22 research outputs found

    Tea Category Identification Using a Novel Fractional Fourier Entropy and Jaya Algorithm

    Get PDF
    This work proposes a tea-category identification (TCI) system, which can automatically determine tea category from images captured by a 3 charge-coupled device (CCD) digital camera. Three-hundred tea images were acquired as the dataset. Apart from the 64 traditional color histogram features that were extracted, we also introduced a relatively new feature as fractional Fourier entropy (FRFE) and extracted 25 FRFE features from each tea image. Furthermore, the kernel principal component analysis (KPCA) was harnessed to reduce 64 + 25 = 89 features. The four reduced features were fed into a feedforward neural network (FNN). Its optimal weights were obtained by Jaya algorithm. The 10 × 10-fold stratified cross-validation (SCV) showed that our TCI system obtains an overall average sensitivity rate of 97.9%, which was higher than seven existing approaches. In addition, we used only four features less than or equal to state-of-the-art approaches. Our proposed system is efficient in terms of tea-category identification

    A Solution to the N-Queens Problem Using Biogeography-Based Optimization

    Get PDF
    Biogeography-based Optimization (BBO) is a global optimization algorithm based on population, governed by mathematics of biogeography, and dealing with geographical distribution of biological organisms. The BBO algorithm was used in the present study to provide a solution for the N-queens problem. The performance of the proposed algorithm has been evaluated in terms of the quality of the obtained results, cost function, and execution time. Furthermore, the results of this algorithm were compared against those of genetic and particle swarm algorithms

    Hybrid Neural Network and Linear Model for Natural Produce Recognition Using Computer Vision

    Get PDF
    Natural produce recognition is a classification problem with various applications in the food industry. This paper proposes a natural produce recognition method using computer vision. The proposed method uses simple features consisting of statistical color features and the derivative of radius function. A hybrid neural network and linear model based on a Kalman filter (NN-LMKF) was employed as classifier. One thousand images from ten categories of natural produce were used to validate the proposed method by using 5-fold cross validation. The experimental result showed that the proposed method achieved classification accuracy of 98.40%. This means it performed better than the original neural network and k-nearest neighborhood

    Pathological Brain Detection by a Novel Image Feature—Fractional Fourier Entropy

    Full text link
    Aim: To detect pathological brain conditions early is a core procedure for patients so as to have enough time for treatment. Traditional manual detection is either cumbersome, or expensive, or time-consuming. We aim to offer a system that can automatically identify pathological brain images in this paper.Method: We propose a novel image feature, viz., Fractional Fourier Entropy (FRFE), which is based on the combination of Fractional Fourier Transform(FRFT) and Shannon entropy. Afterwards, the Welch’s t-test (WTT) and Mahalanobis distance (MD) were harnessed to select distinguishing features. Finally, we introduced an advanced classifier: twin support vector machine (TSVM). Results: A 10 x K-fold stratified cross validation test showed that this proposed “FRFE +WTT + TSVM” yielded an accuracy of 100.00%, 100.00%, and 99.57% on datasets that contained 66, 160, and 255 brain images, respectively. Conclusions: The proposed “FRFE +WTT + TSVM” method is superior to 20 state-of-the-art methods

    A Datamining Based Decision Support System For Fruit Manufacturing

    Get PDF
    Agricultural activities provide one of the main sources of living in many regions of the world. Such products play significant roles for the survival of living organisms. Farmers all around the world work towards reaching their economic goals through agricultural activities. By doing this, they invest both their capital and time. In some occasions, such investments end up with serious losses and planted products either grow in low levels or do not grow at all. In this study, in order to avoid such situations and guide the investors intelligently, a decision support system based on decision tree is developed. Related parameters in accordance with the climatic and geographic characteristics of the region are determined within this proposed system. Then, appropriate types of fruits are proposed to the users as the outcome of the system based on these parameters. By doing this, producing more efficient and profitable products is aimed

    A comprehensive review of fruit and vegetable classification techniques

    Get PDF
    Recent advancements in computer vision have enabled wide-ranging applications in every field of life. One such application area is fresh produce classification, but the classification of fruit and vegetable has proven to be a complex problem and needs to be further developed. Fruit and vegetable classification presents significant challenges due to interclass similarities and irregular intraclass characteristics. Selection of appropriate data acquisition sensors and feature representation approach is also crucial due to the huge diversity of the field. Fruit and vegetable classification methods have been developed for quality assessment and robotic harvesting but the current state-of-the-art has been developed for limited classes and small datasets. The problem is of a multi-dimensional nature and offers significantly hyperdimensional features, which is one of the major challenges with current machine learning approaches. Substantial research has been conducted for the design and analysis of classifiers for hyperdimensional features which require significant computational power to optimise with such features. In recent years numerous machine learning techniques for example, Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Trees, Artificial Neural Networks (ANN) and Convolutional Neural Networks (CNN) have been exploited with many different feature description methods for fruit and vegetable classification in many real-life applications. This paper presents a critical comparison of different state-of-the-art computer vision methods proposed by researchers for classifying fruit and vegetable

    Development of a hybrid system of artificial neural networks and artificial bee colony algorithm for prediction and modeling of customer choice in the market

    Get PDF
    With the increasing growth of technology and the emergence of various industries, numerous manufacturers have entered this field. In today's world, sellers and manufacturers find themselves among a vast number of competitors. Therefore, they need to adopt a variety of policies and strategies for their own survival and profitability. Companies should identify their customers’ needs and adopt their own policies based on customers’ purchase behaviors. To this end, attempts have been made to identify the customer choice model since the past decades. These models aim at modeling and predicting customer choice among several brands. Traditional models were of interest for many years and these methods were frequently used with the advent of artificial intelligence and machine learning systems. They could demonstrate very good results. In this study, it has been attempted to present a new method for the modeling and prediction of customer choice in the market using the combination of artificial intelligence and data mining. Indeed, the new model is to be applied in helping managers with decision-making. Hence, probabilistic neural networks have been combined with artificial bee colony algorithm.  The proposed model was tested in a real market and its efficiency and accuracy were finally compared with those of other models, including neural network trained with back-propagation, probabilistic neural networks, and the neural networks trained with genetic algorithm. The results reveal that the hybrid model shows better performance than the other models.Keywords: Consumer Choice Model, Data Mining, Artificial Intelligence, modeling, predicting, probabilistic neural network, artificial bee colony algorith

    Ensemble of heterogeneous flexible neural trees using multiobjective genetic programming

    Get PDF
    Machine learning algorithms are inherently multiobjective in nature, where approximation error minimization and model's complexity simplification are two conflicting objectives. We proposed a multiobjective genetic programming (MOGP) for creating a heterogeneous flexible neural tree (HFNT), tree-like flexible feedforward neural network model. The functional heterogeneity in neural tree nodes was introduced to capture a better insight of data during learning because each input in a dataset possess different features. MOGP guided an initial HFNT population towards Pareto-optimal solutions, where the final population was used for making an ensemble system. A diversity index measure along with approximation error and complexity was introduced to maintain diversity among the candidates in the population. Hence, the ensemble was created by using accurate, structurally simple, and diverse candidates from MOGP final population. Differential evolution algorithm was applied to fine-tune the underlying parameters of the selected candidates. A comprehensive test over classification, regression, and time-series datasets proved the efficiency of the proposed algorithm over other available prediction methods. Moreover, the heterogeneous creation of HFNT proved to be efficient in making ensemble system from the final population

    An improved data classification framework based on fractional particle swarm optimization

    Get PDF
    Particle Swarm Optimization (PSO) is a population based stochastic optimization technique which consist of particles that move collectively in iterations to search for the most optimum solutions. However, conventional PSO is prone to lack of convergence and even stagnation in complex high dimensional-search problems with multiple local optima. Therefore, this research proposed an improved Mutually-Optimized Fractional PSO (MOFPSO) algorithm based on fractional derivatives and small step lengths to ensure convergence to global optima by supplying a fine balance between exploration and exploitation. The proposed algorithm is tested and verified for optimization performance comparison on ten benchmark functions against six existing established algorithms in terms of Mean of Error and Standard Deviation values. The proposed MOFPSO algorithm demonstrated lowest Mean of Error values during the optimization on all benchmark functions through all 30 runs (Ackley = 0.2, Rosenbrock = 0.2, Bohachevsky = 9.36E-06, Easom = -0.95, Griewank = 0.01, Rastrigin = 2.5E-03, Schaffer = 1.31E-06, Schwefel 1.2 = 3.2E-05, Sphere = 8.36E-03, Step = 0). Furthermore, the proposed MOFPSO algorithm is hybridized with Back-Propagation (BP), Elman Recurrent Neural Networks (RNN) and Levenberg-Marquardt (LM) Artificial Neural Networks (ANNs) to propose an enhanced data classification framework, especially for data classification applications. The proposed classification framework is then evaluated for classification accuracy, computational time and Mean Squared Error on five benchmark datasets against seven existing techniques. It can be concluded from the simulation results that the proposed MOFPSO-ERNN classification algorithm demonstrated good classification performance in terms of classification accuracy (Breast Cancer = 99.01%, EEG = 99.99%, PIMA Indian Diabetes = 99.37%, Iris = 99.6%, Thyroid = 99.88%) as compared to the existing hybrid classification techniques. Hence, the proposed technique can be employed to improve the overall classification accuracy and reduce the computational time in data classification applications
    corecore