189 research outputs found

    Laser beam characterisation for industrial applications

    Get PDF
    This thesis describes the theory, development and applications of laser beam characterisation for industrial laser materials processing systems. Descriptions are given of novel forms of beam diagnostic systems and their integration into highly automated industrial tools. Work is also presented that has contributed to the new ISO standard on beam characterisation. Particular emphasis is given to excimer laser applications and UV micromachining. [Continues.

    Scanning evanescent wave lithography for sub-22nm generations

    Get PDF
    Current assumptions for the limits of immersion optical lithography include NA values at 1.35, largely based on the lack of high-index materials. In this research we have been working with ultra-high NA evanescent wave lithography (EWL) where the NA of the projection system is allowed to exceed the corresponding acceptance angle of one or more materials of the system. This approach is made possible by frustrating the total internal reflection (TIR) evanescent field into propagation. With photoresist as the frustrating media, the allowable gap for adequate exposure latitude is in the sub-100 nm range. Through static imaging, we have demonstrated the ability to resolve 26 nm half-pitch features at 193 nm and 1.85 NA using existing materials. Such imaging could lead to the attainment of 13 nm half-pitch through double patterning. In addition, a scanning EWL imaging system was designed, prototyped with a two-stage gap control imaging head including a DC noise canceling carrying air-bearing, and a AC noise canceling piezoelectric transducer with real-time closed-loop feedback from gap detection. Various design aspects of the system including gap detection, feedback actuation, prism design and fabrication, software integration, and scanning scheme have been carefully considered to ensure sub-100 nm scanning. Experiments performed showed successful gap gauging at sub-100 nm scanning height. Scanning EWL results using a two-beam interference imaging approach achieved pattern resolution comparable to static EWL imaging results. With this scanning EWL approach and the imaging head developed, optical lithography becomes extendable to sub-22 nm generations

    Acoustic Communication for Medical Nanorobots

    Full text link
    Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates of about 10,000 bits/second between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.Comment: added discussion of communication channel capacity in section

    A Hybrid System for Dental Milling Parameters Optimisation

    Get PDF
    This study presents a novel hybrid intelligent system which focuses on the optimisation of machine parameters for dental milling purposes based on the following phases. Firstly, an unsupervised neural model extracts the internal structure of a data set describing the model and also the relevant features of the data set which represents the system. Secondly, the dynamic system performance of different variables is specifically modelled using a supervised neural model and identification techniques from relevant features of the data set. This model constitutes the goal function of the production process. Finally, a genetic algorithm is used to optimise the machine parameters from a non parametric fitness function. The reliability of the proposed novel hybrid system is validated with a real industrial use case, based on the optimisation of a high-precision machining centre with five axes for dental milling purposes

    Rapid prototyping of micro-optics for brightness restoration of diode lasers

    Get PDF
    Abstract unavailable please refer to PD

    Proceedings of the 25th Project Integration Meeting

    Get PDF
    Topics addressed include: silicon sheet growth and characterization, silicon material, process development, high-efficiency cells, environmental isolation, engineering sciences, and reliability physics

    Modular integration and on-chip sensing approaches for tunable fluid control polymer microdevices

    Get PDF
    228 p.Doktore tesi honetan mikroemariak kontrolatzeko elementuak diseinatu eta garatuko dira, mikrobalbula eta mikrosentsore bat zehazki. Ondoren, gailu horiek batera integratuko dira likido emari kontrolatzaile bat sortzeko asmotan. Helburu nagusia gailuen fabrikazio arkitektura modular bat frogatzea da, non Lab-on-a-Chip prototipoak garatzeko beharrezko fase guztiak harmonizatuz, Cyclic-Olefin-Polymer termoplastikozko mikrogailu merkeak pausu gutxi batzuetan garatuko diren, hauen kalitate industriala bermatuz. Ildo horretan, mikrogailuak prototipotik produkturako trantsizio azkar, erraz, errentagarri eta arriskurik gabeen bidez lortu daitezkeenetz frogatuko da
    corecore