2,222 research outputs found

    Geospatial information infrastructures

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreflectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeflexibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the field and a solid basis for reflections about future developments

    Technology Integration around the Geographic Information: A State of the Art

    Get PDF
    One of the elements that have popularized and facilitated the use of geographical information on a variety of computational applications has been the use of Web maps; this has opened new research challenges on different subjects, from locating places and people, the study of social behavior or the analyzing of the hidden structures of the terms used in a natural language query used for locating a place. However, the use of geographic information under technological features is not new, instead it has been part of a development and technological integration process. This paper presents a state of the art review about the application of geographic information under different approaches: its use on location based services, the collaborative user participation on it, its contextual-awareness, its use in the Semantic Web and the challenges of its use in natural languge queries. Finally, a prototype that integrates most of these areas is presented

    Service-oriented design of environmental information systems

    Get PDF
    Service-orientation has an increasing impact upon the design process and the architecture of environmental information systems. This thesis specifies the SERVUS design methodology for geospatial applications based upon standards of the Open Geospatial Consortium. SERVUS guides the system architect to rephrase use case requirements as a network of semantically-annotated requested resources and to iteratively match them with offered resources that mirror the capabilities of existing services

    Geospatial Semantics

    Full text link
    Geospatial semantics is a broad field that involves a variety of research areas. The term semantics refers to the meaning of things, and is in contrast with the term syntactics. Accordingly, studies on geospatial semantics usually focus on understanding the meaning of geographic entities as well as their counterparts in the cognitive and digital world, such as cognitive geographic concepts and digital gazetteers. Geospatial semantics can also facilitate the design of geographic information systems (GIS) by enhancing the interoperability of distributed systems and developing more intelligent interfaces for user interactions. During the past years, a lot of research has been conducted, approaching geospatial semantics from different perspectives, using a variety of methods, and targeting different problems. Meanwhile, the arrival of big geo data, especially the large amount of unstructured text data on the Web, and the fast development of natural language processing methods enable new research directions in geospatial semantics. This chapter, therefore, provides a systematic review on the existing geospatial semantic research. Six major research areas are identified and discussed, including semantic interoperability, digital gazetteers, geographic information retrieval, geospatial Semantic Web, place semantics, and cognitive geographic concepts.Comment: Yingjie Hu (2017). Geospatial Semantics. In Bo Huang, Thomas J. Cova, and Ming-Hsiang Tsou et al. (Eds): Comprehensive Geographic Information Systems, Elsevier. Oxford, U

    05371 Abstracts Collection -- Principles and Practices of Semantic Web Reasoning

    Get PDF
    From 11.09.05 to 16.09.05, the Dagstuhl Seminar 05371 ``Principles and Practices of Semantic Web Reasoning\u27\u27 % generate automaticall was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Modeling and improving Spatial Data Infrastructure (SDI)

    Get PDF
    Spatial Data Infrastructure (SDI) development is widely known to be a challenging process owing to its complex and dynamic nature. Although great effort has been made to conceptually explain the complexity and dynamics of SDIs, few studies thus far have actually modeled these complexities. In fact, better modeling of SDI complexities will lead to more reliable plans for its development. A state-of-the-art simulation model of SDI development, hereafter referred to as SMSDI, was created by using the system dynamics (SD) technique. The SMSDI enables policy-makers to test various investment scenarios in different aspects of SDI and helps them to determine the optimum policy for further development of an SDI. This thesis begins with adaption of the SMSDI to a new case study in Tanzania by using the community of participant concept, and further development of the model is performed by using fuzzy logic. It is argued that the techniques and models proposed in this part of the study enable SDI planning to be conducted in a more reliable manner, which facilitates receiving the support of stakeholders for the development of SDI.Developing a collaborative platform such as SDI would highlight the differences among stakeholders including the heterogeneous data they produce and share. This makes the reuse of spatial data difficult mainly because the shared data need to be integrated with other datasets and used in applications that differ from those originally produced for. The integration of authoritative data and Volunteered Geographic Information (VGI), which has a lower level structure and production standards, is a new, challenging area. The second part of this study focuses on proposing techniques to improve the matching and integration of spatial datasets. It is shown that the proposed solutions, which are based on pattern recognition and ontology, can considerably improve the integration of spatial data in SDIs and enable the reuse or multipurpose usage of available data resources

    Assessment of OGC Web Processing Services for REST principles

    Get PDF
    Recent distributed computing trends advocate the use of REpresentational State Transfer (REST) to alleviate the inherent complexity of the web services standards in building service-oriented web applications. In this paper we focus on the particular case of geospatial services interfaced by the OGC web processing service (WPS) specification in order to assess whether WPS-based geospatial services can be viewed from the architectural principles exposed in REST. Our concluding remarks suggest that the adoption of REST principles, to specially harness the built-in mechanisms of the HTTP application protocol, may be beneficial in scenarios where ad hoc composition of geoprocessing services are required, common for most non-expert users of geospatial information infrastructures
    corecore