RFID probabilistic CoO algorithm overcomes this limitation and 

provides more accurate positions by introducing a flexible cell size according to the 

RSS. This provides continuous trajectories and it is more accurate than the 

integrated INS/RFID deterministic CoO algorithms. In spite of some occasional large 

errors, which are caused by RSS instabilities in areas where the mobile user is far 

from RFID tags, the INS/RFID probabilistic CoO can provide acceptable positioning 

accuracy and continuous trajectories with fewer RFID tags. 

Table 5.1 The positioning errors of the integrated 

INS/RFID CoO algorithms 

Method RMSE (m) 

INS/Probabilistic CoO 15.4 

INS/Deterministic CoO (threshold=-80dBm) 19.6 

INS/Deterministic CoO (threshold=-50dBm) 28.1 

INS 67.7 
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Figure 5.11 The error analysis of the integrated INS/RFID CoO 
algorithms 

5.4.2 Integrated INS/RFID Location Fingerprinting Algorithms 

For RFID location fingerprinting algorithms, the instability of RSS is a major error 

source. It is mainly caused by environmental dynamics. Due to significant effects 

from RSS instability in RFID, the probabilistic distribution can be disturbed from a 

single-peak into several peaks in the probabilistic approach of the location 

fingerprinting algorithm. A similar situation of disturbance caused by RSS instability 

happens to the deterministic approach as well. In most of the cases, the highest peak 

is not the one near the true position and it leads to large positioning errors. 

Consequently, a method using additional observations or constraints to select the 

correct peak in the disturbed context is required. 

5.4.2.1 Prior Probability of the Mobile User in Probabilistic Location 

Fingerprinting Algorithm 

Figure 5.12 is a schematic plot that shows distributions of positioning probabilities in 

free space (simulated) and dynamic environments (measured) respectively. 
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Figure 5.12 A schematic plot of the comparisons of the 
probabilistic distribution in the free space and the 
complex indoor environments 

(The left plot shows the single-peak probabilistic 

distribution in free space. The right plot shows the 

multi-peak probabilistic distribution in complex 

indoor environments. The red cross (+) indicates the 

true position and the yellow stars show the position 

of the peaks.) 

The left plot shows the distribution of probabilities in the free space which do not 

contain reflectors or obstacles. The probabilities peak is very close to the true 

position. The small error is due to the spatial resolution of RSS samples in the 

training phase and the noise of the transmission power source. In contrast, the plot at 

right shows the disturbance of the probabilities with a number of peaks in dynamic 

environments with reflectors and obstacles (e.g. people and furniture). There are 17 

peaks and the highest (peak 1) is not the closest to the true position. 

An integrated INS/RFID location fingerprinting algorithm is introduced here to amplify 

the probabilities around the predicted positions so as to increase the possibility of 

selecting the correct peak in disturbed distributions of the probabilities. This method 

is based on the assumption that the correct peak of the probabilities in RFID 

positioning is in the near areas of the INS predicted position. This can be true when 

the INS is frequently corrected and the positioning update interval is very small (e.g. 

a few seconds). The INS estimated positions can be constrained and will not 

significantly drift from the true position during this short period. Therefore, in this 
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research, the period was set to one second and the INS predictions were constrained 

by an EKF according to the values in the initial state and the positions determined 

(see Figure 5.13). Nine state variables were used for the dynamic models of the 3-D 

positioning algorithm, including the three orthogonal axes’ position errors, velocity 

errors and tilts. The state transition matrix is given by the following Equation (5.54) 

(Rogers, 2000). 
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 (5 .54) 

where, 

R  is the radius of the Earth; 

g  is the magnitude of the gravity; 

φɺ  and θɺ  are the rotation rate of the x and y axes in the body frame respectively; 

and 

t∆  is the time interval between two adjacent epochs. 
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Figure 5.13 The flow chart of the Integrated INS and RFID location 
fingerprinting Algorithm 

(The left part of this flow chart shows the data flow in the 

INS navigation. The Euler angles in the stable status and 

orientation estimated by the magnetometers are used as 

the constraints for attitude determination. The final 

estimated positions and velocities are used as the 

constraints of the INS estimated positions and velocities. 

The right part of the flow chart shows the data flow in the 

RFID location fingerprinting algorithm. The prior 

probabilities of a mobile user are calculated according to 

the INS estimated positions and velocities. Finally, the 

observations from the INS and RFID are integrated by an 

EKF.) 

The amplification of the probabilities is completed according to Bayes’ law (see 

Equation (5.55)).  Unlike the uniform distribution of the prior probability of the mobile 

user’s positioning in the RFID stand-alone techniques, a normal distribution is used 

with the mean of the predicted position and the variance according to the uncertainty 

of the INS positioning. These normal distributed probabilities, ( )
i

P p , are multiplied 

with the probabilities calculated based on the RFID observations, ( )iP Z p , and 

amplifies the value of the probabilities near the predicted positions. 
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( ) ( )

i ii
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⋅∩
= =  (5 .55) 

5.4.2.2 Evaluation of the Integrated INS/RFID Location Fingerprinting 

Algorithms 

Two series of experiments were conducted in different sections of a building at RMIT 

University’s City Campus to test integrated INS/RFID location fingerprinting 

algorithms in 2-D and 3-D contexts.  Experiments for evaluating the performance of 

the 2-D integrated INS/RFID location fingerprinting algorithm were conducted in 

identical environments to the 2-D RFID stand-alone positioning experiments (see 

Chapter 4). The positions of the eight tested places were recalculated using the 

integrated INS/RFID location fingerprinting algorithm. 

 

Figure 5.14 The schematic plots of two 2-D integrated INS/RFID 
location fingerprinting algorithm results 

(The left plot shows the results of the test 4 at a middle 

point of the room. The right plot shows the results of the 

test 8 in a corner of the room. The red dots and the green 

dots are the results generated by the integrated INS/RFID 

algorithm and the RFID stand-alone positioning algorithm 

respectively.) 

Figure 5.14 shows the results of two of the eight tests for the evaluation. One is at 

the middle of the room and the other is in the corner of the room. It shows that the 

uncertainties of the RFID stand-alone positioning algorithm can be minimised by 
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amplifying the probabilities according to the integrated INS observations and that INS 

drifts can be frequently constrained by RFID, especially at the centre of the room 

where the RSS distributions are less disturbed by environmental effects. In the 

boundary areas of the room, the signals reflected by objects may significantly affect 

RSS distributions and consequently make the INS to be constrained ineffectively. 

Figure 5.15 shows the positioning errors of all eight tests respectively. It shows that 

most of the errors are less than 1m except those from tests 1, 3 and 8, which are 

near the edges or corners of the room. The total RMSE is 1.07m. Despite some drifts 

in difficult environments, the integrated INS/RFID location fingerprinting algorithm can 

improve the positioning accuracy from 4m in RFID stand-alone techniques to about 

1m in static positioning applications. 

 

Figure 5.15 Positioning errors of the eight tests for evaluating the 
2-D integrated INS/RFID location fingerprinting 
algorithm. 

(The left plot shows the x-axis errors and the right plot 

shows the y-axis errors. The errors estimated from 

different tests are represented by different colours.) 

Evaluations of the 3-D integrated INS/RFID location fingerprinting algorithm were 

conducted in the stairway of the same building at the RMIT University’s City Campus 

(see Figure 5.16) which is identical to the environment for the 3-D RFID stand-alone 

positioning experiments (see Chapter 4). 
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Figure 5.16 The experimental site for evaluating the 3-D 
integrated INS/RFID location fingerprinting and a 
schematic plot of the estimated trajectory 

(Left side is a photo taken at the experiment site. 

The plot at right side illustrates the results of one of 

the estimated trajectories in the experiments.) 

Four trajectories between levels 9 and 11 of the building were used for the 

evaluations. The results show that mobile user movements between the levels can 

be clearly mapped using the 3-D integrated INS/RFID location fingerprinting 

algorithm. The RMSE of the experiments were 3.7m, 3.4m, 4.2m and 4.0m 

respectively. The drifts in INS can be constrained and the integrated algorithm can 

provide a continuous trajectory for dynamic positioning (see Figure 5.17) (Zhu et al., 

2008). 
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Figure 5.17 Positioning errors of the 3-D integrated INS/RFID location 
fingerprinting algorithms 

(Test 1: the trajectory from levels 11 to 10. Test 2: the 

trajectory in test 1, travelling in the opposite direction. Test 

3: the trajectory from the intermediate level between levels 

10 and 11 to the intermediate part between levels 9 and 10. 

Test 4: the trajectory in test 3, travelling in the opposite 

direction.) 

5.5 Summary 

This chapter has presented an approach for improving the positioning accuracy 

through multi-sensor integration. Evaluations of MEMS INS and PDR were 

conducted to select an appropriate technique for integrating with RFID positioning 
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techniques. Based on subsequent experiments and analyses, MEMS INS was 

selected as the most effective technique. Developments of the integrated INS/RFID 

probabilistic CoO algorithm and the integrated INS/RFID location fingerprinting 

algorithms were provided. The experiments and comparisons of the reduced INS, the 

integrated INS/RFID deterministic CoO and the integrated INS/RFID probabilistic 

CoO at the Yarra Bend Park test site showed that the integrated INS method could 

improve the continuity when using RFID CoO techniques. The RFID CoO techniques 

could also effectively constrain the positioning drifts in INS, especially using the 

probabilistic CoO approach. The other experiments conducted in a building of the 

RMIT University City Campus showed that the integrated INS/RFID location 

fingerprinting algorithm developed could provide metre-level accuracy in dynamic 

indoor positioning without the need for multiple observations at every position. This is 

a superior method to the stand-alone RFID location fingerprinting algorithm, which 

has the difficulties in providing metre-level accuracy for dynamic indoor positioning 

(see Chapter 4). 

The algorithms for extended usage of RFID-based multi-sensor integrated positioning 

techniques in indoor/outdoor seamless positioning applications are discussed in the 

following chapter. 
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Chapter 6 Seamless Positioning Using RFID-Based Techniques 

The demand for seamless positioning has significantly increased since the 

introduction of ‘ubiquitous computing’ (Weiser, 1991) in the late 1980s. In this 

technology revolution, people, instead of computational devices, became the focus of 

the system. Consequently, locating people in indoor/outdoor contexts seamlessly has 

become a core component of ubiquitous computing. This chapter describes the 

investigation of the use of the RFID-based multi-sensor techniques for seamless 

positioning and introduces the algorithms that were developed for these applications. 

6.1 Introduction of Seamless Positioning 

Positional information is very important. It is needed almost everywhere all the time 

and this has been possible since the introduction of the concept of ‘ubiquitous 

computing’. This concept is termed the ‘third wave’ of computing. The core of this 

concept is to consider the user instead of the computational devices as being the 

centre of the system (Dodson et al., 2007). Knowing the user’s position is an 

essential component for implementing this concept. By knowing positional 

information, the system can automatically detect the context and provide the most 

appropriate services to the user. Consequently, having a technique that can provide 

continuous indoor and outdoor positional information is an essential element (Mok, 

2007). The methods of providing continuous indoor/outdoor positions seamlessly and 

the algorithms for smoothly transferring the estimation from one outdoor system, like 

GPS, to another indoor system, like RFID, has attracted a great interest in the LBS 

research community (Hightower and Borriello, 2001; Retscher and Kealy, 2005). This 

type of technique is called ‘ubiquitous positioning’ or ‘seamless positioning’. 

6.2 Low-cost GPS/RFID Integration Method 

Most seamless positioning techniques are based on integration methods. Multiple 

sensors are used to provide adequate observations for resolving position. In this 

research, low-cost GPS and RFID were used. Reliable positioning algorithms were 

developed to deal with the significant nonlinearity of a seamless positioning system. 
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6.2.1 GPS-based Integration 

One kind of seamless GPS-based indoor/outdoor positioning technique is to use 

integrated RF-based techniques to provide additional observations when the GPS 

signals are blocked. These RF-based techniques can be WiFi, UWB and other 

pseudo systems, such as LOCATA (Barnes et al., 2003; Mok et al., 2006; Retscher 

et al., 2007). RFID can also be used as a radio-based ranging technique for low-

accuracy dynamic positioning (see Chapter 4). Its measurements can be used to 

compensate for the inadequate observations obtained from low-cost GPS and in 

areas where the GPS signal is blocked. The algorithms for integrating low-cost GPS 

and RFID were developed in cooperation with the National University of Defence 

Technology, China. 

6.2.2 Iterated Reduced Sigma Point Kalman Filter 

EKF is the preferred algorithm for integrating the measurements in nonlinear systems 

(see Chapter 3). In theory, the ultimate goal of KF is to determine the optimal values 

of Equations (6.1), (6.2) and (6.3). A priori estimate of the state is the expectation of 

the state transition according to posterior estimates and the process noise in the 

previous epoch. A priori estimate of the measurement is the expectation according to 

a priori estimation of the state and the measurement uncertainty. The Kalman gain is 

the ratio of the error covariance matrices. 

1 1
ˆ ˆ( ( , ))

k k k
x E f x w

− +

− −=  ( 6 . 1 ) 

where, 

ˆ
k

x
−  is the a priori estimates of the state vector; 

1
ˆ

k
x

+

−  is the posterior estimates of the state vector in the previous epoch; 

1k
w −  is the zero-mean white Gaussian process noise in the previous epoch; 

( )f •  is the state transition function; and 

( )E •  is the expectation. 

ˆˆ ( ( , ))
k k k

z E h x v
− −=  ( 6 . 2 ) 
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where,  

ˆ
k

z
−  is the a priori estimates of the measurement; 

k
v  is the zero-mean white Gaussian measurement uncertainty; and 

( )h •  is the measurement function. 
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k
K
ɶ

 is the Kalman gain; 

k kx z
P
ɶ

 is the error covariance matrix of the state vector and measurements; 

kz
P
ɶ
ɶ

 is the error covariance matrix of the measurements; and 

k
x  and 

k
z  are the true values of the state vector and measurements respectively. 

In an EKF (see Chapter 3), it approximates the Equations (6.1), (6.2) and (6.3) by the 

following equations (see Equations (6.4), (6.5) and (6.6)).  
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where, 

ˆ
k kx zP
ɶ

 and ˆ
kzP
ɶ
ɶ

 are the estimated error covariance matrices. 

Apparently, noises are ignored in Equations (6.4) and (6.5). In addition, the error 

covariance matrices are determined by linear models. These approximations may 

cause divergence of the filter in the complex nonlinear systems. 

In order to compensate for the limitations in the EKF, the SPKF was introduced in the 

mid-1990’s (Julier and Uhlmann, 1997). This algorithm transforms a set of sample 

points nonlinearly, which are cited as sigma-points, instead of using the linearised 

functions in the EKF. The sigma-points are determined by the following equations 

(see Equations (6.7), (6.8) and (6.9)). 
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where, 

x

i
X  is the i th sigma-point of the state; 

x  is the mean of the state; 

P
ɶ

 is the error covariance matrix of the state; 

ζ  is a scalar scaling factor that determines the spread of the sigma-points; 

and 

N  is the dimension. 
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where, 

w

i
X  is the i th sigma-point of the state; 

w  is the mean of the process noise; and 

Q
ɶ

 is the covariance matrix of the process noise. 
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where, 

v

i
X  is the i th sigma-point of the state; 

v  is the mean of the measurement uncertainty; and 

R
ɶ

 is the covariance matrix of the measurement uncertainty. 

The scalar scaling factor is determined by the dimension of the state and the scaling 

factors (see Equation (6.10)). 
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( )Nζ α κ= ⋅ +  (6 .10) 

where, 

α  is the primary scaling factor determining the extent of the spread of the 

sigma-points around the prior mean value; and 

κ  is the tertiary scaling factor. 

The weights to transform the sigma-points back into the state space are determined 

according to the dimension of the state and the scaling factors (see Equations (6.11), 

(6.12) and (6.13)). 
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where, 

0

m
w  is the weight for the sigma-point of the measurement; 

c
w  is the weight for the sigma-point of the covariance; and 

β  is the secondary scaling factor used to emphasize the weighting on the 

zero-th sigma-point for the posterior covariance calculation. 

According to the theory and the definitions, the time update equations of the SPKF 

are: 
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The measurement update equations of the SPKF are: 
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By implementing the SPKF, the major limitations in the EKF, including the 

complicities and the instabilities of the linearised Jacobian approximations, can be 

satisfactorily resolved. In addition, this algorithm can be made more robust by using 

the iterative method (Zhan and Wan, 2007).  However, computational burden can be 

a limitation for implementation (Sugimoto et al., 2009). 

The reduced SPKF is based on the theory that the number of points used for 

constructing the largest possible affinely independent set is 1N + . For example, the 

two dimensional (2-D) three points as a triangle can be used instead of a four-point 

rhomboid. A 3-D four-point tetrahedron can be used instead of a six-point octahedron 

(see Figure 6.1). Accordingly, the Reduced SPKF (RSPKF) reduces the number of 

sigma-points required from 2 1N +  in standard SPKF to 2N + . (Julier, 2003) 
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Figure 6.1 A schematic plot of the fundamentals in the reduced sigma 
points theory 

(The top two plots show the standard sigma points (5 points) 

and reduced sigma points (4 points) in 2-D and the bottom 

two plots show the standard sigma points (7 points) and 

reduced sigma points (5 points) in 3-D)  

In the RSPKF, the weight sequence is given by the following Equation (6.24). 

0

1

1

1

1 1

2

2 3,..., 1

c

c c

i

i c

w i

w w i

w i n−

 − =


= =
 = +

 (6 .24) 

The scalar scaling factor sequence for 1-D problems is: 
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The scalar scaling factor sequence for higher dimensional problems is: 
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In addition, the square-root unscented KF is used to improve the efficiency (see 

Equation (6.29)). 

S P≡
ɶɶ

 (6 .29) 

where, S
ɶ  is the square-root of the error covariance matrix. 

The simplex sigma-points (the sigma-points of the set with the minimum number of 

sigma-points) are given by the following Equations (6.30), (6.31) and (6.32). 

( )x

i i i
x Sζ= + ⋅X

ɶ
 (6 .30) 

( )w

i i i
w Qζ= + ⋅X

ɶ

 (6 .31) 

( )v

i i i
v Rζ= + ⋅X

ɶ
 (6 .32) 

The time update equations are: 

1: 1 1: 1, 1
ˆqr{[ ( )]}

k

c x

x N kN k k
S w x− −

+ + −
= ⋅ −X

ɶ
 (6 .33) 

00, 1
ˆcholupdate{ , , }

k k

x c

x x kk k
S S x w− − −

−
= −X

ɶ ɶ
 (6 .34) 

where, 

qr{ }•  is the lower-triangular part resulted from a QR decomposition of the 

matrix; and 

cholupdate{ }•  is the N  consecutive rank-1 Cholesky updates. 

The measurement update equations are: 

1: 1 1: 1, 1
ˆqr{[ ( )]}

k

c

z N kN k k
S w z−

+ + −
= ⋅ −Z

ɶ
ɶ

 (6 .35) 
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00, 1
ˆcholupdate{ , , }

k k

c

z z kk k
S S z w−

−
= −Z

ɶ ɶ
ɶ ɶ

 (6 .36) 
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 (6 .38) 

cholupdate{ , , 1}
k k kx x k zS S K S

+ −= ⋅ −
ɶ

ɶɶ ɶ ɶ
 (6 .39) 

Using a similar idea of the iterated SPKF, further developments of the RSPKF was 

provided by Peng et al. (2009). The objective was to obtain an updated measurement 

as an approximate maximum of a posterior estimate via the Gauss-Newton iterative 

method (Bar-Shalom et al., 2001). The algorithm repeats the process of the RSPKF 

at every epoch until the results meet the terminal conditions using the Gauss-Newton 

iterative method (see Equation (6.40)). 

( 1) ( )
ˆ ˆ

k i k i
x x ε+ +

+ − ≤  or i M≤  (6 .40) 

6.2.3 Dynamic Model 

In the developed algorithm, the dynamic model for the epochs with the low-cost GPS 

observations is given by a constant acceleration model (see Equations (6.41) - 

(6.45)). 

.. .

1 1

c t
k k k

c t c t w
δδ δ ⋅

− −⋅ = ⋅ +  (6 .41) 

.

11 1

c t
kk k k

c t c t c t t w
δδ δ δ ⋅

−− −⋅ = ⋅ + ⋅ ⋅ +  (6 .42) 

1 1

f

k k k
f f w− −= +  (6 .43) 

1 1 1

v

k k k k
v v f t w− − −= + ⋅ +  (6 .44) 

1 1 1

p

k k k k
p p v t w− − −= + ⋅ +  (6 .45) 

where, 

c  is the speed of light; 

k
tδ  and 

.

ktδ  are the clock bias and drift respectively; 

k
f , 

k
v  and 

k
p  are the acceleration, velocity and position respectively; 
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k
w  is the Gaussian noise in the states; and 

t  is the time interval between the epochs. 

Since only the distances can be measured by an RFID system, the dynamic model 

for the epochs with the RFID observations is given by a constant velocity model (see 

Equations (6.46) - (6.47)). 

1 1 1

v

k k k k
v v f t w− − −= + ⋅ +  (6 .46) 

1 1 1

p

k k k k
p p v t w− − −= + ⋅ +  (6 .47) 

6.2.4 Measurement Model 

The measurement models are defined by the pseudorange observation equations 

and the distance equations for low-cost GPS measurements and RFID 

measurements respectively. 

2 2 2( ) ( ) ( )j user j user j user

j x x y y z z
p p p p p p c t vρρ δ= − + − + − + ⋅ +  (6 .48) 

where, 

j
ρ  is the pseudorange from the j th satellite to the user; 

j

x
p , j

yp  and j

z
p  is the position of the j th satellite in three axes respectively;  

user

x
p , user

yp  and user

z
p  are the user’s position in three axes respectively; and 

v
ρ  is the pseudorange measurement noise. 

2 2 2( ) ( ) ( )i user i user i user d

i x x y y z z
d p p p p p p v= − + − + − +  (6 .49) 

where, 

i
d  is the distance from the i th RFID tag to the user; 

i

x
p , i

yp  and i

z
p  is the position of the i th RFID tag in three axes respectively; 

and 

d
v  is the distance measurement noise. 
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6.2.5 Experiments and Analyses 

Experiments for evaluating the iterated RSPKF were conducted at the Formula 1 

Grand Prix circuit in Albert Park, Melbourne (see Figure 6.2). In the open areas, the 

pseudorange measurements from a low-cost GPS were used for positioning. In the 

GPS blocked areas, which are in the north-east corner of the circuit, an RFID tag 

array was placed along the roads in order to provide additional distance observations 

(see Figure 6.3). The iterated RSPKF was used to integrate the measurements for 

seamless positioning. The positions measured by the RTK GPS technique were used 

as the references for evaluations. 

 

Figure 6.2 The experimental site and the trajectory for evaluating the 
iterated reduced SPKF for the GPS/RFID integrated 
seamless positioning technique 

(The tested trajectory is along the Formula 1 Grand Prix 

circuit in Albert Park, Melbourne, Australia. In the north-east 

corner some of the GPS signals were blocked by the 

buildings nearby the roads. The RFID tags were placed in 

those areas to provide additional distance measurements. 

The satellite image in the background is taken from 

GoogleEarth.) 
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Figure 6.3 The flow chart of the GPS RFID integration method 

(The algorithm shifts to the module for RFID positioning when 

the RFID tags are detected.) 

From the experiments, the comparisons of the low-cost GPS stand-alone using 

conventional SPKF, the integrated low-cost GPS/RFID using conventional SPKF and 

the iterated RSPKF are shown in Table 6.1. Results show that the positioning 

accuracy can be increased by 69.5% by using the integrated low-cost GPS/RFID 

technique since the RFID system provides the additional observations in the areas 

with limited GPS visibility. It also indicates that iterated RSPKF can further improve 

the performance by 28.8% (Peng et al., 2009). 

Table 6.1 The experimental results for low-cost GPS/RFID integrations 

Method 
Positioning 

RMSE (m) 

Maximum positioning errors in the 

GPS visibility constraint areas (m) 

GPS using SPKF 7.4 90.9 

GPS/RFID using SPKF 3.2 37.3 

GPS/RFID using iterated RSPKF 2.2 20.9 

6.3 GPS/RFID/INS Integration Method 

The integrated low-cost GPS/RFID method evaluated in the previous section 

provides satisfactory results of this low-cost seamless positioning technique. 

However, for personal positioning applications in large areas with limited GPS 

visibility such as in metropolitan areas or in forests, placing RFID tags in all the GPS 

low-visibility areas would involve a tremendous workload. An alternative method is to 

Observations 

Is RFID available? 

Iterated reduced SPKF with a 
constant velocity model and  
RFID distance measurements 

Positions and Velocities 

Yes No 

Iterated reduced SPKF with a 
constant acceleration model and 
GPS pseudorange measurements 
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include the self-contained INS into the integrated system to provide short-term 

relative positions in the GPS blockage areas without the need to establish a dense 

network of RFID tags. One similar method that uses GPS/UWB/INS integration has 

been published by Tanigawa et al. (2008). Their results showed that an indoor 

accuracy of 0.2m could be achieved by using UWB/INS and an outdoor accuracy of 

3.6m was possible using GPS/INS. Nevertheless, this method comes with associated 

high costs. The expensive UWB positioning system usually costs tens of thousands 

Australian dollars. In this research, the low-cost RFID system was used instead of the 

more expensive UWB system. The objective was to achieve metre-level seamless 

positioning accuracy using cost-effective devices in order to make the technique 

practical for personal positioning applications. 

6.3.1 Integration with INS 

In an open area with a good visibility of GPS satellites, integrated GPS/INS 

algorithms are used for positioning. In the literature (e.g. Groves, 2008; Titterton and 

Weston, 2004) these algorithms have been well studied. Generally, there are three 

types of GPS/INS integrated algorithms, according to the different levels of GPS data 

used for integration.  Examples are the loose, tight and ultra-tight integrations (see 

Figure 6.4). The tighter the integration, the more robust the performance. However, 

there are two major limitations when using the tighter integrations with low-cost 

GPS/MEMS INS integration. Firstly, large noises and drifts in the MEMS sensors 

make the tuning of the KF difficult for tighter integrations. Secondly, most commercial 

low-cost GPS can only provide position and velocity measurements. There is no 

lower level observations accessible, such as pseudoranges and delta ranges 

(Fastrax, 2007). Consequently, the loose integration method was used for the 

GPS/INS integration in this research. 
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Figure 6.4 The schematic plots of typical GPS/INS integrated algorithms 

(Groves, 2008; Titterton and Weston, 2004) 

((a) loose integration: the solutions of position and velocity 

from GPS are used for the integration. 

(b) Tight integration: the pseudorange and delta range 

measurements from GPS are used for the integration. 

(c) Ultra-tight integration: the raw measurements in the 

correlators are directly used for the integration.) 

In the GPS blockage areas, the integrated RFID/INS algorithms, as discussed in 

Chapter 5, were used. An algorithm was developed to assist in choosing the 

appropriate integrated RFID/INS algorithm, according to the number of detected tags 

and the achievable knowledge (see Figure 6.5). 
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Figure 6.5 A schematic plot of the strategy for choosing the appropriate 
RFID/INS algorithm 

(The CoO algorithms will be used if less than three RFID tags 

are detected. The deterministic CoO will be applied if the 

mobile user is near the cell centre. Otherwise, the 

probabilistic CoO is used. If the number of the detected tags 

is over three, the trilateration or the location fingerprinting will 

be applied depending on the accessibility of the RSS 

distributions.) 

6.3.2 Dynamic and Measurement Models 

Nine state variables were used for the dynamic models of the seamless positioning 

system, including the three orthogonal axes’ position errors, velocity errors and tilts 

(Zhu, Zhang, Wu, Cartwright et al., 2007). The state transition matrix is given by 

Equation (6.50) (Rogers, 2000). The measurement models are selected according to 

the combinations of the available measurements (see Chapter 5). 
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where, 

R  is the radius of the Earth; 

g  is the magnitude of the gravity; 

φɺ  and θɺ  are the rotation rate of the x and y axes in the body frame respectively; 

and 

t∆  is the time interval between two adjacent epochs. 

6.3.3 Experiments and Analysis 

The experiments were conducted at Yarra Bend Park, Melbourne, Australia. A 

complicated environment setting was chosen for the seamless positioning 

experiments. This included the indoor areas experiments in a house that was mainly 

constructed of timber, the canopy covered areas outside the house and outdoor open 

areas (see Figure 6.6). Figure 6.7 shows the Position Dilution of Precision (PDOP) 

observed along the trajectory, which extended from the outside to the inside of the 

house. The average PDOP value was 3.85. A small number of peaks were caused 

by trees and the house itself, which blocked the GPS signals. Since the dimension of 

the house was relatively small and it was mainly built of timber, the GPS signals were 

always available during the experiments, even inside the house. However, some 

GPS signals were arbitrarily withdrawn in order to evaluate the algorithms developed. 

Eleven RFID tags were placed outdoors to provide additional observations in the 

blocked GPS signal areas. Another four RFID tags were placed along the corridor in 

the house for indoor positioning experiments. The GPS RTK system was used to 

provide outdoor reference positions. Building plans provided the indoor positioning 

reference. 
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 (a) (b) 

Figure 6.6 The experimental site 

(Plot (a) shows the house and the trees in the experimental 

site and plot (b) shows the indoor setups in the house.) 

 

Figure 6.7 The PDOP values observed along the experimental trajectory 

(The average PDOP value is 3.85. the peaks, which are up to 

30, are mainly caused by the blockage of the GPS signals 

from the trees and the house.) 

The experiments showed that the seamless positioning technique, based on low-cost 

GPS, MEMS INS and RFID, can provide metre-level and continuous positions both 

outdoors and indoors. In the outdoor areas, the horizontal RMSE was 4.0m (see 

Figure 6.8). In the blocked GPS signal areas, the integrated RFID/MEMS INS 

technique can decrease the horizontal RMSE from 8.2m to 3.0m (see Figure 6.9 and 

Figure 6.10). 
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(a) (b) 

Figure 6.8 The experimental results and the errors of the seamless 
positioning 

(Plot (a) shows the experimental results of the seamless 

positioning at Yarra Bend Park, Melbourne. Plot (b) shows 

the easting and northing errors according to the GPS RTK 

measurements in the open areas. The satellite image in the 

background is taken from GoogleEarth.) 

 

Figure 6.9 The enlarged plot of the positioning results in the indoor and 
GPS visibility limited areas 

(The RFID tags 212, 213, 218 and 220 were placed along 

the corridor in the house. The satellite image in the 

background is from GoogleEarth.) 
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Figure 6.10 The indoor positioning errors in the experiments with and 
without using RFID respectively 

6.4 Summary 

This chapter has presented the development of algorithms for RFID-based multi-

sensor integrated positioning techniques in seamless indoor/outdoor positioning 

applications. The experiments at the Albert Park Formula 1 circuit show that an 

integrated GPS/RFID system can provide additional range observations with RFID in 

the blocked GPS signals areas, so that seamless positions can be provided. The 

experiments also indicate that the iterated RSPKF algorithm developed for this 

integrated positioning system is superior to the conventional SPKF. It can increase 

the positioning accuracy by 28.8%. The other experiments conducted in Yarra Bend 

Park show that the iterated RSPKF algorithm developed can also be applied to other 

integrated positioning systems effectively. It indicates that the integrated low-cost 

GPS/RFID/INS technique with the algorithm developed can efficiently provide metre-

level accuracy for personal indoor/outdoor seamless positioning. In conclusion, the 

RFID positioning techniques can provide additional observations in blocked GPS 

signal areas and can also provide seamless indoor/outdoor positions by integrating 

with other positioning sensors. The iterated RSPKF algorithm developed is more 

efficient and effective than the conventional SPKF for the multi-sensor integrated 

seamless positioning systems. 

The utilization of geospatial information to improve the accuracy of RFID-based multi-

sensor integrated positioning techniques for personal navigation is investigated in the 

next chapter. 
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Chapter 7 GIS Assisted RFID Positioning 

With the rapid development of computer-based geospatial techniques and virtual 

reality techniques, position-related environmental information can be systematically 

collected, analysed, storied and represented. The geospatial information can be used 

to: 

(a) represent the geometrical environments of the positioning operation;  

(b) increase positioning precision; and 

(c) build SISP propagation models for estimating RSS distributions. 

7.1 Indoor GIS Database 

The fundamental requirement of implementing GIS-assisted indoor positioning 

algorithms is a 3-D indoor GIS database. One pioneer work in this area was 

conducted by Koninger and Bartel (1997). A 3-D GIS urban model was developed for 

visualisation purposes without internal structures of the buildings being used. Meijers 

et al. (2005) investigated this further and an indoor path database was developed for 

the purpose of emergency evacuation. Path finding methods in multi-story buildings 

were further developed by Musliman et al. (2006). Lee (2007) combined these and 

developed a 3-D navigable data model based on a 3-D geometric network. In this 

model both the path connectivity and the geospatial database of the physical and 

environmental factors were included. This idea was implemented by Sinha et al. 

(2009) through the developments of a 3-D indoor GIS model. It provided an 

interesting new opportunity for assisting positioning and navigation services indoors. 

As mentioned previously, a typical 3-D indoor GIS usually contains two types of 

information (see Figure 7.1). One is the structure model which consists of the 

structure of the building and the other is a route map which provides possible 

connectivity to the positions of interest inside the building. These two types of 

information can be used for different purposes with indoor positioning techniques. For 

example, the route map can be used as constraining factors in pedestrian movement 

models (Khider et al., 2009). For RFID-based positioning techniques, these maps 

can be used for 3-D map matching in order to increase positioning accuracy and 

reference for sensor calibration. The structural model of the buildings can be used to 



 

153 

generate the environmental parameters for SISP propagation models in order to 

provide an efficient method for estimating RSS distributions in specific environments. 

 

Figure 7.1 The schematic plots of the 3-D indoor GIS model of the 
buildings at RMIT University city campus 

(Plot (a) is the structural model of the buildings and plot (b) is 

the route map of the multi-story buildings (Sinha et al., 2009).) 

7.2 Map Matching 

The map matching algorithm was first developed in the Automatic Route Control 

System (ARCS) for land vehicle positioning (French and Lang, 1973). Map matching 

was used to improve the positioning accuracy of an automated vehicle based on the 

DR measurements from a differential odometer. 1.15m positioning accuracy was 

achieved in their experiments (French, 1989). The basic concept of the map 

matching algorithms was to constrain the positions onto road segments based on the 

assumption that the vehicle always travels along the road. These algorithms are 

widely used in the land vehicle positioning applications (Quddus et al., 2007; Stephen, 

2000; Zhao, 1997). Typical examples of the map matching algorithms include using 

landmarks as positional constraints (Krakiwsky et al., 1988) and road maps as 

constraints in the pathways (Bullock, 1995) of the land vehicles. 
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7.2.1 Map Matching Methods 

A typical map matching method can be divided into three steps (see Figure 7.2). This 

includes calculating raw positions according to observations, extracting and 

evaluating the road segment candidates from maps and updating the mobile user’s 

positions. 

 

Figure 7.2 Typical steps in a map matching algorithm 
 

Different methods can be used when extracting and evaluating road segment 

candidates. For example, this includes semi-deterministic algorithms, probabilistic 

algorithms and fuzzy-logic-based algorithms (Zhao, 1997). The semi-deterministic 

algorithms find the matched road segment directly according to the distribution of the 

road networks and land vehicle behaviour. A key limitation of this algorithm is the 

possibility of mismatching the vehicle to the adjacent parallel road segments. It is 

because the behaviours of the vehicle travelling on the adjacent parallel road are 

similar to the behaviour on the road where the vehicle is actually travelling. The 

probabilistic algorithm was developed by Honey et al. (1989). It introduced a 

searching space for the matched road segment according to the uncertainty of the 

determined position. This algorithm minimises the possibility of mismatching by 

including more adjacent road segments into the searching space (Andersson and 

FjellstrÄom, 2004). However, there are still some difficult situations in which the exact 

road segment can not be selected confidently. Some advanced algorithms were 

recently developed to solve this problem using fuzzy-logic (Zadeh, 1965) and a 

likelihood of the mobile user’s positions instead of a deterministic solution is provided 

(Syed and Cannon, 2004).  
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In the position updating step, two approaches can be used for the updates using 

either a geometric model or a probabilistic model. With the geometric model, the 

updated position is defined as the nearest point in the extracted road segment. In the 

Euclidian space, this point is the projection of the mobile user’s position on the 

extracted road segment. In the probabilistic model, the updated position is defined as 

the most possible position in the road segment. The probability is calculated based 

on the uncertainty of the mobile user’s position. The updated position will tend 

towards the direction of the road segment in which the positioning uncertainty is low. 

In particular, when the positioning uncertainty is symmetric, the updated positions 

from the probabilistic model will be identical to the results from the geometric model. 

It indicates that the probabilistic model is more generic and the geometric model can 

be treated as a special case of it with the symmetric uncertainty distributions.  

7.2.2 Map-aided Calibration 

The concept of the map-aided calibration is to use the map matched positions as 

references to detect and correct the errors in the sensors’ raw measurements (see 

Figure 7.3). According to the map matched and raw positions, an additional feedback 

to the conventional data flows in map matching is provided to the EFK for corrections.  

 

Figure 7.3 A flow chart of the typical map-aided calibration algorithm 

(The major difference between the map-aided calibration 

algorithms and the map matching algorithms is the feedback 

of the errors according to the map matching algorithms to the 

raw measurements.) 
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Typical examples using this technique in land vehicle positioning include using the 

length of the road segment to calibrate the DR and/or using the direction of the road 

segment to calibrate the orientation sensors such as the compass and gyroscopes 

(Zhao et al., 1996). Theoretically, this method can also be implemented in other map 

matching applications such as personal positions. 

7.2.3 Theoretical Analysis of Map Matching Method 

Theoretically, map matching can be considered as a positioning process with 

constraints applied. The mathematical presentation and theoretical approvements of 

this method are listed below. 

In map matching techniques, the pathway selected from a GIS database can be 

treated as a constraint with respect to the state of the retrieved mobile user’s position 

from a KF (see Chapter 3). The constraints can be applied by projecting the 

unconstrained state estimation into the constrained surface. The constraints can be 

expressed by the following Equation (7.1):  

ˆ
k

C x b
+⋅ =

ɶ
 ( 7 . 1 ) 

where, ˆ
k

x
+  is the unconstrained state estimation; and C

ɶ
 and b  are the matrix and 

vector with respect to the constraints respectively. 

The constraints can be applied to KF by the following equations (see Equations (7.2) 

and (7.3)). (Williams, 2001) 
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Simon and Chia (2002) theoretically proved the benefits of applying constraints on 

the state estimation in KF. Their conclusions include: 

(a) The constrained state estimation is unbiased; and 

(b) The constrained state estimation has a smaller error covariance than 

unconstrained state estimation. 

According to Equation (7.2), the error in the constrained state can be written as: 

ˆ ˆ ˆ[( ) ( )]

ˆ[ ] ( )

k kc k k kc k k

kc k k

x x x x W b C x b C x

I W C x x

+ + +

+

− = − + ⋅ − ⋅ − − ⋅

= − ⋅ ⋅ −
ɶ ɶ ɶ

ɶ ɶ

 ( 7 . 6 ) 

where, 
k

x  is the true value of the state. 

The average of the errors in the constrained state is: 

ˆ ˆ( ) [ ] ( )
c c

E x x I W C E x x
+ +− = − ⋅ ⋅ −

ɶ ɶ
 ( 7 . 7 ) 

Since the unconstrained state estimation in KF is unbiased (see Equation (7.8)). 

ˆ( ) ( )E x E x+ =  ( 7 . 8 ) 

The right side of Equation (7.7) is zero and, eventually, the average of the errors in a 

constrained state becomes zero. Therefore, the constrained state estimation is 

unbiased. 

According to Equation (7.3), the covariance of the constrained state estimation is 

equal to the covariance of the unconstrained state estimation minus a term with 

respect to the constraints. The covariance of the constrained state estimation is 

always smaller than the covariance of the unconstrained state estimation due to the 

positive term, T

c c c
W S W⋅ ⋅
ɶ ɶ ɶ

, by definition. 

These features of the constrained KF indicate that the precision of positioning can be 

improved and the accuracy will not be degraded by using a correct pathway in a GIS 

database as a mathematical constraint surface for positioning solutions. By projecting 

the mobile user’s position into the constraint surface, 3-D or 2-D positioning problems 

can be simplified into a 1-D problem (i.e. locating mobile user on a point of the 

pathway). 
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7.2.4 Probabilistic Map for Personal Navigation 

The concept of map matching has already been applied into personal navigation 

applications. Conventional map matching algorithms for personal navigation have 

been introduced using both 2-D and 3-D routes maps to constrain mobile users along 

routes (Bernstein and Kornhauser, 1998; Gilliéron et al., 2004). These were similar to 

the methods for land vehicle map matching. 

However, the conventional map matching algorithms were originally developed for 

land vehicle navigation. These algorithms are based on the assumption that the 

vehicle is restricted to move in either direction along a road. However, for personal 

positioning applications, this assumption is not always true. Pedestrians may have 

more freedom to move in the space. Their trajectories may approximate to one of the 

pathways, but some significant manoeuvres may occur during the movement period. 

Accordingly, Widyawan et al. (2007) used structure models in the GIS database 

instead of route maps to generate the prior probabilities of the mobile user’s position 

at every epoch. This method did not constrain the positioning results in the 1-D paths, 

but it provided greater degrees of freedom for estimating the mobile user’s position. 

Therefore, the mobile user’s occasional movements outside the route paths could be 

correctly calculated and the positioning accuracy could be improved. 

This research has increased the degrees of freedom to the mobile user’s movements 

via another approach. Instead of generating the probabilities epoch by epoch, a 

probabilistic distribution, which represents the greatest number of possible positions 

of a mobile user, is established according to the structure of the building before the 

positioning stage is undertaken. The probability is based on the Gaussian distribution 

using the greatest number of possible positions and the 90% confidence interval with 

the dimensions of specific structures, such as the width of the corridor or the size of a 

room (see Figure 7.4). This method can reduce the computational burden in the 

positioning stage since the probabilities can be pre-calculated prior to the positioning 

stage. The experimental site chosen was identical to the one used for evaluating the 

3-D RFID positioning algorithms (see Chapters 4 and 5). A probabilistic map, 

generated instead of the conventional map extracted from a 3-D indoor GIS database, 

was used in the positioning procedures (see Figure 7.4). An accuracy of 1.7m was 

achieved (see Figure 7.5) (Zhang et al., 2008). 
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Figure 7.4 The schematic plots of the conventional map and the 
probabilistic map for the stairway 

(The conventional map (left) consists of the line segments of 

the routes. The probabilistic map (right) represents the 

probabilities of the mobile users’ positions.) 

 

Figure 7.5 The positioning results using the probabilistic map 

(The experimental track: level 10 to level 11 in RMIT Building 

12, Swanston Street, Melbourne.) 

7.3 Site Specific Model 

As well as being used to understand the surrounding environments from a geospatial 

database, the SISP model can be used to estimate the radio frequency signal 

strength. This model can be used to increase the accuracy of interpolations and 

reduce the sampling number needed for establishing the training phase database. 
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The SISP model is based on the theory of radio wave propagation behaviour and it 

relies on having detailed information of the environments (McKown and Hamilton, 

1991). In practice, approximate numerical methods, such as ray tracing algorithms, 

are preferred instead of setting the boundary conditions to Maxwell’s equations 

according to the geometry of the surrounding environments. These preferred 

methods are more computationally efficient (Tam and Tran, 1995). The concept  of 

using ray tracing algorithms is that high-frequency radio waves contain similar 

behaviours in a ray-like fashion. Since the model estimates the RF propagation 

process according to the information regarding the environments’ setup, an up-to-

date geospatial database is essential to the accuracy of the SISP propagation 

models (Rappaport, 1996). In addition, due to the propagation of RF signals in 3-D 

space instead of a 2-D surface, the 3-D geospatial database is essential to the 

performances rather than conventional maps or a 2-D database. 

 

Figure 7.6 The schematic plots using SISP models according to the 3-D 
GIS database for estimating RSS indoor distributions  

(The plots (a) and (c) are the 3-D GIS model for the building 

structures at the corridor and stairway respectively. The plots 

(b) and (d) are the ray tracing results in the corresponding 

environments.) 
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Experiments to evaluate the 3-D GIS-based SISP propagation model for estimating 

the RSS distributions were conducted both in a stairway and a corridor at RMIT 

University, Australia (Building 12, city campus (see Figure 7.6)). Plots (a) and (c) 

show the layout of the segment of the corridor and the segment of the stairway 

respectively where the experiments were conducted. In the corridor areas, offices are 

separated by concrete block walls and glass. The ceiling consists of plaster boards 

attached to the underside of a concrete ceiling. In the stairway the major structures 

are constructed from concrete and a wooden door is at one side of the stairway at 

each level. Plots (b) and (d) are the simulated RF rays in the experimental areas. 

The results were compared with the interpolated methods of achieving RSS 

distributions (see Chapter 3). The measured RSS in the experimental areas were 

used as references. It indicated that the SISP propagation model can accurately 

provide the trends of the RSS variations, which are caused by the surrounding 

environments without overelaborating sampling procedures in the location 

fingerprinting training phase. However, the accuracy of the estimated RSS values 

cannot be compared to the accuracy of the interpolation method. The errors of the 

SISP propagation model in some areas can be as large as 20dB. It is mainly caused 

by two limitations in the SISP model (the limited accuracy of the 3-D structure model 

and the difficulty of estimating the transmitted RF power). Firstly, the paths of the 

simulated rays are very sensitive to the 3-D structure model. (For example, a curved 

edge and a sharp edge of the walls may lead to totally different directions of the 

reflected rays and cause large errors in the RSS estimation.) Secondly, it is difficult to 

estimate the transmitted power from the RFID tags, which can lead to wrongly 

estimating the RSS, even with an accurate path loss. In summary, the SISP model 

has the potential to reduce the workload at the location fingerprinting training phase 

when generating the RSS distributions. This provides more accurate variations, 

caused by the obstacles in the surrounding environment. However, due to the 

limitations of the SISP model, it cannot provide adequate accuracy in estimating the 

value of the RSS for the RFID location fingerprinting. A solution combining the 

interpolation method to estimate the RSS values and the SISP model to estimate the 

RSS variation trends may provide more reliable results with reduced workloads. 
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7.4 Summary 

This chapter has presented a new approach that uses geospatial information to 

improve the accuracy in RFID-based multi-sensor integrated positioning techniques 

for personal navigation. Both the probabilistic map based map matching algorithm 

and the SISP propagation model were evaluated. Firstly, a positioning accuracy of 

1.7m can be achieved by using the probabilistic map based map matching algorithm 

developed as part of this research. The results indicate that it is superior to 

conventional map matching algorithms since it provides a greater degree of freedom 

to pedestrian movement. Secondly, the SISP propagation model can provide 

accurate trends of the variations of RSS distribution since it considers the specific 

environmental effects according to the 3-D indoor GIS database. However, the 

limitations of the sensitivity of the 3-D GIS models and the accuracy in estimating the 

RFID transmission power degrades the accuracy when using SISP model in RSS 

value estimations. It is less accurate than the interpolation method, which is based on 

a large number of real measurements. This research has also found that a 

combination of the SISP model and the interpolation method may be a solution for 

providing accurate RSS distribution with reduced workloads for the RFID location 

fingerprinting training phase. 
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Chapter 8 Conclusions and Recommendations 

The goal of this research was to investigate and develop innovative algorithms for 

low-cost indoor/outdoor personal positioning techniques. This goal has been 

accomplished through the use of a low-cost RFID-based multi-sensor personal 

positioning platform developed by the SPAN Laboratory within the School of 

Mathematical and Geospatial Sciences at RMIT University, Melbourne, Australia. 

8.1 Results and Contributions 

The major work in this research includes the review and comparisons of existing 

indoor and personal positioning techniques, developments of new algorithms and 

integrated techniques for personal tracking indoor. The algorithms investigated 

include RFID stand-alone and RFID-based multi-sensor integrated positioning 

algorithms and utilizations of 3-D GIS databases in RFID-based personal positioning 

applications. 

8.1.1 Sensors Selections 

The integrated techniques are capable of providing reliable and accurate positions 

using low-cost and portable devices for indoor personal positioning. According to the 

intensive review and comparisons of existing indoor and personal positioning 

techniques, all the existing techniques have their own strengths and weaknesses. 

For example, inertial sensors are less prone to the effects from the surrounding 

environment, but contain significant drifts. Radio-based techniques provide a 

relatively large coverage area using a small number of devices, but they have serious 

multipath effects. One emerging solution for developing a low-cost and reliable 

positioning system is to use a hybrid system - integrating multiple sensors to 

compensate for the limitations in each single technique. Consequently, the integrated 

techniques based on RFID and MEMS INS were selected as the platform upon which 

to develop low-cost personal indoor positioning services. 

8.1.2 RFID Positioning Algorithms 

RFID stand-alone positioning algorithms were evaluated and three major detrimental 

effects in RFID positioning were investigated, including the limitations of RSS-based 
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ranging models, RSS directional patterns and multipath effects. as well. Results have 

shown that there is a compromise between the accuracy and the continuity in RFID 

deterministic CoO positioning algorithms. It can either provide accurate, but discrete, 

positions using a small cell size or approximations, but continuous positions using a 

large cell size. The trilateration algorithm, which can provide continuous positions, is 

highly affected by detrimental effects in RFID positioning. The most reliable 

continuous positioning algorithm in RFID positioning is the location fingerprinting 

algorithm. In experiments undertaken in buildings at the RMIT University city campus 

indicated that the RFID location fingerprinting algorithm can provide at least 4.4m 

positioning accuracy in static positioning. Duplicated observations and observations 

from different directions can further improve positioning performance in static 

positioning. 

8.1.3 RFID/MEMS INS Integrated Positioning Algorithms 

RFID/MEMS INS integrated positioning algorithms were developed, including the 

probabilistic CoO algorithm and INS/RFID location fingerprinting integrated 

positioning algorithms. The experiments conducted at Yarra Bend Park, Melbourne 

showed that the probabilistic CoO algorithm can provide continuous trajectories at an 

accuracy of 15.4m, which is higher than other integrated algorithms that are based 

on MEMS INS and the conventional RFID CoO. It also indicated that the probabilistic 

CoO algorithm developed can both improve the continuity and the accuracy in CoO 

algorithms by using flexible cell sizes. The other experiments conducted at the RMIT 

University city campus demonstrated that by integrating MEMS INS with RFID 

location fingerprinting algorithms, probabilities near the INS predicted positions can 

be amplified. This can minimise some effects that disturb RSS distributions due to 

environmental dynamics. In static experiments, the positioning accuracy was 

increased from 4.4m to 1.07m. In dynamic experiments, a 4m positioning accuracy 

was achieved. 

8.1.4 RFID-Based Seamless Positioning Algorithms 

The integration of RFID, MEMS INS and low-cost GPS was introduced to provide 

metre-level indoor/outdoor seamless positioning services. An iterated RSPKF was 

developed in cooperation with the National University of Defence Technology, China 

in order to effectively and efficiently deliver results. Generally, 4m positioning 
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accuracy can be achieved seamlessly indoors/outdoors using the algorithm 

developed for the Yarra Bend Park experiments. The RFID observations in the GPS 

signal-obstructed areas significantly increased positioning accuracy from 8m to 

approximately 3m. 

8.1.5 GIS-Assisted Positioning Algorithms for Personal Positioning 

More accurate and efficient positioning algorithms can be developed by utilising 3-D 

GIS databases. The utilisation of a route map in the 3-D GIS database provided a 

map matching algorithm based on the probabilistic maps for personal positioning. 

The experiments showed that, by using this constraint, positioning accuracy can be 

improved from 4m to 1.7m.  As well, some detailed movements of the mobile user 

can still be retained. This is superior to the conventional map matching algorithms, 

which simply projected the positions to the road segments. The SISP propagation 

model was also investigated based on the structure model in the 3-D GIS database. 

The results from this investigation indicated that the SISP propagation model can 

efficiently provide accurate trends of the variations of RSS distribution, but the 

accuracy of the RSS values was highly dependent on the accuracy of the structure 

model in the 3-D GIS and the accuracy of the estimated transmission powers. 

8.1.6 Contributions 

The major contributions of this study include: 

(a) Intensive reviews and comparisons of current indoor and personal 

positioning techniques and the selection of techniques (e.g. RFID, MEMS 

INS and low-cost GPS) for providing a low-cost personal positioning 

system; 

(b) Developments of the RFID probabilistic CoO algorithm, which is superior 

to the conventional CoO positioning algorithm in its positioning accuracy 

and continuity; 

(c) Developments of the integration algorithms for RFID-based multi-sensor 

positioning techniques, which can provide metre-level positioning accuracy 

for dynamic personal positioning indoors; 

(d) Developments of the indoor/outdoor seamless positioning algorithm based 

on the iterated RSPKF for RFID/MEMS INS/low-cost GPS integrated 
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technique, which can provide metre-level positioning accuracy 

indoor/outdoor seamlessly for personal positioning; and 

(e) Developments of the 3-D GIS database for personal positioning and its 

integration with positioning technique. This includes the map matching 

algorithm based on the probabilistic maps for personal positioning and the 

SISP propagation model for efficiently generating the RFID signal strength 

distributions in location fingerprinting algorithms. 

8.2 Recommendations 

This research has demonstrated that metre-level positioning accuracy can be 

achieved by RFID-based multi-sensor integrated techniques using the algorithms 

developed. According to the research outcomes, the thesis proposes the following: 

(a) The RFID location fingerprinting algorithm is superior to the CoO and the 

RSS-based trilateration algorithms in providing reliable and continuous 

positions for indoor positioning; 

(b) Accurate and up-to-date RSS fingerprinting maps are essential for 

positioning accuracy in RFID location fingerprinting algorithms; 

(c) RFID positioning techniques can be used for personal positioning services. 

However, it is not accurate enough to be used stand-alone for dynamic 

positioning applications due to the significant effects on the RSS from the 

surrounding environment; and 

(d) Integrated techniques are ideal solutions for providing low-cost and 

accurate personal positioning services, as the independent errors from 

multiple sensors can be compensated for by integration;  

8.3 Future Work 

The following sections outline a number of issues that warrant further investigation in 

the area of low-cost personal positioning techniques, based on RFID systems. 

8.3.1 Directional Patterns of RFID Signal Strength 

Firstly, accurately estimating directional patterns of RFID signal strength is essential 

to RSS-based positioning accuracy, but this is still a challenge, especially in complex 
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environments. In reality, these patterns are not only affected by antenna gain 

patterns which can be accurately measured in the laboratory, but also affected by 

obstacles and reflectors in surrounding environments. In this research (see Chapter 

4), a statistical model was introduced to estimate these patterns in areas near RFID 

tags (within 5m), but in remote areas there is no accurate model for estimating these 

patterns. Developing accurate models for RSS directional patterns may greatly 

increase positioning accuracy. 

8.3.2 Updating Methods of Signal Strength Database for Location 

Fingerprinting Algorithms 

Secondly, there are still problems in generating accurate RSS distributions 

(fingerprinting maps) in the location fingerprinting training phase. On one hand, the 

conventional methods require tremendous workloads for collecting adequate RSS 

samples in the experimental site in order to represent RSS distributions correctly (see 

Chapter 3). On the other hand, alternative methods based on geospatial information 

and SISP propagation model are very sensitive to the accuracy of the structure 

models in the GIS database and the estimated transmission powers (see Chapter 7). 

A method which can efficiently and accurately update the RSS distributions in the 

dynamic environments is essential. 

8.3.3 Sensor Selection for Integration 

From this research (see Chapter 2), it was found that multi-sensor integration is an 

ideal solution for providing accurate position with low-cost devices, since some 

significant error from one sensor can be compensated by the redundant observations 

from other integrated sensors. However, selecting the sensors to optimise the 

positioning performance and the cost of the system is still a challenge. This research 

selected the RFID, MEMS INS and low-cost GPS, but with technical developments 

some novel techniques, such as the INS using atomic sensors, may be more 

appropriate for use in the near future. 

8.3.4 Intelligent Algorithms for Integration 

For integration, intelligent algorithms, which can select the combination of 

observations efficiently, are required. This research only selected observations 

according to their accessibility. However, some observations selected may contain 
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large errors and thus degrade positioning accuracy. An intelligent algorithm which 

can reject these noisy observations may further increase positioning accuracy. 

8.4 Summary 

This thesis has made significant contributions to the development of algorithms for 

low-cost personal positioning techniques. It has shown that RFID is a low-cost and 

portable technique, which can satisfy indoor personal positioning requirements. 

Using the new algorithms developed in the study, metre-level accuracy (e.g. 3.5m in 

rooms and 1.5m in stairways) can be achieved using RFID stand-alone in static 

indoor positioning. With dynamic positioning, environmental effects and system 

dynamics significantly degrade the positional accuracy of RFID stand-alone 

techniques. Multi-sensor integrated algorithms developed as part of this research 

(e.g. the probabilistic CoO algorithm and the INS/RFID location fingerprinting 

algorithm) can be used to improve performance. Approximately, 4m positioning 

accuracy can be achieved using INS/RFID location fingerprinting algorithms in 

dynamic indoor positioning. The experiments also indicated that the techniques 

selected in this study, integrated with low-cost GPS, can be used to provide 

seamless indoor/outdoor positions at approximately 4m accuracy, with iterated 

RSPKF. In addition, the utilization of a 3-D GIS database shows the potential for 

increasing the accuracy by minimizing the search space in positioning and efficiently 

generating RSS fingerprinting maps based on geospatial information for RFID-based 

personal indoor positioning. In summary, the RFID-based multi-sensor personal 

positioning techniques using the algorithms developed can provide seamless 

positions in metre-level accuracy using low-cost and portable devices. However, 

there are still a number of significant research issues that need further investigation. 
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