3,298 research outputs found

    No Consistent Evidence for Advancing or Delaying Trends in Spring Phenology on the Tibetan Plateau

    Get PDF
    Vegetation phenology is a sensitive indicator of climate change and has significant effects on the exchange of carbon, water, and energy between the terrestrial biosphere and the atmosphere. The Tibetan Plateau, the Earth\u27s “third pole,” is a unique region for studying the long‐term trends in vegetation phenology in response to climate change because of the sensitivity of its alpine ecosystems to climate and its low‐level human disturbance. There has been a debate whether the trends in spring phenology over the Tibetan Plateau have been continuously advancing over the last two to three decades. In this study, we examine the trends in the start of growing season (SOS) for alpine meadow and steppe using the Global Inventory Modeling and Mapping Studies (GIMMS)3g normalized difference vegetation index (NDVI) data set (1982–2014), the GIMMS NDVI data set (1982–2006), the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data set (2001–2014), the Satellite Pour l\u27Observation de la Terre Vegetation (SPOT‐VEG) NDVI data set (1999–2013), and the Sea‐viewing Wide Field‐of‐View Sensor (SeaWiFS) NDVI data set (1998–2007). Both logistic and polynomial fitting methods are used to retrieve the SOS dates from the NDVI data sets. Our results show that the trends in spring phenology over the Tibetan Plateau depend on both the NDVI data set used and the method for retrieving the SOS date. There are large discrepancies in the SOS trends among the different NDVI data sets and between the two different retrieval methods. There is no consistent evidence that spring phenology (“green‐up” dates) has been advancing or delaying over the Tibetan Plateau during the last two to three decades. Ground‐based budburst data also indicate no consistent trends in spring phenology. The responses of SOS to environmental factors (air temperature, precipitation, soil temperature, and snow depth) also vary among NDVI data sets and phenology retrieval methods. The increases in winter and spring temperature had offsetting effects on spring phenology

    QUANTIFYING GRASSLAND NON-PHOTOSYNTHETIC VEGETATION BIOMASS USING REMOTE SENSING DATA

    Get PDF
    Non-photosynthetic vegetation (NPV) refers to vegetation that cannot perform a photosynthetic function. NPV, including standing dead vegetation and surface plant litter, plays a vital role in maintaining ecosystem function through controlling carbon, water and nutrient uptake as well as natural fire frequency and intensity in diverse ecosystems such as forest, savannah, wetland, cropland, and grassland. Due to its ecological importance, NPV has been selected as an indicator of grassland ecosystem health by the Alberta Public Lands Administration in Canada. The ecological importance of NPV has driven considerable research on quantifying NPV biomass with remote sensing approaches in various ecosystems. Although remote images, especially hyperspectral images, have demonstrated potential for use in NPV estimation, there has not been a way to quantify NPV biomass in semiarid grasslands where NPV biomass is affected by green vegetation (PV), bare soil and biological soil crust (BSC). The purpose of this research is to find a solution to quantitatively estimate NPV biomass with remote sensing approaches in semiarid mixed grasslands. Research was conducted in Grasslands National Park (GNP), a parcel of semiarid mixed prairie grassland in southern Saskatchewan, Canada. Multispectral images, including newly operational Landsat 8 Operational Land Imager (OLI) and Sentinel-2A Multi-spectral Instrument (MSIs) images and fine Quad-pol Radarsat-2 images were used for estimating NPV biomass in early, middle, and peak growing seasons via a simple linear regression approach. The results indicate that multispectral Landsat 8 OLI and Sentinel-2A MSIs have potential to quantify NPV biomass in peak and early senescence growing seasons. Radarsat-2 can also provide a solution for NPV biomass estimation. However, the performance of Radarsat-2 images is greatly affected by incidence angle of the image acquisition. This research filled a critical gap in applying remote sensing approaches to quantify NPV biomass in grassland ecosystems. NPV biomass estimates and approaches for estimating NPV biomass will contribute to grassland ecosystem health assessment (EHA) and natural resource (i.e. land, soil, water, plant, and animal) management

    Remote Sensing of the Ecosystem Impact of Invasive Alien Plant Species

    Get PDF
    Invasive Pflanzenarten können Ökosysteme durch Beeinflussung von einheimischen Pflanzengesellschaften und Ökosystemprozessen verĂ€ndern. Solche Ökosystemauswirkungen wurden mit Hilfe von Experimenten oder Feldaufnahmen umfassend untersucht. GroßflĂ€chige Auswirkungen, zum Beispiel auf Habitat- oder Landschaftsebene wurden bisher jedoch kaum untersucht. Mit Hilfe von Fernerkundung können rĂ€umlich explizite Informationen ĂŒber die Verteilung von Arten und Ökosystemeigenschaften erfasst werden und somit die LĂŒcke in der Erforschung der großflĂ€chigen Auswirkungen invasiver Arten geschlossen werden. Bisher wurde Fernerkundung vor allem zur Kartierung von Vorkommen invasiver Pflanzenarten eingesetzt, jedoch nur selten zur AbschĂ€tzung ihrer Auswirkungen. Diese Arbeit zielt darauf ab, das Potential der Fernerkundung fĂŒr die Bewertung von Ökosystemauswirkungen invasiver Pflanzenarten zu analysieren. Zu diesem Zweck wurden drei Forschungsarbeiten angefertigt, die verschiedene Aspekte dieses Potenzials beleuchten: (1) Die Ermittlung von Vegetationseigenschaften in von Invasionen betroffenen Ökosystemen, (2) die Analyse von Auswirkungen invasiver Arten auf unterschiedlichen rĂ€umlichen Skalen und (3) eine rĂ€umlich explizite Darstellung von Ökosystemauswirkungen invasiver Pflanzenarten. Die erste Studie beschĂ€ftigt sich mit der Kartierung von Blattstickstoff (N) und -phosphorgehalten (P) in einem Laubmischwald mit Vorkommen der frĂŒhblĂŒhenden Traubenkirsche (Prunus serotina Ehrh.). FĂŒr die Kartierung wurden hyperspektrale und Laserscanning (LiDAR) Daten kombiniert. Die Studie ergab, dass die Bestimmung von N und P aus hyperspektalen Fernerkundungdaten in Baumkronen mit hoher struktureller HeterogenitĂ€t erschwert wird. Allerdings konnte auch ein Zusammenhang zwischen chemischer Zusammensetzung und der Struktur des Kronendaches festgestellt werden. So konnten die von LiDAR-Daten abgeleiteten Strukturinformationen genutzt werden, um die Vorhersagen von N und P zu verbessern. In der zweiten Studie wurden aus Fernerkundungsdaten erstellte Karten von Ökosystemeigenschaften genutzt, um Gebiete mit und ohne P. serotina zu vergleichen. Die Karten umfassten N und P, sowie das N:P-VerhĂ€ltnis von BlĂ€ttern, das Holzvolumen und den BlattflĂ€chenindex (LAI). Es wurden sowohl Unterschiede in den Werten von Blattinhaltsstoffen als auch in der Waldstruktur fĂŒr Standorte mit und ohne P. serotina festgestellt. Diese Unterschiede waren auch auf Bestandsebene erkennbar, wenn auch in geringem Maße. In der dritten Studie wurden hyperspektrale Luftbilder verwendet um die prozentuale Deckung des Kaktusmooses (Campylopus introflexus (Hedw.) Brid.) in einem DĂŒnenökosystem großflĂ€chig zu kartieren. DarĂŒber hinaus wurde der Zusammenhang zwischen dem Deckungsgrad von C. introflexus und der Artenvielfalt von Pflanzen untersucht. In Kombination wurden diese Ergebnisse verwendet, um potenzielle Bereiche mit hohen Auswirkungen zu kennzeichnen. Basierend auf diesen drei Studien wurden in dieser Arbeit zwei grundlegende methodische AnsĂ€tze zur Analyse von Ökosystemauswirkungen invasiver Pflanzenarten per Fernerkundung identifiziert und angewandt. Der erste Ansatz besteht darin, mit Hilfe von Fernerkundung erstellte Karten von Ökosystemeigenschaften zu verwenden, um diese Eigenschaften in AbhĂ€ngigkeit des Vorkommens invasiver Arten auszuwerten. Wie gezeigt werden konnte, ist dies auch fĂŒr große FlĂ€chen, beispielsweise auf der Habitat- oder Landschaftsebene, möglich. Somit kann Fernerkundung zu einem besseren VerstĂ€ndnis der Auswirkungen von invasiven Arten beitragen. Der zweite Ansatz basiert auf der Kartierung von Abundanzen invasiver Pflanzenarten. Diese können als Indikator fĂŒr die StĂ€rke der Auswirkungen genutzt werden. Die resultierenden Karten können verwendet werden, um Bereiche mit hohen Auswirkungen zu identifizieren. DarĂŒber hinaus ermöglicht dieser zweite Ansatz den Vergleich der Auswirkungen zwischen verschiedenen Arten oder Lebensraumtypen und kann somit wertvolle Informationen fĂŒr Managemententscheidungen liefern. Da die Ableitung vieler Ökosystemeigenschaften aus Fernerkundungsdaten nach wie vor eine Herausforderung darstellt, sollte die zukĂŒnftige Forschung darauf abzielen, die ZusammenhĂ€nge zwischen den Eigenschaften und der Reflektanz der Vegetation besser zu verstehen. Dies ist eine wesentliche Voraussetzung fĂŒr eine zuverlĂ€ssige Vorhersage ĂŒber verschiedene LebensrĂ€ume hinweg. ZukĂŒnftige Fernerkundungsstudien, mit dem Ziel invasive Arten zu kartieren, sollten sich auf die Vorhersage von Deckungsgraden konzentrieren. DarĂŒber hinaus sind generalisierte Verfahren wĂŒnschenswert, die eine erfolgreiche Identifizierung von Arten unter verschiedenen ökologischen Gegebenheiten gewĂ€hrleisten. Nicht zuletzt sollte diese Arbeit Invasionsökologen ermutigen, existierende Fernerkundungsprodukte hĂ€ufiger zu verwenden, um großflĂ€chige Auswirkungen von invasiven Pflanzenarten auf Ökosysteme zu analysieren

    Comparison of physical-based models to measure forest resilience to fire as a function of burn severity

    Get PDF
    ProducciĂłn CientĂ­ficaWe aimed to compare the potential of physical-based models (radiative transfer and pixel unmixing models) for evaluating the short-term resilience to fire of several shrubland communities as a function of their regenerative strategy and burn severity. The study site was located within the perimeter of a wildfire that occurred in summer 2017 in the northwestern Iberian Peninsula. A pre- and post-fire time series of Sentinel-2 satellite imagery was acquired to estimate fractional vegetation cover (FVC) from the (i) PROSAIL-D radiative transfer model inversion using the random forest algorithm, and (ii) multiple endmember spectral mixture analysis (MESMA). The FVC retrieval was validated throughout the time series by means of field data stratified by plant community type (i.e., regenerative strategy). The inversion of PROSAIL-D featured the highest overall fit for the entire time series (R2 > 0.75), followed by MESMA (R2 > 0.64). We estimated the resilience of shrubland communities in terms of FVC recovery using an impact-normalized resilience index and a linear model. High burn severity negatively influenced the short-term resilience of shrublands dominated by facultative seeder species. In contrast, shrublands dominated by resprouters reached pre-fire FVC values regardless of burn severity.Ministerio de EconomĂ­a y Competitividad y Fondo Europeo de Desarrollo Regional (FEDER) - (project AGL2017-86075-C2-1-R)Junta de Castilla y LeĂłn - (project LE005P20)British Ecological Society - (project SR22-100154

    Changes in Tall Shrub Abundance on the North Slope of Alaska, 2000-2010

    Get PDF
    The observed greening of Arctic vegetation and the expansion of shrubs in the last few decades has likely had profound implications for the tundra ecosystem, including feedbacks to climate. Uncertainty surrounding the magnitude, direction, and implications of this vegetation shift calls for monitoring of vegetation structural parameters, such as fractional cover of shrubs. Due to the extent of the North Slope of Alaska and its extreme environments, remote sensing may be the most suitable tool to produce wall-to-wall fractional shrub cover maps for the entire region, however, most regional maps have relied on vegetation indices or needed many years worth of data to cover the whole region. Here, a new mapping approach is presented that uses satellite imagery from the Multi-angle Imaging SpectroRadiometer (MISR) sensor and some landscape variables to predict tall shrub (\u3e 0.5 m) cover with the ultimate goal of evaluating temporal changes in tall shrub fractional cover during the period of 2010-2000. Specifically, we: 1) undertook two field surveys in the North Slope of Alaska to obtain estimates of tall shrub cover, canopy height, crown radius, and total number of shrubs at 26 sites (250 m × 250 m each); 2) evaluated the ability of the semi-automated image interpretation algorithm CANAPI - CANopy Analysis from Panchromatic Imagery, to derive structural data for tall (\u3e 0.5 m) shrubs in the Arctic; 3) constructed a robust reference database with estimates of shrub structural parameters; 4) trained and validated the boosted regression tree model to predict tall shrub fractional cover from moderate resolution imagery; 5) created the 2000 and the 2010 tall shrub fractional cover map for the North Slope of Alaska; and 6) evaluated the changes in shrub abundance during the period 2010-2000 in the North Slope of Alaska. Results from the field surveys suggested that tall shrub fractional cover was less than 5% at 250 m scales. The evaluation of the CANAPI algorithm showed that CANAPI could successfully retrieve fractional cover (R2 = 0.83, P \u3c 0.001), mean crown radius (R2 = 0.81, P \u3c 0.001), and total number of shrubs (R2 = 0.54, P \u3c 0.001) from very-high resolution imagery. As a result, a robust reference database was constructed with estimates of tall shrub fractional cover, canopy radius, and total number of shrubs for 1,039 sites across the domain of the North Slope. After the training and validation of the Boosted Regression Tree (BRT), the best model used 14 predictor variables and explained 52% of the variation in the response variable, fractional cover. The red reflectance, slope, nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted weight of determination, and isotropic scattering kernel were the variables more often used to generate the regression trees, and therefore they contributed the most to the model. The trained BRT model was used to construct the tall shrub fractional cover map for the year 2000 and 2010 using moderate resolution imagery. The maps revealed that cover ranged from 0.00 to 0.21 and about 75% of the sites had a fractional cover less than 0.013. High cover values were predicted along floodplains, creeks, and sloped terrain. The 2000 MISR-derived fractional cover map presented here outperformed the 2000 Landsat-derived tall shrub fractional cover map when compared to the robust validation data set (R2= 0.38, Root Mean Square Error (RMSE) = 0.08). Temporal comparisons of tall shrub abundance in the MISR-derived maps suggested that shrubs expanded during the period 2000-2010. The extent of the area that unequivocally experienced a robust change in tall shrub cover was less than 1 % (1,487 km2) of the total area of the North Slope of Alaska (213,090 km2). It is possible that tall shrubs may have expanded throughout a larger area but there is insufficient precision in the MISR-based estimates to make an unequivocal determination. Nevertheless, it seems that there was a positive trend toward an increase in shrub cover considering that 95% of the locations that had a robust change saw an increase. The tall shrub cover expansion rate varied between 0.006 yr-1 and 0.017 yr-1, being higher along the forest-tundra ecotone, north of the Brooks Range. More research is necessary to determine if the increase in cover corresponded to the advance of the tree line, or to the expansion of the tall shrubs, or both

    NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms

    Full text link
    The 2017–2027 National Academies' Decadal Survey, Thriving on Our Changing Planet, recommended Surface Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared (MWIR: 3–5 ÎŒm; TIR: 8–12 ÎŒm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algorithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); (v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists

    Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR

    Get PDF
    Red band bidirectional reflectance factor data from the NASA MODerate resolution Imaging Spectroradiometer (MODIS) acquired over the southwestern United States were interpreted through a simple geometric–optical (GO) canopy reflectance model to provide maps of fractional crown cover (dimensionless), mean canopy height (m), and aboveground woody biomass (Mg ha−1) on a 250 m grid. Model adjustment was performed after dynamic injection of a background contribution predicted via the kernel weights of a bidirectional reflectance distribution function (BRDF) model. Accuracy was assessed with respect to similar maps obtained with data from the NASA Multiangle Imaging Spectroradiometer (MISR) and to contemporaneous US Forest Service (USFS) maps based partly on Forest Inventory and Analysis (FIA) data. MODIS and MISR retrievals of forest fractional cover and mean height both showed compatibility with the USFS maps, with MODIS mean absolute errors (MAE) of 0.09 and 8.4 m respectively, compared with MISR MAE of 0.10 and 2.2 m, respectively. The respective MAE for aboveground woody biomass was ~10 Mg ha−1, the same as that from MISR, although the MODIS retrievals showed a much weaker correlation, noting that these statistics do not represent evaluation with respect to ground survey data. Good height retrieval accuracies with respect to averages from high resolution discrete return lidar data and matches between mean crown aspect ratio and mean crown radius maps and known vegetation type distributions both support the contention that the GO model results are not spurious when adjusted against MISR bidirectional reflectance factor data. These results highlight an alternative to empirical methods for the exploitation of moderate resolution remote sensing data in the mapping of woody plant canopies and assessment of woody biomass loss and recovery from disturbance in the southwestern United States and in parts of the world where similar environmental conditions prevail

    Improving the remote estimation of soil organic carbon in complex ecosystems with Sentinel‑2 and GIS using Gaussian processes regression

    Get PDF
    Background and aims The quantitative retrieval of soil organic carbon (SOC) storage, particularly for soils with a large potential for carbon sequestration, is of global interest due to its link with the carbon cycle and the mitigation of climate change. However, complex ecosystems with good soil qualities for SOC storage are poorly studied. Methods The interrelation between SOC and various vegetation remote sensing drivers is understood to demonstrate the link between the carbon stored in the vegetation layer and SOC of the top soil layers. Based on the mapping of SOC in two horizons (0-30 cm and 30-60 cm) we predict SOC with high accuracy in the complex and mountainous heterogeneous pĂĄramo system in Ecuador. A large SOC database (in weight % and in Mg/ha) of 493 and 494 SOC sampling data points from 0-30 cm and 30-60 cm soil profiles, respectively, were used to calibrate GPR models using Sentinel-2 and GIS predictors (i.e., Temperature, Elevation, Soil Taxonomy, Geological Unit, Slope Length and Steepness (LS Factor), Orientation and Precipitation). Results In the 0-30 cm soil profile, the models achieved a R2 of 0.85 (SOC%) and a R2 of 0.79 (SOC Mg/ha). In the 30-60 cm soil profile, models achieved a R2 of 0.86 (SOC%), and a R2 of 0.79 (SOC Mg/ha). Conclusions The used Sentinel-2 variables (FVC, CWC, LCC/Cab, band 5 (705 nm) and SeLI index) were able to improve the estimation accuracy between 3-21% compared to previous results of the same study area. CWC emerged as the most relevant biophysical variable for SOC prediction

    Estimating grassland vegetation cover with remote sensing: a comparison between Landsat-8, Sentinel-2 and PlanetScope imagery

    Get PDF
    Grassland fractional vegetation cover (FVC) accurate mapping on a large scale is crucial, since degraded grasslands contribute less to provisioning services, carbon storage, water purification, erosion control and biodiversity conservation. The spatial and temporal resolution of Sentinel-2 (S2) and PlanetScope (PS) data has never been explored for grassland FVC estimation so far and will enable researchers and agencies to quantify and map timelier and more precisely grassland processes. In this paper we compare FVC estimation models developed from Landsat-8 (L8), S2 and PS imagery. The reference grassland FVC dataset was obtained on the Paganella ski runs (46.15°N, 11.01°E, Italy) applying unsupervised classification to nadir grassland RGB photographs taken from 1.35 m above the soil. Fractional Response Models between reference FVC and 18 vegetation indices (VIs) extracted from satellite imagery were fitted and analysed. Then, leave-one-out cross validation and spatiotemporal change analysis were also performed. Our study confirms the robustness of the commonly used VIs based on the difference between NIR and the red wavelength region (R2 = 0.91 for EVI using S2 imagery) and indicate that VIs based on the red-edge spectral region are the best performing for PS imagery (R2 = 0.89 for RECI). Only medium to high spatial resolution imagery (S2 and PS) precisely mapped spatial patterns at the study site, since grasslands FVC varies at a fine scale. Previously available imagery at medium to low spatial and temporal resolution (e.g., L8) may still be interesting for analysis requiring long time-series of dat

    Quantitative estimation of vegetation traits and temporal dynamics using 3-D radiative transfer models, high-resolution hyperspectral images and satellite imagery

    Get PDF
    Large-scale monitoring of vegetation dynamics by remote sensing is key to detecting early signs of vegetation decline. Spectral-based indicators of phys-iological plant traits (PTs) have the potential to quantify variations in pho-tosynthetic pigments, chlorophyll fluorescence emission, and structural changes of vegetation as a function of stress. However, the specific response of PTs to disease-induced decline in heterogeneous canopies remains largely unknown, which is critical for the early detection of irreversible damage at different scales. Four specific objectives were defined in this research: i) to assess the feasibility of modelling the incidence and severity of Phytophthora cinnamomi and Xylella fastidiosa based on PTs and biophysical properties of vegetation; ii) to assess non-visual early indicators, iii) to retrieve PT using radiative transfer models (RTM), high-resolution imagery and satellite observations; and iv) to establish the basis for scaling up PTs at different spatial resolutions using RTM for their retrieval in different vegetation co-vers. This thesis integrates different approaches combining field data, air- and space-borne imagery, and physical and empirical models that allow the retrieval of indicators and the evaluation of each component’s contribution to understanding temporal variations of disease-induced symptoms in heter-ogeneous canopies. Furthermore, the effects associated with the understory are introduced, showing not only their impact but also providing a compre-hensive model to account for it. Consequently, a new methodology has been established to detect vegetation health processes and the influence of biotic and abiotic factors, considering different components of the canopy and their impact on the aggregated signal. It is expected that, using the presented methods, existing remote sensors and future developments, the ability to detect and assess vegetation health globally will have a substantial impact not only on socio-economic factors, but also on the preservation of our eco-system as a whole
    • 

    corecore