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Background
Pathological brain detection (PBD) was of essential importance. It can help physicians 
make decisions, and to avoid wrong judgements on subjects. Magnetic resonance imag-
ing (MRI) features in high-resolution on soft tissues in the subjects’ brains, generating a 
mass dataset (Zhang et al. 2015a). At present, there are numerous works on using brain 
MR images for solving PBD problems (Goh et al. 2014; Yu et al. 2015b).

Recent computer-aided diagnosis (CAD) systems of PBD consisted of two types (LaVi-
olette et al. 2014): to detect pathological from healthy brains, and to differentiate severity 
degrees. In this study, we research on the former one. A type of promising approach is to 
use discrete wavelet transform (DWT) that presents the solutions of simultaneous analy-
sis in domains of both time and frequency (Lee et al. 2013; Dong et al. 2014; Zhang et al. 
2015c; Yu et al. 2015c). DWT and its variants achieved good results; however, DWT are 

Abstract 

An computer‑aided diagnosis system of pathological brain detection (PBD) is impor‑
tant for help physicians interpret and analyze medical images. We proposed a novel 
automatic PBD to distinguish pathological brains from healthy brains in magnetic 
resonance imaging scanning in this paper. The proposed method simplified the PBD 
problem to a binary classification task. We extracted the wavelet packet Tsallis entropy 
(WPTE) from each brain image. The WPTE is the Tsallis entropy of the coefficients of the 
discrete wavelet packet transform. The, the features were submitted to the fuzzy sup‑
port vector machine (FSVM). We tested the proposed diagnosis method on 3 bench‑
mark datasets with different sizes. A ten runs of K‑fold stratified cross validation was car‑
ried out. The results demonstrated that the proposed WPTE + FSVM method excelled 
17 state‑of‑the‑art methods w.r.t. classification accuracy. The WPTE is superior to 
discrete wavelet transform. The Tsallis entropy performs better than Shannon entropy. 
The FSVM excels standard SVM. In closing, the proposed method “WPTE + FSVM” is 
effective in PBD.

Keywords: Pathological brain detection (PBD), Tsallis entropy, Magnetic resonance 
imaging, Computer‑aided diagnosis, Discrete wavelet packet transform, Fuzzy support 
vector machine, Pattern recognition

Open Access

© 2015 Zhang et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made.

METHODOLOGY

Zhang et al. SpringerPlus  (2015) 4:716 
DOI 10.1186/s40064-015-1523-4

*Correspondence:  
zhangyudong@njnu.edu.cn; 
ytf0707@126.com 
†Yu‑Dong Zhang, Shui‑Hua 
Wang and Xiao‑Jun Yang 
contributed equally
1 School of Computer 
Science and Technology, 
Nanjing Normal University, 
Nanjing, Jiangsu 210023, 
China
7 School of Psychology, 
Nanjing Normal University, 
Nanjing, Jiangsu 210008, 
China
Full list of author information 
is available at the end of the 
article

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194675936?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-015-1523-4&domain=pdf


Page 2 of 16Zhang et al. SpringerPlus  (2015) 4:716 

translation-variant, hence, the coefficients behaved unpredictably if the input signal is 
translated slightly. In PBD problem, the subject’s head usually have slightly move during 
the scan, which will cause the translation of MR images.

Another problems is the classifier. Current scholars tend to use either artificial neural 
network (ANN) or support vector machine (SVM). Nevertheless, both of them are sen-
sitive to outliers and noises. That means, if the training set contains noises or outliers, 
the classifier will still treat it as important as normal data.

We suggested three improvements with the aim of solving above problems. First, we 
employed the discrete version of wavelet packet transform (WPT), which is an extension 
of standard discrete wavelet transform (DWT). Second, we introduced Tsallis entropy 
(TE), to replace with Shannon entropy (SE). (iii) We introduced the fuzzy support vec-
tor machine (FSVM) that combines the SVM with fuzzy logic approach (Ashkezari et al. 
2013) and has the advantage of reducing the effect from outliers and noises.

The structure of the rest is organized as follows. "State-of-the-art" presents the state-
of-the-art. "Materials" introduces the materials used in this study.  “Feature extraction" 
discusses the features. "Classifier" gives the classifier.  "Implementation and experiments" 
shows the implementation of the whole method, and designs the experiments. "Results 
and dicussion" contains the results and discussions. "Conclusion and future research" 
offers conclusion and future research. We explain the nomenclatures in Abbreviations at 
the end of the paper.

State‑of‑the‑art
Chaplot et al. (2006) was the first to solve PBD problem. They used the approximation 
coefficients from DWT, and utilized the support vector machine (SVM) and self-organ-
izing map (SOM). El-Dahshan et al. (2010) extracted all coefficients of all subbands of a 
three-level discrete wavelet transform (DWT). Then, they reduced the size of features 
by principal component analysis (PCA). Finally, two classifiers, K-nearest neighbors 
(KNN) and feed-forward back-propagation ANN (FP-ANN), were employed. Wu and 
Wang (2011) followed EI-Dahshan’s method, but suggest to use a feed-forward neu-
ral network (FNN) as the classifier, which was trained by scaled chaotic artificial bee 
colony (SCABC). Dong et  al. (2011) proposed to employed scaled conjugate gradi-
ent (SCG) method to take place of SCABC. Zhang and Wu (2012) suggested to utilize 
kernel support vector machine (KSVM). 3 kernels were provided such as homogene-
ous and inhomogeneous polynomial, and radial basis function (RBF). Das et al. (2013) 
developed a novel method as Ripplet transform (RT) +  principal component analysis 
(PCA) +  least square support vector machine (LS-SVM). Their five-fold cross valida-
tion results showed promising classification accuracies. Saritha et al. (2013) proposed a 
novel feature of wavelet-entropy (WE), and employed spider-web plots (SWP) to further 
reduce features. Afterwards, they used the probabilistic neural network (PNN). Yu et al. 
(2015d) commented on Saritha’s paper and stated that dropping the SWP can obtain the 
same results. Zhang et al. (2013) suggested to use particle swarm optimization to train 
KSVM. Padma and Sukanesh (2014) used combined wavelet statistical texture features, 
to segment and classify AD benign and malignant tumor slices. El-Dahshan et al. (2014) 
used the feedback pulse-coupled neural network for image segmentation, the DWT for 
features extraction, the PCA for reducing the dimensionality of the wavelet coefficients, 
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and the FBPNN to classify inputs into normal or abnormal. Wang et al. (2014) used ker-
nel support vector machine decision tree. Zhou et al. (2015) used wavelet-entropy as the 
feature space, then they employed a Naive Bayes classifier (NBC) classification method. 
Their results over 64 images showed that the sensitivity of the classifier was 94.50  %, 
the specificity 91.70 %, the overall accuracy 92.60 %. Damodharan and Raghavan (2015) 
combined tissue segmentation and neural network for brain tumor detection. Yang et al. 
(2015) selected wavelet-energy as the features, and introduced biogeography-based 
optimization (BBO) to train the SVM. Their method reached 97.78  % accuracy on 90 
T2-weighted MR brain images. Nazir et al. (2015) suggested to use filters for the removal 
of noises, and extracted color moments as mean features. Finally, they achieved an over-
all accuracy of 91.8 %. Dong et al. (2015) suggested to use a 3D eigenbrain method to 
detect subjects and brain regions related to AD. The accuracy achieved 92.36 ±  0.94. 
Harikumar and Kumar (2015) analyzed the performance of ANN, in terms of classifica-
tion of medical images, using wavelets as feature extractor. Their classification accuracy 
achieved 96 %. Wang et al. (2015a) suggested to use stationary wavelet transform (SWT) 
to replace DWT, and then they proposed a Hybridization of Particle swarm optimization 
and Artificial bee colony (HPA) algorithm to train the classifier. Farzan et al. (2015) used 
longitudinal percentage of brain volume changes (PBVC) in two-year follow up and its 
intermediate counterparts in early 6-month and late 18-month as features. Their experi-
ment results obtained accuracy of 91.7 %. Munteanu et al. (2015) employed Proton Mag-
netic Resonance Spectroscopy (MRS) data, with the aim of detecting MCI and AD. They 
used a single-layer perceptron with only two spectroscopic voxel volumes obtained in 
the left hippocampus, with an AUROC value of 0.866. Zhang et al. (2015d) combined 
wavelet entropy with Hu moment invariants (HMI). The feature number is in total 14. 
They also used GEPSVM as the classifier.

Materials
Magnetic resonance brain image dataset

Three benchmark magnetic resonance brain image datasets with various image num-
bers: D-66, D-160, and D-255, were were downloaded from the website of Harvard Uni-
versity. Those data contain T2-weighted images obtained along axial plane. Their sizes 
are all 256 × 256. Those three datasets are commonly used in PBD test. Except healthy 
brain images, D-66 and D-160 consisted of 7 types of brain diseases: AD, AD plus visual 
agnosia, glioma, meningioma, sarcoma, Huntington’s disease (HD), and Pick’s disease 
(PiD). D-255 introduced four other diseases as cerebral toxoplasmosis, subdural hema-
toma (SDH), multiple sclerosis (MS), and herpes encephalitis. Figure 1 shows samples of 
brain MR images.

The costs of two kinds of misclassifications are different. The cost of predicting 
a pathological brain to a healthy one is very serious. It will defer the necessary treat-
ment, whereas the misprediction of a healthy brain to a pathological one can be sec-
ond-checked by other techniques. Hence, we intentionally create the three imbalanced 
datasets, which covers more pathological brains than usual, so the PBD system is biased 
to detect pathological ones, with the aim of addressing this cost-sensitive task.
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Statistical setting

Cross validation (CV) is commonly used for statistical test. Stratification is embedded to 
CV so that each fold contains nearly the same class distributions. In this work, six-fold 
stratified CV (SCV) was utilized for the smallest dataset (D-66), and five-fold SCV for 
the other datasets (D-160 and D-255). Table 1 lists the SCV setting of all datasets.

Feature extraction
Co-registration was unnecessary since many publications about PBD did not use it with 
excellent classification results, comparative with the results that employed coregistration 
(Ribbens et al. 2014; Schwarz and Kasparek 2014).

a Healthy brain b Meningioma c Glioma d Sarcoma

e SDH f PiD g AD h HD

i AD with visual agnosia j Herpes encephalitis k Cerebral toxoplasmosis l MS

Fig. 1 Sample of magnetic resonance brain image dataset a Healthy brain, b Meningioma, c Glioma, d Sar‑
coma, e SDH, f PiD, g AD, h HD, i AD with visual agnosia, j Herpes encephalitis, k Cerebral toxoplasmosis, l MS

Table 1 SCV setting of our datasets

P Pathological, H Healthy

Dataset Total Training Validation Fold #

H P H P H P

D‑66 18 48 15 40 3 8 6‑

D‑160 20 140 16 112 4 28 5‑

D‑255 35 220 28 176 7 44 5‑
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Wavelet packet transform

Compared to standard discrete wavelet transform (DWT), the wavelet packet trans-
form (WPT) is an extension where the signal is passed through more filters than DWT. 
The DWT calculate each level by passing only the previous approximation coefficients 
to quadrature mirror filters (QMF). Nevertheless, the WPT passes all coefficients (both 
approximation and detail) through QMF to create a full binary tree. Therefore, more fea-
tures can be generated by WPT at different levels to obtain more information. The math-
ematical equation of WPT is given below

where m represents the index of channel, p the position parameter, d the decomposition 
level, ψ the wavelet function, and S the decomposition coefficients. 2d sequences will be 
yielded at the d level. The decomposition equations of next level is provided as

Suppose a d-level decomposition, DWT produces (3d + 1) coefficient sets, while the 
WPT produces 2d different coefficients sets. Note that the number of coefficients of 
WPT is still the same of DWT, because of the downsampling process (Fig. 2).

Shannon and Tsallis entropy

Shannon entropy (SE) is defined as a measure of uncertainty regarding the information 
content (IC):

here E represents the entropy, Z the total number of greylevels, k the greylevel, and pk 
the probability of k. Shannon entropy can merely describes scenarios with simple effec-
tive microscopic interactions and short-ranged microscopic memory (Campos 2010). 
Assume a physical system can be broken down into two independent subsystems X and 
Y, then the Shannon entropy (SE) exists the additivity property as

(1)Sm,d
p =

∫ ∞

−∞

x(t)ψm(2
−dt − p)dt

(2)
S2m,d+1
k =

∑

p∈Z

h(p− 2k)Sm,d
p

(3)
S2m+1,d+1
k =

∑

p∈Z

l(p− 2k)Sm,d
p

(4)E = −

Z
∑

k=1

pk log2(pk)

(5)E(X + Y ) = E(X)+ E(Y )

Signal

l(n)

h(n)

l(n)

h(n)

l(n)

h(n)

LH2

HL2

HH2

LL2
L1
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Fig. 2 Flowchart of 2‑level 1D‑WPT
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Nevertheless, realistic scenarios are usually usually involved with long-time memory 
and long-range interactions, therefore, Tsallis (2009) proposed a generalization of SE. He 
termed it as Tsallis entropy (TE) with following form

here q is a real number, representing the nonextensivity degree. For a statistical depend-
ent system, the Tsallis entropy (TE) is defined as (Zhang and Wu 2011)

This equation obeys the pseudo additivity rule. Further, three different entropies can 
be deduced and listed in Table 2, when q is assigned with different values (Tsallis 2011). 
In this study, TE was employed to extract features from 16 subbands of WPT coefficients 
of MR brain images.

Wavelet packet Tsallis entropy

We employed both Shannon entropy (SE) and Tsallis entropy (TE) to extract wavelet-
packet decomposition coefficients. The final extracted features were dubbed as Wave-
let Packet Tsallis Entropy (WPTE), which degraded to Wavelet Packet Shannon Entropy 
(WPSE) when q equals to 1. The pseudocodes of feature extraction were listed in Table 3.

Classifier
Support vector machine

Let us suppose there is an N-size training samples of p-dimensional vector in two classes 
(−1 or +1), and the goal is to create a (p − 1)-dimensional hyperplane. Assume the data-
set takes the form of (Wang et al. 2014)

(6)
Eq =

q
∑

k=1

(pk)
q − 1

1− q

(7)Eq(X + Y ) = Eq(X)+ Eq(Y )+ (1− q)× Eq(X)× Eq(Y )

(8)
{

(xn, yn)|xn ∈ R
p, yn ∈ {+1,−1}

}

, n = 1, 2, 3, ..,N

Table 2 Properties of TE change with q

Range of q Type Property

<1 Subextensive entropy Eq(A + B) < Eq(A) + Eq(B)

=1 Standard extensive entropy (Shannon entropy) Eq(A + B) = Eq(A) + Eq(B)

>1 Superextensive entropy Eq(A + B) > Eq(A) + Sq(B)

Table 3 Pseudocode of WPTE

Algorithm: WPTE Extraction

Step A Import a brain image

Step B Implement a two‑level WPT decomposition

Step C Extract the Tsallis entropy over each coefficient set

Step D Output the 16‑element WPTE vector
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where yn takes the value of −1 for class −1, or +1 for class +1. The xn denotes a training 
point that is a p-dimensional vector (Zhang et al. 2013). The maximum-margin hyper-
plane that separates the two classes is the desired SVM. Considering any hyperplane is 
in the form of wx − b = 0, we need to select the optimal b and w, with the aim of maxi-
mizing the distance between the two parallel hyperplanes, while it can yet separate the 
data of the two classes.

Positive slack vector ξ =  (ξ1, …, ξn, …, ξN) are utilized to measure the misclassifica-
tion rate of sample xn (the distance between the margin and the vectors xn on the wrong 
side). The optimal hyperplane can be deduced by solving:

where C represents the error penalty and e a vector of ones of N-dimension. Therefore, 
the optimization turns to a trade-off between a large margin and a small error penalty. 
The constraint optimization problem can be solved using “Lagrange multiplier” as

The min–max problem is not easy to solve, so dual form technique is commonly pro-
posed to solve it as

The key advantage of the dual form function is that the slack variables ξn vanish from 
the dual problem, with the constant C appearing only as an additional constraint on the 
Lagrange multipliers.

Fuzzy SVM

Fuzzy SVM (FSVM) is more effective than standard SVM in predict or classify real-
world data, in which a part of training points are less important than other points. We 
would like to force that the meaningful training points must be classified correctly and 
meaningless points like noises or outliers can be treated with less weight (Lin and Wang 
2002).

FSVM applies a fuzzy membership function (FMF) s to each training data (Xian 2010), 
so that the training set is transformed into a fuzzy set, which can be expressed as

(9)
min
b,w

1
2
�w�2

s.t. yn(wxn − b) ≥ 1, n = 1, 2, 3, . . . ,N

(10)

min
w,ξ ,b

1
2
�w�2 + CeT ξ

s.t.

{

yn
(

w
Txn − b

)

≥ 1− ξn
ξn ≥ 0

, n = 1, . . . ,N

(11)min
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1
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N
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αn
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yn
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w
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− 1+ ξn

]

−

N
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βnξn

}

(12)

max
α

N
�

n=1

αn −
1
2

N
�

n=1

N
�

m=1

αmαnymynx
T
mxn

s.t.







0 ≤ αn ≤ C
N
�

n=1

αnyn = 0
, n = 1, . . . ,N
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where sn is the altitude of the corresponding training point toward one class and (1 − sn) 
is the attitude of meaning less. The optimal hyperplane problem of FSVM is defined as:

where s =  (s1, s2, …, sN) represents the fuzzy membership vector. A smaller sn reduces 
the effect of the parameter ξn, such that the corresponding point xn is treated less impor-
tant. In a similar way, we construct the Lagrangian

Again, the dual form is used to transform problem (15) to

Fuzzy membership

We set the FMF as a distance function between the point and its class center. Suppose 
the mean of class +1 as x+ and the mean of class −1 as x−. Then we can get the radius of 
two classes as

The fuzzy membership sn is defined as a function of the radius and mean of each class 
(Lin and Wang 2002)

where δ > 0 is used to guarantee sn > 0.

Implementation and experiments
Implementation

Figure 3 shows the diagram of the proposed PBD system. In the offline learning phase, 
the users expect to select the optimal q (to determine the value of q*), and train the 

(13)
{

(xn, sn, yn)|xn ∈ R
p, 0 < sn ≤ 1, yn ∈ {+1,−1}

}

, n = 1, . . . ,N

(14)

min
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1
2
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s.t.

{

yn
(

w
Txn − b

)
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ξn ≥ 0

, n = 1, . . . ,N

(15)min
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{

1

2
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N
∑
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N
∑

n=1
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[
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(

w
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]

}

(16)
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α
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2

N
�

n=1

N
�

m=1

αmαnymynx
T
mxn

s.t.







0 ≤ αn ≤ snC
N
�

n=1
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, n = 1, . . . ,N

(17)r− = max
{xn:y=−1}

|x− − xn|

(18)r+ = max
{xn:y=+1}

|x+ − xn|

(19)sn =

{

1− |x+ − xn|/(r+ + δ) yn = +1
1− |x− − xn|/(r− + δ) yn = −1
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classifier. In the online prediction phase, the users will get the prediction results for each 
query image.

Experiment design

In this study, we developed four different methods. “WPSE + SVM”, “WPSE + FSVM”, 
“WPTE + SVM”, and “WPTE + FSVM”. Theoretically, the last one will perform the best 
since WPSE in a special case of WPTE, and FSVM is an extension of SVM with addi-
tional ability to reduce influences from noises and outliers.

We need to prove it by experiments. In this work, we designed five tasks. (1) We 
gave a comparison between DWT and WPT. A healthy brain and a pathological brain 
were used. We use a 2-level Haar wavelet decomposition. (2) We compared the pro-
posed WPSE and WPTE features with traditional DWT and “DWT + PCA”. All used 
SVM as classifiers (3) We compared the four proposed classifiers, to check whether 
FSVM is superior to SVM. (4) We selected the best of proposed methods, and com-
pared it with state-of-the-art approaches. (5) We used grid searching to find the opti-
mal parameter of q.

Results and discussions
The experiments were carried out on the platform of IBM machine with 3 GHz core i3 
processor and 8 GB random access memory (RAM), running under Windows 7 operat-
ing system (OS). The algorithm was developed by ourselves based on the platform of 
Matlab 2014a (The Mathworks ©).

WPT versus DWT

In the first experiment, we compared DWT with WPT on a healthy brain and an Alzhei-
mer’s disease brain, respectively. The second column shows the original image, the third 
column the DWT decomposition results, and the final column the WPT results. Pink 
colormap is employed for better view (Fig. 4).

Feature comparison

In the second experiment, we compared the proposed WPSE and WPTE (q is set to 0.8, 
please refer to "Optimal parameter q"), with two types of traditional features: (i) DWT 
and (ii) DWT +  PCA. (Note that Chaplot et  al. (2006) proposed the DWT +  SVM 
method, Zhang and Wu (2012) proposed DWT + PCA + SVM method). For fair com-
parison, we choose the same classifier—SVM.

Ground-truth
Dataset

Feature Extraction
WPTE (q=0.1, 0.2, …, 1) Feature Dataset

Classifier
FSVM

Query Image Feature extraction
WPTE (q=q*) Image Feature

Optimal q*

Classification
Accuracy

Offline Learning

Online Predic�on

Notify
Physicians

Fig. 3 Diagram of the proposed PBD system
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Table  4 shows that both “WPSE  +  SVM” achieves accuracies of 98.64, 97.12, and 
97.02 % on D-66, D-160, and D-255, respectively. The “WPTE + SVM” achieves accura-
cies of 99.09, 98.94, and 98.39 % over three datasets. The results are better than those 
obtained either by “DWT + SVM (Chaplot et al. 2006)” or by “DWT + PCA + SVM 
(Zhang and Wu 2012)”. Therefore, we can conclude that WPSE and WPTE excel tradi-
tional feature extraction methods of “DWT” and “DWT + PCA”. Particularly, WPTE is 
better than WPSE. The reason is three-fold: (1) TE is a generalization of traditional SE 
(Tsallis 2014), and TE had been successfully applied in brain images (Amaral-Silva et al. 
2014; Venkatesan and Parthiban 2014; Khader and Ben Hamza 2011). (2) The combina-
tion of TE and wavelet transform had proven to perform better than either TE or DWT 
in other applications (Hussain 2014; Liu et al. 2014; Chen and Li 2014). (3) Brain images 
entail long-range interaction and fractal-type structure, because of the self-similarity 
observed brain structures imaged with a finite resolution, which can be easily extracted 
by the corresponding wavelet packet coefficients. In summary, there are similarities at 
different spatial scales in brain images, which makes WPTE more suitable than WPSE in 
describing brains.

DWTOriginal ImageBrain WPT

AD 

Healthy 

Fig. 4 Decompositions comparison between DWT and WPT

Table 4 Feature comparison with SVM as classifier (K‑fold SCV)

Approaches Feature # Run # D-66 D-160 D-255

DWT+SVM (Chaplot et al. 2006) 4761 5 96.15 95.38 94.05

DWT + PCA + SVM (Zhang and Wu 2012) 19 5 96.01 95.00 94.29

WPSE + SVM (proposed) 16 10 98.64 97.12 97.02

WPTE + SVM (proposed) 16 10 99.09 98.94 98.39
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Classifier comparison

To compare the classification performance between SVM and FSVM. We set the fea-
tures as WPSE and WPTE (q = 0.8). Then, we applied both SVM and FSVM for classifi-
cation. The 10 runs of K-fold SCV results are listed below in Table 5.

Results in Table  5 shows that “WPSE +  FSVM” obtains accuracies of 99.85, 99.69, 
98.94 % over three datasets, which are higher than those obtained by “WPSE + SVM”. 
The similar results occur between “WPTE + FSVM” and “WPTE + SVM” in the way 
that the classification accuracy increases after SVM is replaced with FSVM. The rea-
son is FSVM applies a FMF to each training data, so FSVM can reduce the influence of 
noises and outliers. In addition, the “WPTE + FSVM” performs the best among all four 
proposed approaches. It will be used as the default proposed method in following text.

Comparison with state-of-the-art

We compared the best proposed method (WPTE +  FSVM), with 17 recent proposed 
methods, which consist of DWT + SOM (Chaplot et al. 2006), DWT + SVM (Chaplot 
et al. 2006), DWT + SVM + RBF (Chaplot et al. 2006), DWT + SVM + POLY (Chap-
lot et  al. 2006), DWT +  PCA +  KNN (El-Dahshan et  al. 2010), DWT +  PCA +  FP-
ANN (El-Dahshan et  al. 2010), DWT  +  PCA  +  SCG-FNN (Dong et  al. 2011), 
DWT  +  PCA  +  SVM (Zhang and Wu 2012), DWT  +  PCA  +  SVM  +  RBF 
(Zhang and Wu 2012), DWT  +  PCA  +  SVM  +  IPOL (Zhang and Wu 2012), 
DWT + PCA + SVM + HPOL (Zhang and Wu 2012), RT + PCA + LS-SVM (Das et al. 
2013), DWT + SE + SWP + PNN (Saritha et al. 2013), PCNN + DWT + PCA + BPNN 
(El-Dahshan et  al. 2014), SWT  +  PCA  +  IABAP-FNN (Wang et  al. 2015a), 
SWT +  PCA +  ABC-SPSO-FNN (Wang et  al. 2015a), and WE +  HMI +  GEPSVM 
(Zhang et al. 2015d).

We averaged the results of 10 runs of K-fold SCV. The comparison results are listed 
in Table  6, in which some old approaches ran five times in their papers with results 
extracted from literature (Das et al. 2013). This experiment ran ten times to get more 
robust results than a five-time run.

The value of q was again assigned with 0.8 (The reason can be found in “Optimal 
parameter q”). The regularization constant C were obtained via grid-search method.

Table 6 shows the proposed “WPTE + FSVM” performed better than existing state-
of-the-art methods, obtaining perfect classification for the first two datasets and an 
accuracy of 99.49 % for D-255. This demonstrated the effectiveness of FSVM, which can 
reduce the effect of noise and outliers in the training points, yielding a more reliable 
hyperplane than standard SVM. The second best classifier is “RT + PCA + LS-SVM” 
(Das et al. 2013) that achieved 99.39 % for D-255.

Table 5 SVM versus FSVM (10xK‑fold SCV)

Proposed approaches D-66 D-160 D-255

WPSE + SVM 98.64 97.12 97.02

WPSE + FSVM 99.85 99.69 98.94

WPTE + SVM 99.09 98.94 98.39

WPTE + FSVM 100.00 100.00 99.49
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Finally, the average evaluations based on 10 runs of the proposed WPTE +  FSVM 
method were listed in Table 7. For D-66 and D-160, the WPTE + FSVM yielded per-
fect classification. For the D-255, its performance slightly decreased with sensitivity of 
99.50 %, specificity of 99.43 %, precision of 99.91 %, and accuracy of 99.49 %.

Optimal parameter q

The parameter q influences the extracted features, so it also influences classification 
performance. Its value should be no more than 1, since the brain image is subextensive, 
containing complicated regions. In this final experiment, we varied the value of q in the 
set of [0.1, 0.2, 0.3, …, 0.1, 1] (Note q = 1 degrades WPTE to WPSE), and ran the offline 
training for each value. We recorded the average accuracy over 10 runs on the dataset 
D-255 by the proposed “WPTE + FSVM”. The results are shown in Fig. 5 and Table 8.

Figure  5 demonstrates the value of q yields slight but discernible effect on average 
accuracy of 10 runs. As q increases to 0.8, the curve increases gradually till the highest. 
As q increases to 0.1, the average accuracy decreases sharply. The result again validates 
that WPTE (q = 0.8) is better than WPSE (q = 1).

Table 6 Classification comparison

The italic represents the highest accuracy among all algorithms

Existing approaches Feature # Run # D-66 D-160 D-255

DWT + SOM (Chaplot et al. 2006) 4761 5 94.00 93.17 91.65

DWT + SVM (Chaplot et al. 2006) 4761 5 96.15 95.38 94.05

DWT + SVM + RBF (Chaplot et al. 2006) 4761 5 98.00 97.33 96.18

DWT + SVM + POLY (Chaplot et al. 2006) 4761 5 98.00 97.15 96.37

DWT + PCA + KNN (El‑Dahshan et al. 2010) 7 5 98.00 97.54 96.79

DWT + PCA + FP‑ANN (El‑Dahshan et al. 2010) 7 5 97.00 96.98 95.29

DWT + PCA + SCG‑FNN (Dong et al. 2011) 19 5 100.00 99.27 98.82

DWT + PCA + SVM (Zhang and Wu 2012) 19 5 96.01 95.00 94.29

DWT + PCA + SVM + RBF (Zhang and Wu 2012) 19 5 100.00 99.38 98.82

DWT + PCA + SVM + IPOL (Zhang and Wu 2012) 19 5 100.00 98.12 97.73

DWT + PCA + SVM + HPOL (Zhang and Wu 2012) 19 5 98.34 96.88 95.61

RT + PCA + LS‑SVM (Das et al. 2013) 9 5 100.00 100.00 99.39

DWT + SE + SWP + PNN (Saritha et al. 2013) 3 5 100.00 99.88 98.90

PCNN + DWT + PCA + BPNN (El‑Dahshan et al. 2014) 7 10 100.00 98.88 98.24

SWT + PCA + IABAP‑FNN (Wang et al. 2015a) 7 10 100.00 99.44 99.18

SWT + PCA + ABC‑SPSO‑FNN (Wang et al. 2015a) 7 10 100.00 99.75 99.02

WE + HMI + GEPSVM (Zhang et al. 2015d) 14 10 100.00 99.56 98.63

Proposed approach Feature # Run # D-66 D-160 D-255

WPTE + FSVM 16 10 100.00 100.00 99.49

Table 7 Average evaluation of WPTE + FSVM method based on 10 runs

Sensitivity Specificity Accuracy Precision

D‑66 Perfect

D‑160 Perfect

D‑255 99.50 99.43 99.49 99.91
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This optimal result (q = 0.8) in this work exactly identical to three recent literatures: 
Sturzbecher et al. (2009), Cabella et al. (2009), and Zhang et al. (2015b). Furthermore, 
Diniz et al. (2010) found the fact that q = 1.5 for gray matter (GM), 0.1 for white matter 
(WM), and 0.2 for cerebrospinal fluid (CSF). Here we treat the whole brain as a single, so 
we must assign a single value to q. The optimal q of 0.8 can be regarded as an average of 
best q of GM, WM, and CSF.

Discussion on the proposed method

There were three causes to use WPT, TE, and FSVM. (1) WPT yields more features than 
DWT does. (2) Entropy can efficiently represent the complexity of subband coefficients, 
and TE is a better feature descriptor for brain structures than SE. (3) FSVM applies a 
FMF to each training data, so it can reduce the influence of noises and outliers.

The contributions of this work centered in three points: (i) We employed WPTE that 
offered better information description than WPSE. (ii) We employed FSVM that can 
deal with noises and outliers compared to plain SVM; and (iv) We proved the proposed 
“WPTE +  FSVM” approach obtained superior average accuracy to 17 state-of-the-art 
approaches.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
98.6

98.8

99

99.2

99.4

Value of q

A
ve

ra
ge

 A
cc

ur
ac

y 
(%

)

Fig. 5 Effect of q on average accuracy

Table 8 The average accuracy changes with the value of q

q Average accuracy

0.1 99.29

0.2 99.33

0.3 99.33

0.4 99.41

0.5 99.41

0.6 99.37

0.7 99.45

0.8 99.49

0.9 99.33

1.0 98.94
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Conclusion and future research
In this study, we treated the PBD as a binary classification problem as pathological and 
healthy. To solve it, we proposed a novel feature WPTE, which used WPT to replace 
traditional DWT method and used TE to replace traditional SE method, and fed WPTE 
into FSVM. The experiments showed the proposed “WPTE + FSVM” method yielded 
superior performance to state-of-the-art methods.

Future work should focus on the following four aspects: (i) we will include other 
imaging techniques, such as DTI, FMRI and MRSI; (ii) the classification performance 
may increase by using other advanced variants of SVMs, such as GEPSVM (Yu et  al. 
2015a) and Twin SVM (Jayadeva et al. 2007). (iii) we will check the effect produced by 
other wavelet family and other decomposition levels. (iv) We will try to develop fine-
grid search to replace the coarse-grid search technique. (v) Swarm intelligence methods 
(Wang et al. 2015b) will be employed to train the weights of classifiers.
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