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ABSTRACT

Particle Swarm Optimization (PSO) is a population based stochastic optimization
technique which consist of particles that move collectively in iterations to search for
the most optimum solutions. However, conventional PSO is prone to lack of
convergence and even stagnation in complex high dimensional-search problems with
multiple local optima. Therefore, this research proposed an improved Mutually-
Optimized Fractional PSO (MOFPSO) algorithm based on fractional derivatives and
small step lengths to ensure convergence to global optima by supplying a fine balance
between exploration and exploitation. The proposed algorithm is tested and verified
for optimization performance comparison on ten benchmark functions against six
existing established algorithms in terms of Mean of Error and Standard Deviation
values. The proposed MOFPSO algorithm demonstrated lowest Mean of Error values
during the optimization on all benchmark functions through all 30 runs (Ackley = 0.2,
Rosenbrock = 0.2, Bohachevsky = 9.36E-06, Easom = -0.95, Griewank = 0.01,
Rastrigin = 2.5E-03, Schaffer = 1.31E-06, Schwefel 1.2 = 3.2E-05, Sphere = 8.36E-
03, Step = 0). Furthermore, the proposed MOFPSO algorithm is hybridized with Back-
Propagation (BP), Elman Recurrent Neural Networks (RNN) and Levenberg-
Marquardt (LM) Artificial Neural Networks (ANNS) to propose an enhanced data
classification framework, especially for data classification applications. The proposed
classification framework is then evaluated for classification accuracy, computational
time and Mean Squared Error on five benchmark datasets against seven existing
techniques. It can be concluded from the simulation results that the proposed
MOFPSO-ERNN classification algorithm demonstrated good classification
performance in terms of classification accuracy (Breast Cancer = 99.01%, EEG =
99.99%, PIMA Indian Diabetes = 99.37%, Iris = 99.6%, Thyroid = 99.88%) as
compared to the existing hybrid classification techniques. Hence, the proposed
technique can be employed to improve the overall classification accuracy and reduce
the computational time in data classification applications.
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ABSTRAK

Pengoptimuman Swarm Partikel (PSO) adalah teknik pengoptimuman stokastik
berasaskan populasi yang terdiri daripada zarah-zarah yang bergerak secara kolektif dalam
lelaran untuk mencari penyelesaian yang paling optimum. Walaubagaimanapun, PSO
yang konvensional terdedah kepada kekurangan penumpuan dan juga genangan dalam
masalah carian dimensi tinggi kompleks dengan pelbagai optima tempatan. Oleh itu,
kajian ini mencadangkan algoritma Fractional PSO (MOFPSO) yang dipertingkatkan
secara mutlak berdasarkan pembezaan pecahan dan jarak langkah kecil untuk memastikan
penumpuan kepada optima global dengan menyediakan keseimbangan yang baik antara
eksplorasi dan eksploitasi. Algoritma yang dicadangkan diuji dan disahkan untuk
perbandingan prestasi pengoptimuman pada sepuluh fungsi penanda aras berbanding enam
algoritma yang sedia ada yang wujud dari segi Purata Ralat dan nilai sisihan piawai.
Algoritma MOFPSO yang dicadangkan menunjukkan nilai Purata Ralat terendah semasa
pengoptimuman pada semua fungsi penanda aras melalui semua 30 ulangan (Ackley = 0.2,
Rosenbrock = 0.2, Bohachevsky = 9.36E-06, Easom = -0.95, Griewank = 0.01, Rastrigin
= 2.5E -03, Schaffer = 1.31E-06, Schwefel 1.2 = 3.2E-05, Sphere = 8.36E-03, Step = 0).
Tambahan lagi, algoritma yang dicadangkan itu hibridisasi dengan Propagasi-Pembalikan
(BP), Rangkaian Neural Ulangan Elman (RNN) dan Levenberg-Marquardt (LM)
Rangkaian Neural Buatan untuk mencadangkan rangka kerja Klasifikasi data yang
dipertingkatkan, terutamanya untuk aplikasi klasifikasi data. Rangka Klasifikasi yang
dicadangkan kemudiannya dinilai untuk ketepatan klasifikasi, masa pengiraan dan Ralat
Purata Kuadrat pada lima dataset penanda aras terhadap tujuh teknik yang sedia ada. la
dapat disimpulkan dari hasil simulasi bahawa algoritma MOFPSO-ERNN yang
dicadangkan menunjukkan prestasi klasifikasi yang unggul berbanding dengan algoritma
deterministik yang sedia ada (Kanser Payudara = 99.01%, EEG = 99.99%, Diabetes PIMA
India = 99.37%, Iris = 99.6% Thyroid = 99.88%). Oleh itu, teknik yang dicadangkan boleh
digunakan untuk meningkatkan ketepatan klasifikasi keseluruhan dan mengurangkan

masa pengiraan dalam aplikasi klasifikasi data.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Fundamentally, the word classification regarding daily life refers to selecting or
deciding a future conduct based on the presently available information such as
categorization of foods, allocation of salaries based on the work load and sorting of
daily mail based on post codes (Brunelli, 2009). A more formal and modern definition
of machine-based classification provided by Tom Mitchell, a very well-known
computer scientist, is that, "A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E."

Machine-based classification usually involves some computer programs,
known as algorithms, developed using several mathematical formulations to accelerate
the automated classification process. With increase in the size and computational
complexity of the data today, such optimized, robust, agile and reliable computational
algorithms are required which can efficiently carry out these conforming classification
tasks. In this regard, Machine Learning (ML) techniques have been demonstrated to
be excellent tools to deal with these complex problems regularly arising from various
sources (Kotsiantis, 2007). It is one of today’s most rapidly growing technical fields,
lying at the intersection of computer science and statistics and at the core of artificial
intelligence and data science (Pérez-Ortiz et al., 2016). There are several applications
of ML, the most significant of which is data mining (Buczak & Guven, 2016). People

are often prone to making mistakes during analyses or, possibly, when trying to
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establish relationships between multiple features in a dataset. This makes it difficult
for them to find solutions to certain problems, especially, if the addressed problem is
large in volume. ML can provide effective solutions to these problems, by improving
the efficiency of optimization and classification systems.

Apple and Orange classification is a typical example to understand the concept
of classification as shown in Figure 1.1. Manual classification can be easily performed
on a small scale if the task is to separate the two fruits from each other.

4 Apple
! Classifier PP :
| Orange
I
I
: |
| | Orange
, Classifier :
h Apple //

/
\

Figure 1.1: Typical example of a classification process

Whereas, in an industrial environment, where there is large amount of the fruits
to be separated from each other on a conveyer belt is a tedious and time taking job.
This is where automated ML based classification comes in to play to classify and
separate the fruits from each other. This type of classification is known as binary
classification, where there are a specific number of known input attributes and a
specific number of known output classes. For example, in the above-mentioned
example, the fruits can be classified based on color i.e. Red color represents Apples
and Orange color represents Oranges.

In machine learning algorithms, every instance in any dataset is represented
using the same set of continuous, categorical or binary features (Kotsiantis, 2007).
Table 1.1 shows a basic concept of data classification based on a specific number of
inputs called features and specific corresponding required outputs known as Target

classes.



Table 1.1;

Basic concept of data classification

Classification Data

Instances Feature 1 Feature2 | ....... Feature n Target Classes
Case 1 XXX XX X Malignant
Case 2 XXX XX X Benign
Case 3 XXX XX X Benign

Generally, almost all machine learning based classification problems can be
assigned to one of the two major classification techniques: Supervised learning and
Unsupervised learning. In supervised learning, the classifier is given a dataset and it is
already aware of the desired output, having a feedback relationship between the input
and the output. In a supervised classification problem, it is aimed to predict the results
in a discrete output. In other words, the target is to map the input variables into distinct
classes. While, unsupervised learning refers to tackle the problems with minute or no
idea of the corresponding outputs. Only information available in unsupervised learning
is the relationships among variables derived through clustering the likewise variables
and vice versa. Where, there is no feedback based on the prediction results in

unsupervised learning.

1.2 - Project Background

Data classification is the most important type of data mining technique which deals
with the classification of large, computationally complex datasets (Pires et al., 2014).
Classification of these huge datasets normally takes long computational times and is
also prone to less classification accuracy (Sanz et al., 2015). Existing classification
techniques have been proved to be less efficient when implied to perform classification
in high-dimensional datasets (Triguero et al., 2015). Lately, several hybridized
classification techniques have been reported that include a combination of
classification as well as optimization algorithms (Bazi et al., 2014). These hybridized
techniques are commonly used to optimize and benefit the classification process

(Devos et al., 2014). Bio-inspired metaheuristic optimization algorithms are most



4

commonly employed for such hybridized techniques because of their versatile
exploration and exploitation capabilities (Zhang et al., 2015).

Biologically inspired, or short Bio-inspired metaheuristic algorithms are one of
the most common inherited techniques that are applied in today’s machine learning
optimization (Wang et al., 2015). This field of study is basically a combination of
several subfields related to the topics of social behavior of living organisms and
computing systems (Seera & Lim, 2014). It suggests ways to implement characteristics
and components of artificial intelligence in machine learning optimization (Ren et al.,
2016). Fundamentally, it depends on the fields of biology, computer science and
mathematics to model the social and cognitive behavior of living organisms to improve
machine learning optimization (Saez et al., 2015). Such bio-inspired machine learning
algorithms that tend to mimic the collective social and cognitive characteristics of
living organisms in groups such as flocks of birds or school of fish are referred to as
swarm intelligent algorithms (Masethe & Masethe, 2014).

The term ‘Swarm Intelligence’ was coined in 1989 by Gerardo Beni and Jing
Wang (Beni and Wang, 1989). Subsequently, swarm intelligence has developed as the
basis of numerous bio-inspired metaheuristic search algorithms (Radwan & Fouda,
2013; Krawczyk et al., 2014). Meta means ‘to look beyond’ or ‘higher level’ and
heuristic means ‘to search’ or ‘to discover by trial and error’ (Sanz et al., 2014). Briefly
put, swarm intelligent metaheuristics can be defined as high-level approaches for
exploring search spaces by using different methods (Blum et al., 2008).

Swarm based metaheuristic optimization methods are also known as stochastic
optimization techniques which aim to randomly explore the search space to find the
most optimum solution (Kingma & Ba, 2014; Gilli & Winker, 2008). It is maintained
that stochastic optimization techniques can produce high quality approximation of the
global optimum as compared to deterministic, less optimal local minima provided by
conventional techniques (Yang, 2018). Stochastic optimization algorithms iterate to
optimize a problem by attempting to improve the candidate solution according to a
given measure of quality defined by the respective fitness function (Li et al., 2014).

Some current examples of metaheuristics are Particle Swarm Optimization
(PSO) which has been successfully applied in many engineering applications
(Robinson & Rahmat-Samii, 2004; Jin & Rahmat-Samii, 2007).

Ant Colony Optimization (ACO) algorithm has also been used in many areas
of optimization (Merkle et al., 2002; Parpinelli & Lopes, 2011).
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Acrtificial Bee Colony (ABC) algorithm demonstrated good performance in numerical
optimization (Karaboga & Basturk, 2007; Karaboga & Basturk, 2008), in large-scale
global optimization (Fister & Zumer, 2012), and also in combinatorial optimization
(Neri & Tirronen, 2009; Pan et al., 2011; Parpinelli & Lopes, 2011). Recently, a new
set of metaheuristics are added to the family of age long swarm intelligent algorithms.

These bio-inspired optimization algorithms include Firefly (Zheng et al., 2015;
Yang, 2009), Cuckoo Search (Yang & Deb, 2009), Wolf Search (Tang et al., 2012)
and Bat algorithm (Yang, 2010a). These metaheuristic optimization algorithms follow
multi-dimensional search methods that are heavily inspired from the movement
patterns and social and cognitive behavior of swarm of animals and insects found in
the nature (Uryasey & Pardalos, 2013; Arsenault et al., 2013). The performance of
such swarm-based metaheuristic optimization algorithms has been demonstrated to be
better in comparison to the existing conventional methods (Homem-de-Mello &
Bayraksan, 2014). There are two main components of any metaheuristic search-based
algorithm i.e. exploration and exploitation (Liu et al., 2016).

Exploration in metaheuristic algorithms is accomplished using randomization
to search much larger search space in the quest of finding more promising solutions
(Donadee & Ili¢, 2014). Exploration process is responsible for diversification, which
helps an algorithm to search globally and avoid local optima (Schkufza et al., 2014;
Munos, 2014). While, exploitation process offers intensification in which new
neighborhood solutions are navigated locally to find a better solution than the already
found optimal one (Neri & Tirronen, 2009; Yang et al., 2014).

1.3 Problem Statement

Data classification is the most important type of data mining technique which deals
with the classification of large, computationally complex datasets. Classification of
these huge datasets using existing techniques lead to higher computational times and
decreased accuracy. Recently, several hybridized classification algorithms based on
optimization techniques are proposed and commonly used to optimize and benefit the
classification process (Manjarres et al., 2013; Cheng & Prayogo, 2014; Zhang et al.,
2015; Ervural et al., 2017). Bio-inspired metaheuristic algorithms are most commonly



6

used for such hybridized techniques because of their versatile exploration and
exploitation capabilities (Yang et al., 2013).

PSO is one of the most extensively employed evolutionary algorithms for such
optimization problems. Nevertheless, traditional PSO suffers from several issues when
employed in complex high-dimensional problems. These issues include convergence
to sub-optimal solutions and stagnation in problems with multiple local optima
(Ghamisi et al., 2014; Couceiro & Sivasundaram, 2016). Also, PSO algorithm uses
longer step lengths which can cause it to skip optimal solutions in the space (Zhang et
al., 2015). Furthermore, in PSO, there exists a trade-off between exploration and
exploitation, where, favouring either will end up low quality outcomes due to
negligence of the other (Tam et al., 2018). These problems in PSO algorithm further
add to the issues of increased computational cost and reduced accuracy in hybridized
data classification techniques.

These prevailing issues in machine-based hybridized classification techniques
limit the potential of automated classification systems in high-dimensional
classification problems. In order to perform and assist efficient classification for such
datasets, it is crucial to develop such classification techniques that can significantly
reduce the computational times and improve the classification accuracy for such
applications. Hence, to reduce the computational times in hybridized classification
techniques using PSO and improve the overall classification accuracy, it is inevitable

to improve the optimization capability of the traditional PSO algorithm.

1.4  Aim and Objectives of Research

This research is aimed to develop an enhanced, Mutually-Optimized fractional PSO
algorithm-based classification framework through provision of fine balance between
exploration and exploitation search of traditional PSO by introducing fractional
derivatives, consequently improving the convergence behavior of traditional PSO
algorithm, reducing the overall computational time and improving the classification
accuracy in data classification applications.

To achieve this aim, the objectives of this research are formulated as follows:

1. Todevelop an enhanced MOFPSO algorithm based on fractional order velocity

and shorter step lengths to ensure convergence to global optima.
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