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 Indoor Location Based Services Challenges, Requirements and Usability of 

Current Solutions 
 

 

Abstract—Indoor Location Based Services (LBS), such as indoor navigation and tracking, still have to deal with both technical 

and non-technical challenges. For this reason, they have not yet found a prominent position in people’s everyday lives. Reliability 

and availability of indoor positioning technologies, the availability of up-to-date indoor maps, and privacy concerns associated with 

location data are some of the biggest challenges to their development. If these challenges were solved, or at least minimized, there 

would be more penetration into the user market. This paper studies the requirements of LBS applications, through a survey 

conducted by the authors, identifies the current challenges of indoor LBS, and reviews the available solutions that address the most 

important challenge, that of providing seamless indoor/outdoor positioning. The paper also looks at the potential of emerging 

solutions and the technologies that may help to handle this challenge. 

 
Key Words: Indoor Positioning, Location-Based Services, Location Privacy  

I. INTRODUCTION 

Location Based Services (LBS), such as navigation, Location Based Social Networking (LBSN), asset finding and tracking, 

are used by many people widely around the world (Bao at al. 2015), (Bent-ley et al. 2015). About three quarters (74%) of 

smartphone device owners are active users of LBS (Pew Research 2013). However, when used indoors, applications have 

difficultly providing the same level of positioning accuracy, continuity and reliability as outdoors (Maghdid et al. 2016). Global 

Navigation Satellite Systems (GNSS) are the most widely used positioning technology for outdoor use (GSA, 2015). However 

their signals can be easily blocked, attenuated or reflected (Kjærgaard at al. 2010). This makes them unreliable indoors, making 

it impossible to seamlessly use them for positioning across outdoor and indoor environments. Many life-saving services, such 

as for emergencies and security, could be improved hugely if indoor LBS could address this challenge. In addition, although 

people spend most of their time inside, indoor LBS generates less than 25% of total revenue (ABI research 2015). If LBS could 

overcome these challenges, its market will develop and more users will be attracted. This paper identifies these challenges 

using a survey of the latest research and the results of a survey conducted by the authors. The paper also evaluates current 

solutions and uses this analysis to identify the most suitable solution among those currently available. 

Research into the challenges presented by LBS is on-going (Maghdid et al. 2016), (Niu et al., 2015), (Tyagi and Sreenath 2015), 

(Wang et al. 2016). This paper considers their findings, in addition to a comprehensive survey targeting ordinary LBS users, 

application developers, component providers and companies, market analysts and content providers. This synthesizes both the 

technical and non-technical challenges in one study. The most important challenge identified by this paper is providing Quality 

of Positioning Services (QoPS) – the functional and non-functional parameters that include accuracy, availability, and cost 

(both to the user and for infrastructure deployment) including the availability, continuity, and accuracy of positioning services 

for indoor use. Other major challenges are identified as concerns over privacy associated with location data and the overall cost 

of services.  

Some of these challenges, including accuracy and reliability, are directly linked to the effectiveness of positioning technologies 

while others, such as cost and privacy, are closely related to them. However, there are some issues that are independent, such 

as the business model used and the social acceptability of an application. The latter have been reviewed elsewhere (Basiri et 

al., 2016a).   

This paper reviews the technologies which are currently being used as solutions to these challenges. Also, based on the results 

of a survey, a literature review and analysis on the available systems, this paper compiles the requirements of current LBS 

applications. By comparing the technological requirements of LBS applications and the available solutions, the paper assesses 

the usability of the current technologies for five application categories.  

In addition, an analytical tool is described to evaluate the usability and fitness-to-purpose of each positioning technology for 

specific applications. The application requirements might differ slightly from the general category it falls into. This tool uses 

the Analytic Hierarchy Process (AHP) (Saaty, 1980) to select the most appropriate technology among those currently available 

according to the positional requirements for the application. AHP is a powerful tool for systematic multi-criteria decision-

making. The developed tool is sufficiently flexible that it can assess new LBS applications, which are currently emerging very 

frequently. 

In section two, the structure of the survey and the process of the identification of LBS challenges and requirements are 

explained. Section three studies the current solutions to the identified challenges and a usability analysis tool is introduced and 

used.  
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II. IDENTIFICATION OF INDOOR LBS REQUIREMENTS AND CHALLENGES   

Although some of the challenges in the development of LBS are shared by a wide range of applications, their impact can 

vary from one application to another. For example, the availability and the accuracy of indoor positioning services is one of 

the major obstacles for indoor applications. The main positioning technology, Global Navigation Satellite Systems (GNSS) 

such as GPS, is not usually available. A lack of accurate positioning is a major issue for tracking and navigation services. 

However, in advertising and social networking applications, a hundred-meter locational error might be satisfactory. Therefore, 

if we separate LBS applications into categories, we can identify the shared issues within each. This section describes the process 

of identifying each application’s requirements, its categorization based on this, and the implementation challenges. This is 

based on a literature review and the results of a survey. 

A. Survey Structure and Participants 

The web-based survey, conducted in May 2015 for three months, had 245 participants (212 valid responses), aged between 

18 and 73 years, with 164 male and 48 female respondents. The distribution of 212 participants and their level of expertise in 

LBS are shown in table 1. 

 

Participants Group Percentage 

LBS ordinary users (use LBS applications, 

devices and/or services in daily life) 

54.72% 

LBS application developers (design, develop, or 

deploy LBS applications and services) 

9.43% 

LBS content providers (provide content and/or 

information, such as map, points of interest and 

advertisements, to be delivered through LBS 

applications and/or services) and components 

companies  (produce LBS components, such as 

antennas, receivers and transmitters) 

1.89% 

LBS researcher and LBS market analyst (study 

LBS and related technologies, applications and 

markets) 

26.42% 

Other 7.55% 

TABLE 1.THE CATEGORIES OF THE PARTICIPANTS IN THE SURVEY  
 

The frequency of using LBS applications and the number of devices owned with positioning capabilities varied among the 

different participant groups. However, across all a minimum of 52.63% of the users have three or four devices with positioning 

capabilities, such as mobile phones, vehicle satellite navigation, fitness devices, iWatch, iPod, iPad), and a minimum of 44.44% 

on average use their location-based devices at least twice a day. The frequency of using LBS applications by the largest 

participant group (LBS ordinary users) is shown in figure 1. 
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Fig. 1. The frequency of use of the location-enabled devices (left) and applications (right) by ordinary users of LBS. 

B. LBS application segmentation  

The participants were asked about the frequency of use of several applications, including navigation, tracking, emergency 

and safety, local news, location-based social networking, travel guidance, elderly assisted living, and pet/asset finding. The 

participants were asked about the important features of these that they would consider when buying, downloading or in use. 

For each application, the participants were asked to rank the features by importance to them, including the cost of first purchase, 

update fees, battery consumption, user-friendliness of the interface, size and weight (of the device), location accuracy, 

continuity of service (seamlessly indoor/outdoor), delay in providing service, and privacy features. The participants were also 

asked about their minimum (and maximum) requirements for each of these features that would provide an “acceptable” quality 

of service.  

The Random Forest method (Grömping, 2009) was used to cluster applications based on the answers from the various groups 

and identify the requirements of each category (table 2). Random Forest method classifies (or provide with a regression trees) 

each node (input data). Each node is split using the best split among all variables/parameters, here such as privacy, power 

consumption, etc. In a random forest, each node is split using the best among a subset of predictors randomly chosen at that 

node. Random Forest is very user friendly in the sense that it has only two parameters (the number of variables in the random 

subset at each node and the number of trees in the forest), and is usually not very sensitive to their values. Based on this method, 

the five application categories of indoor LBS were classified as: 

 Indoor navigation and tracking (such as pedestrian navigation, indoor tracking),  

 Marketing (shopping advertisements, proximity-based voucher sharing),  

 Entertainment (location-based social networking and fun sharing, location-based gaming),  

 Location-based information retrieval (such as in-gallery tours, underground real-time information),  

 Emergency and security applications (such as ambient assisted living, E112 response).  

These results were within two STD when measured for significance and compatibility in responses. This satisfies the required 

Quality of Service (QoS) identified by other studies (Ghai and Agarwal 2013), (Harle 2013), (Abbas 2015), (Torres et al 2014), 

(Wirola et al. 2010). They mainly identify positional accuracy and availability, privacy, cost, power consumption, reliability 

and continuity of service, plus the response time. 

  
LBS Category Applications Examples Quality of Service Requirement 

Navigation and 

Tracking 
 Pedestrian Navigation 

 Path Finding And Routing 

 Tracking 

 Asset Finding 

- Response in near-real-time  

- Accuracy within a few meters 
- Seamless availability (indoors and outdoors)  

- Good reliability and continuity of service 

- Low-medium power consumption 
- Reasonable or cheap price 

- Strong privacy preservation  

Marketing  LB (Social) Marketing 

 Advertisement 

 Proximity-Based Voucher/ 
Offers/ Rewards 

 LB Social Reward Sharing 

 Location Based Dealing 

 

- Medium to low availability  

- Response in few minutes 
- Accuracy in the order of hundreds of meters 

- Medium reliability and continuity 

- Very low power consumption 
- Free or very inexpensive 

- Medium to strong privacy preservation 

Entertainment  LB Social Networking 

 LB Gaming 

 LB Fun Sharing 

 Find Your Friend 

 LB Chatting 

 LB Dating 

- Medium to high availability (seamless indoors and 
outdoors) 

- Response in real-time or a few seconds 

- Accuracy in the order of tens of meters 
- High reliability and continuity 

- Low power consumption 

- Reasonable or cheap price 
- Medium privacy preservation 

Location-Based 

Information 

Retrieval 

 Location-Based Q&A 

(Query) 

 Proximity Searching 

 Tourist Guide 

 Transportation Info. 

- Medium availability 

- Response in real-time or a few seconds 

- Accuracy from a few meters (e.g. for tourist guide 
and proximity search) to hundreds of meters  

- High reliability and continuity 

- Low power consumption 
- Reasonable or cheap price 

- Medium privacy preservation (depending on the 

application) 
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Safety and Security  Emergency Services 

 Emergency Alert Services 

 Ambient Assisted Living 

 Security Surveillance 

-Very high availability (seamless indoors and 

outdoors) 
- Response in real-time or few seconds 

- Accuracy of tens of meters or lower 

-Very high reliability and continuity 
- Low power consumption 

- Reasonable or cheap price 

- Medium or low privacy preservation  

TABLE 2. LBS APPLICATION SEGMENTS AND THE IDENTIFIED REQUIRED FEATURES USING THE RANDOM FOREST METHOD 
 

In addition to having a better understanding of the requirements of each application category, the results give the pairwise 

comparison ratio for the AHP analysis to find the best positioning technology, among those currently available.    

 

C. Identification of current LBS challenges  

The answers to these questions also indicate one of the most important challenges of the development of LBS markets – a 

lack of mutual understanding among the value chain. One of the best examples of this is the underestimation of the users’ 

concerns regarding privacy by developers (Basiri et al., 2016a). Ordinary users prioritized privacy as one the most important 

features, except in emergency, safety and security-related services, while developers believe that privacy is less important than 

cost and a well-designed user interface. There is also a need for technological development to bridge the gap between what 

developers need and what content and technology providers can deliver.  

In another question, participants were asked to name and rank the important criteria for LBS applications to become 

successful. Predictably, the answers to this question vary between different participant groups. For example, availability of an 

API for developers was voted as one of the most important features (figure 2) while it was not even mentioned by ordinary 

users or technology providers.  

 

 

Fig. 2. The ranking of the features contributing to the success of an LBS application from the developers' perspective.  

Based on this analysis, weighted by the number and the role of participants, and clustered using the Random Forest method, 

the top three biggest challenges for LBS applications were identified as (1) Quality of positioning service, (2) Privacy concerns, 

(3) Availability of the content. 

Privacy concerns refer to the (perception of) issues concerning the mis/re-use and/or inference of positional data by the 

service provider or a third party. Availability of content refers to the possibility of having access to the data, services and 

information essentially required to provide the service. This includes up-to-date maps, APIs, contextual data, and so on.  These 

three challenges to the development of LBS have been identified in market reports and literature reviews. Knowing these 

requirements, the current solutions can be explored and evaluated to see if they are being addressed and, if not, where are the 
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deficiencies and how they can be bridged.  

III. INDOOR LBS CHALLENGES AND THE POTENTIAL SOLUTIONS 

A. Positioning Requirements and Solutions 

Reliable, inexpensive indoor positioning is needed for many LBS applications. It needs to be able to localize users accurately 

and work seamlessly with outdoor positioning technologies (Mautz 2012). In this subsection we review positioning 

technologies from a quality-of-service point of view to give a clearer picture of what is the biggest challenge to achieving this.  

In general, localization technologies can be categorized into three main groups: Beacon-based positioning technologies, 

Dead-Reckoning (DR), and Device Free. Some technologies blend more than one of these, so can be classified into a fourth 

group Multisensory positioning. Each will now be described.  

1) Beacon-based positioning systems 

GNSS, the most widely used outdoor positioning technology, uses Radio-Frequency (RF) signals. However, the signals can 

be easily attenuated, reflected and/or blocked by buildings, walls and roofs (Kjærgaard at al. 2010). There have been attempts 

to use GNSS signals inside buildings using ground-based PseudoLites (PL) (Kuusniemi et al. 2012) mimicking satellite signals 

or high-sensitivity GNSS (HSGNSS) receivers. However, despite being technologically possible, neither could become a 

ubiquitous solution for “indoor GNSS” due to the high costs involved.   

PL requires installation of many stations, thus it is not a low-cost solution and must be carefully planned so as not to interfere 

with GNSS. Effective HSGNSS receivers can be expensive, up to hundred euros depending on the features the module offers 

(Pinchin et al. 2013). Moreover, the signals indoors are so weak that it is very difficult to acquire a dynamic position easily. 

Television broadcast and cellular signals penetrate buildings better than GNSS (Torres-Solis et al. 2013). The positioning 

accuracy that can be achieved with these signals is not accurate, often greater than 50m (Deng et al. 2013), (Samama 2012), 

(Bonenberg at al. 2014), (Bonenberg et al. 2013), (Bonenberg at al. 2012).   

In addition to these technologies, there are some other methods that can be applied for GNSS-based positioning in partially 

denied areas. These include shadow matching (Groves, 2015). Digital Video Broadcasting — Terrestrial (DVB-T) relies on 

orthogonal frequency-division multiplexing (OFDM), which can provide fine information regarding the channel state. Besides 

that, the emitters' locations are usually known, which also offers a great advantage over the other technologies. However, one 

of the main challenges is the low number of emitters. In addiiton, the receiver has to identify and match the incoming signal to 

a specific emitter. This poses a question on how accurate and reliable this can be done, increasing the risk of errors in the 

position estimation (Huang et al. 2013).  

Wireless Local Area Networks (WLAN) technologies are certainly one the most popular positioning technologies provided 

based on the RF-based technologies, which had not been developed initially for positioning purpose. IEEE 802.11 is one of the 

most popular standards for WLAN. This protocol has made its way to almost every electronic device. Since most recent IEEE 

802.11 protocols rely on OFDM signals, these signals pose a new opportunity for positioning. Due to its ubiquitous availability 

in urban environments, residential and commercial, it can be used for indoor positioning with an acceptable availability. For 

positioning these networks have been used mostly under fingerprinting solutions, offering a relatively good performance, 5 to 

10 meters, in densely covered areas (Shrestha at al. 2013), (Nurminen et al. 2013).  

These signals report on the channel state, which can be exploited in a positioning context to obtain range measurements. 

This metric is more reliable than the Received Signal Strength Indicator (RSSI) but it also requires accurate environment 

models. However, these models are difficult to build, since most channel effects are difficult to model or understand how to 

properly model them. Therefore a training phase could also be necessary (Xiao et al. 2013). 

There are many existing Wi-Fi access points. Signal strength and flight time are usually the wanted attributes. 802.11v consists 

also of positioning protocol. (Ciurana et al. 2011) assesses the 802.11v standard for Time of Arrival (ToA) positioning. 

Furthermore (Sendra et al. 2011) compares the coverage and interference of the different protocols in the 802.11 families. In 

(Hao 2013) Wi-Fi access point signal strengths were collected for fingerprinting. The strength was represented according to 

the Wi-Fi Access Point MAC addresses. (Hejc et al. 2014) used Wi-Fi with GNSS receiver and IMU. Moving from indoor to 

outdoor environment is challenging because the GNSS requires time to achieve the first fix. Thus it is necessary to identify 

these transition region characteristics between the technologies used. There is also work going on with the next-generation 

802.11az amendment, which is designed for new positioning applications designed to run on wireless networks.  

Ultra-wideband (UWB) characteristics offer advantages for coping with multipath. Particularly its impulse radio short pulses 

make it easier to detect the multipath components. Repeatability is a strong advantage for the ultra-wideband approach. This 

means that the positioning result stays consistent over a time period (Meng et al. 2012). UWB tag was placed on shoe and 

helmet in (Zampella et al. 2012). The tag measurements on the shoe had much more outliers due to non-line-of-sight conditions. 

Although high time resolution of UWB signals makes it easier to distinguish between original and multipath signals, the non-
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line-of-sight condition is still a challenge. 

Bluetooth is another wireless technology standard for exchanging data over short distances (Hossain et al. 2007), which has 

increasingly become popular since the release of the standard Bluetooth 4.0 protocol. Bluetooth low energy (BLE) is a version 

of Bluetooth meant for low power applications, which allows some of applications to operate in a continuous manner for 

extended periods of several months. Due to its power efficiency and low cost, BLE can be deployed in several tags or beacons 

throughout the environment, in order to offer a more accurate indoor positioning solution (Silva et al., 2015). A shorter 

operation range allows for the proximity based positioning, providing a better performance regarding the estimated position 

error. The specification does not set an upper limit for the BLE range of operation, but experiments show that over 20 meters 

the RSS become very low, making the positioning practically impossible.  

RFID system consists of RFID readers and transceivers or tags. In the active approach, the user carries the reader and scans 

the tags in the environment. In the passive approach, the user carries the tag and the environment has readers set up for 

positioning. The passive RFID detection range is very short (2m) and in practice, a stand-alone passive system would be costly 

to set up. Privacy is of concern especially in passive RFID tag systems where the computation capability of the tag cannot 

support necessary cryptographic data protection. RFID is implemented generally as a proximity positioning system (Fujimoto 

et al. 2011), (Seco at al. 2010), (Pateriya et al. 2011), (Hasani at al. 2015). 

Cameras can also be used for positioning in several ways. The user can carry the camera and the images can be matched 

against available geo-referenced photos (Basiri et al., 2016b). Basiri et al. (2014) used markers/codes placed at landmarks and 

a mobile phone camera was used to identify unique markers and look up the corresponding position in a database.  Kivimaki 

et al. (2014) lists infrared sensor technologies. However, micro-bolometer and Golay cell-based infrared cameras are very 

expensive and may not be applicable for many indoor LBS applications. Thermopiles and pyroelectric sensors, although less 

accurate, are very affordable. These can be effective in low lighting conditions where conventional image processing is 

impossible.  

Compressible media, such as sound and ultrasonic signals travel through a medium like air and the received strength or the 

time of travel can help to calculate the position of the receivers. Signal strength, form recognition and travel time are the 

common methods used to derive the location. Hoflinger et al. (2014) used signal amplitude envelope detection on received 

chirp-form signals. Rishabh et al. (2012) used time of arrival (ToA) to calculate the position. The timing was based on detecting 

specific sound signals by comparing them with the reference signals at base stations. The recorded signal detection was carried 

out by cross-correlation with the reference signals. The sound source can be carried by the user or multiple sound sources can 

be located within the environment as base stations. Multipath, echoes and ambient noise in the environment make sound-based 

localisation system design challenging.  
 

2) Dead-Reckoning (DR) positioning systems 

Dead-reckoning positioning systems can be classified into two groups; plain Inertial Navigation Systems (pINS) and Step 

and Heading Systems (SHS). With arrival of Microelectro Mechanical System (MEMS) INS found wide use. Smartphones 

with inertial sensors, such as accelerometers and gyroscopes, allow us to use them as input devices for Pedestrian Dead 

Reckoning (PDR). The increased interest in the MEMS sensor utilization is related to their small size (in cm order) and low 

cost due to the silicon fabrication process. In the most common configurations, MEMS inertial units comprise accelerometers 

that provide the user position by double integrating the specific force along its sensitive axis; MEMS gyroscopes, measuring 

the body rotational motion across each sensitive axis, with respect to the body sensor frame and 2- or 3-axes accelerometers 

and gyroscopes along with the magnetometers measuring the heading of the vehicle. In many cases only horizontal positioning 

is of great interest, a standalone position from the dead-reckoning MEMS sensor can be provided from the use of two 

gyroscopes and one accelerometer. (Racko et al., 2016) used smartphone sensors, including low-cost Inertial Measurement 

Unit (IMU), for PDR and compared with more precise and expensive Xsens IMU. The accuracy of inertial sensors has increased 

in the past few years, but they still cannot alone provide proper accuracy because of many negative effects, such as heading 

drift due to gyroscope bias (Racko et al., 2016). Among the pINSs, the tactical grade IMU have a drift of a few meters in a 

minute (Boll at al., 2011), but they are quite expensive and bulky for many LBS applications. On the other hand, the low-cost 

MEMS inertial measurement units require additional external features, such as zero velocity updates, map matching or external 

sensor aid, to achieve similar accuracy (Harle 2013), (Hide et al. 2010), (Pinchin et al. 2014),  (Hide et al. 2012). Skog et al 

(2010) evaluated zero-velocity detectors for foot-mounted INS. |Gait style, step size estimation and attitude determination are 

the key parameters in Step and Heading Systems. Map matching techniques aided inertial navigation (Pinchin et al. 2013), 

bring the low-cost MEMS INS accuracy closer to that required for indoor LBS. Also, cold atom interferometry and chip-scale 

atomic clocks are still under development (Groves 2014). Dead reckoning systems are not generally considered as stand-alone 

positioning systems as they have to rely on the calibration of external positioning technologies such as GNSS and Wi-Fi due 
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to their drift. Drift of position is the challenge in inertial dead reckoning, and the double integration of acceleration data into 

positional information is hard to stabilize. Another challenge is the initialization of the IMU parameters. If the starting position 

and heading are slightly wrong these errors will accumulate over time. Pinchin et al. (2012) uses the cardinal directions of the 

built environments as a map-matching technique to adjust the user track and position. A comprehensive literature review on 

inertial positioning systems has been published by Harle (2013). Step and Heading Systems (SHS) use estimates of step length 

and heading. Peak-detection, zero crossing, template matching and spectral frequency analysis are some of the approaches to 

detect steps. Skog et al (2010) compared four step detection algorithms: acceleration moving variance, magnitude, angular 

energy rate detection and a likelihood method that combined all three. Slippery ground, shuffling and use of elevators are all 

challenges for estimating the next step position. These make it difficult to detect zero velocity thresholds or zero angular 

velocity. Alternative and even more complex ways for getting the inertial navigation solution are for example by using learning 

methods like statistical model comparisons of learnt IMU records, artificial neural networks and regression forests (Nguyen et 

al, 2010). In summary, the inertial systems as dead reckoning systems are not sufficiently accurate for indoor positioning by 

themselves.  

3) Device-free positioning  

Tactile sensors, such as piezoelectric, capacitive touch surfaces, levers and buttons can recognize the presence of a user at a 

certain location. Tactile localization is based on the deployment of sensors or probes being in direct physical contact with a 

surface or an obstruction. Similarly, an odometer is direct and continuous (Kivimaki et al. 2014, Middleton et al. 2009). 

Localization using tactile sensors is relatively straightforward and accurate. However, identification in public environments 

may need additional information, such as a camera image, to identify and deliver the correct location for the targeted user. 

Identity for odometry, on the other hand, is easier to implement but it requires the user to carry the sensor.  

Cameras, such as CCTVs, also can be used for positioning; the user (feature or marker) can be detected by a camera network 

covering the environment (Torres-Solis et al. 2010). Using visual odometry, location can be tracked using image flow by 

comparing patterns in sequential images. A stereovision setup can also be applied for more accurate camera movement 

estimation or three-dimensional positioning. 

Barometers are relatively easy to use for measuring air pressure, particularly indoors, and this makes it feasible to use it for 

detecting changes in height or altitude. Floor level was successfully distinguished by Bai et al. (2013). As weather conditions 

can change, affecting the reference pressure, measured pressure and the temperature, calculating the correct height is 

challenging in a real time application. 

As mentioned before, magnetic-based positioning technologies determine location based on the magnetic field value 

assigned to each point. However, the existences of the metallic objects or radio devices often make this very difficult with 

magnetometers. Zampella et al. (2012) measured the stable magnetic field while stationary. If there was any angular rate 

detected during the stance this was used to correct the yaw drift and gyroscope bias. Fuzzy Inference System (FIZ) (Afzal et 

al. 2011) uses four magnetic field parameters to detect whether the magnetic field was disturbed inside a building (Hao at al. 

2010). As practical experiments and requirements analysis have shown, a single positioning technology cannot be the answer 

to the requirements of many applications of indoor LBS. Multi-sensor positioning can solve some problems for some 

applications. Improvements in the sensitivity and accuracy of current sensors, upcoming technologies such as BLE, Galileo 

with its higher signal penetration, a change in policy and legislation regarding the use of some technologies such as pseudolites 

can help to improve the quality of indoor positioning services.  

Table 3 summarizes the important characteristics of surveillance positioning systems. They include the possibility of being 

used stand-alone, the achievable accuracy, cost of the sensor and components on the user’s device, cost of implementations 

and the deployment of the infrastructure for a citywide application, privacy (system security measures against location 

information hacking categorised into three categories of (a) high (the positioning signal is broadcasted from the terminal and 

device receive and calculated location with a minimum communication over network, e.g. GNSS is highly privacy preserving), 

(b) medium (device can receive and calculate the location but it needs communications over network and the device is 

potentially identifiable by the transmitter, e.g. Wi-Fi based positioning), and (c) low (where the location are not calculated on 

the device and a third party can only send back the location to the user, e.g. positioning using CCTV cameras),  power 

consumption (on the user device), coverage of the positional signals, and required data rate. 

Positioning 

technology 

Stand-

aloneness 

Data 

(output) 

rate 

Accuracy  Coverage 

(range of the 

positioning 

signals) 

Cost for users  Cost of the 

Infrastructure  

Computational 

load/Battery 

consumption  

Privacy  

GNSS Stand-alone ~1Hz 4m – 7m Generally 
available 

outdoors 

£1-£100 (e.g. u-
blox LEA5H 

~£50) 

Billions of Pounds (but 
already existing) 

150mW- 1.5W High 
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Pseudolite Stand-alone ~1Hz 3m-7m ~50km Locata receiver 

~£5000/ IFEN 
NavX 

~£100000 per transmitter  ~1W transmit power High 

Mobile 

networks 

Stand-alone 1Hz-a 

few Hz 

1m-a few 

hundreds of 

meters  

~ A few km >£10(OMAP) Millions of Pounds  (but 

already existing) 

~1W(TI OMAP) Medium 

WiFi RSS Stand-alone 0.25Hz, 

3Hz, 

0.2Hz 

2m – 4m 10cm-50m HP Ipaq £77 20£-(more than £50) per 

Access Point 

>1W, 700mW (for 

WSN802GX),  

>500mW for transmit 
and 200mW for 

receivers 

Medium 

WiFi 

ToF/AoA 

Stand-alone 1-10Hz  1.7m– 10m ~25m >£5 >£50 (AP Prices) >1W/ 100mW Medium 

UWB ToF Stand-alone ~25Hz, 

>10Hz 

15cm- 1m 

1.5m-3m 
(for UWB 

RSS 

Proximity/

Scene 

Analysis 

~5m-175m  £60 (for 

ubisense tag 
IP63 slim)- 

£1000 

(laboratory 

equipment) 

Expensive laboratory 

equipment 

>1W/ (500mW 

transceiver)/ ~300mW 
receiver and 600mw 

transmitter) 

Medium 

RFID active Stand-alone 0.5Hz, 
0.2Hz 

1m-3m/ 30 – 100m ~£300 (I-Card 
III interrogator), 

>£500 M220 

reader 

>£10 per tag ~250mW Medium 

RFID passive Stand-alone 20Hz, 
80Hz  

15cm-
50cm 

~2m >£10 per tag ~£200 >£1000 per reader <50mW for tag and 
300mW for reader 

Low 

Bluetooth RSS Stand-alone 0.2Hz, 

2Hz, 

1Hz, 
30Hz 

2m-5m  Modifiable (1-

25m, 150m in 

open fields) 

~£5 receiver £5-£30 per tag 25mW- 50mW High  

Barometer Assistive  ~2Hz 33cm-0.2m Ubiquitously  ~£10 Not applicable ~5mW High 

Sound Stand-alone 1Hz-tens 
of Hz 

1cm-1m ~3m-10m/  £10-~£300 £10-£100 per node 20mW-100mW  Medium 

Infrared (IR) 

marker or 

reflective 

element 

 

Stand-alone ~50Hz 10cm-

6m(for 
active 

Badges  

~6m (depends 

on tag 
placement)  

~£1 (marker)- 

~£10(camera) 

£1 (marker)-£10 

(camera) 

<50mW (for markers)- 

165mW (for camera)+ 
processing 

consumption 

Low (for 

environm
ent)/ high 

(for user 

with the 
camera) 

Infrared (IR) 

Light 

Image feature 

matching 

Stand-alone ~20Hz 0.2 – 0.8m ~6m- 10m ~£1 

(thermopile) 

~£1 per thermopile- 

€8000 microbolometer 

camera 

<50mW (thermopile) Low (for 

environm

ent)/ high 
(for user 

with the 

camera) 

Magnetometer Stand-alone 

(needs 

magnetic 
maps) 

5Hz-

75Hz 

1mm for 

permanent 

magnet- 
20cm for 

fingerprinti

ng 

1m magnetic 

fingerprint map 

£2-£10 >£2*n <50mW High for 

sensor 

but low 
for user if 

carrying 

a magnet 

Electromagnet

ic system 

Stand-alone 1Hz 1% of the 

range 

~ 5m- 20m >£1000 ~£16 per mm^2  >1W Low 

Light Image 

marker 

Stand-alone 

and 
Assistive 

(for 

snapshots or 
odometry) 

5Hz-

30Hz 

1mm-30cm ~6m (resolution 

dependent) 

~£10- £500  >£10 for marker amount 200mW- ~2W High (if 

user 
carries 

the 

camera) 

Light 

Image feature 

matching 

Stand-alone 5Hz- 

30Hz 

~10cm (1% 

drift for 
odometer) 

~6m (resolution 

dependent) 

~£1 for 

odometer- £100 
for camera 

modules 

~£10-£100 per camera 50mW for odometer 

and up to 1W for 
cameras 

High 

(odomete
ry and 

user 

carrying) 
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TABLE 3.  POSITIONING TECHNOLOGIES SPECIFICATIONS AND FEATURES 

 

This paper applies a usability analysis to select the most suitable positioning technology, among those already available, for 

each LBS application segment. To do so, AHP methodology (Saaty, 1980) is used to make the comparisons of objectives and 

alternatives in a pairwise manner. Analytic Hierarchy Process (AHP) is one of the Multi-Criteria Decision Making (MCDM) 

processes, which derives ratio scales from paired comparisons between criteria and factors (Saaty, 1980). AHP can 

systematically help decision makers to select between choices based on criteria and factors, which can represent priorities and 

preferences. One of the most valuable aspects of AHP is the flexibility to consider both quantitative and qualitative parameters 

and factors to prioritise the choices (Saaty, 1980). This enables decision makers to include almost any kind of criterion, from 

wide range of natures, allowing AHP to be practically applied in many real-world decision-making problems. In addition, AHP 

can accept human inconsistencies in judgments. AHP is based on pairwise comparisons, ideally done by experts. 

The AHP has been applied to a wide range of problem situations, however, one of the most widely used applications of AHP 

is selecting among competing alternatives in a multi-objective environment. It is based on the well-defined mathematical 

structure of consistent matrices and their associated right-Eigen vector's ability to generate true or approximate weights (Saaty, 

1980). To do so, AHP methodology includes comparisons of objectives and alternatives in a pairwise manner. The AHP 

converts individual preferences into ratio-scale weights that are combined into linear additive weights for the associated 

alternatives. These resultant weights are used to rank the alternatives and, thus, assist the decision maker (DM) in making a 

choice or forecasting an outcome. In order to select the most suitable positioning technology, the selection criteria are first set. 

As discussed in section 2.2, the participants of the survey gave a score to each feature of LBS applications. These scores are 

used for the pair-wisely comparison of features, that is finding the ratio/value showing which feature has priority over the others 

(Basiri et al., 2015). For example, for the group covering navigation and tracking, according to the criteria pairwise comparison 

matrix (with consistency ratio of 1.5% and eigenvalue of 5.067) the weight of quality features of sorted as follow: 

coverage/range (38.3%), cost to the user (20.1%), power consumption (15.8%), accuracy (14.5%) privacy (5.9%), and cost of 

the infrastructure (5.4%).  

As a second level comparison, the pair-wise comparison from the criteria point of view, the results of the experiments and 

literature review summarized in tables 3 and 4, are used. This means, for example, regarding accuracy, the priority of GNSS 

over WLAN is determined based on the ratio of the accuracy of GNSS positioning (4m-7m) with respect to the WLAN's (2m-

4m). For qualitative parameters some values are assigned to the scores. For example, for privacy, technologies are weighted as 

GNSS (and HSGNSS, Pseudolite, barometer+GNSS, INS+GNSS) (33.8%), UWB (12.5%), BLE (12.5%), Ultrasound (11.2%), 

WLAN (11.3%), RFID active (8.4%), tactile floor (5.1%) and RFID passive (4.2%), and camera (1.1%). The results have a 

consistency ratio of 1.5% and principal eigenvalue of 8.142. 

At this stage, the positioning technologies, which cannot be used as a stand-alone technology, such as a barometer, are either 

excluded or the combination of them with another technology is considered as one single alternative. Based on the calculated 

priority and weights of positioning technologies and also quality features of each LBS application group, it is possible to 

prioritize each technology for each application. 

 

Priority of each technology = summation of (importance of each quality feature * priority of the technology 

from quality feature perspective) 

 

For example for the application group of information retrieval, the GNSS and WLAN are the most suitable positioning 

technologies with values of 16.2% and 16.5%, respectively. This can be done for all the application groups and the most suitable 

positioning technology for each application group is shown in table 4. 

 
Indoor LBS 

Category 

The Top3 Most Suitable Positioning 

Technology already available 

Tactile 

On user 

device 

Assistive 50-

500Hz 

 Ubiquitously     Very low  High  

Tactile 

Environment 

Stand-alone 22Hz-
60Hz 

4cm-40cm Ubiquitously  Low ~£100 (per 3x2m^2 area)   Low 

Tactile 

Odometer 

Assistive 4 pulse 
per 

rotation 

  Ubiquitously  Low   ~150mW High 
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Indoor Navigation 

and Tracking 

1. Bluetooth Low Energy (BLE) -17.27% 

2. Wireless Local Area Networks (WLAN)-
13.75% 

3. (GNSS+INS)-13.3% 

Marketing 1. Wireless Local Area Networks (WLAN)- 
12.65% 

2. Bluetooth Low Energy (BLE)-10.25% 

3. Mobile Network-8.47% 

Entertainment 1. Wireless Local Area Networks (WLAN)- 
17.45% 

2. Camera-16.98% 

3. Mobile Network -10.43% 

Location-Based 

Information Retrieval 

1. RFID-10.43% 

2. Bluetooth Low Energy (BLE)-9.67% 

3. Wireless Local Area Networks (WLAN)- 
9.65% 

Safety and Security 1. (GNSS+INS)-10.43% 

2. Wireless Local Area Networks (WLAN)- 
8.74% 

3. The rest are almost equally unsuitable 
(suitability less than 5%) 

TABLE 4. POSITIONING TECHNOLOGIES SUITABILITY FOR EACH LBS APPLICATION CATEGORY 

B. Privacy concerns 

Personalization is one of the key features of intelligent, context-aware, adaptive LBS. However, this requires the storage of 

personal preferences, activity history, current location and previous movements (Toch et al., 2012). The threats associated with 

the violation of location privacy can dramatically limit the development, adoption and growth of LBS applications. LBS require 

the user to disclose their location to enable personalization. Service providers can potentially store, use (or misuse, reuse), and 

sell location data. Such potential threats can discourage users (Chin et al., 2012). Unrestricted access to information about an 

individual’s location could potentially lead to harmful encounters.  

In addition, an individual’s location history can potentially disclose activities, preferences, health, background and history 

and other (even more) private aspects of life. In particular, if the locations are accompanied by temporal information, the 

trajectory of movement, then more can be revealed (Chen et al., 2013). De Montjoye et al. (2013) understood that only four 

anonymous spatio-temporal points are enough to uniquely identify 95% of the individuals within the crowd. 

In addition to these potential threats, lack of awareness regarding issues of location privacy among ordinary users may 

introduce an even big threat to LBS markets: the public may overestimate the threat (Shokri, 2015), (Chin et al., 2012). This 

might be partially due to the fact that the necessary guards to protect location privacy do not need to be the same for all 

applications and services. The level of accuracy, the potential of unauthorized access and/or inference of higher-level private 

information, and the impact of any privacy violation in each application can be different (Puttaswamy 2014). The level of 

privacy for each application category identified within the survey is illustrated in table 1.  

In order to access location-based services, mobile users have to disclose their location to the service providers. However, 

such information can be simply reused by the same or other sectors without the user’s permission.  In order to protect the 

privacy of the LBS users, there are several approaches and mechanisms which we can categorize into four groups; regulatory, 

privacy policies, anonymity, and obfuscation. 

Regulatory approaches to privacy develop and define rules to manage the privacy of individuals and the public. Although 

these are being developed by governments and legislative sectors and are, in general, strictly enforceable, they have faced 

several challenges. In addition, due to the time-consuming and complicated process involved, the number of privacy regulations 

is still relatively small for this fast-growing technology and they are far behind the needs and demands.  

While regulatory approaches target global or group-based safeguards, privacy policies provide more flexible and adaptive 

protection mechanisms for individuals (Myles et al., 2003), (Gorlach, 2004). Location privacy policies, such as the Internet 

Engineering Task Force (IETF) GeoPrive, the World Wide Web Consortium’s privacy preferences project (P3P) and Personal 

Digital Rights Management (PDRM) are current protection approaches. The nature of LBS applications introduces a big 
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challenge to these privacy policies. The rapidly changing, highly innovative and fast growing ecosystem of LBS makes it 

difficult to update, issue or adapt the policies to protect emerging applications and technologies.  

Anonymity-based approaches, such as K-Anonymity (Sweeney, 2002), disassociate location information from the user’s 

identity and minimizes the possibility of inference and traceability the other information. Although they are technically easy to 

implement, they can be a barrier to the personalization of LBS, which are becoming more common and for many applications 

essential (Xu et al., 2011). A possible solution for this can be pseudonym-based approaches as they allow partially some levels 

of personalization by keeping the individual anonymous while giving a persistent identity (an alias or pseudonym). The 

pseudonym can be linked to their actual identity when using higher safeguards. However, location patterns may lead to 

identification if this data is combined with other data as well. Sweeney (2002) shows that 87% of people can be uniquely 

identified by combining otherwise anonymous attributes, such as their postcode, age and gender.  

Obfuscation lowers the positional quality of the recorded user location to protect it from misuse by degrading the quality of 

locational information through the addition of inaccuracy, imprecision and vagueness (Duckham, 2006). As it mainly deals 

with the quality of positional data, table 2 summarizes aspects of quality-of-service provided by the common LBS positioning 

technologies.  

It can be the case that for many scenarios more than one privacy protection approach is required. Table 5 summarizes the 

challenges and disadvantages of each four categories identified. Despite the need for these multiple approaches to protect user 

privacy, in many situations (location) data does not need protection. Due to their spatial and/or temporal inaccuracy, there are 

some datasets that may not be worth attacking and therefore (extra) protection may no longer be required. However, one 

application's public data can be considered private for another, and vice versa. Also, social trends and public perception of the 

concept of privacy is fluid.  

 

Privacy Protection Category Disadvantages And Challenges 

Regulatory  

 

 The possibility of having different interpretations and implementations of the very same 

rule and regulation.  

 The small number of rules and regulations due to the time-consuming and complicated 

process of their development, particularly for fast-growing, innovative and rapidly 

changing technologies and applications.  

 The regulations, on their own, cannot guarantee or even prevent the invasion of privacy 

and they only act after the privacy violation has happened. 

Policy  The rapidly changing, highly innovative and fast growing ecosystem of LBS makes it 

difficult to update, issue or adapt privacy policies   

 The privacy policies need to rely on the available regulation to be practically applicable 

and the liability relies on supporting regulations and rules. 

Anonymity  Anonymity can be viewed as a barrier to the personalisation features of LBS, which are 

becoming more and more popular and, for many applications, essential. 

 The pattern of anonymised data may lead to identification of the individual if combined 

with other data.  

Obfuscation  Obfuscation can compromise the quality of LBS responses that depend on the quality of 

positional data.  

 It needs user authentication. 

 Obfuscation assumes that users are able to choose what information to reveal to a service 

provider, which may not always be the case.  

TABLE 5. PRIVACY PROTECTION APPROACHES 

C. Availability of Content 

LBS is supposed to provide tailored information to users with satisfy their requests, needs, situations and preferences. This 

requires the availability of relevant information to be filtered based on the query and contextual information. Among all the 

relevant data sources, maps and other spatial datasets are essential for the functionality of many LBS applications. These include 

transport networks for routing and navigation and locational maps of points-of-interest. However this content, particularly for 

indoors, raises issues of privacy and legal concerns. In addition, the often limited access makes it is difficult to assure the 

quality of indoor data such as its reliability and its spatial, temporal and thematic accuracy (Basiri et al., 2016d).      

Google is one of the major providers of indoor LBS. Their product tells customers what floor they are on in a building. 

Google’s indoor mapping concentrates mainly on important well-frequented buildings such as major airports. Detailed floor 

plans automatically appear when the user is viewing the map and the map is zoomed to buildings where indoor map data is 
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available. But even for this newest release, many indoor areas are not available and, even when present, does not provide full 

navigational instructions. For example, stairs between floors are not included. Overall, indoor map coverage and resolution is 

not comparable with that for outdoors.  

The poor coverage of indoor maps is not mainly a technical issue (Lorenz et al., 2013). It is more due to the privacy issues 

associated with privately-owned properties and also the lack of suitable policies and technical standards for privacy protection 

this data. 

One of the solutions, which has already shown its practicality and growing popularity, is crowd-sourcing and volunteer-

based mapping (Sui et al., 2012). Collaborative mapping through crowd-sourcing is one method of generating spatial content. 

It involves contributions from a large, disparate group of individuals. These methods, part of Web 2.0, use applications that 

allow people to upload information easily and allow many others to view and react to this information (Basiri et al., 2016c). 

There are several tools available which allow users to create and edit web content, including tagging tools, wiki software 

and web-based spatial data editors. This method of data collection and generation uses citizens in large-scale data collection, 

sometimes also with the participation of companies and is referred to as volunteered geographic information (VGI). This 

approach could be very suitable for indoor mapping. The popularity of VGI is growing. Table 6 shows that the number of 

contributors in 2016 has been six times that in 2011 and more than 3.5 billion nodes and 450 million ways (links) have been 

stored, a three-times increase.   

These approaches can be partially used by mapping agencies and data gathering institutions. Despite the popularity and the 

involvement of citizens with the collection of geospatial data, there is still only poor mapping coverage for indoor spaces.  VGI 

projects, such as OpenStreetMap (OSM), are contributing to the increasing interest in indoor mapping but there is still a long 

way to go. Standardization of data formats, scale, metadata and privacy policies are still needed. Global coverage of indoor 

mapping is likely to find obstacles in the form of cultural and political opposition. Many of those who openly contribute to 

VGI projects for outdoor public environments will not want to publish maps of private indoor property. In addition, if they do 

contribute this data to a VGI project, these maps cannot be edited by other contributors since they may not have access. This 

simple example highlights accuracy, reliability, and precision as some of the key criticisms regarding VGI data.  

 

Year 
Percentage of active 

contributors 
Number of Registered 

Contributors 

Number of ways  Number of nodes 

2011 3.5% 501465 116196873 1280961903 

2012 2.8% 1100215 159811148 1680385760 

2013 1.50% 1824599 207118018 2108992829 

2014 1.20% 1882817 262569075 2629122837 

2015 1.00% 2371829 318959062 3126436219 

2016 0.85% 3106987 445110741 3551080106 

TABLE 6. STATISTICS FOR THE NUMBER OF REGISTERED CONTRIBUTORS AND THE STORED WAYS AND NODES IN THE OSM DATABASE. 

 

The best option to improve coverage of indoor maps might be changing policies and legislation where necessary to encourage 

more contributions to crowd-sourced data. Privacy is an on-going issue that needs to be included in these. However, there are 

many public places, such as shopping malls, airports and universities, which already provide their map online via their own 

web pages. These types of locations can be good targets to start the expansion of indoor maps.   

Considering these issues (positioning, map coverage and privacy) it appears that indoor applications comprise quite a 

challenging segment of LBS. In addition, there are some other challenges such as their complexity for modeling and analysis, 

contextual information inference, data storage and streaming, which need a further level of customization for current LBS 

services. 

IV. DISCUSSION   

Indoor LBS has not yet found its position in the market, despite the fact that people spend most of their time inside buildings, 

e.g. offices and apartments. Indoor LBS faces several technical and non-technical challenges and this paper has studied the 

three most important ones, according to a survey conducted, including indoor positioning, availability of indoor maps, and 

location privacy.  

In terms of positioning technologies, the usability analysis of current solutions for different segments of indoor LBS market 

shows that there is a gap between the quality of positioning services and the requirements of indoor LBS applications. This 

becomes particularly concerning when it comes to safety and security applications, which are potentially life-saving such as 

emergency services. Multi-sensor positioning could provide a solution for indoor positioning but it is subject to miniaturisation 
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of more devices to be embedded in a size of a mobile phone, as the most widely used device for using indoor LBS. There are 

also some promising results based on new technologies, such as quantum technologies, which requires more tests and more 

importantly mass market (with lower cost) productions.  

For indoor content, particularly maps as the essential type of contents for indoor LBS, there are still some long ways to go. 

Storing indoor maps are somehow associated with the third biggest challenge of indoor LBS, i.e. privacy. What this paper finds 

a relatively smoother start to improve the coverage of indoor maps, is crowd-sourcing the indoor maps of public places. Crowd-

sourced maps can hugely improve the coverage of indoor places, as the biggest issue for indoor maps unavailability rather than 

quality. Also, it seems that in the era of social media networking, particularly new generation can have milder privacy concerns 

and so this can help the development of indoor LBS. In addition, new/updated legislations and policies regarding location 

privacy can make a big difference. 

V. CONCLUSION 

Indoor LBS is not commonly implemented in mobile services due to the many technical challenges that remain. This paper 

has analysed the requirements and challenges of providing indoor LBS by reviewing the available literature and conducting a 

survey. The main requirements of indoor LBS applications were determined and challenges were identified. Aspects related to 

quality of service (including availability, accuracy, and cost) were identified as the major challenges. The development of 

multi-sensor positioning services and new technologies such as BLE give potential solutions. The paper also highlighted the 

most suitable existing solutions using an Analytic Hierarchy Process on the LBS application categories. The results of this 

analysis shows that in some applications, such as emergency and security, there is actually no good option for indoor 

positioning. WLAN is the technology that comes as the most suitable over all application categories. However, its relatively 

low suitability value in specific areas indicates the need for improvement or the development of something superior. 
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