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Abstract: We aimed to compare the potential of physical-based models (radiative transfer and pixel
unmixing models) for evaluating the short-term resilience to fire of several shrubland communities
as a function of their regenerative strategy and burn severity. The study site was located within the
perimeter of a wildfire that occurred in summer 2017 in the northwestern Iberian Peninsula. A pre-
and post-fire time series of Sentinel-2 satellite imagery was acquired to estimate fractional vegetation
cover (FVC) from the (i) PROSAIL-D radiative transfer model inversion using the random forest
algorithm, and (ii) multiple endmember spectral mixture analysis (MESMA). The FVC retrieval was
validated throughout the time series by means of field data stratified by plant community type (i.e.,
regenerative strategy). The inversion of PROSAIL-D featured the highest overall fit for the entire
time series (R2 > 0.75), followed by MESMA (R2 > 0.64). We estimated the resilience of shrubland
communities in terms of FVC recovery using an impact-normalized resilience index and a linear
model. High burn severity negatively influenced the short-term resilience of shrublands dominated
by facultative seeder species. In contrast, shrublands dominated by resprouters reached pre-fire FVC
values regardless of burn severity.

Keywords: fractional vegetation cover; MESMA; PROSAIL; recovery; Sentinel-2; wildfire

1. Introduction

The observed and projected increase in the severity of wildfires in the western Mediter-
ranean Basin may hinder the resilience of plant communities to fire disturbance [1]. Wildfire
severity, defined as the fire impact on the ecosystem, and operationally estimated from
the amount of above- and belowground plant biomass consumed [2], is one of the key
determinants of plant communities’ recovery in the first post-fire periods [3]. Although
field sampling methods are reliable and accurate for assessing plant community resilience
to fire, its wide-scale application is limited in large-scale assessments due to its high time
and economic cost [4]. In this sense, synoptic observation of the land surface using remote
sensing-based techniques offers an effective way to achieve this objective.

Passive optical sensors of moderate spatial resolution, such as those onboard Landsat
or Sentinel-2 satellite missions, offer the potential to accurately detect land cover changes
and associated processes over extended time series [5,6]. The Landsat and Sentinel-2
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multispectral imagery archive is potentially useful for assessing spatial patterns of land
cover change such as post-fire forest dynamics due to the nominal 30 m/20 m spatial
resolution, a consistent scale with that of most landscape-scale land cover changes [7]. In
addition, their revisit period provides great coverage for multitemporal studies, especially
in areas with frequent cloud cover that can deplete the availability of usable imagery [8].

To date, most studies on ecological resilience to fire have been based on the evaluation
of plant community greenness recovery through spectral vegetation indices [9,10], among
others. However, this product does not represent physical quantities [11], is affected by
the background signal of burned areas [12], and suffers from reflectance saturation at
high canopy cover in unburned areas [13]. Conversely, physical-based remote sensing
techniques, such as pixel unmixing models and radiative transfer models (RTM), can be
used to retrieve vegetation biophysical variables (e.g., fractional vegetation cover (FVC)) as
fire resilience indicators [14].

Pixel unmixing models are based on the underlying premise that imagery pixels are
constituted by several ground features that contribute to the surface reflectance captured
by the optical sensor [15], being the pixel FVC, the physical fraction of vegetation cover in
that pixel [16]. In this approach, FVC is directly retrieved from remote sensing data using
spectral libraries or image endmembers, without initial field data needs [17]. However, end-
member collection can be time-consuming in large, heterogeneous burned landscapes [11].
Among these techniques, multiple endmember spectral mixture analysis (MESMA; [18]) is
an advanced method that allows the spectra of several endmembers to characterize each
pixel ground component (e.g., the vegetation fraction; [19]). Remarkably, each pixel can be
resolved independently with a differing number of endmembers to account for the associ-
ated terrain variability [17], for instance different vegetation species within the community.
This contrasts with more conventional spectral mixture models, such as linear spectral
mixture analysis, in which only one spectrum can be incorporated in each endmember [15].

RTM-based approaches simulate the physical relationships between vegetation bio-
physical variables, such as the FVC, and the plant community reflectance [20]. These
models can be inverted using observed surface reflectance data captured by passive optical
sensors for retrieving the FVC, to be implemented as a resilience indicator to fire. RTMs
do not need to be parameterized with field data specific to the area of interest, which are
only needed for validation of the retrieved biophysical variable [11]. Remarkably, RTM
physical relationships are not site-specific, and vegetation recovery can then be monitored
in burned landscapes that encompass several communities [21]. RTM inversion is usually
performed using machine learning techniques, also known as hybrid inversion [22].

Although physical-based models have been used to monitor post-fire vegetation com-
munities [11,23], to date there are no studies in the literature comparing their effectiveness
to assess vegetation resilience to fire in plant communities affected by different severity
levels. Therefore, the objective of this work was to compare the potentiality of two physical-
based approaches (pixel unmixing and radiative transfer models) applied to passive optical
data for evaluating vegetation resilience as a function of burn severity in shrubland com-
munities with different regenerative traits. FVC was used as a resilience indicator retrieved
from a time series of Sentinel-2 imagery, using hybrid RTM inversion and MESMA models.

2. Materials and Methods
2.1. Study Site Description

The study site lies within the perimeter of a wildfire that burned 9940 ha of shrub
and forest plant communities in the summer of 2017 within Sierra de Cabrera (NW Spain;
Figure 1). The site has a rugged topography, with prominent crests and steep slopes, and
its altitude ranges from 836–1938 m. The climate is temperate Mediterranean, with a mean
annual temperature of 9 ◦C and mean annual precipitation of 850 mm. The wildfire affected,
among others, three types of shrub plant communities: shrub communities dominated
by facultative seeder species (Genista hystrix Lange (gorse) and Genista florida L. (broom))
and resprouter species (Erica australis L. (heath)). The shrub plant communities of the site
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exhibit high spatial variability due to small-scale differences in post-fire recovery patterns
and accumulation of burned debris as a consequence of the fire regime variability. Other
plant communities affected by the fire include Pyrenean oak forests dominated by Quercus
pyrenaica Willd, and Scots pine forests dominated by Pinus sylvestris L., as well as grasslands
in the valley bottoms. The main land use in the site before the wildfire involved extensive
livestock farming.
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Figure 1. Wildfire perimeter and burn severity estimation from the differenced Normalized Burn
Ratio (dNBR) thresholds.

Facultative seeder shrub species are able to resprout from belowground organs and to
germinate during post-fire conditions; however, in our study site, their resprouting success
and vigor is lower than that of obligate resprouters. The latter species rely on resprouting
strategy to regenerate after wildfire because they lack a fire-resistant aerial or soil seed
bank.

2.2. Sentinel-2 Imagery, Processing and Burn Severity Calculation

Sentinel-2 multispectral mission comprises two satellites (Sentinel-2A and Sentinel-2B)
as part of the Copernicus program. Sentinel-2 provides thirteen bands at different spatial
resolutions in the visible, near infrared and short-wave infrared regions: four bands at 10
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m, six bands at 20 m and three bands at 60 m [24]. Sentinel-2 bands at a spatial resolution
of 10 m were resampled to 20 m using the nearest neighbor interpolation. The bands
at 60 m were discarded, as they are used for atmospheric correction and cloud detection
processes and are strongly affected by atmospheric effects [20]. Two Sentinel-2 MSI Level 1C
scenes were calibrated to surface reflectance (level 2A) with the Atmospheric/Topographic
Correction for Satellite Imagery algorithm version 3 (ATCOR-3; [25]) by correcting for
topographic and atmospheric effects. Meteorological data from the State Meteorology
Agency of Spain (AEMET), the MODIS water vapor product (MOD05), and a digital
terrain model (DTM) were used to set appropriate ATCOR-3 input parameters. The scenes
were acquired for immediate pre-fire (13 August 2017) and post-fire (2 September 2017)
scenarios to estimate burn severity through the differenced Normalized Burn Ratio (dNBR)
index [26]. In this study, we selected the dNBR because it was the spectral index most
related to field-based burn severity in internal testing compared to relativized indices,
as well as in previous research on the site [27]. In addition, the dNBR is the primary
spectral index within the European Forest Fire Information System (EFFIS) and a reference
approach for initial burn severity assessment [28], which may improve the comparability
of the results of our study. The dNBR was validated through the composite burn index
(CBI; [29]), measured in 72 field plots of 20 m × 20 m one month after wildfire (initial burn
severity assessment). Burn severity was rated in the field between 0 (unburned) and 3
(high severity). Three field burn severity categories were established based on CBI values
of each plot: low (CBI < 1.25), moderate (1.25 ≤ CBI ≤ 2.25) and high (CBI > 2.25). These
widely accepted CBI thresholds in the literature correspond to those proposed by [30].
These CBI thresholds were used to define three burn severity categories based on a dNBR
thresholding approach using a linear regression model: low (dNBR < 384), moderate (384
≤ dNBR ≤ 659) and high (dNBR > 659) (Figure 1). The R2 of the linear model was equal
to 0.84.

2.3. Physical-Based Models

Pixel unmixing and radiative transfer models were used to retrieve the FVC from
three Sentinel-2 MSI Level 2A scenes (processed from level 1C following the methodology
described in Section 2.2) acquired during the biomass peak of the study site between 2017
and 2020: (i) 1-week pre-fire (13 August 2017 (equivalent to pre-fire dNBR calculation)), (ii)
2-weeks post-fire (2 September 2017 (equivalent to post-fire dNBR calculation)), and (iii)
3-years post-fire (18 July 2020).

2.3.1. Multiple Endmember Spectral Mixture Analysis (MESMA)

Candidate endmember spectra for MESMA models were extracted from Sentinel-2
scenes (image endmembers) rather than using spectral libraries (reference endmembers)
because image endmembers are acquired at the same resolution of the imagery and are in-
fluenced by the same atmospheric imagery corrections [19,31]. The first post-fire Sentinel-2
image (2-weeks post-fire) was used to collect endmembers to ensure the presence of enough
non-photosynthetic material corresponding to burned vegetation. We used 500 training
polygons consisting of uniform ground patches encompassing a single vegetation, soil or
charred material type. Polygon size was set to encompass at least four Sentinel-2 pixels. We
ensured a separation between polygons of 100 m and a uniform distribution among plant
community types [32]. Training areas for soil, green vegetation (Genista hystrix, Genista
florida and Erica australis) and non-photosynthetic vegetation (charred debris) were delin-
eated using very high spatial resolution orthophotographs at a spatial resolution of 0.5 m.
The Iterative endmember selection (IES) algorithm [33] was used in this study to select
optimal endmembers from the candidate set and improve MESMA computational effi-
ciency and accuracy [19]. We clustered the selected endmembers by the IES algorithm into
photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil spectral
libraries. Next, Sentinel-2 pre- and post-fire scenes were unmixed into PV, NPV, soil, and
shade fraction images. The performance of all candidate MESMA models was evaluated
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using the following requirements for each pixel: (i) the range between minimum and
maximum fraction image value was constrained between 0 and 1; (ii) shade fraction values
lower than 0.8; and (iii) maximum allowable RMSE equal to 0.025 [23,34]. The constraint in
fraction images was selected on the basis of the values physically attainable in the field [32],
whereas the shade constraint was chosen to maintain a reasonably high fraction value for
the other endmembers [34]. For its part, the RMSE constraint is a standard in the litera-
ture [18]. Finally, fraction images were shade-normalized, being the GV shade-normalized
fraction of the FVC.

IES, MESMA and shade normalization were implemented in VIPER Tools 2.0, devel-
oped by the VIPER Lab at UC Santa Barbara [35].

2.3.2. Hybrid Radiative Transfer Model (RTM) Inversion

The PROSAIL-D RTM, resulting from the coupled PROSPECT-D leaf model [36] and
the 4SAIL canopy reflectance model [37], was used to simulate shrubland plant canopy
reflectance. PROSPECT-D simulates leaves hemispheric reflectance and transmittance from
400–2500 nm as a function of a number of physiological and biochemical variables at the
leaf level. For its part, 4SAIL simulates plant canopy reflectance based on PROSPECT-D
simulations, as well as a series of variables related to canopy structure, lighting and viewing
conditions [38]. The values of PROSPECT-D and 4SAIL input variables (Table 1) were
obtained from satellite imagery metadata, in-depth literature review and field knowledge,
considering the variability of the biophysical conditions of the shrubland communities in
the study site. Then, PROSAIL-D simulations were executed in direct mode to obtain a
dataset of simulated shrubland canopy reflectance and its corresponding FVC, calculated
from the viewing conditions, leaf area index and leaf angle of each simulation [11]. The
dataset was spectrally resampled to the Sentinel-2 band configuration using its spectral
bandwidth and response function. We updated the dataset with 10% of bare soil and non-
photosynthetic vegetation spectra with respect to the total simulations [39]. This amount
may be representative in relation to the high variability of the vegetation biophysical
conditions in highly heterogeneous plant communities [11].

Table 1. Value or range of input variables for PROSPECT-D and 4SAIL models.

Leaf Model (PROSPECT-D) Unit Value or Range

Structure index unitless 1.5–2.5
Chlorophyll content µg cm−2 10–70
Dry matter content g cm−2 0.005–0.015

Water content g cm−2 0.005–0.015
Carotenoid content µg cm−2 5–40

Anthocyanin content µg cm−2 0–60
Brown pigment fraction unitless 0–1

Canopy model (4SAIL) Unit Value or range
Leaf area index m2 m−2 0.1–3

Average leaf angle degrees 20–90
Diffuse/direct radiation unitless 0.1

Hot spot effect unitless 0.001–1
Soil brightness factor unitless 0–1

Fraction of vegetation cover unitless 0–1
Solar zenith angle degrees Imagery metadata

Observation zenith angle degrees Imagery metadata
Sun-sensor azimuth angle degrees Imagery metadata

The Random Forest (RF; [40]) regression algorithm was used to model the relationship
between the simulated Sentinel-2 reflectance at the shrubland canopy level and the corre-
sponding FVC for the dataset generated by PROSAIL-D. In this study, the ntree parameter
was set to 500 and the mtry parameter to one third of the number of Sentinel-2 bands,
which are the default values. The calibrated RF model was then applied to the reflectance
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observed in the Sentinel-2 imagery for obtaining spatially explicit FVC predictions for each
of the pixels in the pre- and post-fire time series imagery.

PROSAIL-D parameterization and execution in direct mode, as well as FVC retrieval
through RF algorithm were performed in ARTMO [41].

2.4. FVC Retrieval Validation

In September 2017, we established 60 field plots of 20 m × 20 m in burned areas to
evaluate the post-fire FVC retrieval performance through MESMA and PROSAIL-D along
the post-fire time series. Likewise, 20 control plots of 20 m × 20 m were established in
unburned areas to evaluate pre-fire FVC retrieval. This number of field plots has been
shown to be representative of the plant communities’ variability in the study site [11]. Plots
were stratified by reproductive vegetation strategy (resprouters and facultative seeders).
The center of each plot was georeferenced using a sub-meter accuracy GPS receiver in
post-processing mode. Both control and burned plots were sampled in September 2017,
with burned plots also being surveyed in July 2020. FVC was estimated in each plot as the
area of the vertical projection occupied by each community stratum (i.e., herbaceous and
shrub strata) in the shrubland communities, using a visual estimation method [42]. The
coefficient of determination (R2) was calculated to evaluate the retrieval performance of
the FVC through MESMA and PROSAIL-D over the time series.

2.5. Data Analyses

From the spatially explicit FVC prediction maps for the time series with higher overall
accuracy (i.e., PROSAIL-D RTM or MESMA pixel unmixing model), we performed a
stratified random sampling of 1000 points, using reproductive vegetation strategy and
burn severity categories as strata. A minimum distance of 100 m between points was
ensured. For each point, the FVC value was extracted for the considered time series. We
computed an impact-normalized resilience index (Rin) [43] that represents the recovery of
the system property, in this case the FVC, with respect to the impact of the disturbance on
that property:

Rin = (Ptx − Pti)/(C0 − Pti)

where Ptx is the value of the system property at the time point when the resilience is evalu-
ated after the disturbance, Pti is the value of the property immediately after the disturbance,
and C0 is its control value. A value of the Rin index equal to 1 denotes a full recovery of the
property at the considered time point. A linear regression model and subsequent Tukey’s
HSD test were used to evaluate the effect of regenerative vegetation strategy and burn
severity (independent variables), as well as their interaction, on vegetation resilience as
measured by the Rin index (dependent variable). All statistical analyses were performed in
R.4.0.5 [44].

3. Results

The overall accuracy of the RF algorithm trained with PROSAIL-D model simulations
for retrieving FVC from Sentinel-2 imagery (R2 = 0.75–0.79) was substantially higher than
that achieved from MESMA models (R2 = 0.64–0.73), both in the immediate pre- and post-
fire scenarios, as well as three years after the wildfire (Figure 2). The accuracy of the FVC
retrieval for both PROSAIL-D and MESMA models was higher in the pre-fire and long-term
post-fire scenarios (R2 > 0.69) than in the immediate post-fire situation (R2 > 0.64). The FVC
estimation for the two shrubland communities considered, dominated by facultative seeder
species and by resprouter species, showed no significant under- or overestimation effects
over the entire range of field-measured FVC, although the estimates for the resprouters
were closer tailored to the 1:1 line (Figure 2).
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Figure 2. Relationship between the FVC measured in the field and that retrieved from Sentinel-2
imagery for the time series using PROSAIL-D (A) and MESMA (B) models.

From the PROSAIL-D spatially explicit FVC estimates, we evidenced a significant effect
of vegetation reproductive strategy (p-value < 0.05) and burn severity (p-value < 0.001), as
well as their interaction (p-value < 0.05), on the resilience of shrubland communities in the
study site (Figure 3). High burn severity hindered the short-term resilience of shrubland
communities dominated by facultative seeder species, with no FVC recovery to a pre-
disturbance state being observed 3 years after wildfire (Figure 3). In contrast, communities
dominated by shrub resprouter species reached pre-fire FVC values 3 years after the fire
disturbance, regardless of the burn severity scenario (Figure 3). In this sense, resprouter
shrubland communities featured a faster recovery rate in high burn severity scenarios than
those communities dominated by facultative seeders.
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Figure 3. Boxplot showing the relationship between the impact-normalized resilience index (Rin)
and burn severity in shrubland plant communities dominated by facultative seeders species and
resprouter species. Significance of Rin predictors (regenerative trait: T; burn severity: S; T × S
interaction) is represented as * (p-value < 0.05), ** (p-value < 0.01), and *** (p-value < 0.001). Lowercase
letters denote significant differences in Rin at the 0.05 level between burn severity levels within each
plant community.

4. Discussion

The assessment of post-fire recovery trajectories through remote sensing-based tech-
niques is essential for (i) understanding current fire regimes in fire-prone ecosystems of the
western Mediterranean Basin [3,45], (ii) providing new insights on the resilience of plant
communities at several spatial scales [23,46], and (iii) supporting adaptive management
strategies aimed at maintaining ecosystem functions and services endangered by changing
fire regimes [47–49].

The present study demonstrated the potentiality of physical-based remote sensing
approaches (i.e., radiative transfer and pixel unmixing models) for estimating FVC as an
indicator of resilience to fire in several pre- and postfire scenarios of shrubland communities
with different vegetation responses. Considerably accurate FVC estimates were achieved
with the PROSAIL-D RTM and MESMA approaches considering (i) the complexity of
biophysical parameters retrieval in shrubland communities because of the high background
signal of non-photosynthetic material and bare soil exposed to the remote sensor, and (ii)
the complex mixture of shrub species [11,50].

In any case, we found that hybrid inversion of the PROSAIL-D RTM using the RF
algorithm outperformed MESMA models when retrieving FVC in heterogeneous shrubland
plant communities. Although both approaches have a solid physical basis and feature
an adequate capability to generalize the biophysical parameter retrievals [4], the delin-
eation of spectrally pure endmembers with moderate spatial resolution imagery in pixel
unmixing models can be challenging [51], especially in heterogeneous burned landscapes
with fine-grained arrangement of vegetation and burned legacies. In addition, spatiotem-
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poral changes in the vegetation’s biophysical properties and background features when
dealing with time series analysis may not be properly captured when delineating image
endmembers in extensive burned landscapes [11]. In contrast, the PROSAIL-D model is
parametrized with well-known ranges of model input variables for the plant communities
under consideration, providing a strong characterization of the physical relationships be-
tween the simulated reflectance and site biophysical variability [11]. However, the use of
site-specific field information to parametrize the RTM could provide higher accuracy in the
retrieval of the biophysical variable of interest [52].

The higher accuracy of FVC retrieval for both PROSAIL-D and MESMA models in
the pre-fire and long-term post-fire scenarios, with stronger vegetation responses than in
the immediate post-fire situation, could be related to the increased influence of woody
debris and bare soil on the surface reflectance at the first post-fire stages with limited
canopy cover [50]. This behavior may also be related to FVC estimates closer to the 1:1
line in the case of shrublands dominated by resprouter species, which feature higher
vegetation cover [53] and structural complexity [14] than the communities dominated by
seeder species in the study site. In addition, a complex mixture of regenerating grass
species, seedling recruitment and resprouting responses in early post-fire stages could be
encompassed in a decametric Sentinel-2 pixel, increasing retrieval uncertainty [11]. Also,
the non-photosynthetic material and bare soil spectra profile from expected pure pixels
may not be accurately collected from decametric satellite imagery [22].

Shrubland communities dominated by both facultative seeder and resprouter
species featured a high post-fire recovery ability, especially in low and moderate burn
severity scenarios, in line with the results of previous field-based research [42,53–55].
However, under high burn severity scenarios, faster recovery rates were evidenced in
shrubland communities dominated by resprouter species compared to those dominated
by facultative seeders. In general, surviving resprouting structures confer a rapid re-
covery of plant biomass and a quick recolonization of the physical space occupied by
the vegetation prior to the wildfire [54]. Likewise, the aerial and soil seed bank of shrub
seeder species suffers considerable damage at high burn severity [56]. This behavior
enabled shrubland communities dominated by resprouter species to achieve resilience
in the short term after wildfire, in contrast to communities dominated by facultative
seeders [57].

Our results are therefore in agreement with those obtained in previous research based
exclusively on field data, which demonstrates the potential of physical-based remote sens-
ing techniques, particularly the hybrid inversion of RTMs, to assess the resilience to fire
of shrubland communities in the short term. However, both physical-based approaches
(i.e., PROSAIL-D RTM and MESMA) featured several FVC retrieval uncertainties in hetero-
geneous fire-prone shrubland communities. First, PROSAIL-D is a turbid medium RTM,
and, consequently, higher accuracies in the model inversion can be attained by using a
geometric RTM to simulate canopy reflectance and transmittance in heterogeneous shrub-
land communities [21], but at the expense of a more complex model parameterization [58],
usually with field data not available short-term after fire. Second, RTM approaches exhibit
improved performance from retrieval using passive optical data at high spatial resolu-
tion, avoiding the land cover aggregation effect of mixed pixels [11]. This shortcoming
would be partially solved by MESMA models, which better capture the ground spectra
variability of mixed pixels. Nevertheless, non-linear mixing in sparse canopies, such as
shrubland communities in the early post-fire periods, violates MESMA assumptions and
has an impact on its performance [59]. However, the main limitation of PROSAIL-D RTM
and MESMA lies in the impossibility to determine the post-fire recovery trajectories of
specific vegetation types or growth forms within the community [31], both in terms of their
composition and structure. In this sense, the fusion of remote sensing data from optical
sensors processed through physical-based techniques, with that of active sensors such
as synthetic aperture radar (SAR) or light detection and ranging (LiDAR), could provide
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valuable insights on the recovery trajectories of biophysical properties at the species level
or by height strata [14,60,61].

5. Conclusions

The assessment of how shrubland communities recover from fire disturbance in
fire-prone ecosystems is essential to providing new insights about the resilience of plant
communities under changing fire regimes in the Mediterranean Basin. This study novelty
compared the potential of radiative transfer and pixel unmixing models for evaluating
the short-term resilience to fire of several shrubland communities. We found that the
hybrid inversion of the PROSAIL-D RTM outperformed MESMA pixel unmixing models
to retrieve FVC in heterogeneous shrubland communities. Adaptations to fire allowed
shrub communities dominated by resprouter species to achieve resilience in the short-term
period after wildfire, which is consistent with previous studies based exclusively on field
data, and thus demonstrates the potential of physical-based remote sensing approaches in
fire ecology research.
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