82 research outputs found

    The Virtual Physiological Human: Ten Years After

    Get PDF
    Biomedical research and clinical practice are struggling to cope with the growing complexity that the progress of health care involves. The most challenging diseases, those with the largest socioeconomic impact (cardiovascular conditions; musculoskeletal conditions; cancer; metabolic, immunity, and neurodegenerative conditions), are all characterized by a complex genotype–phenotype interaction and by a “systemic” nature that poses a challenge to the traditional reductionist approach. In 2005 a small group of researchers discussed how the vision of computational physiology promoted by the Physiome Project could be translated into clinical practice and formally proposed the term Virtual Physiological Human. Our knowledge about these diseases is fragmentary, as it is associated with molecular and cellular processes on the one hand and with tissue and organ phenotype changes (related to clinical symptoms of disease conditions) on the other. The problem could be solved if we could capture all these fragments of knowledge into predictive models and then compose them into hypermodels that help us tame the complexity that such systemic behavior involves. In 2005 this was simply not possible—the necessary methods and technologies were not available. Now, 10 years later, it seems the right time to reflect on the original vision, the results achieved so far, and what remains to be done

    Cancer modelling: Getting to the heart of the problem

    Get PDF
    Paradoxically, improvements in healthcare that have enhanced the life expectancy of humans in the Western world have, indirectly, increased the prevalence of certain types of cancer such as prostate and breast. It remains unclear whether this phenomenon should be attributed to the ageing process itself or the cumulative effect of prolonged exposure to harmful environmental stimuli such as ultraviolet light, radiation and carcinogens (Franks and Teich, 1988). Equally, there is also compelling evidence that certain genetic abnormalities can predispose individuals to specific cancers (Ilyas et al., 1999). The variety of factors that have been implicated in the development of solid tumours stems, to a large extent, from the fact that ‘cancer’ is a generic term, often used to characterize a series of disorders that share common features. At this generic level of description, cancer may be viewed as a cellular disease in which controls that usually regulate growth and maintain homeostasis are disrupted. Cancer is typically initiated by genetic mutations that lead to enhanced mitosis of a cell lineage and the formation of an avascular tumour. Since it receives nutrients by diffusion from the surrounding tissue, the size of an avascular tumour is limited to several millimeters in diameter. Further growth relies on the tumour acquiring the ability to stimulate the ingrowth of a new, circulating blood supply from the host vasculature via a process termed angiogenesis (Folkman, 1974). Once vascularised, the tumour has access to a vast nutrient source and rapid growth ensues. Further, tumour fragments that break away from the primary tumour, on entering the vasculature, may be transported to other organs in which they may establish secondary tumours or metastases that further compromise the host. Invasion is another key feature of solid tumours whereby contact with the tissue stimulates the production of enzymes that digest the tissue, liberating space into which the tumour cells migrate. Thus, cancer is a complex, multiscale process. The spatial scales of interest range from the subcellular level, to the cellular and macroscopic (or tissue) levels while the timescales may vary from seconds (or less) for signal transduction pathways to months for tumour doubling times The variety of phenomena involved, the range of spatial and temporal scales over which they act and the complex way in which they are inter-related mean that the development of realistic theoretical models of solid tumour growth is extremely challenging. While there is now a large literature focused on modelling solid tumour growth (for a review, see, for example, Preziosi, 2003), existing models typically focus on a single spatial scale and, as a result, are unable to address the fundamental problem of how phenomena at different scales are coupled or to combine, in a systematic manner, data from the various scales. In this article, a theoretical framework will be presented that is capable of integrating a hierarchy of processes occurring at different scales into a detailed model of solid tumour growth (Alarcon et al., 2004). The model is formulated as a hybrid cellular automaton and contains interlinked elements that describe processes at each spatial scale: progress through the cell cycle and the production of proteins that stimulate angiogenesis are accounted for at the subcellular level; cell-cell interactions are treated at the cellular level; and, at the tissue scale, attention focuses on the vascular network whose structure adapts in response to blood flow and angiogenic factors produced at the subcellular level. Further coupling between the different spatial scales arises from the transport of blood-borne oxygen into the tissue and its uptake at the cellular level. Model simulations will be presented to illustrate the effect that spatial heterogeneity induced by blood flow through the vascular network has on the tumour’s growth dynamics and explain how the model may be used to compare the efficacy of different anti-cancer treatment protocols

    A multiscale model for collagen alignment in wound healing

    Get PDF
    It is thought that collagen alignment plays a significant part in scar tissue formation during dermal wound healing. We present a multiscale model for collagen deposition and alignment during this process. We consider fibroblasts as discrete units moving within an extracellular matrix of collagen and fibrin modelled as continua. Our model includes flux induced alignment of collagen by fibroblasts, and contact guidance of fibroblasts by collagen fibres. We can use the model to predict the effects of certain manipulations, such as varying fibroblast speed, or placing an aligned piece of tissue in the wound. We also simulate experiments which alter the TGF-β concentrations in a healing dermal wound and use the model to offer an explanation of the observed influence of this growth factor on scarring

    Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    Get PDF
    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field

    Guest Editorial Special Issue on Medical Imaging and Image Computing in Computational Physiology

    Get PDF
    International audienceThe January 2013 Special Issue of IEEE transactions on medical imaging discusses papers on medical imaging and image computing in computational physiology. Aslanid and co-researchers present an experimental technique based on stained micro computed tomography (CT) images to construct very detailed atrial models of the canine heart. The paper by Sebastian proposes a model of the cardiac conduction system (CCS) based on structural information derived from stained calf tissue. Ho, Mithraratne and Hunter present a numerical simulation of detailed cerebral venous flow. The third category of papers deals with computational methods for simulating medical imagery and incorporate knowledge of imaging physics and physiology/biophysics. The work by Morales showed how the combination of device modeling and virtual deployment, in addition to patient-specific image-based anatomical modeling, can help to carry out patient-specific treatment plans and assess alternative therapeutic strategies

    SAPHIR - a multi-scale, multi-resolution modeling environment targeting blood pressure regulation and fluid homeostasis.

    Get PDF
    International audienceWe present progress on a comprehensive, modular, interactive modeling environment centered on overall regulation of blood pressure and body fluid homeostasis. We call the project SAPHIR, for "a Systems Approach for PHysiological Integration of Renal, cardiac, and respiratory functions". The project uses state-of-the-art multi-scale simulation methods. The basic core model will give succinct input-output (reduced-dimension) descriptions of all relevant organ systems and regulatory processes, and it will be modular, multi-resolution, and extensible, in the sense that detailed submodules of any process(es) can be "plugged-in" to the basic model in order to explore, eg. system-level implications of local perturbations. The goal is to keep the basic core model compact enough to insure fast execution time (in view of eventual use in the clinic) and yet to allow elaborate detailed modules of target tissues or organs in order to focus on the problem area while maintaining the system-level regulatory compensations

    Virtual Patients and Sensitivity Analysis of the Guyton Model of Blood Pressure Regulation: Towards Individualized Models of Whole-Body Physiology

    Get PDF
    Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a “virtual population” from which “virtual individuals” can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the “virtual individuals” that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models
    corecore