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Abstract: We present a workflow for seamless real-time navigation and 3D thermal mapping in
combined indoor and outdoor environments in a global reference frame. The automated workflow
and partly real-time capabilities are of special interest for inspection tasks and also for other time-
critical applications. We use a hand-held integrated positioning system (IPS), which is a real-time
capable visual-aided inertial navigation technology, and augment it with an additional passive
thermal infrared camera and global referencing capabilities. The global reference is realized through
surveyed optical markers (AprilTags). Due to the sensor data’s fusion of the stereo camera and the
thermal images, the resulting georeferenced 3D point cloud is enriched with thermal intensity values.
A challenging calibration approach is used to geometrically calibrate and pixel-co-register the trifocal
camera system. By fusing the terrestrial dataset with additional geographic information from an
unmanned aerial vehicle, we gain a complete building hull point cloud and automatically reconstruct
a semantic 3D model. A single-family house with surroundings in the village of Morschenich near the
city of Jülich (German federal state North Rhine-Westphalia) was used as a test site to demonstrate
our workflow. The presented work is a step towards automated building information modeling.

Keywords: absolute referencing; building inspection; building information model (BIM); multi-sensor
data fusion; pixel co-registration; real-time self-localization and mapping; semantic model; seamless
navigation; trifocal geometrical camera calibration; visual aided inertial navigation; visual odometry;
3D thermal mapping

1. Introduction

Self-localization and environmental mapping are essential for a number of inspec-
tion and survey applications. Navigation and environmental mapping are fundamental
components in this context and belong together.

Currently, the existing infrastructure-based self-localization services are designed/optimized
for either indoor or outdoor utilization. They have several restrictions in accuracy and
availability and are, therefore, not optimal for seamless navigation between indoor and
outdoor spaces [1].

The global navigation satellite system (GNSS) is the universal outdoor localization
system and provides up to centimeter accuracy under good conditions. In urban areas
and indoors, accuracy and reliability degrade drastically. The influence of disturbed
GNSS signals have been investigated for the last two decades by different research groups,
e.g., Kuusniemi and Lachapelle [2], Ghinamo et al. [3] and many others. Nowadays High-
Sensitivity GPS Receivers still lack satisfying indoor self-localization accuracy and reliability
and are far from meter or submeter accuracy [4]. Moreover, GNSS Signal repeaters can
not reach stable submeter accuracies, and, in addition, they have to be placed inside a
building [5]. GNSS solutions are thereby not (yet) the first choice for indoor navigation and
inspection tasks.
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Vice versa, the enormous effort required for the installation and maintenance of indoor
use-optimized radio-frequency self-localization services, such as WiFi or ultra-wideband
(UWB), makes their expansion from indoor to bigger outdoor spaces difficult. Furthermore,
radio-frequency-based self-localization techniques are not able to sense and hence map,
the environment alone.

All these principle drawbacks have hindered operational seamless indoor and out-
door self-localization.

Passive- (cameras) or active- (e.g., LiDAR—light detection and ranging) based optical
sensor systems and corresponding computer vision approaches can overcome these issues.
Driven by robotics research, appropriate optical sensor-based self-localization and mapping
solutions have become available and popular in recent years. Most prominent are Intels©,
RealSense™ [6], Googles ARCore [7], and Microsoft’s HoloLense [8]; there are also others.
These technologies are capable of self-localizing and mapping the environment indoors
and outdoors simultaneously but still have partial limitations, e.g., accuracy and reliabil-
ity over operation time in outdoor areas and missing global referencing. Such low-cost
commercial self-localizing and mapping systems also lack additional information layers,
such as thermal infrared (TIR) or others that might be useful or mandatory for particular
inspection applications.

These aspects are a prerequisite for many inspection applications, where real-time
self-localization and mapping capabilities within an absolute reference system and fusion
with other geographic information are essential.

In this paper, we present an approach that overcomes all of the above-mentioned
limitations. The overall objective of this research was to span an appropriate workflow
for seamless real-time self-localization with an integrated positioning system (IPS) [9]
and combine it with thermal 3D mapping for practical building/infrastructure inspection
tasks. Thereby, it shall be possible to seamlessly navigate between indoor and outdoor
spaces and to quickly survey critical infrastructures with adequate accuracy. Areas that
are difficult to access or non-reachable with the IPS, e.g., a building’s roof, shall be com-
plementarily covered by UAV data. The generated geodata products (operator’s positions
over time/trajectory, thermal textured point cloud and building vector model) shall be
available in the global satellite system (GPS) reference frame. The automated workflow
shall be, in part, real-time capable and shall shorten the data processing time. This article
is structured as follows: Section 2 reviews the related work; Section 3 describes the pre-
liminary work and our experimental setup; Section 4 presents the methodology and the
corresponding results when applied to our test scene data; in Section 5, our results are
evaluated and discussed; Section 6 summarizes our conclusions and gives a future outlook.

2. Related Work

The following subsections give, without claim of completeness, a short introduction to
related work in the particular research areas of self-localization, 3D reconstruction, thermal
mapping, and functional building reconstruction from optical sensor data.

2.1. Self-Localization

Seamless navigation between indoor and outdoor spaces is a challenging task that
comes with several difficulties that self-localization algorithms have to deal with. Examples
of these challenges include spatio-temporal unavailability or disturbances of infrastructure-
based self-localization radio frequency sensor signals, as they have been already mentioned
for GNSS, or the transition between different self-localization technologies with different
characteristics (sensing principle, data type, quality, time base, spatial and time resolution,
coordinate system, range of availability). Solutions that are not dependent on any infras-
tructure are also affected. In the case of passive optical sensors, for example, difficulties
arise, e.g., from rapidly changing light conditions in the transition between indoor and
outdoor, resulting in short-term over- or underexposed images, which might cause prob-
lems within the feature point extraction. These are experiences the authors experienced
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in theie daily work with passive optical camera systems. Another example is the limited
suitability of near-infrared pattern-based self-localization sensors outdoors. It seems that
these difficulties may be adequately dealt with for combined indoor–outdoor environ-
ments via multi-sensor self-localization approaches by means of combining infrastructure-
independent with infrastructure-based aiding components and additional a priori knowl-
edge, e.g., maps. From the user’s perspective, operational self-localizing systems should
be as small, lightweight, and as user-friendly as possible while at the same time being
independent of environmental conditions and very robust and precise.

Smartphone-based systems have the advantage of many different sensors already
being integrated into their design. In [10], the inertial sensor system of a smartphone is
aided by GNSS when available, the direction of travel by a magnetic sensor, and in indoor
areas with the help of a digital map. The transition from outside to inside is determined by
the smartphone’s magnetic and light sensor. Le et al. [11] show how a person first navigates
through a city with their smartphone in a vehicle and switches to pedestrian navigation
when entering a building. For outdoors, an ORB-SLAM (feature-based simultaneous
localization and mapping) solution is calculated from visual measurements and scaled by a
GPS signal. The resulting solution is further fused with an inertial measurement unit (IMU)
and GPS measurements using an extended Kalman filter [12]. An IMU-based pedestrian
dead reckoning (PDR)/ORB-SLAM integrated system is used for indoor navigation.

Foot-mounted PDR systems apply a zero-velocity update when the pedestrian is not
moving. However, in [13], it was shown that the analysis of differences between time-
shifted measurements of acceleration and magnetic sensors can also contribute to improving
the navigation solution. Additionally, a GPS receiver is intended for outdoor use, but it can
also detect the transition from outside to inside. Furthermore, Peltola et al. [14] improve
indoor position determination with the use of an ultra-wideband range measurement and
an anchor-based Bluetooth fingerprinting system. A novel dual-mode filter design is used
to fuse all sensor measurements. Map information helps to automatically select the most
suitable filter for a given situation. Kourogi et al. [15] apply dead reckoning with body-
worn, self-contained sensors, such as accelerometers, gyroscopes, and magnetometers,
in combination with an active radio frequency identification marker system for indoor
environments. Outdoor GPS helps to correct navigation errors.

There are also a number of hand-held systems or hybrids, such as a foot-mounted IMU.
With the hand-held platform in [16], an extended Kalman filter fuses data from an ultra-
wideband indoor positioning system with a classic inertial navigation system (INS)/GNSS.
A total georeferenced station, which can track a hand-held system using a prism, serves as
a reference for a multi-sensor system indoors and outdoors. The foot-mounted PDR in [17]
is enhanced by a visual gyroscope/odometer obtained from monocular camera images.
In addition, the vertical position is aided via sonar and a barometer. All measurements
are integrated through a particle filter. The ground truth is provided by a commercial
INS/GNSS solution.

2.2. 3D Reconstruction and Thermal Mapping

Three-dimensional thermal mapping has great potential in various applications such
as building energy efficiency monitoring [18,19] and general object detection [20], as well
as critical applications such as hotspot and fire detection. Fritsche et al. [21], for example,
describe a LiDAR, radar (radio detection and ranging), and thermal imaging-based system
to detect hazards that are potentially harmful to robots or firefighters, while Rosu et al. [22]
show how to detect and localize heat sources in RGB and infrared (IR) textured meshes
from pre-registered LiDAR scans.

Methods for mapping thermal information onto previously generated 3D point clouds
have frequently been proposed in the last decade. If a geometrically calibrated sensor setup
is used and the relative pose of the thermal camera to the 3D point cloud can be estimated
accurately, the pixels of all cameras or light beams from LiDAR systems are co-registered
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with the thermal camera pixels, and the corresponding thermal pixel values can be assigned
to the 3D points.

LiDAR allows for accurate and dense 3D reconstruction. Therefore, it is used to
capture 3D base models by collecting and registering several laser scans acquired at dif-
ferent positions, as in [23] or [24]. Lagüela et al. [25] describe a large-scale vehicle-based
application in which they generate a 3D point cloud by fusing LiDAR, GPS, and IMU
sensor information. Högner et al. [26] connect and register four different devices (3D laser
scanner, 2D laser rangefinder, stereo camera, and thermal camera) with the goal of using
this synchronized data for the indoor thermal mapping of point clouds. Alternatively, 3D
point clouds can be generated from passive optical sensors working in the visible range of
light (VIS). Landmann et al. [27] describe a stationary but high-speed system that maps TIR
data continuously onto a moving 3D model generated with a structured light approach.
A hand-held system that uses a more lightweight RGB-D sensor for 3D reconstruction
and works in a smaller indoor scenario in real-time is presented by Vidas et al. [28] and
Müller et al. [29]. They apply a combination of iterative closest point (ICP) and video-based
pose estimation to the thermal image stream. The most likely TIR information from several
sensor images is assigned to the 3D points, for which a voxel-based occlusion test and a con-
fidence value are evaluated. At the expense of the real-time capability, Schramm et al. [30]
improve the robustness of the 3D thermal imaging system’s self-localization ability by
adding an additional stereo camera. Visual odometry (VO) and simultaneous localization
and mapping (vSLAM) is widely used for real-time outdoor applications. Irmisch et al. [31]
used a hand-held stereo system with an IR sensor in a harsh and dynamic outdoor environ-
ment for large-scale direct 3D reconstruction and thermal mapping in global coordinates.
Yamaguchi et al. [32] used a monocular RGB visual odometry approach to 3D reconstruc-
tion that involved superimposing a thermal image. The scale of the model was restored
again using generated depth images from the VIS and IR domains, as well as the known
fixed camera transformation of the combined system. Very precise 3D reconstruction results
can be achieved with a structure from motion (SfM) approach, but only with considerable
computational effort. Troung et al. [33] align a 3D model based on RGB images and a model
based on thermal sensor data with scale normalization. They estimate the metric scale of
the model based on the fixed-camera transformation between the RGB and thermal sensors.
Patrucco et al. [34] combine aerial images from a UAV flight campaign involving multiple
sensors with thermal textured models with spatial resolution from RGB images.

2.3. Building Reconstruction

Detecting façade planes and building footprints requires approaches that ideally
employ terrestrial sensor constellations or airborne oblique imagery. Due to the steep
viewing angles, façades are inherently poorly visible in traditional vertical aerial data
products. Hammoudi et al. [35] proposed a building footprint extraction method based on
terrestrial LiDAR data using a projection and the subsequent Hough transformation of the
point cloud.

Techniques for the automated extraction of roof parts and their topology with a priori
knowledge about building footprints described in the literature can be separated into two
groups. The first group involves model-driven approaches. An example of an advanced
commercial solution that uses the model-driven approach is the virtual city system [36],
which can be applied to large datasets [37]. The second group consists of methods with
a local approach. Parts of a roof area that are smaller than the plane they belong to are
identified separately. Adjacent parts with similar properties are combined in the encircling
roof area. This local approach was used by Sampath and Shan [38]. They initialize small
clusters (roughly 500 points) within the point cloud. By analyzing the normal vectors
of the initialized clusters, similar adjacent clusters are identified and merged as the roof
area. A further example of the local approach was presented by Peternell and Steiner [39].
However, the calculation of the roof area is carried out by comparing planar neighborhoods
between cells belonging to the 2D mesh.
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3. Preliminary Work and Experimental Setup

The generation of appropriate real sensor datasets within a field measurement cam-
paign required preliminary work that fulfilled a number of prerequisites. These include
adaptions to the IPS hardware and operation software, calibration matters, and the prepa-
ration of the test site. These issues are presented in the subsequent subsections.

3.1. Trifocal IPS

In its basic configuration, IPS is a real-time-capable technology developed at the
German Aerospace Center by the Institute of Optical Sensor Systems. IPS determines
its position and orientation, the six spatial degrees of freedom (DoF), by means of a
visual-aided inertial navigation approach [40] in a relative coordinate reference frame.
Infrastructure such as global navigation satellite systems (GPS, Galileo, etc.) or WiFi
is not required natively [9]. The IPS sensors include a stereo configuration of a robust
industrial-grade monochromatic one-mega pixel camera [41] with global shutter mode and
a tactical grade Analog Devices IMU [42]. The synchronization of the stereo images (10 Hz),
the IMU (410 Hz), and any other self-localization and inspection sensors are handled by a
field-programmable gate array (FPGA). The data capturing and processing is conducted
by the IPS navigation and 3D reconstruction software. The output frequency of the IPS
self-location can be changed as required. By default, it corresponds with the visual camera’s
frame rate.

Dense depth map reconstruction from stereo imagery and further processing to point
clouds can also be conducted simultaneously with self-localization. This allows for instant
inspection results at speed and reasonable accuracy and gives high operational values to
the operator. If it is required by the application, navigation and 3D reconstruction results
can be further improved by post-processing, e.g., by bundle block adjustment.

IPS localization and 3D reconstruction capability and robustness have been evaluated
in various environments in [9,43]. It is suitable for large-scale 3D reconstruction, as is
required, for example, in mining inspection [44], as well as in other inspection tasks in
partially tight or generally difficult environments such as tunnels, ships, and building inte-
riors. In these scenarios, an operator does not necessarily return to previously visited areas.
Other self-localization and mapping approaches that use feature catalogs for re-localization
cannot take advantage of such application scenarios and also cannot compensate for the
sensor data drift.

To gather thermal information, we extended the IPS using a thermal camera [45].
The trifocal camera setup (Figure 1) used in this approach, therefore, operates in the visible
and long-wave infrared (LWIR) spectra (Table 1). The monochromatic stereo camera pair
(VIS) is located on the front of the device with intermediate lighting units. The thermal
camera is mounted on the IPS sensor head. It captures images in rolling shutter mode and
performs frequent offset calibration during recordings, which makes the camera blind for a
short period.

The LWIR camera stores thermal pictures via the Optris PIX Connect software [46]
when manually triggered by an external push-button release on the handlebar. The trigger
signals are time-stamped by the IPS FPGA, and the thermal images can thereby be synchro-
nized with all other IPS sensor data. Due to the LWIR camera rolling shutter and offset
calibration, thermal imaging was only triggered when the sensor movement was paused
for a moment.
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Figure 1. Trifocal IPS with a thermal (on top) and two visual cameras (front).

Table 1. Camera specifications of the integrated positioning system (IPS).

Prosilica Optris

Model GC-1380H PI 450
Camera visible thermal
Sensitivity (µm) 0.4–0.9 7.5–13
SNR or NETD n/a 40 mK
Resolution (px) 1360× 1024 382× 288
Dynamic range (bit) 12 12
Pixel pitch (µm) 6.45 25
Focal length (mm) 4.8 10.5
Field of view (deg) 85 53
Frame rate (Hz) 10 27

3.2. Calibration

An accurate camera system calibration is a precondition for trifocal sensor data fusion
at the pixel level to acquire thermally-colored point clouds. In order to take all sensors,
including the stereo- and thermal camera, as well as the IMU, into account, the calibration
approach is divided into three parts. Initially, the stereo cameras are calibrated, and the left
camera’s principal point serves as the origin of the system’s reference frame.

Secondly, the IMU’s spatial alignment is determined within this reference frame. These
are laboratory calibration steps. Finally, the thermal infrared camera’s intrinsic parameters
are determined and co-registered with the left stereo camera. This last step is carried out in
the field just before the inspection measurement is run due to the thermally unstable LWIR
optics. The following text passages describe the sensor calibration in more detail.

3.2.1. Stereo Camera

In order to remove distortion effects from images, it is necessary to derive the geo-
metrical calibration parameters. They are gathered under the term intrinsic calibration and
include the focal length, principle point, and radial symmetric distortion. If several optical
sensors are combined, an additional pre-requisite is knowledge about the spatial alignment
between all sensors. These parameters are gathered under the term extrinsic calibration and
are modeled by additional relative orientations (R, t)c2

c1 and (R, t)c3
c1, with a rotation (R) and

translation (t) between the cameras c1, c2 and c3. For this purpose, a planar aluminum
calibration chart (Figure 2a,d), also allowing for TIR camera geometrical calibration due to
thermal emission pattern differences, is used to derive intrinsic and extrinsic parameters
for the trifocal sensor setup at once. The two-step approach first estimates intrinsic and ex-
trinsic parameters with a linear optimization [47]. Given these initial values, the non-linear
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least-squares problem of the distortion model is solved with the Gauss–Newton algorithm.
For the automated detection of chessboard corners, as well as the bundle adjustment,
the solution presented in Wohlfeil et al. [48] is used.

(a) (b)

(c) (d)
Figure 2. Trifocal geometrical chessboard calibration in the field just before an inspection run: (a) left
IPS camera; (b) right IPS camera; (c) color-coded thermal image (color bar with temperature values);
(d) image acquisition.

3.2.2. Camera to IMU

After assembling the entire sensor system, the spatial 6 DoF between the left camera
(c1) and the IMU (i1) are determined once. For this purpose, the 3D distances (t i1

c1) between
the two coordinate systems are measured manually or derived from a technical drawing.
The angles of the rotation matrix R i1

c1 are estimated using a static method [49] that requires
several different poses of the IPS in front of a calibration chart. Thereby, directional
information relating to the local tangential plane is derived from IMU accelerometer outputs.
With the help of the measured camera orientation with respect to the calibration chart,
an over-determined system of non-linear equations can be set up that is solved for the
desired rotation.

3.2.3. Thermal Camera

Thermal imaging sensors could be geometrically calibrated like conventional cameras,
but calibration in the mid-wave to long-wave infrared spectrum poses several challenges.
One is the relatively low number of image pixels, which demands a good fit of target size
and camera field of view. Another challenge is the creation of good contrast for the features
on the calibration target. Targets either containing self-emitting elements or reflecting
ambient radiation are suitable. For the spatial alignment of visual and thermal imaging
sensors, the stereo cameras have to recognize the target as well. As in Choinowski et al. [50],
we have chosen an aluminum chessboard target, which is portable and has proven to
work well in the visual spectrum. Compared to Choinowski et al. [50], our chessboard
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contains one geometric and one radiometric improvement. On the one hand, the size of the
chessboard patches is increased from 36 cm2 to 72 cm2. Although this means roughly half
the number of corner points on a comparable area, the detection of corners itself becomes
much more robust. On the other hand, only black patches are printed on custom static cling,
while the formerly white patches now remain blank aluminum. When positioned facing
the sky, the blank chessboard parts are now comparable to a mirror with high reflectance
in the LWIR range. In this way, the thermal gradient between the sky and the ambient
temperature, combined with the different emissivities of the printed and blank patterns,
gives a high contrast to the chessboard. The formerly faint contrast is enhanced from 1 to
10 K or more. Corner detection, in particular, benefits from these improvements since it
relies on good contrast and well-defined edges along the pattern. An exemplary calibration
image triplet is shown in Figure 2. A setup for the calibration and spatial alignment of
multi-camera systems with planar reference targets can be found in Luhmann et al. [51].
Corner detection and a subsequent bundle adjustment is conducted on all synchronized
calibration image triplets again using the solution presented in Wohlfeil et al. [48]. The
chessboard pattern is captured in 28 different poses under the open sky. Note that the
different poses present a balanced set, with several rotations and distances to de-correlate
intrinsic and extrinsic calibration parameters as much as possible. All the remaining re-
projection errors are in the sub-pixel range, as shown in Figure 3, enabling the system to
generate metric point clouds colored with thermal intensities in real-time. The calibration
results of the intrinsic and extrinsic parameters for the trifocal sensor can be found in
Table 2.

Figure 3. Epipolar lines at a selected point (color bar with temperature values).

Table 2. Calibration results for the trifocal sensor.

IPS Left IPS Right Optris PI 450

ck (px) 776.6 773.5 408.5
x0 (px) 711.2 681.5 188.1
y0 (px) 546.3 540.7 146.2
k1 −0.273 −0.257 −0.187
k2 0.168 0.118 −0.008
k3 −0.069 −0.029 0.434

tx (cm) - −20.162 −0.314
ty (cm) - −0.036 7.968
tz (cm) - 0.060 3.368
ω (rad) - 0.0087 −0.0183
φ (rad) - 0.0077 0.0231
κ (rad) - 0.0048 0.0009
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3.3. Ground Control Point Survey

Overall, seven ground control points (GCP) are surveyed with a real-time kinematic-
capable Leica GPS receiver [52], as shown in Figure 4b. The mean horizontal accuracy is
1.0 cm, while the height quality is, on average, 1.3 cm. They are distributed around and
near the study building. To guarantee precise angular accuracy for the conducted IPS
inspection runs, the remaining two points span a rectangle roughly 40 m further north.
Each reading point is equipped with an AprilTag, which can be recognized automatically
by the IPS during inspection runs. Furthermore, the survey is conducted prior to the UAV
flight campaign so that the marked GCP can also be used for the data fusion between
terrestrial and aerial data products.

(a) (b)
Figure 4. (a) One of 42 aerial images overlaid with DGPS georeferenced AprilTag targets showing
GCPs (green rectangles) and a section of the IPS trajectory (red dots). (b) Leica 1200 DGPS surveying.

3.4. Test Site and Field Experiment

The test site is an abandoned single-family house (9 × 9 m) with two floors and
a basement embedded in a rural environment in the German village of Morschenich,
which is located within the North Rhine-Westphalia open-pit coal mine territory, not far
from the city of Jülich. The building has been used for research activities by the German
Aerospace Center’s and Jülich’s solar research institutes in the past and provides a validated
test ground for remote sensing test and validation measurement campaigns. It is freely
accessible from all directions, and the area also allows for the possibility of flying UAVs
around the building without obstacles. During the very sunny day on which measurements
were taken, there were different light conditions, which put a lot of demands on the
exposure control of the visible cameras. For example, transitioning from outside to inside
of the house, or from very bright to dark, can be challenging as the cameras need time to
adjust exposure control. There were no additional light sources in the house itself. Very
dark rooms without windows or daylight were inspected, as well as very bright passages
with direct sunlight coming through the windows. Artificial heat sources were placed
in the house beforehand. We also took non-contact infrared thermometer measurements,
which serve as contrast sources and references for the thermal imaging data.

3.5. Aerial Imagery

Since the IPS measurements are bound to terrestrial standpoints around and inside
the building, aerial imagery was used to map the roof structures as well. The flight was
conducted using a DJI Mavic Pro [53] and the flight planning software Pix4DCapture [54].
Three stripes with 14 images each were captured at 40 m above ground level, leading to
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a ground sampling distance of 1.5 cm. The UAV camera is not calibrated since it works
only in auto-focus mode. In combination with the Mavic’s consumer-grade GNSS receiver,
the aerial images of the UAV cannot be used for direct georeferencing. Five ground control
points (Figure 4a) are visible in the image mosaic and were used for precise georeferencing.

4. Workflow and Results

Our process chain, as shown in Figure 5, consists of three thematic blocks. The whole
process pipeline can be executed, in principle, within one day for a small size single-
family house. The needed time for the workflow scales with the measurement volume,
the building size and complexity.

Visual 
odometry

AprilTag 
detection and 
triangulation

Local
Switch 
logic

Global

SGM

Aero triangulation & 
multi view matching

3D mapping

Thermal mapping

Segmentation & 
normal vector 
determination

Topology

IMU 
data

Calibration 
data

Thermal 
images

Stereo 
images

GCP
data

UAV 
images

Global 
6DoF

UAV 
Point 
cloud

3D 
vector 
model

IPS self-localization Thermal 3D reconstruction Building model 
reconstruction

Input Process Output

Thermal 
point 
cloud

IPS 
Point 
cloud

At run-time
Perspectively
at run-time

Post-
processing

Inertial Navigation System (INS)

Figure 5. Workflow with our three thematic blocks, IPS self-localization, Thermal 3D reconstruction,
and Building model reconstruction, structured according to processing time.

First, a georeferenced trajectory, covering the whole in- and outside area to be in-
spected, is generated at run-time during the inspection walk with the calibrated IPS over
DGPS (differential global positioning system) surveying the ground control points. The de-
tailed working steps of the IPS self-localization block are described in Section 4.1.

With the estimated global 6 DoF, a global referenced point cloud is calculated. For this
purpose, dense depth maps are computed from the IPS stereo image pairs, transformed
to point clouds with global coordinates, and subsequently aggregated. This resulting
georeferenced point cloud covers the local surroundings with up to eight-meter object
distance along the inspection path. The 3D reconstruction from subsequent stereo image
pairs and point cloud aggregation was carried out in post-processing in this case, but the
approach is principally run-time capable. If the application requires it, the IPS point cloud
geometry can optionally be further improved by bundle adjustment in post-processing,
but this was not part of the presented work. Knowing the intrinsic and extrinsic parameters
of the IR sensor and the IPS stereo camera, which is determined by trifocal geometrical
calibration as described before, the thermal information is mapped in post-processing onto
the point cloud in a false color representation. Section 4.2.1 describes the steps of this 3D
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and thermal mapping in detail. The second part of the Thermal 3D reconstruction block, aero
triangulation, and multi-view matching of UAV-derived images, which is also performed
in post-processing, is described in Section 4.2.2.

The third thematic block, building model reconstruction, in Section 4.3 describes methods
for the building footprint and façade extraction from a point cloud, which is predominantly
generated by the terrestrial IPS and partially from aerial UAV imagery and without a priori
knowledge, such as cadaster information. The method for segmentation used in this paper
is a data-driven approach. In particular, façades and roof planes are reconstructed through
linear regression, region growing, intersection evaluation, and topology analysis.

4.1. IPS Self-Localization

In order to minimize the influence of temperature-dependent effects in the electronic
sensor components on the measurement data, the IPS is supplied with power for a certain
period of time at the beginning of each measurement campaign but without an active
measurement task. The measurement runs in Morschenich started in the outdoor area
around the single-family house. At the beginning of each run, a static and dynamic
procedure is carried out that is used to initialize the system states. During a predefined
phase of no movement, the IMU’s gyroscope offsets can be calculated. In the dynamic part,
the IPS is moved slowly around all three spatial axes. As a result, the accelerometer offsets
are correctly estimated or separated from the two horizontal angles of the initial system
orientation. After this short initialization phase, IPS is placed on the floor, the estimated
state vector is reset, except for the IMU offsets, and the system is ready for use.

4.1.1. Local Trajectory

First, the multi-sensor fusion calculates a navigation solution in a local tangential
system, which is spanned by the initial alignment of the IMU. The horizontal angles of the
rotation are determined by the orientation of the acceleration sensors to the Earth’s gravity
field. The vertical rotation angle and the 3D starting position are freely selectable and are
set to zero.

The Inertial Navigation System (INS) in Figure 5 consists of a prediction and a correction
part. The so-called strapdown algorithm [55] takes over the summing up of the IMU’s
accelerations and angular velocities to the resulting system pose. The integral solution is
insufficiently accurate due to faulty sensor measurements, e.g., caused by noise or offsets,
but also modeling errors in the kinematic equations. By choosing suitable additional
sensors, these errors can be estimated using an extended Kalman filter [12] and corrected
iteratively. In the IPS basic configuration [40], a stereo camera system is included for this
purpose, from whose temporally consecutive image pairs visual odometry (3D relative
orientation and position) can be calculated. At a time step, natural landmarks are first
extracted in the left camera image, which is then found again in the right camera image.
These stereo features are triangulated and then tracked in the image pair of the next time
step. Thus, the corresponding 6 DoF relative change in the movement of the stereo camera
pair can be estimated using a solver for a set of non-linear equations, including random
sample consensus (RANSAC).

4.1.2. Georeferenced Optical Ground Control Points

To switch from local to global navigation, georeferenced ground control points are
required, which are precisely measured in advance of the actual measurement run using a
precise mobile DGPS receiver (Section 3.3). These global references were distributed in the
area around the single-family house in such a way that very good GPS reception quality
could be guaranteed.

The assignment of global coordinates to the IPS positions takes place by means of the
optical sensors, where AprilTag targets [56] can be detected in the stereo image pairs. By
placing the targets on the previously measured DGPS ground control points, the respective
AprilTag identification (ID) is assigned to exactly one geographic coordinate. The now-
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global optical landmarks, marked by green rectangles in Figure 4a, can be automatically
recognized in the subsequent measurement run with the help of an OpenCV detection
algorithm [57]. The distance between the fixed AprilTag target on the ground and the left
camera of the moving IPS is calculated by triangulation and transformed into the IPS body
system using a fixed alignment matrix (Section 3.2.2).

4.1.3. Switch Logic

When passing the georeferenced AprilTags, they are automatically recognized in both
camera images, which prevents the IPS from explicitly having to be placed on the ground.
Internally, the triangulated distance between the left camera and the ground, the associated
geographic reference position (GCP), and the local IPS pose are assigned to the AprilTag ID.
As soon as an AprilTag is detected, this extended measurement is fed to the input selection
logic in Algorithm 1.

Algorithm 1 Selection logic for switching from local to global navigation

Data AprilTag triangulation reading, local IPS pose, global GPS reference coordinate
Result 6 DoF homogenous transformation & associated covariance matrix

1: append← true
2: if current tag ID ∈ ID list then
3: if current tag ID = last item in ID list then
4: if current tag Euclidean distance > Euclidean distance of last item in ID list then
5: append← false
6: end if
7: end if
8: end if
9: if append then

10: ID list← add current tag ID
11: local point list← calculate local position from IPS pose & AprilTag triangulation
12: global point list← calculate ECEF position from GPS reference
13: end if
14: if number of unique IDs in ID list ≥minimum ID list size then
15: (transformation, covariance)← 6 DoF estimation from local & global point lists
16: valid trafo← true
17: for each item in local point list do
18: valid trafo← residual among global & transformed local points<max. residual
19: end for
20: if valid trafo then
21: return (transformation, covariance)
22: end if
23: end if

As an input test, the current AprilTag ID is compared with an ID list of tags that
have already been saved. In the case of a new ID, the extended measurement should
be appended to the corresponding list (lines 10–12). If the ID already exists, a further
test checks whether the current and previous IDs are the same (line 3). If this test is also
passed, an exclusion criterion involves checking the Euclidean distances of the current and
previous triangulation measurement (line 4). Only triangulated measurements that come
closer to the AprilTag over time may be added. If the aforementioned tests are passed or
when a new ID is found, the current extended measurement should be appended to the
corresponding list (lines 10–12). In addition, a local position-measuring vector is formed
from the triangulated camera–AprilTag distance and the current IPS pose, which is added
to the local point list. The associated global GPS reference is converted into Cartesian
coordinates and forms a new measurement of the global point list. If both point lists
reach a certain minimum number of 3D vectors (line 14), the homogeneous transformation
matrix, including the associated covariance matrix, is estimated, which can convert the
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local navigation solution into the global coordinate system. The transformation matrix
represents three parameters of rotation, as well as translation and a scaling factor. At least
three pairs of 3D vectors in local and global coordinates are required to estimate these seven
unknown values. The estimation vector of the non-linear system of equations is initialized
with a static seven-parameter transformation method so that only a few iterations are
required to calculate the solution in the following Gauss–Newton approach. The output
test now consists of calculating the residuals for each input point set. If all list pair residuals
fall below a defined maximum residual value (line 18), the transformation matrix and
its covariance can be output as a valid solution, and the switchover from local to global
navigation can be carried out.

4.1.4. Global Trajectory

Our global target frame is the Earth-centered, Earth-fixed (ECEF) coordinate system;
the origin is located in the center of the modeled Earth ellipsoid [58]. Its X-axis is defined
as the intersection line between the planes of the equator and Prime Meridian. The Z-axis
is also the rotation axis of the Earth, and the Y-axis results from a 90 degree angle to the
two previously mentioned axes. Since all IPS sensor measurements and external ground
control points deliver Cartesian values and subsequent processing modules in the process
chain require Cartesian trajectory values, we chose this global coordinate system.

After successfully switching to global navigation mode, IPS is now able to thermally
and geographically reference the interior of the single-family house. In addition, new or
recurring AprilTag targets can still be used as absolute support information, thus improving
the navigation solution. An optimized trajectory, shown as red dots in Figures 4a and 6,
is used for the following processing steps, which is automatically calculated at the end
of an inspection run using a so-called fixed-interval smoothing approach [59]. For this
purpose, all system states and covariances of the Kalman filter must be stored in the forward
branch during the data fusion, from which the smoothed trajectory is then calculated in a
subsequent backward recursion. The advantage of this smoothed trajectory is that both
past and future measurements are included in the calculations, which makes the solution
more accurate than the estimation of the filtering in the forward branch. However, to use a
fixed-interval smoothing algorithm, all measurements of the test run must be available.

(a) (b)

(c) (d)
Figure 6. Multiple views of the point cloud generated from the IPS trajectory (red dots) and the IPS
stereo images. (a,b) Building exterior views. (c,d) Interior view showing the two floors.
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4.2. Thermal 3D Reconstruction

The next section describes the 3D reconstruction and thermal mapping of the trifocal
sensor data to point clouds with the thermal layer in the absolute reference frame.

4.2.1. Trifocal Thermal 3D Mapping

The IPS, with its stereo camera approach, generates two images at the same time,
which are used for reliable visual odometry estimation and for the generation of high-
density depth maps by stereo matching. This computationally expensive processing step is
implemented in OpenCL and executed on a graphics processor unit (GPU). After image
rectification, a semi-global matching algorithm (SGM) [60] with a census cost function as
described in [61] for the data term is used (Figure 7b).

(a) (b) (c)
Figure 7. (a) Left IPS camera image. (b) Rectified left image and color coded disparity image
generated by SGM (color bar with disparities values (gray values = no data)). (c) IR sensor image
(color bar with temperature values).

The frame rate for point cloud generation is dynamically adjusted based on the IPS
navigation solution. If a substantial difference in pose or time to the previously used image
pair is reached, a new 3D point set is extracted from the next depth map and transformed
into a local tangential Cartesian coordinate system derived from the ECEF starting point
of the trajectory. This allows the following point cloud operations to be performed in an
efficient data format. The connection of the resulting point cloud to ECEF is given by the
inverse transformation. Subsequently, the point sets generated from single image pairs
are accumulated into a high-density cloud and filtered into a voxel grid of an appropriate
resolution (1 cm for the test data set) and size. In subsequent steps, these partial 3D point
clouds can be aggregated to 3D models of the whole observed object. In Figure 6, multiple
views of the whole 3D point cloud from the IPS image sequence are shown. The voxel
generation and cloud filter steps are based on the Point Cloud Library [62], and all point
cloud figures presented in this section are rendered with CloudCompare [63].

IPS can record the data of additional sensors synchronized with image and IMU data
simultaneously. In the case of IR-image data, whose pixels are co-registered to the stereo
camera pixels by trifocal geometrical calibration, they can be immediately mapped onto
the point cloud. Figure 7a,c show a left IPS image and an IR image recorded at the same
time. The RGB or panchromatic color values of the 3D points are blended with the thermal
information in color representation from the additional thermal camera. The 3D object
view helps us to understand the temperature distribution in the observed scene. Figure 8a
shows a point cloud generated from one image pair, and Figure 8b show the corresponding
point cloud with mapped temperature coding colors from the IR image.

Compared to the 10 Hz frame rate of the IPS panchromatic stereo cameras, only a
few IR images have been recorded for the test data set. For a higher point cloud density
that carries thermal information, 3D points can be collected from multiple image pairs,
which have been recorded shortly after the IR image within a certain time window and
with similar camera poses to the IR recording.

These additional 3D points are projected into the valid IR camera image. For this,
the interior orientation and distortion parameters of the IR sensor, which were determined
in the calibration process in Section 3.2.3, as well as the relative orientations of the IPS
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camera poses to the IR sensor at recording time, are taken into account. Then the color or
measured temperature values can be assigned directly to the respective surface points.

(a) (b) (c) (d)
Figure 8. (a) Point cloud from one stereo image pair. (b) Values from one IR image assigned to
the point cloud from one stereo pair recorded at the same time. (c) Values from one IR image are
assigned to a point cloud accumulated from multiple images that have been recorded from the red
dotted positions. Some parts (e.g., behind the ceiling lamp) are hidden in the IR camera view and are,
therefore, excluded from IR mapping; (d) color bar with temperature values.

Three-dimensional points must be excluded from incorrect IR color assignment if they
were occluded by another object and could not be seen from the IR sensor at recording time.
Considering the near real-time capability requirements for future applications, a voxel-
based occlusion algorithm is applied, building on the implementation of [64] in [62].
Figure 8c demonstrates the improved point cloud density and coverage when a single IR
image is mapped to a point cloud generated from an IPS image sequence. Some parts
(e.g., behind the ceiling lamp) are hidden from the IR camera’s view and are, therefore,
excluded from IR color mapping.

In a subsequent automatic filter process, voxels and their additional information are
removed based on, e.g., the frequency of the additional camera images, the number of
3D points found per voxel, the ratio of the number of points with and without additional
information in a voxel, and their reliability. Figure 9 depicts multiple views of the complete
IR-mapped point cloud.

(a) (b) (c)
Figure 9. Complete IR mapped point cloud combining IPS and thermal camera data: (a) top view;
(b) side view; (c) color bar with temperature values.

4.2.2. Point Cloud Generation from Aerial Imagery

In order to derive a complete point cloud of a building and the surroundings, two
different kinds of input datasets describing the scene from distinct but complementary
perspectives are required. Firstly, we used the terrestrial IPS point cloud, which is described
in the previous section. Secondly, we used a point cloud containing the roof structures.
These structures are poorly seen from terrestrial IPS standpoints, but they have been imaged
by a commercial UAV system [53] and post-processed to a point cloud.
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The commercial software Pix4DMapper was used for the point cloud calculation
from aerial imagery. The recorded UAV data set comprises 40 RGB images. Interior and
exterior camera orientations are given in an exif metadata form and can be used directly in
Pix4DMapper. The software performs aero triangulation and reconstructs the point cloud.
Four ground control points have been used for georeferencing.

The IPS (Figure 6) and the aerial point cloud were merged together using the Cloud-
Compare software and its ICP algorithm. Figure 10 shows the resulting point cloud where
the outer building structure is completely 3D reconstructed.

Figure 10. Complementary 3D reconstruction from UAV imagery (colored parts inclusive of the gray
roof) combined with IPS on-ground derived point cloud (ground surroundings and building walls
shown in grayscale).

4.3. Building Model Reconstruction

The subsequently described 3D building model reconstruction approach gives just
an overview and is, therefore, very superficial and selective. For more details, refer to
Frommholz et al. [65], Linkiewicz and Meißner [66], and Dahlke et al. [67]. In order to
calculate a 3D vector model, as shown in Figure 11f, façade pieces are identified first.
For this purpose, point cloud voxels get projected onto a planar 2D cell grid (Figure 11a),
and the direction of the point cloud within all particular cells is obtained via RANSAC.
The statistically evaluated point clouds of adjacent cells in the same direction are then
grouped together. The grouped points (Figure 11b) are approximated by a regression line
to vector segments. These are then intersected to obtain a closed contour (Figure 11c).
The roof structure (Figure 11e) is treated in the same way as the façade described above
but in 3D space. In addition, a breadth-first region growing on pre-selected grid cells is
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made (refer to [66]). This fills the gaps within the roof structure and ensures topological
consistency. This provides a spatial relationship between the particular structural parts of
the building.

In this context, it is the precondition for intersecting roof surfaces in the next step.
Finally, the façades and roof planes, representing the building semantics, are intersected to
form a finite building hull (Figure 11f).

(a) (b) (c)

(d) (e) (f)
Figure 11. 3D building vector model reconstruction: (a) point cloud voxel projected onto 2D grid;
(b) calculated segments; (c) closed contour; (d) erected contour; (e) roof structures; (f) complete 3D
vector model. The segmented ground plan parts in (a,b) are highlighted by random colors before
accumulation in (c).

Thus far, the roof outline always coincides with the building footprint when intersect-
ing adjacent surfaces as described above, and overhangs are not preserved. By using the
building footprint and its projection onto the digital surface model (DSM), the overhang is
calculated with sub-pixel accuracy (refer to Dahlke et al. [67]). If the DSM contains disconti-
nuities (step edges) in close proximity to façade edges, they are very likely describing the
true outline of roofs, including their overhang. A line parallel to the façade edge sweeps
outwards with a step size of one pixel. For each step, the median of the line’s height profile
is stored. The sequence of the stored median values provides a (median) height profile
perpendicular to the direction of the façade edge. A first approximation of the distance
to the façade is the position with the highest gradient within this perpendicular profile.
Around this first approximation, a cubic polynomial is fitted. The inflection point of this
continuous function is used as a sub-pixel accurate position for the overhang boundary.
The reconstructed roof polygons of the respective building model are then extended ac-
cordingly (Figure 12a). Due to the different normal vectors of roof and wall planar faces,
the assignment of semantics is straightforward. All horizontal normal vectors define a wall
face, while the remaining faces are part of the roof (Figure 12b).
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(a) (b)
Figure 12. 3D building reconstruction: (a) simplified model with roof overhang; (b) semantic model.

5. Evaluation and Discussion

The following section evaluates and discusses the proposed approach. Challenges,
which were induced by environmental conditions as well as measurement equipment-
handling specifics during the field experiments, and their impact on the processing results
are reflected. The local geometric accuracy of the IPS point cloud, and the 3D vector model
is determined and compared with reference data. The section also evaluates the thermal
infrared sensor temperature data with reference examples.

5.1. IPS Self-Localization

The outer shell and two floors of our test object were inspected and geographically
referenced with IPS. In order to be able to create a valid 3D reconstruction of the building,
the position and orientation of the localization system must be consistently estimated.
Various challenges had to be overcome. For example, rapidly changing light conditions
when moving from outside to inside or the lack of lighting in the house can be problematic
for a navigation system that is based on processing stereo camera images. In addition,
the wide range of spatial image sequences, such as narrow passages in the hall or stairways
on the one hand, and rather extensive passages around the house on the other, can be
demanding for image processing algorithms.

The overall accuracy, including the switching from local to global coordinates, is
determined by the accuracies of the individual measurements used from the AprilTag
detection, the local IPS trajectory, and the global ground control points. The GCPs measured
previously using DGPS have a very high position quality. The uncertainties of the local IPS
pose result from the fusion of all sensor inputs of the visual-inertial navigation system. Since
image data is also used in addition to the IMU, the local IPS accuracy is also determined
by the number of features seen in the environment. The seamless transition to a global or
geographically referenced navigation solution was implemented with the help of previously
measured optical markers. The AprilTag targets were detected by the cameras during run-
time so that their absolute positions could be used to switch the self-localization to global
coordinates. The quality of the automatic tag detection and processing is determined
by the size of the tags seen in the image, which is influenced by the distance to and
orientation of the camera [56]. It is expected that the localization accuracy will decrease
with increasing distance. Furthermore, the angle difference between the optical axis of the
camera and the normal vector of the tag is crucial. If the tag rotates out of the camera’s
view, the accuracy and detection rate will decrease. In order to minimize both of these risks,
only tags that were detected as close as possible to the camera are processed. In addition,
the quality of the switching described in Algorithm 1 can be influenced by parameterizing
the number of AprilTags used (n ≥ 3), and the intended uncertainty for the estimated
transformation matrix.

As a consequence, IPS is drifting over time in both indoor and outdoor environments,
as it is the nature of infrastructure-free self-localization techniques. Therefore, the ac-
cumulated errors should be nearly the same indoors and outdoors. The error can just
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be reduced by external infrastructure such as optical markers or radio frequency self-
localization techniques (WiFi, beacons, GPS, etc.). In the indoor/outdoor transition areas,
the automatic camera exposure time setting can lead to over and underexposed images,
so the visual odometry does not provide a navigation solution for a short time period.
However, this is not supposed to be such a critical issue because the strap-down navi-
gation provides valid results in a short time period and can bridge over temporal visual
odometry non-availabilities.

No matter if there are surveyed GCPs used, which serve as a global reference (out-
doors in our case) or they are just be used for some drift-compensations by means of
re-localization on the AprilTags (indoors in our case), drift between the optical markers
always exist. In conclusion of the drift discussion, accumulated drift errors cannot be
corrected completely, which results in some displacements of the building structure, but the
drift rate indoors and outdoors should be nearly the same. The amount of this displacement
depends essentially on the building size, the density and distribution of optical markers,
the texture of the investigated scene, and the moving profile during the inspection run.

5.2. 3D Reconstruction and Thermal Mapping

Dense depth map reconstruction from IPS stereo imagery by means of SGM and
assembling them to point clouds using IPS 6 DoF poses enables the 3D mapping of com-
bined and large indoor and outdoor environments in a global reference frame. The outer
building hull is reconstructed without gaps and most of the inner hull. This was due to
the complementing UAV and IPS from ground sensing. Although several optical markers
(AprilTags) were used for referencing and re-localization out- and inside, the drift of the
IPS navigation over time could not be prevented completely. This led to partly geometric
instabilities in the building structure and shows up, e.g., in some double walls. Neverthe-
less, the local geometry stability of the IPS-generated point cloud is reasonable, as wall
length measurements and a comparison with the building floor plan show (see Table 3 and
Figures 13 and 14).

Thermal mapping by means of pixel-wise temperature value assignment to point
cloud voxels shows no visible displacements. IPS point cloud texturing with thermal
sensor data works very well and is evidence of the high-quality trifocal geometrical sensor
calibration processing pipeline. For a complete pixel-wise point cloud thermal layer texture,
a higher thermal infrared image frequency and other thermal sensor imaging properties (a
larger field of view and higher sensor pixel size) corresponding to those of the IPS stereo
camera would be necessary.

All steps, including trajectory estimation, dense depth map generation in a sufficient
frame rate, disparity resolution, and thermal mapping, can be carried out in real-time using
a capable laptop. This provides the opportunity to generate and possibly view dense 3D
point clouds enriched with thermal information during an ongoing measurement and for
the entire area of interest. While the overall accuracy of the 3D model is highly dependent
on the accuracy of the generated trajectory, the quality of the point cloud in detail is strongly
influenced by the stereo camera parameters, especially the pixel resolution and base length.
For a fixed camera setup, the depth resolution and local accuracy of 3D points are mostly
determined by the minimum distance of the objects to the camera while passing them
during the measurement run.

The indoor and outdoor environments can be acquired by the complete IR mapped
point cloud combining IPS with a thermal camera and complementary UAV data. As
there are certain drift-induced IPS self-localization inaccuracies, the building structure
as a whole is showing some voxel displacements in parts of the point cloud as already
described above. If at all, this could just be further reduced by subsequent and time-costly
bundle block adjustments or by means of ICP processing, which have not been addressed
within the presented work. Anyhow, it is plausible, for certain inspection applications, local
measurement accuracies, e.g., on particular windows or walls, and their inclusion within a
global digital building model with displacements in a certain range is already beneficial for
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inspectors. On a local level, the 3D length measurements show similar deviations for both
environments to the reference, see Section 5.4.

Finally, from a business model view, it is always a trade-off between the application
accuracy needs and the available resources (money, personnel, time) to generate and
provide the digital data to end-users. In which situations the proposed approach might
come to limitations or is not suitable for a specific application task is generally not easy to
say. This needs to be incrementally evaluated by future work in real inspection scenarios
on larger buildings/infrastructure together with end-users and industry partners.

Figure 13. Floor plan with reference data and measured (red) wall parts.

Table 3. Selected distances measured in the IPS point cloud and 3D vector model compared with the
references shown in Figure 13.

Id
(i)ndoor,
(o)utdoor

Reference (m) IPS Point
Cloud (m)

Average
Difference (m)

3D Vector
Model (m)

1 (o) 8.55 8.54–8.58 0.01 8.46
2 (o) 9.52 9.47–9.51 0.03 9.38
3 (o) 3.78 3.66–3.70 0.10 -
4 (i) 4.89 4.86–4.90 0.01 -
5 (i) 3.46 3.38–3.42 0.06 -
6 (i) 3.66 3.78–3.82 0.14 -
7 (o) 0.95 0.96–0.98 0.02 -
8 (o) 1.80 1.81–1.82 0.02 -
9 (o) 2.36 2.35–2.36 0.05 -
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Figure 14. Subset of the IPS point cloud with three examples of distance measurements (m), see
second column of Table 3—Ids 7, 8, and 9.

5.3. Building Model Reconstruction

The shown building reconstruction method works automatically and is stable. How-
ever, it is to be noted that the accuracy of the 3D vector model strongly depends on the
quality of the point cloud. The noisier the point cloud is, the larger the grid for the local
regression needs to be. It follows that if elements of facades and roofs are smaller or equal
to the grid, they cannot be reconstructed. This dependence has to be considered in the
context of future work. For the reconstruction of the interiors of buildings, which are
often more complex and more filigree than the outer shells, the input point cloud has to be
almost noiseless.

5.4. 3D Accuracy

To evaluate the accuracy of the calculated IPS point cloud, some horizontal segments
were measured (Figure 14). The measurements were compared against the reference
data (Figure 13). Reflecting the considerable residual noise from SGM and the inherent
simplification errors, an average difference of 0.07 m indoors and 0.03 m outdoors has been
found between the reference and the IPS point cloud values. The results of the selected
distance measurements are shown in Table 3.

5.5. IR-Texture Temperatures

Four pots with heated water were placed inside the building. A thermal image
with three of these pots can be seen in Figure 15a,c. A non-contact infrared thermometer
(Figure 15d) was used to verify the water and pot temperatures during an inspection run.
Since moving persons in the room could have disturbed the IPS self-localization accuracy
and could have occluded the water pots while image recording, the thermometer measure-
ments were taken approximately two minutes in advance. In total, the temperatures of four
water surfaces and two pot walls were measured with an infrared thermometer and the
thermal camera as a reference (Table 4).

1 
 

 

 Figure 15. (a) Color-coded Optris PI 450 thermal image of water-filled pots. (b) Color bar with
temperature values. (c) Partial 3D point cloud with trajectory (red dots). (d) Reference measurement
with an infrared thermometer.
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Table 4. Object temperatures during the test run were measured by the thermal camera Optris PI 450.
A non-contact infrared thermometer served as a reference.

Object Reference (◦C) Optris PI 450 Measurements
(◦C)

Water Surface 1 31.4–31.7 30.0
Pot Wall 1 21.8–24.8 18.7–24.0

Water Surface 2 45.3–45.6 45.2
Pot Wall 2 22.0–27.6 22.4–26.1

Water Surface 3 27.1–27.6 25.8
Water Surface 4 35.7 35.3

The previously mentioned two-minute time gap is the main reason why almost all
reference thermometer values are slightly warmer than the subsequent IPS thermal image
recordings, as the water had cooled down a bit in the meantime. Another observed effect
is a broader temperature range on the pot walls compared to the more homogeneous
temperatures on the water surfaces.

6. Outlook

The proposed workflow is intended to be further consolidated. On the one hand,
the goal is to derive directly georeferenced, dense and thermal textured point clouds with
veritable ad-hoc geometric stability and high spatial coverage in combined indoor/outdoor
environments at run-time during an inspection walk with the IPS and make the approach
thereby even more attractive for inspection applications. Therefore, 3D reconstruction
and thermal mapping shall be integrated into the IPS real-time capable workflow, and the
self-localization shall be further improved, e.g., by catalog matching and/or appropriate
artificial intelligence methods. On the other hand, a thermal layer shall also be included
in aerial mapping to attain complete thermal-textured point clouds of inspected objects
with a big vertical extent. This is required as the hand-held, and helmet IPS inspection
systems have a small stereo camera basis and are limited to near-3D reconstruction up to a
maximum of an eight-meter object distance. Thereby, certain areas, such as building roofs
or parts of them, cannot be surveyed manually from a further distance with the IPS. That is
why aerial thermal 3D mapping would complement the inspection in a meaningful way.

For many applications, such as BIM modeling or disaster management, not only the
outer shell of a building but also the interior needs to be reconstructed. Responding to this
demand, the developed method for outer shell building reconstruction will be adapted to
the modeling of interiors. For this purpose, algorithms will be further improved, and new
methods are considered to be embedded within the workflow. Furthermore, we plan to
fuse the 3D vector model data and the thermal information. To enable this connection,
the thermal information will be projected onto 3D vector models. Thermal-textured 3D
vector models will form the basis for further energetic analyses.

Further improvements on the sensor side shall also be considered. In order to use
optics with a broader field of view for the thermal camera while still being able to auto-
matically detect the calibration pattern, we suggest at least a fourfold resolution increase
compared to the Optris PI 450 (Table 1). The integration of further inspection sensors,
e.g., acoustic camera, LiDAR, radar, and gas sensor, shall also be investigated. Thereby
different thematic information layers can be generated and assigned to trajectories, point
clouds, and 3D vector models to enrich BIM.

The manual inspection of large buildings and critical infrastructures could be sped up
using the proposed workflow and give BIM added values. This could enhance evaluation
capabilities and action prioritization for several inspection applications, e.g., energetic build-
ing restoration and maintenance and disaster management, and may make a contribution
towards higher efficiency and better decision making in these areas.
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