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ABSTRACT 

CHANGES IN TALL SHRUB ABUNDANCE ON THE NORTH SLOPE OF ALASKA, 

2000-2010 

by Rocio Raquel Duchesne-Onoro 

 The observed greening of Arctic vegetation and the expansion of shrubs in the last 

few decades has likely had profound implications for the tundra ecosystem, including 

feedbacks to climate. Uncertainty surrounding the magnitude, direction, and implications 

of this vegetation shift calls for monitoring of vegetation structural parameters, such as 

fractional cover of shrubs. Due to the extent of the North Slope of Alaska and its extreme 

environments, remote sensing may be the most suitable tool to produce wall-to-wall 

fractional shrub cover maps for the entire region, however, most regional maps have 

relied on vegetation indices or needed many years worth of data to cover the whole 

region. Here, a new mapping approach is presented that uses satellite imagery from the 

Multi-angle Imaging SpectroRadiometer (MISR) sensor and some landscape variables to 

predict tall shrub (> 0.5 m) cover with the ultimate goal of evaluating temporal changes 

in tall shrub fractional cover during the period of 2010-2000. Specifically, we: 1) 

undertook two field surveys in the North Slope of Alaska to obtain estimates of tall shrub 

cover, canopy height, crown radius, and total number of shrubs at 26 sites (250 m × 250 

m each); 2) evaluated the ability of the semi-automated image interpretation algorithm 

CANAPI - CANopy Analysis from Panchromatic Imagery, to derive structural data for 

tall (> 0.5 m) shrubs in the Arctic; 3) constructed a robust reference database with 

estimates of shrub structural parameters; 4) trained and validated the boosted regression 
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tree model to predict tall shrub fractional cover from moderate resolution imagery; 5) 

created the 2000 and the 2010 tall shrub fractional cover map for the North Slope of 

Alaska; and 6) evaluated the changes in shrub abundance during the period 2010-2000 in 

the North Slope of Alaska. Results from the field surveys suggested that tall shrub 

fractional cover was less than 5% at 250 m scales. The evaluation of the CANAPI 

algorithm showed that CANAPI could successfully retrieve fractional cover (R2 = 0.83, P 

< 0.001), mean crown radius (R2 = 0.81, P < 0.001), and total number of shrubs (R2 = 

0.54, P < 0.001) from very-high resolution imagery. As a result, a robust reference 

database was constructed with estimates of tall shrub fractional cover, canopy radius, and 

total number of shrubs for 1,039 sites across the domain of the North Slope. After the 

training and validation of the Boosted Regression Tree (BRT), the best model used 14 

predictor variables and explained 52% of the variation in the response variable, fractional 

cover. The red reflectance, slope, nadir Bidirectional Reflectance Distribution Function 

(BRDF) adjusted weight of determination, and isotropic scattering kernel were the 

variables more often used to generate the regression trees, and therefore they contributed 

the most to the model. The trained BRT model was used to construct the tall shrub 

fractional cover map for the year 2000 and 2010 using moderate resolution imagery. The 

maps revealed that cover ranged from 0.00 to 0.21 and about 75% of the sites had a 

fractional cover less than 0.013. High cover values were predicted along floodplains, 

creeks, and sloped terrain. The 2000 MISR-derived fractional cover map presented here 

outperformed the 2000 Landsat-derived tall shrub fractional cover map when compared 

to the robust validation data set (R2= 0.38, Root Mean Square Error (RMSE) = 0.08). 



vi 

 

Temporal comparisons of tall shrub abundance in the MISR-derived maps suggested that 

shrubs expanded during the period 2000-2010. The extent of the area that unequivocally 

experienced a robust change in tall shrub cover was less than 1 % (1,487 km2) of the total 

area of the North Slope of Alaska (213,090 km2). It is possible that tall shrubs may have 

expanded throughout a larger area but there is insufficient precision in the MISR-based 

estimates to make an unequivocal determination. Nevertheless, it seems that there was a 

positive trend toward an increase in shrub cover considering that 95% of the locations 

that had a robust change saw an increase. The tall shrub cover expansion rate varied 

between 0.006 yr-1 and 0.017 yr-1, being higher along the forest-tundra ecotone, north of 

the Brooks Range. More research is necessary to determine if the increase in cover 

corresponded to the advance of the tree line, or to the expansion of the tall shrubs, or 

both. 
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CHAPTER 1 

 

1.1. Introduction 

 There are many definitions of the word Arctic. One of them describes the Arctic as 

the region north of the Arctic Circle (66.5°N). However, this definition does not take into 

consideration the vegetation, hydrology, or topography of the area. A more appropriate 

definition of the Arctic, suitable for studying terrestrial processes, is the region at high 

northern latitudes which the southern limit extends until the discontinuous or sporadic 

permafrost (McGuire et al., 2006). This study focuses on the Arctic region of Alaska, also 

known as the North Slope. It extends north of the Brooks Range until the coast of the 

Arctic Ocean.  

 The Arctic landscape is a complex ecosystem composed of different landforms such 

as glaciers, rolling hills, flat plains, wetlands, and polar deserts. The Arctic climate varies 

by location and season. For instance, at Point Barrow, Alaska, the mean annual surface 

temperature is -12.2 °C and the average annual precipitation is of 100 mm or less (ACIA, 

2004). Winters are long and bitter, while summers are short. Biodiversity of plants and 

animals is low and on land it decreases from the boreal forest to the coastal plain. About 

3% of the world's plant species occur in the Arctic where lichens and mosses are 

abundant (Matveyeva & Chernov, 2000). About four million people inhabit the region 

including some aboriginal communities. The four major indigenous groups that reside in 

Alaska are the Yup'ik, the Inupiat, the Athabascan, and the Tlingit and Haida Indians who 

live in remote villages. 
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 While the global mean surface temperature has risen in the past seven decades by 

about 0.3-0.6 °C, the temperature increase in the Arctic has been more pronounced due to 

the effect of polar amplification (IPCC, 2013). In particular in the last 150 years, the 

Arctic has experienced the highest temperatures in 400 years (Overpeck et al., 1997). 

Over the last 30 years the Arctic has warmed about 2°C per decade (ACIA, 2004). 

However, the temporal and spatial scale of the warming has not been uniform (McGuire 

et al., 2006). While Alaska experienced an increase in surface temperature in the latter 

half of the 20th century, Greenland underwent a cooling period (Hinzman et al., 2005). 

Considering that temperature is a very important factor to maintain the equilibrium 

between solid and liquid water in the Arctic, small changes in the temperature threshold 

can cause shifts between the two water states with great consequences for physical and 

biological systems and for humans (Macdonald et al., 2005). 

 There are three major terrestrial factors that determine the feedbacks of the Arctic 

terrestrial ecosystems to climate systems: 1) emissions of greenhouse gases (methane and 

carbon dioxide), 2) energy partitioning which refers to the heat flux from the surface to 

the atmosphere as influenced, for example, by permafrost, and 3) albedo (McGuire, et 

al.,2006). In the case of emissions, tundra and wetlands in the Arctic have about 200 to 

300 Gt of stored carbon in the soil (Post et al., 1982). This is equivalent to 600 ppm of 

atmospheric CO2 (Adams et al., 1990). Under warmer and dryer climate conditions, the 

stored carbon could be released to the atmosphere as CO2 and contribute to climate 

warming (IPCC, 2013). On the other hand, the Arctic wetlands are also one of the largest 

sources of methane (CH4) and warmer moister conditions will enhance the release of CH4 
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to the atmosphere (McGuire et al., 2006). In the case of energy partitioning, the role of 

permafrost is a key factor. In the North Slope of Alaska the temperature of permafrost in 

deep wells revealed that from 1950 until 1970, the permafrost cooled, and ever since 

then, the permafrost has warmed (Romanovsky & Osterkamp, 2000). The presence or 

absence of permafrost influences the local hydrological processes. Where a continuous 

layer of permafrost is present, soils are very wet because the water cannot infiltrate to 

deeper ground. When the superficial layer thaws thermokarst are formed and in the boreal 

forest it can cause the death of trees when their roots are flooded . This in turn may affect 

birds and mammals that depend on the forest (Hinzman et al., 2005). As permafrost 

continues thawing, soils can be quite dry as the water can penetrate deeper and a possible 

consequence is the drainage of lakes and changes in stream water chemistry. In the case 

of albedo, a shift in land surface vegetation towards shrubbier landscape will exert a 

positive feedback to radiative forcing and amplify climate warming as shrub tundra has a 

lower albedo than sedge tundra (Chapin et al., 2005; Hizman et al., 2005). A shrub 

expansion could alter the surface energy balance of the tundra by reducing the albedo in 

both summer and winter (Bonan et al., 1992; Chapin et al., 2000; Euskirchen, 2009; 

Sturm et al., 2005). 

  Although the effects of increasing shrub cover in the Arctic are not well understood 

(Selkowitz, 2010), shrub encroachment may have many more implications for regional 

climate in the Arctic including changes in surface hydrology, energy and carbon budget, 

and the disturbance regime (Sturm et al., 2001). Shrub expansion would change the 

hydrology by increasing summer transpiration (Sturm et al., 2001). In winter, protruding 
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shrubs would trap snow drifted by ground-level winds which might reduce water losses 

caused by sublimation when the snow is carried away by the wind (Sturm et al., 2001). 

Furthermore, snow depth would not be uniformly distributed across the landscape, but 

rather deeper snow would surround the shrubs downwind (Sturm et al., 2001). In spite of 

the increase in snow depth, melting would only take 7-10 days (Hizman et al., 1996) in 

part because the timing of the snowmelt occurs close to the annual solar maximum. 

Moreover, deeper snow acts as an excellent insulator promoting an increase in subnivian 

temperatures that could stimulate winter mineralization and support shrub growth (Sturm 

et al., 2001). According to Hizman et al. (2005) in Alaska there has been a trend toward 

an early snow free season stimulated by the high solar radiation. The early snowmelt 

favors soil microbial activity because of warmer ground temperatures which in turn 

promotes plant growth (Fahnestock et al., 1998). Simulations show that in a span of 100 

years the snow free period might have enlarged by ~50days (Euskirchen, 2009). The 

lengthening of the snow free period may also be a positive feedback to climate (Chapin et 

al., 2000) as more solar radiation could be absorbed by the surface thus promoting 

warming of the ground (Hinzman et al., 2005). Furthermore, an increase in shrubs could 

have a positive feedback effect on biogeochemical processes causing accelerated nutrient 

cycling which may favor deciduous shrub growth over other types of vegetation and 

active layer thickness (Sturm et al., 2001). An increase in primary production could be a 

major contributor to changes in the high-latitude carbon budget (Sturm et al., 2005). 

However, under warmer and dryer conditions plants may reduce photosynthetic carbon 

uptake (Gamon et al., 2013). Shrub encroachment would cause changes to the 
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disturbance regime such as increased fire occurrence and intensity as more flammable 

vegetation becomes available (Lloyd et al., 2003).  

 There are several lines of evidence for shrub expansion in the Arctic and its linkage 

to climate. An increase in shrub abundance has been observed across the Arctic using 

repeat aerial photography (Myers-Smith et al., 2011; Sturm et al., 2001). Observational 

and experimental studies have detected a recent increase in aboveground biomass, 

particularly for deciduous shrubs, linking it to recent climate warming (Elmendorf et al., 

2012; Huemmrich et al., 2010). The first long-term observational study in the Arctic 

detected an amplification in aboveground biomass from 1981 to 2008 and a twofold 

boost in the mean canopy height in dwarf shrubs during a period of only 8 years (Hudson 

& Henry, 2009). Shrub rings also indicate that warming is a primary contributor to shrub 

expansion in the Arctic (Forbes et al., 2010; Tape et al., 2012). Regional assessment of 

shrub expansion has been done using remote sensing imagery to derive vegetation 

indices, the Normalized Difference Vegetation Index (NDVI) being the most widely 

used. The increasing trend of the NDVI derived from the Advanced Very High 

Resolution Radiometer (AVHRRs) and Landsat satellites is consistent with an increase in 

biomass and photosynthetic activity, also called 'greening'; a lengthening of the growing 

seasons; and an expansion of shrubs tundra (Jia & Howard, 2003; Myneni et al., 1997; 

Silapaswan et al., 2001; Stow et al., 2004). If the atmospheric heating in the region 

continues, a likely scenario may be the conversion of tundra to shrubland (Euskirchen et 

al., 2009). This theory is supported by the pollen record for the transition from glacial to 
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Holocene climatic conditions in northwestern Alaska, which showed that shrubs 

increased their dominance during a previous period of warming (Anderson et al., 1994).  

 Since shrub expansion will have significant implications for regional climate in the 

Arctic (Sturm et al., 2001), the Intergovernmental Panel on Climate Change (IPCC, 2013) 

and the Arctic Climate Impact Assessment (ACIA, 2004) recommended long-term 

(>10years) monitoring of changes in arctic vegetation and climate, particularly with 

respect to the increase in deciduous shrubs. The most feasible way to survey the entire 

extent of the Arctic is using remote sensing. However, creating fractional cover maps 

from remote sensing imagery faces many challenges. To start, tall shrub (>0.5 m) 

abundance is very low in the Arctic. For instance, at scales of 250 m, cover is mostly 

always less than 5% (Duchesne et al., 2015). Second, the Arctic has a persistent cloud 

cover, especially during the summer months, which makes it difficult to capture a cloud-

free scene (Gamon et al., 2013). In addition, sampling is limited to the short summer 

season when shrubs have a full canopy and there is no snow on the ground (Stow et al., 

2004). Finally, the incoming radiation has to travel a longer path in the atmosphere due to 

the low sun angles. As a consequence signal strength is reduced due to greater light 

scatter (Hinzman et al., 2005).  

Most of the studies done on shrub expansion using satellite imagery have employed 

vegetation indices as proxies for plant growth. Vegetation indices, which have been 

widely used to detect changes in Arctic vegetation, frequently display non linear 

relationships with canopy attributes (i.e., fractional vegetation cover) and should be used 

only as an estimate for canopy light absorption instead of as a proxy for features of 
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canopy architecture (Glenn et al., 2008). NDVI maps, as many existing global land cover 

and vegetation maps derived from spaceborne remote sensing sensors are, do not 

adequately represent shrub cover characteristics across the arctic tundra biome 

(Selkowitz, 2010). Furthermore, the relationship between the vegetation indices and 

biophysical quantities of the vegetation vary with season, in proportion to dead material 

in plant canopy, vegetation type, and soil background (Sellers,1985). NDVI is sensitive to 

the solar and illumination geometry and does not take into account the reflectance 

anisotropy characteristics of the surface. Up to this date the only fractional cover map for 

the North Slope of Alaska was developed for year 2000, as a baseline, using Landsat 

imagery (Beck et al., 2011). The map was made by exploiting the spectral signal in 

Landsat using an empirical canopy model but did not take into consideration the surface 

anisotropy reflectance and due to heavy cloud cover of the region, it required four years 

worth of imagery. 

 To pursue mapping of shrub fractional cover in order to assess temporal changes in 

shrub abundance, there is the need to use an adequate model. Physical or semi-empirical 

canopy reflectance models could be used but they require a priori information on the 

surface, which is a challenge since there is high variability in the composition of the 

background vegetation. Other kind of models, machine learning algorithms, have the 

advantage of learning the relationship between the response and the predictor variables to 

find prevailing patterns (Breiman, 2001; Elith et al., 2008) and they are not constrained 

by the need for realistic internal model parameters such as leaf reflectance, leaf angle 

distribution, plant number density, mean crown radius, height and so on. Beck's et al. 
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(2011) study used Random Forest, a machine learning algorithm, to predict shrub 

fractional cover, but this model is like a black box. It is not possible to know the role of 

the predictors in the model or to identify interaction effects. In contrast, the boosted 

regression tree (BRT) model, another machine learning algorithm, provides simple 

graphical and numerical representations of the predicted variation in the response 

variable in relation to the explanatory variables, of the relative influence of the predictors, 

and as well as of the interactions between the independent variables (De'Ath, 2007). 

Because of these main advantages, the BRT model was selected in this study over other 

models to predict fractional cover estimates from moderate spatial resolution imagery. 

The BRT is an ensemble method where a large number of simple models (regression 

trees) are fitted and then combined using a boosting algorithm to develop a final model 

(Leathwick et al., 2006).  

 In addition to the selection of a model, the other main aspect is the selection of the 

sensor. For regional studies moderate resolution sensors are ideal because of their wide 

swath and higher temporal resolution, which could increase the possibility of obtaining a 

cloud-free/snow-free scene. In this study, the Multi-angle Imaging SpectroRadiometer 

(MISR), a moderate resolution sensor, was selected to monitor changes in terrestrial 

vegetation because it provides data at large scales and at regular intervals, which 

improves the chances of getting more cloud-free scenes (Selkowitz, 2010). Furthermore, 

reflectance values from MISR have been used for mapping forest and shrub canopy 

structures with success (Chopping et al., 2007; Chopping et al., 2008; Nolin, 2004; 

Strahler et al., 2005). The multi-spectral and multi-angular information provided by 



9 

 

 

 

MISR may improve the predictive performance of the model (Selkowitz, 2011). The 

multi-spectral information from MISR's nadir camera and the multi-angular information 

in the red band from all its off nadir cameras were used together with ancillary terrain 

data to drive the boosted regression tree model (BRT) with the goal of creating two wall-

to-wall tall shrub (>0.5 m) fractional cover maps for the North Slope of Alaska, one for 

the year 2000 and another for the year 2010. The ultimate goal was to assess the 

magnitude and direction of the shrub expansion in the North Slope.  

 

1.2. Research Objectives 

 The first objective of this study was to conduct two field surveys in the North Slope 

of Alaska to collect structural information on the tall shrub (>0.5m) vegetation. The field 

survey data were used to calibrate fractional cover estimates from the semi-automated 

image interpretation algorithm , CANAPI - CANopy Analysis from Panchromatic 

Imagery (Chopping, 2011), with the goal of building a robust reference database with 

estimates of shrub fractional cover, mean crown radius, and total number of shrubs for 

1,039 sites. Each site had an area of 62,500 m2 (250 m x 250 m), projected onto an Albers 

Conical Equal Area grid (Appendix A).  

 The second objective was to train and to validate the BRT model by using the 

reference database as input data and to find the best set of explanatory variables for the 

model in order to predict shrub fractional cover. Many runs of the model were performed 

to find the ideal model parameters (i.e., learning rate, tree complexity). The evaluation of 

the model was carried out in order to establish the relative contribution of the variables to 
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the model and the role of the interaction terms. The model was validated using a fresh set 

of observations. 

 The third objective was to construct the year 2000 fractional cover map by using 

MISR multi-spectral and multi-angular reflectance values together with some ancillary 

terrain data and to compare the results with existing vegetation maps. Evaluation 

included comparisons of predicted cover with fractional cover estimates obtained from 

the Beck's et al. (2011) circa 2000 tall shrub fractional cover map. Fractional cover 

estimates were also compared to the bioclimatic subzones of the Circumpolar Arctic 

Vegetation Map (CAVM, 2003). All map products generated as part of this research were 

projected onto a 250 m Albers Conical Equal Area grid (Appendix A). 

 The fourth objective was twofold. First, to derive the 2010-2011 fractional cover 

map for the North Slope of Alaska using MISR's multi-spectral and multi-angular 

reflectance values together with some ancillary terrain data and the Boosted Regression 

Tree model previously derived. Second, to compare shrub fractional cover values for the 

years 2000 and 2010 in order to determine the magnitude and direction of the shrub 

expansion. All map products generated as part of this research were projected onto a 250 

m Albers Conical Equal Area grid (Appendix A). 

 The information produced in this study is of particular importance to the scientific, 

international, and federal agency communities concerned with the past and potential 

future of the tundra vegetation and its feedback to climate. Dynamic large-scale 

vegetation maps could assist to elucidate the likelihood of rapid, large-scale shrub 

expansion in Arctic tundra and its climatic, environmental, and ecological impacts. 
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Furthermore, the shrub fractional cover maps could provide reliable vegetation input data 

to better inform ecological and climate models. These maps may shed light on how 

changes in shrub abundance affect albedo in the summer time in this important and 

increasingly dynamic biome. 

 

1.3. Organization of Thesis 

 The above-mentioned research objectives were accomplished and the results and 

research findings were organized in the form of various chapters in this dissertation. Each 

chapter covers one objective as follows: 

 Chapter 2 is entitled " Capability of CANAPI Algorithm to Derive Shrub 

Structural Parameters from Satellite Imagery in Alaskan Arctic - A Reference 

Database". This chapter provides a description of the shrub canopy structure at 26 

sites in Arctic tundra surveyed during two field expeditions. It further explains the 

derivation of CANAPI estimates using very high-resolution satellite imagery from 

the same field sites. It continues with the calibration of the CANAPI estimates by 

establishing correlations with field estimates. Finally this chapter provides shrub 

fractional cover estimates for 1,013 additional sites dispersed across the North 

Slope. The final product is a robust reference database with cover estimates for 

1,039 sites of 250 m × 250 m - aligned to an Albers Conical Equal Area grid. This 

database was recently published as a product of the North American Carbon 

Program (Duchesne et al., 2015).  
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 Chapter 3 is entitled ' Training and Validation of Empirical Canopy Model to 

Predict Estimates of Shrub Cover from Multi-angle Imaging SpectroRadiometer 

Imagery'. This chapter supplies a description of the process of training and 

validating the boosted regression tree model. First, it explains the procedure to 

identify the explanatory variables for the BRT model and to find the best 

parameters (i.e., learning rate and tree complexity). Second, it provides an 

explanation of the role of the predictor variables in the model. Third, it evaluates 

the interactions among explanatory variables and their marginal effect on the 

response. 

 Chapter 4 is entitled 'Mapping Tall Shrub Fractional Cover in the North Slope of 

Alaska in year 2000 using MISR'. This chapter explains all the steps to prepare 

MISR data for the BRT model, from downloading files, to modeling of BRDF, to 

flagging, to compositing techniques used. Then, it describes the process by which 

the output of the BRT model was filtered and transformed into the shrub 

fractional cover map. It continues by comparing the predicted shrub cover with 

fractional cover estimates obtained from the 2000 baseline tall shrub fractional 

cover map (Beck et al., 2011), and with the bioclimatic subzones of the 

Circumpolar Arctic Vegetation Map (CAVM, 2003). 

 Chapter 5 is entitled 'The 2010 Tall Shrub Fractional Cover Map and Temporal 

Changes in Shrub Abundance in the North Slope of Alaska, 2000-2010'. This 

chapter provides a brief explanation on the processes taken to build the 2010 tall 

shrub fractional cover map, given that many of the details were already described 
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in chapter 4. Then, it compares the 2000 and 2010 MISR-derived predicted tall 

shrub fractional cover maps by estimating the change in shrub cover, the relative 

change in shrub cover, and the growth rate. 
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CHAPTER 2 

Construction of a Robust Reference Database with Estimates of Shrub Structure 

from Field Surveys and Very-High Resolution Imagery for the Alaskan Arctic 

 

Abstract 

 The observed greening of Arctic vegetation and the expansion of shrubs in the last 

few decades likely have profound implications for the tundra ecosystem, including 

feedbacks to climate. Uncertainty surrounding this vegetation shift and its implications 

calls for monitoring of vegetation structural parameters, such as fractional cover of 

shrubs. In this study, two field surveys were carried out in the North Slope of Alaska to 

obtain estimates of tall shrub cover, canopy height, crown radius, and total number of 

shrubs at 26 sites (250 m × 250 m each). The field estimates were used to evaluate the 

ability of CANAPI, a semi-automated image interpretation algorithm that identifies and 

traces crowns by locating their crescent-shaped sunlit portions, to derive structural data 

for tall (> 0.5 m) shrubs in the Arctic. CANAPI estimates of shrub canopy parameters 

were obtained from high-resolution imagery for the field sites by adjusting the 

algorithm's parameters and filter settings for each site, such that the number of crowns 

delineated by CANAPI roughly matched those observed in the high resolution imagery. 

The CANAPI estimates were then compared with the field measurements to evaluate the 

algorithm's performance. CANAPI successfully retrieved fractional cover (R2 = 0.83, P < 

0.001), mean crown radius (R2 = 0.81, P < 0.001), and total number of shrubs (R2 = 0.54, 
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P < 0.001). CANAPI performed best in sparse vegetation where shrub canopies were 

distinct, while it tended to underestimate shrub cover where shrubs were clustered. The 

CANAPI algorithm and the regression equations presented here were exploited to derive 

vegetation parameters for 1,013 sites of similar characteristics across the North Slope of 

Alaska from sub-meter panchromatic imagery in order to construct a robust, in the sense 

of accurate across a variety of conditions, reference database. CANAPI was sensitive 

enough to discriminate very low shrub cover values considering that about 75% of the 

1,039 sampling plots had a fractional cover less than 2% at 250 m scales. 

 

Keywords: CANAPI, fractional cover, crown radius, Arctic tundra, reference data, 

remote sensing 
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2.1. Introduction 

 Since 1875, the region north of 60°N has warmed at a rate of 1.36°C per century, 

which is about twice as fast as the global average temperature (IPCC, 2014). During the 

1960s-2000s, temperature trends from Arctic Alaska indicated a pronounced warming 

over the region (Chapman & Walsh, 1993). During this period, an increase in shrub 

abundance was observed across the Arctic using repeat aerial photography (Myers-Smith 

et al., 2011; Sturm et al., 2001b). Observational and experimental studies also detected a 

recent increase in aboveground biomass, particularly for deciduous shrubs, linked to 

recent climate warming (Chapin et al., 1995; Elmendorf et al., 2012; Hudson & Henry, 

2009; Huemmrich et al., 2010). The increasing trend of the Normalized Difference 

Vegetation Index (NDVI) in the Arctic, also known as 'greening', has been associated 

with a warming trend in the region (Jia & Howard, 2003; Myneni et al., 1997; Stow et al., 

2004). Shrub rings indicate that warming is a primary contributor to shrub expansion in 

the Arctic (Forbes et al., 2010; Tape et al., 2012). If the atmospheric heating in the region 

continues, a likely scenario could be the conversion of tundra to shrubland (Euskirchen et 

al., 2009). The pollen record of shrub expansion during the transition from glacial to 

Holocene climatic conditions in northwestern Alaska provides an older example of 

warming concurrent with shrub expansion (Anderson et al., 1994). 

 The implications of increasing shrub abundance are complex (Selkowitz, 2010). An 

increase in shrubs may change the snow distribution pattern (Epstein et al., 2004; Liston 

et al., 2002; Sturm et al., 2001a) and , as a result, impact myriad ecological and 

hydrological processes in the region (Boelman et al., 2011; Liston et al., 2002). The 
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proliferation of shrubs may alter the energy exchange and regional climate by decreasing 

albedo (Blok et al., 2011; Hinzman et al., 2005; Sturm et al., 2001a). The expansion of 

shrubs may also increase the likelihood of fires as more woody vegetation becomes 

available (Higuera et al., 2008). Changes in wildlife distribution are also anticipated, as 

boreal species extend northward into shrub habitat and tundra specialists become 

constrained (Elmhagen et al., 2015). The uncertainty of events that can take place as a 

result of shrub expansion call for the construction of dynamic cover maps of the Arctic 

region to monitor changes in the tundra canopy structure (Euskirchen et al., 2009; Tape et 

al., 2006). Remote sensing is the only practical tool that can help in the generation of 

such maps given the extent and inaccessibility of the region, which prohibits field work 

as the sole source of regional estimates.  

 Regional mapping of fractional cover employing remote sensing imagery is only 

possible using physical, semi-empirical, or empirical models that retrieve cover estimates 

from radiance values. One of the basic requirements of such models is to have a robust 

reference database for training and validation purposes. Up to this date, the few remote 

sensing studies that have quantified fractional shrub canopy in Arctic Alaska have made 

used of machine learning algorithms, field observations, and high resolution imagery to 

build such reference databases (Beck et al, 2011; Selkowitz, 2010). For example, Beck et 

al (2011) used a regression tree classification model to construct high-resolution short 

and tall shrub presence/absence maps from SPOT and IKONOS imagery that were later 

aggregated to a Landsat 30 m resolution grid depicting total and tall shrub percent cover. 

Alternative methods such as spectral mixture analysis have shown some success in 
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estimating green vegetation, nonphotosynthetic vegetation, and soil fractions in savanna 

biomes (Meyer and Okin, 2015), but the approach does not seem feasible at this time due 

to insufficient spectra for all surface components and insufficient spectral information in 

available imagery (Asner & Heidebrecht, 2002). One particular challenge in the Arctic is 

that often the non-woody background is not bare soil but green vegetation. LiDAR (Light 

Detection and Ranging) is an alternative method for capturing vegetation height. 

However satellite lidar (i.e., the Geoscience Laser Altimeter System that was flown on 

ICESat) is inadequate for sampling shrubs heights as the error in tree height estimates is 

sometimes as large as the height of a shrub in the Arctic, rendering the shrub height 

estimates not quite accurate (Hopkinson et al.2005; Popescu et al., 2011; Rosette et al., 

2008). Nevertheless, airborne lidar of high spatial resolution (footprint diameter of about 

20 cm for each laser pulse) can provide the vertical accuracy necessary to sample shrub 

vegetation (Streutker & Glenn, 2006), but to the best of our knowledge lidar data are not 

yet available for much of the North Slope of Alaska. It is conceivable that CANAPI - 

CANopy Analysis from Panchromatic Imagery (hereafter CANAPI), a semi-automated 

image-interpretation algorithm that has been used effectively to generate estimates of 

woody vegetation structural parameters in forest ecosystems (Chopping, 2011; Chopping 

et al., 2012), could be complementary to lidar in quantifying shrub structural parameters 

(i.e., crown radius, plant height).  

 The CANAPI algorithm identifies and traces crowns by locating its crescent-shaped 

sunlit portion and can retrieve tree number density, fractional cover, height, and mean 

crown radius from subsets of a variety of high-resolution (≤ 1 m) panchromatic imagery 
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such as QuickBird (Chopping et al., 2011). For some forest canopies, CANAPI has been 

used over large areas with a single set of parameters and filter settings (Chopping et al., 

2012), but in Arctic tundra the filter settings must vary from site to site. One advantage of 

CANAPI is that it identifies tree and shrub crown extents for precise estimation of cover 

across a range of crown sizes, which is of particular importance given that in Arctic 

tundra, the percent cover of shrubs taller than 0.5 m is usually less than 5% (Beck et al., 

2011; Duchesne et al., 2015; Selkowitz, 2010).  

 This study extends the limits of the CANAPI algorithm by deploying it for the first 

time in Arctic shrub tundra, where shrubs are significantly smaller than trees. The main 

goal of this study was to create a robust reference database with estimates of shrub 

structure for the Alaskan Arctic. The specific objectives were to characterize shrub 

canopy structure at 26 sites in Arctic Alaska, to derive CANAPI estimates using very-

high resolution satellite imagery from the same field sites, and to calibrate the CANAPI 

estimates by establishing correlations with field estimates in order to build a robust 

reference database.  

 

2.2. Materials and Methods 

2.2.1. Study Area and Site Selection 

Two three-week field campaigns were undertaken on the Alaskan North Slope (the 

tundra region north of the Brooks Range mountains) during 24 July - 12 August 2010 and 

20 July - 9 August 2011. The first campaign surveyed 14 sites along the Chandler and 

Colville Rivers from north of the Brooks Range to the Arctic Coastal Plain. The second 
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campaign surveyed 12 sites along the Dalton Highway from the Brooks Range to the 

Arctic Coast (Figure 2-1). 

Figure 2-1. Map of the North Slope of Alaska. Field sites surveyed during the Colville 

campaign in 2010 (red dots) and during the Dalton campaign in 2011 (blue dots). Albers 

Equal Area Conic projection, spheroid WGS 84, datum WGS 84. (Source: 

AlaskaMapped SDMI WCS layers [downloaded file]. Alaska Mapped, Statewide Digital 

Mapping Initiative. URL: http://www.alaskamapped.org/data/arcgis-layer-files: [20 

February, 2015]). 

 

Sampling sites fell along an altitudinal and climatic gradient with the southernmost 

sites at higher elevation (~790 m) and influenced by the continental climate associated 

with the Brooks Range, while the northernmost sites were located at a much lower 
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elevation (~73 m), where maritime climate conditions prevailed (Table 2-1). Sites along 

the Chandler and Colville rivers were located either in the floodplain or along tributary 

creeks within 1 km of the floodplain. In contrast, sites along the Dalton Highway were 

located at least 1 km away from the road to avoid the effect of road dust on the 

vegetation. Each sampling site was 250 m × 250 m for a total site area of 62.5 km2. This 

spatial resolution is adequate for regional studies as it corresponds to the spatial sampling 

of moderate resolution satellite imagers such as the Multi-angle Imaging 

SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer 

(MODIS). 

 

Table 2-1. Description of 26 field sites (250 m x 250 m each) surveyed during summer 

2010 and 2011. 

Site Name 

Center Pixel Coordinate 

(Albers Projection1, m) 

Elevation 

a.m.s.l. 

Date 

Sampled 

Dominant 

Vegetation 

Type X Y (m) (d.m.y) 

Colville-01 98250 2190000 94 11.08.2010 Graminoid 

Colville-02 102500 2187250 96 10.08.2010 Wetland 

Colville-03 97750 2172250 96 09.08.2010 Erect-shrub 

Colville-04 97750 2171000 96 09.08.2010 Erect-shrub 

Colville-05 87750 2128750 150 05.08.2010 Graminoid 

Colville-06 86750 2128250 145 05.05.2010 Graminoid 
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Colville-07 89750 2120000 143 03.08.2010 Graminoid 

Colville-08 89500 2119000 222 03.08.2010 Graminoid 

Colville-09 81500 2095500 249 08/02/2010 Graminoid 

Colville-10 81000 2092000 249 08/01/2010 Graminoid 

Colville-11 78000 2092500 297 30.07.2010 Graminoid 

Colville-12 70000 2090500 287 29.07.2010 Graminoid 

Colville-13 69750 2090000 289 28.07.2010 Graminoid 

Colville-14 69250 2088250 290 29.07.2010 Graminoid 

Dalton-01 203500 2216750 80 30.07.2011 Wetland 

Dalton-02 203250 2216500 78 30.07.2011 Wetland 

Dalton-03 213750 2178750 203 29.07.2011 Graminoid 

Dalton-04 214000 2179000 225 29.07.2011 Graminoid 

Dalton-05 207750 2128250 392 26.07.2011 Graminoid 

Dalton-06 208250 2128000 392 26.07.2011 Graminoid 

Dalton-07 209750 2110750 409 25.07.2011 Erect-shrub 

Dalton-08 209750 2110250 438 25.07.2011 Erect-shrub 

Dalton-09 188500 2081250 790 04.08.2011 Graminoid 

Dalton-10 189000 2081250 790 04.08.2011 Graminoid 

Dalton-11 183000 2082250 752 22.07.2011 Graminoid 

Dalton-12 182750 2082000 768 22.07.2011 Graminoid 

1 Coordinates are for an instance of the Albers Conical Equal Area map projection; see 

Duchesne et al, 2015 for details and the map projection parameters used. 
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Field sites were selected using low-altitude aerial photographs and high-resolution 

satellite imagery (QuickBird, IKONOS, and WorldView) (Figure 2-2). Selected sites 

represented a variety of tall shrub distributions, from dense willow shrubs (Salix spp.) 

and alder shrubs (Alnus viridis) along water tracks to scattered well-defined shrub 

canopies (Figure 2-3). Each site was designated as either graminoid-dominated tundra, 

erect-shrub-dominated tundra, or wetland (CAVM, 2003), though riparian shrub sites are 

generally not represented in broad scale maps (Table 2-1). Graminoid tundra sites were 

typically dominated by sedges, dwarf shrubs less than 0.40 m tall, and a well-developed 

Figure 2-2. Aerial photograph of the Colville-07 field site and surrounding landscape. 

The top is north, horizontal extent is about 550 m. Photo credit: Ken Tape (University of 

Alaska, Fairbanks). 
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organic layer. There were often tall willow thickets (>2 m) occurring along stream 

margins. Erect-shrub tundra sites were characterized by low shrubs greater than 0.40 m 

tall. Wetland sites were dominated by sedges, grasses, and mosses. At most sites shrubs 

were less than 0.40 m tall; however, some sites like Colville-02, hosted shrubs with an 

average height upwards of 1.5 m. Sites were sampled during the peak growing season 

when the shrub crown was at its fullest. 

Colville-01                         Colville-02                           Colville-03                         Colville-04 

 Colville-05                          Colville-06                         Colville-07                          Colville-08            

Colville-09                          Colville-10                          Colville-11                         Colville-12 

Figure 2-3. Quick Bird, IKONOS, and WorldView panchromatic subsets of the 26 field 

sampling sites. Spatial resolutions ranged from 0.46 m to 1 m. Each site has an area of 

62,500 square meters.  
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Colville-13                         Colville-14                          Dalton-01                           Dalton-02      

Dalton-03                           Dalton-04                            Dalton-05                           Dalton-06 

Dalton-07                           Dalton-08                            Dalton-09                           Dalton-10 

 

 

 

 

 

Dalton-11                           Dalton-12 

Figure 2-3 (continued). Quick Bird, IKONOS, and WorldView panchromatic subsets of 

the 26 field sampling sites. Spatial resolutions ranged from 0.46 m to 1 m. Each site has 

an area of 62,500 square meters.  
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2.2.2. Target Shrub Population 

The target population was shrubs taller than 0.5 m, measured from the lowest 

detectable solid ground. This height threshold was selected because it represents the 

approximate height boundary between shrubs that grow mainly between tussocks and 

shrubs that protrude significantly above tussocks (Selkowitz, 2010). The same threshold 

has also been widely used in other vegetation studies on the North Slope of Alaska to 

distinguish shrubs that form a canopy from background vegetation (Liston et al, 2002; 

Tape et al, 2006). Canopy-forming shrubs play a different role in the ecosystem 

compared to inter-tussock shrubs. For instance, taller shrubs cast shadows on the 

background vegetation that in turn may change the micro-temperature around the shrub 

(Chapin et al., 2005). They also trap more blowing snow during winter (Sturm et al., 

2001a). In addition, taller shrubs can be more readily identified in very-high resolution 

imagery, which allows the delineation of shrub crowns with greater ease.  

  

2.2.3. Transect Method and Sampling Strategy 

The belt transect method was selected to obtain precise estimates of cover, height, 

and crown radius of shrub vegetation to compare to and assess the accuracy of the 

CANAPI algorithm. This is a common technique used to estimate the cover and height of 

woody vegetation, along environmental gradients, by extrapolating measurements within 

each belt transect to the entire sampling site (Hill et al., 2005). Since this can be a 

laborious technique it is recommended for sparse vegetation, as is the case of most tall 
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shrub canopies in the Arctic. This method was used to survey all sites except Colville-01, 

where all shrubs were sampled since there were just a few. 

The sampling strategy used to implement the belt transect method was systematic 

sampling with a randomly selected starting point. A baseline was placed along one side 

of the sampling sites and transects were laid perpendicular to the baseline. The first 

transect began at a randomly selected point along the baseline and transects thereafter 

were placed at regular intervals. In doing so, the sites were evenly sampled, the travel 

time and setup was reduced in comparison to random sampling, sampling units were 

better interspersed, and the same formulas inherent in simple random sampling were used 

(Elzinga et al., 1998).  

Two Garmin Etrex Geo-positional System (GPS), each with a horizontal accuracy of 

10 m, were used to record the sampling transects and the location of each shrub surveyed. 

A Canon PowerShot digital camera was used to take photographs of all shrubs, and a 

measuring rod was used to measure the height and crown width of each shrub. 

 

2.2.4. Optimizing Field Sampling 

 

Prior to the field surveys, there were two important considerations: first, to decide on 

the most favorable transect width; and second, to determine the optimum number of 

transects to sample. From the statistical standpoint, long, narrow transects systematically 

placed (with a random start) in the population to be sampled are more effective for 

estimating cover than square or wider rectangular transects (Elzinga et al., 1998). 

Therefore, the transects used were narrow rectangles of 250 m long by 5 m wide. 
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Although a 6 m belt width is suggested when plant density is less than 15% (Tazik, et al., 

1992), which is the case for tall shrubs in Arctic tundra, a 5 m belt width still rendered 

reliable estimates of cover according to a pilot study carried out at site Colville-02.  

The pilot study was performed with the aid of QuickBird high-resolution 

panchromatic imagery (250 m × 250 m) and an image processing program (ImageJ) to 

determine the ideal number of transects to sample per site (Figure 2-4). Sequential 

sampling was used to determine the initial sample size using the transect method 

described above, whereby the number of transects were increased monotonically from 3 

to 15. With each iteration, the mean and standard deviation estimates were calculated. 

The sample size was plotted against the mean and standard deviation with the goal to 

identify the smallest sample size at which the curves began to smooth out. Finally, the 

mean and standard deviation values of the initial sample size were used to determine the 

ideal sample size for a site. This last process involved three steps (Elzinga et al., 1998): 

 (1) Calculating an uncorrected sample size estimate, n, by using Equation 2-1: 

                                         𝑛 =
(𝑍𝛼)2× (𝑠)2

𝛽2
                                                         Eq. 2-1 

where n is the uncorrected sample size estimate, Zα is the standard normal coefficient, 

s is the standard deviation, and β is the desired precision level expressed as half of the 

maximum acceptable interval width.  
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(2) Consulting the Sample Size Correction table to determine the corrected sample 

size estimate, n*. This was necessary because Equation 2-1 underestimates the number of 

sampling units needed to meet the specified level of precision.  

(3) Multiplying the corrected sample size estimate by the finite population correction 

factor when more than 5% of the population is being sampled using Equation 2-2: 

                      𝑛′ =  
𝑛∗

(1 +(
𝑛∗

𝑁
))

                                                       Eq. 2-2 

where n' is the new FPC-corrected sample size, n* is the corrected sample size from 

the sample size correction table, and N is the total number of possible transect locations 

in the population. N is calculated by dividing the total area of the population by the size 

of one transect (N = 62,500 m / 1,250 m = 50).  

 

2.2.5. Sampling Shrub Parameters 

The four corners of the sampling site were located in the field using GPS. A baseline 

parallel to the terrain slope was laid along one of the sides of the site. The starting point 

of the first transect was randomly located within the first 50 m of the baseline and 

established perpendicular to it. The subsequent transects were located parallel to the first 

and equally spaced from each other (Figure 2-4).  
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Figure 2- 4. Distribution of belt transects at site Colville-02 (250 m × 250 m) following a 

systematic sampling strategy with a randomly selected starting point. White dots 

represent shrubs observed in the QuickBird panchromatic subset.  

 

Three people did the sampling. The first person walked the transect using a GPS to 

mark the path with flags. The second person walked along the transect with a 5 m pole 

held horizontally (2.5 m on each side of the transect), stopping at every shrub taller than 

0.5 m that had at least half of its base located within the belt. The third person recorded 

the GPS location of the shrub and took a digital photograph of it that included a 2 m scale 

rod (with 0.10 m increment marks) in the field-of-view. The process was repeated until 

all shrubs within the belt and all transects at a site were sampled. 

Shrub genus was identified later using the photographic records and field notes. 

Photos were also used to estimate canopy width (horizontal extent from the left-most 
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branch to the right-most branch) and height (vertical extent from base to top of foliage) of 

the shrubs by calibrating distances in the photo using the 2 m scale rod placed beside 

each shrub. 

 

2.2.6. Deriving Shrub Site Parameters using the Belt Transect  

The belt transect method was used to determine fractional cover, total number of 

shrubs, shrub mean crown radius, and mean shrub height at each site. Mean crown radius 

was estimated using all measurements of individual shrubs but clusters of shrubs were 

omitted because the crown borders of each shrub could not be identified. Mean crown 

radius was defined as half of the mean crown diameter. Mean shrub height was estimated 

using all the observations, both individual shrubs and clusters of shrubs. Shrub height 

was defined as the length of the shrub from its base to the top branch. Fractional cover 

estimates included both surveyed individual shrubs and clusters of shrubs. The crowns 

that exceeded the belt width were adjusted to 5 m. Estimation of fractional cover was a 

two-step process: 

(1) Estimation of shrub/cluster cover area (SCCA), which assumes that the crown was 

circular:                                     𝑆𝐶𝐶𝐴 =  ∑ 𝜋 (𝑟𝑖)2                            Eq. 2-3 

where ri is the individual shrub or shrub cluster crown radius (m),  

 

(2) Estimation of fractional cover (FC): 

                                           𝐹𝐶 =  
𝑆𝐶𝐶𝐴

𝑇𝐵𝐴
                                                     Eq. 2-4 
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where SCCA is shrub cover area (m2) and TBA is the sum of the area covered by all 

belt transects sampled at a site (1,250 m2/transect). Fractional cover values range from 0 

to 1, with 1 being 100% shrub cover. 

 

Total number of shrubs (TNS) in the sampling site was estimated using records of 

individual and cluster of shrubs where each shrub or shrub cluster was considered one 

individual:  

                               𝑇𝑁𝑆 =  
𝐴×𝑆

𝑇𝐵𝐴
                                                         Eq. 2-5 

where A is the site area (62,500 m2), and S is the total number of shrubs and clusters 

surveyed in all belt transects. 

 

2.2.7. CANAPI Estimates and Calibration Equations 

 CANAPI is a user-tunable algorithm that can be run in ImageJ and uses high 

resolution panchromatic imagery to analyze tree and shrub canopies (Chopping, 2011). 

The CANAPI algorithm operates in two steps: first, it identifies crowns by locating the 

crescent-shaped sunlit portion of the crown; and second, it attempts to estimate tree or 

shrub height using the length of the shadow cast by each crown, where the shadow is not 

truncated by another crown or the edge of the image. For application in Arctic tundra, 

CANAPI’s parameters and filter settings were adjusted for each site separately, until the 

number of crowns delineated by CANAPI roughly matched those observed in the high 

resolution imagery (Figure 2-5). 
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Figure 2-5. QuickBird panchromatic subsets with shrub crowns delineated by the 

CANAPI algorithm. Each site is 250 m × 250 m. a. Colville-02, b. Colville-06, c. 

Colville-10. 

 

The CANAPI algorithm was used here to derive shrub fractional cover, canopy 

crown radius, total number of shrubs, and shrub height estimates for the field sites 

(Figure 2-2). The CANAPI algorithm estimates were derived from image subsets of 250 
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m × 250 m, corresponding to the field sites – aligned with the Albers Equal Area Conic 

grid – selected from sub-meter high resolution panchromatic scenes from the QuickBird, 

WorldView, and GeoEye sensors (0.6 m, 0.5m, and 0.5 m spatial resolution, 

respectively). Some imagery was purchased, while some was obtained through the 

National Geospatial-Intelligence Agency Commercial Archive Data 

(http://cad4nasa.gsfc.nasa.gov/), both through the NASA Terrestrial Ecology project 

NNX09AL03G "Mapping Changes in Shrub Abundance and Biomass in Arctic Tundra 

using NASA Earth Observing System Data". Field data were considered more reliable 

than CANAPI estimates because shrubs were measured in situ. Thus, field data were used 

in validation of image-based estimates of fractional cover, mean crown radius, mean 

height, and total number of shrubs via linear regressions.  

Sites with indiscrete shrubs were not suitable for the CANAPI algorithm and were 

not included in the regression analysis. CANAPI requires shrub crowns to be well 

defined in order to identify them in the high-resolution satellite imagery. Four CANAPI 

estimates of fractional cover were omitted from the analysis because at those sites shrubs 

formed a homogeneous layer that made it impossible to delineate shrub crowns. 

Similarly, five CANAPI estimates of total shrub were excluded from the analysis because 

of the homogeneous layer of shrubs (4 sites) and almost leafless shrub crowns (1 site). 

Two CANAPI estimates of mean crown radius were not included in the analysis because 

at those sites there was either no shrub in the field or detected by CANAPI. Three 

CANAPI estimates of mean shrub height were omitted from the analysis because at one 
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site there were no shrubs in the field, and at the other two sites the few shrubs detected by 

CANAPI had their shadows truncated by other shrubs. 

 

2.2.8. Expansion of the Reference Database 

 A total of 1,013 high resolution panchromatic subsets of 250 m × 250 m - aligned 

with the Albers Conical Equal Area grid onto which the MISR data are mapped - were 

obtained across the North Slope of Alaska. These sites were explicitly chosen to include 

representatives from all four physiognomic vegetation types present in the region and 

they were spread across the entire domain, covering a wide latitudinal and longitudinal 

range (Figure 2-6). Image-based estimates were obtained for those sites using the 

CANAPI algorithm and were later adjusted using the regression coefficients previously 

derived, thus a solid reference database of 1,039 data points was built. 

 

2.3. Results and Discussion 

2.3.1. Optimizing Field Sampling 

The mean number of shrubs and standard deviation values became rather stable once 

at least nine transects were sampled (mean = 10.3, SD = 2.29). According to Equation 2-

1, the uncorrected sample size estimate (n) should be 1 (Zα = 1.64, β = 3.8). Consistent 

with the Sample Size Correction table, the corrected sample size estimate for a 90% 

confidence interval should be 5 (n* = 5). Since sampling five belts (6,250 m2) means 

sampling more than 5% of the area (62,500 m2), the correction to a sample size estimate 

that incorporates the finite population correction (FPC) factor was applied. The minimum  
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Figure 2-6. Map of the physiognomic vegetation types (CAVM, 2003) for the North slope of Alaska. The black boxes 

represent available high resolution imagery and from which 250 m x 250 m subsets were selected for the reference database. 
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number of transects to sample to be 90% confident that the estimate of the population 

mean was within +/- 4 shrubs of the true mean was 5. 

 

2.3.2. Shrub Estimates from Field Surveys 

 Analysis of the shrub structural estimates at the 26 field sites revealed that there 

seemed to be a distinction between the Colville and Dalton sites with respect to the mean 

shrub height and the mean shrub crown radius (Figure 2-7 d and 2-7 b). Shrubs in the 

Colville sites were taller (0.77 m - 1.98 m) and had a wider crown (0.67 m - 1.21m), 

while shrubs in the Dalton sites were shorter (0.57m - 0.80 m) and had a narrower crown 

(0.36 m - 0.92 m). Shrub fractional cover was no greater than 13% at the sampling sites 

(Figure 2-7c). The total number of shrubs taller than 0.5 m ranged from 0 to 1520 and 

there was no difference between the Colville and Dalton sites (Figure 2-7a). It is possible 

that the observed differences in shrub height, mean crown radius, and fractional cover 

between the Dalton and Colville sites might be related to the geomorphology of the 

landscape. For instance, the Colville sites were located on floodplains and steeper slopes 

with water tracks running downhill, while the Dalton sites were not. 

 Ratio comparison of the mean height and mean crown radius measurements showed 

that the shrubs’ shape tended to be elongated in the Colville sites (1.43 m: 0.97 m) and 

more circular in the Dalton sites (0.63 m: 0.51 m). Alder sp was the dominant species in 

13 out of the 14 plots of the Colville sites (percentage dominance > 67%), while Willow 

sp was the dominant species in all the Dalton sites (percentage dominance > 53%) except 
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in Dalton-09 where there were no shrubs at all. It is important to note that about 0.2 m of 

the shrubs’ stem was usually hidden between tussocks.  

 
Figure 2-7. Box plots with field estimates at 26 sites (minimum, first quartile, median, 

third quartile, and maximum): a. total number of shrubs, b. mean crown radius, c. 

fractional cover, and d. shrub height. Colville 2010 campaign (rhomboids) and Dalton 

campaign 2011 (squares).  
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 Mean shrub height slowly decreased with increasing latitude in both the Colville and 

Dalton sites (Figure 2-8a). In contrast, a divergent pattern is observed in the shrubs' mean 

crown radius with respect to latitude. In the Colville sites, the canopy width increased 

with increasing latitude, while in the Dalton sites, it decreased with increasing latitude 

(Figure 2-8b). These patterns may be related to the inherent ability of certain species of 

shrubs to acclimate to the environment. It appears that Alder sp. would be taller and have 

thinner canopy at lower latitudes but towards the coastal plain it becomes shorter but 

widens its canopy. Willow sp. seems to decrease its crown width towards the coastal 

plain. There was not a definite pattern between latitude - fractional cover and latitude - 

total number of shrubs (omitted here).  

 

Figure 2-8. Plots display the relationship between a) mean shrub height and latitude and 

b) mean crown radius and latitude for both the Colville (rhomboids) and Dalton (squares) 

sites. Latitude is expressed in meters, projection Albers Conical Equal Area, Spheroid 

WGS 84, Datum WGS 84.  



46 

 

 

 

2.3.3. CANAPI Estimates and Calibration Equations  

 Regression equations between field and CANAPI estimates for four vegetation 

structural variables were estimated. The coefficients of determination for fractional cover 

and mean crown radius revealed a strong positive relationship between field and 

CANAPI estimates (R2 = 0.83 and 0.80, respectively; RMSE = 0.009 and 0.17 m; P < 

0.001) (Figure 2-9a and 2-9b). The relationship between field and CANAPI estimates for 

the total number of shrubs was also positive but not as strong (R2 = 0.54; RMSE = 334 

shrubs; P < 0.001) (Figure 2-9c), whereas the coefficient of determination for shrub 

height showed that there was no correlation between field and CANAPI estimates (R2 = 

0.02; RMSE = 0.67 m; P = 0.57) (Figure 2-9d).  

 Further exploration of these relationships revealed that CANAPI tended to 

underestimate fractional cover when there were cluster of shrubs, because CANAPI was 

unable to identify the shrub crowns in the cluster. Wherever vegetation was sparse, 

CANAPI estimates were consistent with field data because CANAPI could identify the 

individual shrub crowns. Similar relationships applied to the estimates of the total 

number of shrubs. Mean crown radius CANAPI estimates were often lower than the 

corresponding field estimates. This might also be an effect of the lower spatial resolution 

of the panchromatic images used to derive the CANAPI estimates in comparison to the 

finely resolved field measurements. The CANAPI mean shrub height estimates tended to 

be lower than the field values, but there was not a clear pattern, resulting in a poor 

coefficient of determination.  
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Figure 2-9. Correlations between 'raw' CANAPI estimates and field estimates for four 

vegetation structural variables (a) fractional cover (P < 0.001), (b) mean crown radius (P 

< 0.001), (c) total number of shrubs (P < 0.001), and (d) mean height (P = 0.57). 

 

CANAPI predicts the height of an object by measuring the length of the shadow cast (in 

pixels) and by multiplying it by the tangent of the sun elevation angle. This means that 

there are at least three sources of error that may account for the differences between the 
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field and CANAPI estimates: 1) the lower spatial resolution of the sensors compared to 

the precise measurements made in the field; 2) different sensor-object geometries from 

the different high resolution sensors used (QuickBird, GeoEye, WorldView 1 and 2) that 

were not accounted for by the CANAPI algorithm used to derive the height estimates; 3) 

error from field measurements and subsequent calculations, though this is thought to be a 

much smaller term. 

 The high coefficient of determination values for fractional cover and mean crown 

radius (0.83 and 0.80 respectively) suggest that it is appropriate to use the regression 

coefficients to adjust shrub CANAPI estimates in Arctic tundra (Equations 2-6 and 2-7). 

Although the coefficient of determination was not low for total number of shrubs (0.53), 

the regression coefficients must be used with caution (Equation 2-8). It is not 

recommended that the regression equation be used to adjust CANAPI estimates of mean 

shrub height due to the poor correlation found with the field estimates.  

 The CANAPI algorithm is sensitive to small changes in woody vegetation cover and 

consistently detects a wide size range of erect shrubs. The sensitivity of the algorithm is a 

key factor given that at a spatial resolution of 250 m tall shrub cover is usually less than 

5% in the Arctic (Beck et al., 2011; Selkowitz, 2010). Results showed that when 

adjusting the algorithm’s parameters and filter settings for each site, CANAPI can 

provide good estimates of fractional cover, crown radius, and total number of shrubs with 

remarkable confidence in spite of the important limiting factors: 1) the surrounding 

background is composed of mixed vegetation (tussocks, moss, and lichens), and therefore 

there is less contrast between shrubs and their background; 2) the signal is quite small 
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since 75 percent of the time cover is less than 0.02 in the Arctic landscape at 250 m 

scales; and 3) shrubs are considerably smaller than trees (the target population where 

CANAPI has been previously used successfully) and thus more difficult to detect. 

 

2.3.4. Enlargement of Reference Database 

 CANAPI estimates were derived for 1,013 subsets across the entire domain of the 

North Slope of Alaska (Appendix B). Those estimates were adjusted using the following 

regression equations: 

  Fractional Cover = (1.0699 x CANAPI estimate) - 0.0003                  (Eq. 2-6) 

  Mean Crown Radius = (0.955 x CANAPI estimate) + 0.157          (Eq. 2-7) 

  Shrub Total = (0.5718 x CANAPI estimate) + 57.723                             (Eq. 2-8) 

 

 The final reference database had 1,039 sites including the field plots surveyed in 

2010 and 2011. Exploratory analysis of this dataset showed that the mean crown radius 

estimates were normally distributed and that it ranged from 0.3 m to 1.5 m (Figure2- 

10c). The distribution of the total number of shrubs and fractional cover were highly 

skewed to the left (Figure 2-10a and 2-10b). Out of the 1,039 sampled sites, 717 sites had 

less than 400 shrubs and 755 sites (~75%) had a fractional cover less than 0.02. Thus, the 

population of tall shrubs (0.5 m) was quite small and therefore, the more challenging it is 

to detect a small signal. These results agreed with Selkowitz's (2010) study in the North 

Slope, in which, at the 250 m spatial resolution, more than 80% of the training pixels had 

a fractional cover value less than 0.05. 
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Figure 2-10. Histograms of frequency: a. total number of shrubs, b. fractional cover, and 

c. mean crown radius. 
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Figure 2-11. Five-number summary. a. Total number of shrubs, b. fractional cover. 

 

 Due to the different distributions presented in the histograms, the five-number 

summary was used to describe the fractional cover and total number of shrubs, while the 

mean and standard deviation were used to describe the mean crown radius. The medians 

of the total number of shrubs and of the fractional cover was 296 and 0.02 respectively, 

while the maximum total number of shrubs and fractional cover was 1,794 and 0.40 

respectively (Figure 2-11). The histogram of fractional cover showed that there was a gap 

between 0.40 and 0.22, and suggested that the extreme value could have been an outlier, 

however, a visual inspection of the site showed that it was a valid entry. The mean crown 

radius of all sites in the reference database was 0.8 m with a standard deviation of 0.17 m. 
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2.4. Conclusion 

CANAPI is a user friendly, user-adjustable algorithm that can perform well under 

different scenarios, in particular, with sparse woody vegetation. The results obtained in 

this study show that CANAPI provides a way to build reference datasets for some 

important structural characteristics of the woody vegetation directly from high-resolution 

panchromatic imagery. CANAPI provides data that can be used to assess the results of 

other mapping or estimation approaches, though the regression equations developed here 

for Arctic Alaska will apply most accurately in similar tundra landscapes. A 

comprehensive data set “Woody Vegetation Characteristics of 1,039 Sites across the 

North Slope, Alaska” was derived in this way as part of the NASA Terrestrial Ecology 

project "Mapping Changes in Shrub Abundance and Biomass in Arctic Tundra using 

NASA Earth Observing System Data: A Structural Approach" for the North American 

Carbon Program (NACP; Wofsy & Harriss (2002)) and has been made available at the 

Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) 

(Duchesne et al., 2015a). A copy of the CANAPI algorithm is included along with shrub 

canopy statistics for 26 field sites that might be useful if adjustment of the equations is 

desired in order to help account for user bias. A peer-reviewed paper is also available 

with details on the capability of the CANAPI algorithm to derive shrub structural 

parameters from satellite imagery in the Alaskan Arctic (Duchesne et al., 2015b). Future 

research projects and campaigns such as the upcoming NASA-sponsored Arctic-Boreal 

Vulnerability Experiment (ABoVE; Kasischke et al., 2010) that require data on shrub 

abundance in Arctic tundra may opt to use the NACP database. For example it could be 
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used to assess the results of ABoVE remote sensing initiatives that attempt to exploit 

imagery acquired at lower spatial resolutions (e.g., from Landsat, or NASA’s Multi-angle 

Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging 

Spectroradiometer (MODIS)); or by using CANAPI with earlier and/or more current 

imagery to assess changes in cover through time. This database could also be used with 

recently-developed allometric equations (Berner et al., 2015) to provide tall shrub 

aboveground biomass estimates for all sites.  
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CHAPTER 3 

Training and Validation of the Boosted Regression Tree Model to Predict Shrub 

Cover from Moderate Resolution Imagery 

 

Abstract 

 In the past few decades shrubs have expanded in the North Slope of Alaska. An 

increase in shrub abundance could potentially affect the regional climate, terrestrial 

ecosystem, hydrology, and energy partitioning at the surface. In order to assess the extent 

of the environmental impact, it is imperative to know the direction and magnitude of the 

shrub expansion. Vegetation indices have shown a greening trend in Arctic Alaska, but 

the indices are proxies only of vegetation photosynthetic activity and not of canopy 

architecture. Machine learning algorithms like the Random Forest (RF) model have been 

used to map shrub cover in northern Alaska, however, little can be inferred about the role 

of the predictor variables. Therefore, the Boosted Regression Tree (BRT), an ensemble 

machine-learning algorithm that can provide graphical and numerical representations of 

the relative influence of the predictors and the interactions among them, was trained and 

validated to predict tall shrub cover (>0.5 m) in the North Slope of Alaska from moderate 

resolution satellite images. The BRT model used 14 explanatory variables: four spectral 

bands from the nadir camera of the Multi-angle Imaging SpectroRadiometer (MISR) 

sensor, six parameters that resulted from the inversion of the RossThick-LiSparse 

Reciprocal (RTLS-R) model (a canopy reflectance model that takes into consideration the 

multi-angular information provided by MISR's nine cameras), and four terrain variables. 
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The final model explained 52% of the variation in the response variable, fractional cover, 

and had a tree complexity of three and a learning rate of 0.005. The red reflectance, slope, 

nadir BRDF-adjusted reflectance weight, and isotropic scattering kernel were the 

variables more often used to generate the regression trees, and therefore they contributed 

the most to the model. Since the boosted regression tree is an empirical model, its 

application is limited to the prediction of tall shrub fractional cover in Arctic landscapes. 

 

 Keywords: Booster Regression Tree, RossThick-LiSparse Reciprocal model, Multi-

angle Imaging SpectroRadiometer, shrub fractional cover, North Slope of Alaska. 
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3.1 Introduction 

 The region north of the Brooks Range in Alaska, also known as the North Slope, is 

dominated by tundra. By definition, the tundra is a treeless land dominated by sedges, 

grasses, mosses, lichens, and scattered shrubs. However, in the past few decades, an 

expansion of shrubs northward has been underway and linked to recent warming trends 

(Chapin et al., 1995; Elmendorf et al., 2012; Hudson & Henry, 2009; Huemmrich et al., 

2010). Shrubs have the potential to influence climate by changing the regional albedo, the 

energy partitioning at the surface, and the emission of greenhouse gases (McGuire et al., 

2006). Until the direction and magnitude of the shrub expansion is known, it would be 

impossible to assess the extent of their impact on the climate (Hinzman et al., 2005).  

 Due to the vastness of the North Slope and the relative inaccessibility of the region, 

remote sensing may be the most appropriate method to quantify and monitor shrub cover 

changes in the Arctic (Jia & Epstein, 2003; Selkowitz, 2010). Nevertheless, mapping 

shrubs in the Arctic comes with many challenges. First, collection of satellite imagery is 

limited to the short summer season when there is no snow on the ground and the shrubs 

have a fuller canopy (Stow et al., 2004). Second, the probability of getting a cloud-free 

scene is low considering the persistent cloud cover, especially during the summer months 

(Gamon et al., 2013). Third, due to the low sun angles at high latitudes, the incoming and 

outgoing radiation is more scattered as it travels through a longer path in the atmosphere; 

thus, the signal-to-noise ratio at the sensor is reduced (Hinzman et al., 2005). And fourth, 

tall shrub cover at moderate spatial resolution (~250 m) is usually less than 5% in the 

North Slope (Duchesne et al., 2015; Selkowitz, 2010). 
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 Multi-spectral remote sensing has been frequently used to determine greening trends 

in the Arctic by exploiting differences in the spectral signal of the vegetation (Bi et al., 

2013; Jia & Epstein, 2003; McManus et al., 2012; Myneni et al., 1997; Raynolds et al., 

2013; Stow et al., 2003; Zhou et al., 2001). However, vegetation indices are proxies of 

vegetation photosynthetic activity but not of canopy architecture parameters, such as 

cover (Glenn et al., 2008). The relationship between the vegetation indices and 

biophysical quantities of the vegetation varies with season, proportion of dead material in 

plant canopy, vegetation type, and soil background (Sellers, 1985). The Normalized 

Difference Vegetation Index (NDVI), in particular, is sensitive to the solar and 

illumination geometry. Besides using vegetation indices, machine-learning algorithms 

have been employed to map shrub cover in the North Slope of Alaska by exploiting the 

spectral information in the six bands (blue, green, red, two near-infrared bands, and a 

mid-infrared band) of the Landsat 7 satellite at 30 m spatial resolution (Beck et al., 2011). 

 Although less commonly used, multi-angular remote sensing has also been 

recognized as a source of information for mapping vegetation (Chopping et al., 2006; 

Chopping et al., 2008; Lacaze et al., 2002; Nolin, 2004). Multi-angular remote sensing 

exploits the variations in surface reflectance from different sun-target-sensor geometry, 

which is described by the bidirectional reflectance distribution function (BRDF) 

(Nicodemus et al., 1997). The BRDF is an intrinsic property of the surface and it provides 

the reflectance of a target as a function of the viewing and illumination geometry. BRDF 

effects should be taken into account for any remote sensing land surface study. Even 

though the BRDF cannot be directly obtained from multi-angular measurements, models 
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like the RossThick-LiSparse Reciprocal (Wanner et al., 1995) can be used to obtain 

bidirectional reflectance factors and the BRDF (Martonchik et al., 1998). 

 A pivotal study conducted by Selkowitz (2010) used regression trees to determine 

the potential of multi-spectral, multi-angular, and multi-temporal remote sensing datasets 

for mapping shrub fractional cover (>0.5 m) in Arctic Alaska. Results showed that higher 

spatial resolution datasets (i.e., from Landsat) produce more accurate shrub cover 

estimates than lower spatial resolution datasets (i.e., from MISR, flying on NASA's Terra 

satellite). However, shrub cover estimates from MISR came very close to those from 

Landsat when using MISR's multi-angular red band data together with the multi-spectral 

information at nadir. MISR has nine viewing cameras with four spectral bands (blue, 

green, red, near-infrared) each and it has a swath width of 360 km. At high latitudes, like 

the North Slope, MISR has a revisit time of 1 or 2 days. Considering that the persistent 

cloud cover in the region challenges mapping efforts—for instance, the 2000 circa map 

needed imagery from four years to cover the entire North Slope (Beck et al., 2010)—

MISR can be a better sensor for mapping shrub cover in Arctic Alaska because of its 

higher temporal resolution and wider swath (Selkowitz, 2010). 

 In this study, the MISR sensor, which was launched in 1999, was selected as the 

source of multi-spectral and multi-angular information to support mapping efforts 

because of its many advantages. First, multi-angular observations, such as those from 

MISR, contain unique additional information beyond that provided by sensors with nadir 

or single-angle spectral measurements (Asner et al., 1998; Chen et al., 2003). For 

instance, multi-angular observations provide the means to derive the BRDF, which 
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describes the anisotropic behavior of reflected light as a result of surface 3-D structure 

and the optical properties of surface components. Second, the smaller ground-projected 

instantaneous field of view of MISR's nadir spectral bands and off-nadir red bands 

(spatial resolution of 275 m) may be an advantage for mapping vegetation in comparison 

to coarser spatial resolution sensors like the Advanced Very High Resolution 

Radiometers (AVHRRs) (spatial resolution of 1 km) (Selkowitz, 2010). Third, mapping 

efforts in the North Slope are often limited to the short summer season with its persistent 

cloud cover (Hope & Stow, 1995). The high temporal resolution and wide swath of MISR 

increases the likelihood of obtaining cloud-free scenes in this region (Selkowitz, 2010). 

Sensors with lower temporal resolution, such as Landsat, would require many years of 

data to cover the entire North Slope (Beck et al., 2011 ; Muller et al., 1999). Fourth, the 

concurrent use of multi-angular and multi-spectral information from MISR for the 

retrieval of shrub cover has shown promising results (Selkowitz, 2010). 

 Besides the selection of the sensor, it is also necessary to select the most appropriate 

model to pursue mapping efforts of shrub fractional cover. Physical or semi-empirical 

canopy reflectance models could be used but they require a priori information on the 

surface, which is a challenge since there is a high variability in the composition of the 

background vegetation. Other kind of models, machine learning algorithms, have the 

advantage of learning the relationship between the response and the predictor variables to 

find prevailing patterns (Breiman, 2001; Elith et al., 2008) and they are not constrained 

by the need for realistic internal model parameters such as leaf reflectance, leaf angle 

distribution, plant number density, mean crown radius, height and so on. Algorithms, 
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such as ensemble trees, neural nets, and support vector machines belong to the machine-

learning group. Ensemble methods, like the Boosted Regression Tree (BRT) and Random 

Forest (RF), were initially used in ecological studies (De'Ath, 2007; Leathwick et al., 

2006), but in recent years there has been an increase in their use in remote sensing studies 

(Beck et al., 2011; Raynolds et al., 2013). Preliminary tests were run using the semi-

empirical modified Simple Geometric Model (SGM, Chopping et al., 2003) and the 

empirical Neural Networks (NN) and Random Forest models. The modified SGM model 

describes the reflectance anisotropy properties of the background by using the 

RossThick-LiSparse kernel weights (isotropic, geometric, and volumetric kernels). Since 

the volume scattering kernel weight could not be predicted accurately, it was not feasible 

to predict the contribution of the background with sufficient precision. This might have 

been due to the small contrast between the background and the shrubs and to the high 

variability in the background composition (lichens, mosses, tussock, rocks, etc). NN and 

RF models produced better results but had the shortcoming of being considered black 

boxes where no information was provided on the contribution and role of the explanatory 

variables in the model. 

 In this study, the Boosted Regression Tree model was selected to map shrub 

fractional cover in the North Slope of Alaska due to its several advantages over other 

models. The BRT model can work with categorical as well as with numerical explanatory 

variables (Leathwick et al., 2006). It can handle missing data with minimal loss of 

information. The model is unaffected by extreme outliers. It can fit a complex nonlinear 

distribution of the explanatory variables (Elith et al., 2008). But, most importantly, unlike 
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the neural network and the random forest models, the BRT model provides simple 

graphical and numerical representations of the predicted variation in the response 

variable in relation to the explanatory variables, of the relative influence of the predictors, 

and of the interactions between the independent variables (De'Ath, 2007). 

 Having selected the MISR sensor and Boosted Regression Tree model to map shrub 

fractional cover in the North Slope of Alaska, this study focused on the training and 

validation of the model. Specific objectives were to obtain MISR imagery for the year 

2010—the year for which fractional cover estimates in the reference database were 

obtained, to invert the RossThick-LiSparse reciprocal model using the red reflectance 

values of MISR's nine cameras in order to account for the anisotropic properties of the 

surface, to identify suitable predictor variables and their relative contribution to the 

model, to simplify the BRT model by dropping variables that did not improve its 

predictive performance, to identify interactions between predictor, and to evaluate the 

predictive performance of the BRT model.  

 

3.2. Materials and Methods 

3.2.1. Data Sources 

 A robust reference database was used to train the boosted regression tree model and 

to validate the results. The database consisted of tall shrub cover estimates for 1,039 sites 

across the North Slope of Alaska, as described in Chapter 2. Each site was aligned with a 

250 m Albers Conical Equal Area grid, onto which the MISR data were mapped, and had 

an area of 62.5 km2. The sites included representatives from all four physiognomic 
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vegetation types present in the region (CAVM, 2003) and they covered a wide latitudinal 

and longitudinal range. Shrub cover estimates for 2010 were obtained from very high 

resolution imagery using the CANAPI algorithm (Duchesne et al., 2015). The CANAPI 

estimates were assumed to be reliable since they were previously calibrated with field 

estimates via regression equations (R2 = 0.83, P < 0.001).  

 For the training and validation of the BRT model, MISR data corresponding to 21 

paths (P065-P085) and 59 orbits were downloaded for the period June 15 - July 31 2010 

(Appendix C). This period matched the peak of the growing season when the shrub 

crowns were at their fullest and minimal changes in reflectance were observed. The 

MISR data were downloaded from the NASA Langley Atmospheric Science Data Center 

using the MISR Order and Customization Tool (http://l0dup05.larc.nasa.gov/MISR/cgi-

bin/MISR/main.cgi). 

 MISR is a sun-synchronous moderate resolution sensor on board of the Terra 

satellite and was launched in December 1999 (Diner et al., 1999). Besides its nadir 

camera, it has eight more pointing at fixed angles (±26.1, ±45.6, ±60.0, and ±70.5 

degrees) and each camera has four optical channels (blue, green, red, and near-infrared). 

Thus, MISR can provide simultaneous multi-angular calibrated images in four spectral 

bands. For this study, the red band at all off-nadir angles and the four spectral bands at 

nadir were used in the analysis. Only these spectral bands have a spatial resolution of 275 

m while the other off-nadir spectral bands have a spatial resolution of 1 km.  

 Other explanatory variables in the model included elevation, latitude, aspect, 

northness, and eastness. Elevation data for the North Slope of Alaska were obtained from 
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the National Elevation Dataset (NED) produced by the U.S. Geological Survey (USGS). 

The data were originally available at a spatial resolution of 2 arc-second (approximately 

60 m) and were distributed in geographic coordinates in conformance with the North 

American Datum of 1983 (NAD83). Elevation was provided in units of meters. Latitude 

(m), slope (degrees), and aspect were derived from the elevation data. Considering that 

aspect is a circular variable, it was linearized by creating new two variables: northness 

and eastness: 

                                           𝑁𝑜𝑟𝑡ℎ𝑛𝑒𝑠𝑠 = cos (
𝑎𝑠𝑝𝑒𝑐𝑡∗ 𝜋

180
)                                Equation 3-1 

 

                                            𝐸𝑎𝑠𝑡𝑛𝑒𝑠𝑠 =  sin (
𝑎𝑠𝑝𝑒𝑐𝑡 ∗ 𝜋

180
)                                 Equation 3-2 

 

 A value of 1 for northness indicated a north facing slope and a value of -1 a south 

facing one. Similarly, a value of 1 for eastness represented a slope facing directly east 

while a value of -1 a slope facing directly west. 

  Modeling was pursued in the statistical analysis and modeling package R (v3.0.1, 

2013) using the 'gbm' library (Ridgeway, 2004) and the 'brt' functions (Elith & 

Leathwick, 2008). Data visualization was done in ERDAS Imagine 2014. All imagery 

used was projected unto a 250 m Albers Conical Equal Area grid. 
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3.2.2. MISR Data Processing 

 This study used four MISR products: the MISR Level 1B2 Terrain Data-MI1B2T, 

the MISR Level 2 Land Surface Parameters-MIL2ASLS, the MISR Geometric 

Parameters-MIB2GEOP, and the Ancillary Geographic Product-MIANCAGP. The MISR 

Level 1B2 Terrain Data contained the terrain-projected top of atmosphere radiance, 

resampled at the surface, and topographically corrected. The MISR Level 2 Surface 

Parameters contained information on land directional reflectance properties (BRFs), 

albedos and associated radiation, and terrain-referenced geometric parameters on a 1.1 

km grid. The MISR Geometric Parameters supplied the solar azimuth, solar zenith, and 

nine viewing azimuth and zenith angles at a spatial resolution of 17.6 km on the reference 

WGS84 ellipsoid. The Ancillary Geographic Product consisted of eleven fields of geo-

location data, such as digital terrain elevation, on a SOM grid. With the aid of custom 

MISR Toolkit routines the data in the Hierarchical Data Format (HDF) were extracted, 

and the surface reflectance estimates were obtained and mapped onto the Albers Conical 

Equal Area map projection, with a grid interval of 250 m. 

 The MISR red band bidirectional reflectance factors (BRFs) in all nine cameras were 

used to invert the RossThick-LiSparse Reciprocal (RTLS-R) model, using the Algorithm 

for Modeling Bidirectional Reflectance Anisotropies of the Land Surface (AMBRALS) 

code (Wanner et al., 1997). The RTLS-R model is a kernel-driven semi-empirical BRDF 

model (Wanner et al., 1995), suitable for scenes with high values of the leaf area index 

(LAI) (Roujean et al., 1992) and sparse spacing of shrub or tree crowns (Li & Strahler, 

1992). Inversion of this model resulted in 13 parameters for each location (or raster cell): 
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three kernels functions (isotropic, volumetric, and geometric) that describe the BRDF 

shape, the weight of determination of these functions, the black-sky (directional) and 

white-sky (diffuse) albedos with their respective weight of determination, the RMSE, 

number of observations, and the weight of determination of the nadir BRDF-adjusted 

reflectance at solar zenith angle of 45 degrees (NBAR_45W). Five variables from the 

RTLS-R model (the isotropic, volumetric, and geometric kernels; the white and black sky 

albedo; and the nadir BRDF-adjusted weight) together with the surface reflectance from 

MISR's four spectral bands at nadir were used as initial explanatory variables to predict 

shrub fractional cover in the BRT model. 

 

3.2.3. Training and Validation of the Boosted Regression Tree Model 

 The boosted regression tree (BRT) was used in this study to retrieve fractional cover 

estimates from moderate resolution imagery. The BRT model, sometimes called 

'stochastic gradient boosting', is an ensemble method in which a large number of simple 

models (regression trees) are fit and then combined using a boosting algorithm to develop 

a final model (Leathwick et al., 2006). The trees are added to the final model in a forward 

stage-wise fashion, emphasizing observations poorly predicted by the previous trees 

(Friedman et al., 2000). Thus, the final BRT model can be seen as an additive regression 

model in which each of the individual terms is a simple regression tree (Elith et al, 2008).  

 The BRT model has several advantages that favor its selection over other models for 

this study. However care should be taken to avoid an over-fitted or complex model. In the 

first case, as more explanatory variables are added to the BRT model, eventually the 
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model can become over-fitted to the training data (Leathwick et al., 2006). To minimize 

this probability, Elith and Leathwick (2008) wrote code to simplify the model by 

performing backward elimination of explanatory variables that do not give evidence of 

improving the model's predictive performance. In the second case, the model complexity 

can be controlled by keeping the size of the individual regression trees low. The greater 

the tree size, the more complex the model becomes.  

 Several models were run by adjusting two parameters: the learning rate, also known 

as shrinkage rate, and the size of the individual trees. The learning rate was used to 

reduce the contribution of each tree as it was added to the model; smaller rates were 

preferred because they increased the predictive performance of the final model (Elith et 

al., 2008). The size of the individual trees regulated the number of splits and controlled 

the complexity of the model. A value of 1 meant that the individual trees consisted of a 

single decision rule, while a value of 2 signified that two decisions rules were used, 

which allowed for two-way interactions, and so on (Leathwick et al., 2006). Additional 

parameters included: the loss function, the number of trees, and the bag fraction. The 

purpose of the Gaussian loss function was to minimize the square error (Ridgeway, 

2006).The Gaussian function was used because the response was a continuous variable. 

Since fractional cover was heavily skewed, it was necessary to transform the response 

using the arcsine transform, a transformation commonly used in ecological studies to 

better distribute proportions (Read et al., 2011): 

 

                                                     𝐴𝑟𝑐𝐹𝐶 =  sin−1(√𝑓𝑐)                              Equation 3-3               
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where ArcFC is the transformed fractional cover, and fc is the original fractional cover 

value.  

 Cross-validation was used to determine the number of trees that minimize the 

predictive error. This method was deployed because the training dataset was relatively 

small (<1,000 observations). Cross-validation was accomplished by dividing the training 

data into 10 subsets to construct 10 training data sets, each of which omitted one of the 10 

subsets; then, 10 BRT where grown, one for each training data set; the predictive error 

was calculated for each BRT for tree sizes 1 to m; the BRT with the minimum predictive 

error was selected together with the optimum number of trees m*; lastly, a BRT was 

grown of m* trees from the whole training data set. The bag fraction controlled the 

stochasticity of the model, in other words, it set the proportion of observations used in 

selecting variables when constructing the trees. The bag fraction was set to 0.5 (the 

default), which meant that at each iteration, 50% of the data from the training set were 

drawn at random, without replacement.  

 There were a total of 15 explanatory variables used in the initial BRT model: six 

parameters that resulted from the inversion of the RTLS-R model (three kernels 

functions, the black-sky and white-sky albedos, and NBAR_45W), four spectral bands 

from MISR's nadir camera (blue, green, red, and near-infrared), and five terrain variables 

(latitude, elevation, slope, northness, and eastness). The response variable was the 

transformed shrub fractional cover, ArcFC.  

 The database, which had 1,039 observations, was randomly divided into training and 

validation data sets (734 and 305 observations, respectively). Several BRT models were 
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run with different combinations of learning rates (0.1, 0.05, 0.01, 0.005, 0.001, 0.0005) 

and tree complexities (1 to 5) using the training dataset. For each model, changes of the 

predictive deviance and the coefficient of determination with respect to the number of 

trees were evaluated. Once the best model was selected, it was simplified by dropping 

explanatory variables that did not significantly change the initial predictive deviance of 

the model. The contribution of the explanatory variables to the simplified model was 

evaluated as well as the interactions between predictor variables. Lastly, the model was 

evaluated using the validation dataset that was not used during the training of the model. 

 

3.3. Results and Discussion 

3.3.1. Transformation of the Response Variable 

 Fractional cover estimates from the reference database revealed that about 67% of 

the sites had a shrub cover lower than 3% (Figure 3-1a). The distribution of the shrub 

cover estimates showed that the values were strongly skewed to the left and more than 

50% of the sites fell within the first bin. Although the BRT model can handle this 

distribution, a smoother spread of the response can render better results. Transformation 

of the fractional cover values using the arcsine transform rendered a more even 

distribution of the estimates (Figure 3-1b). 
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Figure 3-1. Histogram of frequency of the response variable for 1,039 sites of 250 m × 

250 m in the North Slope of Alaska. Bin width of 0.015. a. tall shrub fractional cover, b. 

arcsine transformed tall shrub fractional cover.  

 

3.3.2. Identification of Monotonic Variables and Simplification of the BRT Model 

 Initial modeling efforts included all predictor variables without any restriction. 

Examination of the partial dependence plots showed that shrub fractional cover was 

lower in the foothills of the Brooks Range and in the coastal plain, but quite high in the 

mid latitude of the domain (Figure 3-2a). This pattern did not correspond to the one 

observed in the field in which the vegetation size increases from the coastal plain to the 

foothills of the Brooks Range, from prostrate dwarf shrubs (< 0.15 m in height), to erect 

dwarf shrub (0.15 m to 0.40 m in height), to low shrubs (>0.4 m in height) (Epstein et al., 

2004). Since this study focused on shrubs taller than 0.5 m, it was expected to observe 

higher shrub cover values southward (lower latitude values). Thus, the relationship 

between fractional cover and latitude was restricted to be monotonic. The new partial 
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dependence plots showed that once latitude was restricted, fractional cover was lower 

towards the coastal plain and higher towards the Brooks Range (Figure 3-2b). The effect 

of using latitude unrestricted and restricted in the model was observed in preliminary 

fractional cover maps. When latitude was unrestricted, the fractional cover map suffered 

from whiter bands across the image. The problem was solved once latitude was restricted 

(Figure 3-3). 

 

 

Figure 3-2. Partial dependence plots depicting the marginal effect of latitude on the 

response after accounting for the average effect of all other variables in the model. The 

fitted function is centered by subtracting its mean: a. latitude was unrestricted, b. latitude 

was set to be monotonic. Contribution of the variable to the model is in parenthesis. 
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Figure 3-3. Panchromatic subset of a fractional cover map: a. latitude was not restricted, 

b. the relationship between latitude and fractional cover was restricted to be monotonic. 

 

 Similarly, the partial dependence plots showed that predicted shrub cover was higher 

at lower elevations (< 200 m) , and then it decreased rapidly as elevation increased 

(Figure 3-4a). Although field observations show that fractional cover is higher on 

floodplains (lower elevations) compared to interfluves (higher elevations) (Tape et al., 

2006), this pattern is relevant when considering the distribution of shrubs at a large scale. 

This study, on the contrary, used a coarser scale and therefore elevation was more aligned 

to represent the regional elevation gradient (from higher elevations at the Brooks Range 

to lower elevations at the coastal plain). Consequently, shrub cover was expected to 

decrease at lower elevations (i.e., coastal plain). In order to account for these 

considerations, the relationship between elevation and shrub cover were set to be 

monotonic (Figure 3-4b).  
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Figure 3-4. Partial dependence plot depicting the effect of elevation on the response after 

accounting for the average effect of all other variables in the model. The fitted function is 

centered by subtracting its mean: a. elevation was unrestricted, b. elevation was set to be 

monotonic. Contribution of the variable to the model is in parenthesis. 

 

 Also, the partial dependence plots showed that as near-infrared reflectance (NIR) 

decreased, shrub cover increased (Figure 3-5a). This relationship was not quite what was 

expected. The proportion of NIR energy that is reflected from the surface is a function of 

moisture content and of the intrinsic properties of the elements on the ground (i.e., 

vegetation, rocks, water). Vegetation in the Arctic is mainly composed of deciduous 

shrubs, lichens, mosses, tussock, and grasses. Lichens and mosses are brighter (~35% ) 

than shrubs (~20%), while water strongly absorbs near-infrared radiation (<14 %) 

(Bubier et al., 1997;Vierling et al.,1997). Therefore it was expected that areas that had a 

high content of moisture (i.e., wet sedges (~13%)), which usually also have a lower shrub 

abundance, would relate to lower values of near-infrared reflectance. Similarly, it was 

expected that sites with lower values of shrub abundance—and therefore a greater 
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proportion of background vegetation (i.e., lichens)—would correlate with higher values 

of NIR reflectance; whereas, sites with higher shrub cover—and therefore less bright 

background vegetation—would correlate with mid NIR reflectance values. Furthermore, 

comparisons of a preliminary shrub fractional cover map with high resolution imagery 

showed that there was no correspondence between observed and predicted shrub cover 

when NIR was unrestricted (Figure 3-6a and Figure 3-6b). Therefore, the relation 

between NIR and cover was also adjusted to better model the relationship observed in the 

field (Figure 3-5b). After this adjustment, the new shrub cover map better represented the 

shrub cover pattern in the high resolution imagery (Figure 3-6a and Figure 3-6c).  

 

 

Figure 3-5. Partial dependence plot depicting the marginal effect of near-infrared 

reflectance on the response after accounting for the average effect of all other variables in 

the model.The fitted function is centered by subtracting its mean: a. NIR was 

unrestricted, b. NIR was restricted. Contribution of the variable to the model is in 

parenthesis. 
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Figure 3-6. Comparison of predicted fractional cover with high resolution imagery: a. 

subset of Google Earth imagery, b. subset of a preliminary fractional cover map where 

NIR is unrestricted, c. subset of a second fractional cover map where NIR is restricted. 
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 After latitude, elevation, and NIR reflectance were adjusted, the BRT model was run 

several times with different combinations of learning rate and tree complexity. The best 

model had a learning rate of 0.005 and a tree complexity of three. Simplification of the 

model was explored using backward elimination. Elevation was dropped because it did 

not contribute enough to the predictive performance of the model (Figure 3-4b).  

 

3.3.3. Relative Contribution of the Explanatory Variables to the BRT Model 

 The relative importance of the variables was assessed on a scale of 0 to 100, with the 

higher number indicating a stronger influence on the response (Elith et al., 2008). In 

order of importance, the six variables that contributed to the model the most were the red 

surface reflectance (14.7), the slope (13.9), NBAR_45W (12.7), and the isotropic (11.2), 

volumetric (7.2), and geometric (6.9) kernels from the RTLS-R model (Table 3-1).These 

variables were frequently used for splitting during the creation of the regression trees and 

helped improve the predictive performance of the model. 

 The partial response plots suggested that the percentage of red reflectance was lower 

when woody vegetation was higher (Figure 3-7a), which agreed with the theory. During 

the summer months, deciduous shrubs in the North Slope grow green leaves after a long 

leafless winter, and leaves are the primary photosynthesizing organ. The healthy green 

foliage, which is rich in chlorophyll, absorbs wavelengths of light in the visible region of 

the spectrum. Strong absorption is noticeable between the 600 and 700 nm wavelength 

range, which corresponds to the red absorption band. Thus, an increase in shrub cover 
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would imply that more radiation in the red portion of the electromagnetic spectrum would 

be absorbed and less would be reflected.  

  

Table 3-1. Relative contribution of the predictor variables to the BRT model. The sum of 

all the contributions adds to 100. 

* Weight of Determination 

Variable Relative Contribution (%) 

Red reflectance 14.7 

Slope 13.9 

Nadir BRDF-adjusted reflectance WoD*  12.7 

Isotropic kernel 11.23 

Volumetric kernel 7.23 

Geometric kernel 6.92 

White-sky albedo 

Latitude 

6.51 

6.17 

Blue reflectance 6.00 

Green reflectance 

Black-sky albedo 

5.78 

3.69 

Northness 2.39 

Eastness 2.19 

Near-infrared reflectance 0.54 
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 The characteristics of the terrain also seem to influence shrub abundance (Figure 3-7 

b). For instance, as the slope of the terrain increased (5° < slope < 12° degrees), so did 

the shrub cover. Flat areas (slope < 1° degree) also were characterized by high values in 

shrub cover, while in semi-flat areas (1° ≤ slopes ≤ 5° degrees) the presence of shrubs 

was considerably lower. This pattern agrees with that described by Tape et al.'s (2006) 

study in which floodplains and slopes had more abundant shrub cover in comparison to 

interfluves. 

  The weight of determination of the nadir BRDF-adjusted reflectance at solar zenith 

angle of 45 degrees increased with shrub abundance (Figure 3-7c). Quite the opposite 

relation is observed between the isotropic scattering kernel and shrub cover. The isotropic 

kernel is a constant term from the RTLS-R model that compensates for the multiple 

scattering not accounted for by the volumetric and geometric scattering kernels (Wanner 

et al., 1995). The isotropic scattering describes the "brightness" of the surface, and as 

expected, the "brightness" decreased with more shrubs, as they are darker than the 

background vegetation (Figure 3-7d).  

 The volumetric scattering kernel seemed to decrease with higher estimates of shrub 

cover (Figure 3-7e ). Estimation of the volume scattering assumes a homogeneous 

medium (canopy) of a given volume density made of randomly located scattering parts 

(leaves). The medium rests on a flat surface and its height is a function of the leaf-area 

index (LAI) (Roujean et al., 1992). Although shrubs have a high LAI (Epstein et al., 

2004), volume scattering effects are significant for both vegetated and non vegetated 

surfaces regardless of their LAI value (Roujean et al., 1992). Thus, it seems that in areas 
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with low shrub cover, the background vegetation has a stronger volume effect on the 

reflectance. 

 The geometric scattering seems to decrease with higher estimates of shrub cover 

(Figure 3-7f). The geometric kernel describes the reflectance of a surface as a function of 

the areal proportion of the sunlit and shaded canopy and ground (Wanner et al., 1995). At 

high latitudes, shadows cast by protruding shrubs are more pronounced due to the low 

solar angle. These shadows may reduce the scattering effect of the brighter background 

vegetation, thus resulting in lower values of geometric scattering.  

 The white-sky albedo (Figure 3-7g), which is the bihemispherical reflectance under 

isotropic illumination conditions, and the black-sky albedo (Figure 3-7k), which is the 

directional hemispherical reflectance computed at local solar noon, decreased with higher 

shrub cover values. This is expected as shrubs are darker than the background vegetation 

and contribute to lower albedo values.  

 After latitude was adjusted, the dependence plot showed a better relationship 

between latitude and shrub cover (Figure 3-7h). There are no tall shrubs on the coastal 

plain of Alaska where wet sedges and prostrate dwarf shrubs (<0.15 m in height) are 

dominant. Shrub abundance increased towards the foothills of the Brooks Range (lower 

latitude) where low shrubs (>0.4 m in height) dominate the landscape (Epstein et al., 

2004).  

 Blue reflectance seemed to decrease with higher values of shrub cover (Figure 3-7i). 

Although blue light is strongly absorbed by shrubs and perhaps an inverse relationship 

than the one found was expected, light in the blue spectrum is highly scattered in the 
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atmosphere. At higher latitudes, where the sun angle is much lower, the light goes 

through a longer path in the atmosphere and the scattering of the blue light is more 

pronounced. It may be possible that the blue reflectance that reached the sensor may be 

more noise than signal. On the other hand, it seems like two peaks on green reflectance 

correlate to higher values of shrub cover (Figure 3-7j). It may be that this corresponded to 

the reflective properties of two dominant species of shrub. The remaining three variables 

(northness, eastness, and near-infrared reflectance) had a much lower contribution to the 

model.  
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Figure 3-7. Partial dependence plot depicting the effect of each independent variable on 

the response after accounting for the average effect of all other variables in the model. 

The fitted function is centered by subtracting its mean. Contribution of the variable to the 

model is in parenthesis. a. red reflectance, b. slope, c. NBAR_45W, d. isotropic 

scattering, e. volumetric scattering, f. geometric scattering, g. white-sky albedo, h. 

latitude, i. blue reflectance, j. green reflectance, k. black-sky albedo, l. northness, m. 

eastness, and n. NIR reflectance. 
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3.3.4. Interaction Between Explanatory Variables in the Model 

 Interaction plots show the relation between two explanatory variables and the 

response while setting all other variables to their respective means. The two most 

important interactions were between the slope and green reflectance and between the 

slope and latitude. The first interaction revealed that sites with slope near to zero had 

higher shrub abundance, and this effect was more pronounced with higher green 

reflectance values (Figure 3-8). This is the case along floodplains and river terraces 

where the terrain is flat and shrubs are abundant (Tape et al., 2006). As the number of 

shrubs with a healthy canopy increases in flat areas, so does the green reflectance. This 

agrees with the fact that vegetation reflects slightly more green than blue or red 

electromagnetic energy. Although cover also increased with the steepness of the terrain, 

shrub abundance was overall much lower compared to the flat areas. Also, it seemed that 

on steeper terrains, lower values of green reflectance correlated with higher values of 

cover.  

 The second interaction depicts the relationship between latitude, slope, and shrub 

cover (Figure 3-9). Similarly to the previous interaction, nearly flat terrains (slope < 1) 

have higher shrub abundance, and this effect is enhanced toward the foothills of the 

Brooks Range. Equally, as the terrain is steeper and the latitude decreases, shrub cover 

increases. This behavior was observed on valley slopes (Tape et al., 2006).  
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Figure 3-8. Interaction plot depicting the effect of slope and green reflectance on the 

response variable, ArcFC.   

 

Figure 3-9. Interaction plot depicting the effect of latitude and slope on the response 

variable, ArcFC.  
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3.3.5. Validation of the BRT model 

 The validation dataset, consisting of tall shrub fractional cover estimates for 305 

sites, was used to evaluate the predictive performance of the model. This dataset was not 

used during the training of the BRT. The predicted arcsine fractional cover values 

obtained from the BRT model for the new validation sites were converted back to 

fractional cover and compared to the validation dataset. The BRT model explained 52% 

of the variation in the response variable fractional cover (RMSE of 0.03) (Figure 3-10). 

This result is very reasonable considering the spatial resolution of the data (250 m × 250 

m).  

 

Figure 3-10. Scatter plot of observed fractional cover derived from the CANAPI 

algorithm against the predicted fractional cover from the BRT model for 305 validation 

sites. 
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 Selkowitz (2010) found a similar coefficient of determination when evaluating 

regression tree models to predict tall shrub fractional cover from MISR imagery using the 

four spectral bands from the nadir camera and the red band data from all off-nadir 

cameras (average R2 of 0.59, and average RMSE of 0.046 for models using data from 

June and July at a spatial resolution of 500 m). His study covered an area of 1,067 km2 of 

tundra in northern Alaska and the regression tree model utilized to predict fractional 

shrub cover was trained and validated using a high resolution fractional shrub cover 

reference map built from field measurements and swath of IKONOS imagery. The BRT 

model overestimated fractional cover when the observed value was lower than 0.025 and 

underestimated cover when the observed value was higher than 0.025 (Figure 3-10). The 

underestimation of cover may be partially related to the clumping of tall shrubs, which 

hinder the identification of single canopies. The BRT model made use of the geometric 

kernel, which takes into consideration the sunlit and shaded portion of the canopy crown 

and background. When tall shrub are clustered, as happens along water tracks and 

floodplains, the shaded crowns are truncated by neighboring shrubs. 

 

3.4. Conclusion 

 The boosted regression tree model was able to explain 52% of the variability in the 

response variable, fractional cover, using 14 predictor variables (red, blue, green, and 

near-infrared reflectance; slope; NBAR_45W; isotropic, volumetric, and geometric 

kernels; white- and black- sky albedo; latitude; northness; and eastness). It seemed that 

sites with lower red reflectance values and on hilly terrains had higher shrub cover 
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values. Similarly, the presence of more shrubs suggested a decrease in albedo. Near-

infrared reflectance seemed to be a function not only of the composition of the vegetation 

but also of moisture content. After adjusting this variable, NIR reflectance ended up 

providing the least information to the model. The shrub cover pattern observed on 

preliminary fractional cover maps showed a good agreement with high resolution 

imagery. Multi-spectral and multi-angular data from MISR together with the use of 

terrain variables provided good results for mapping shrub cover in the Arctic. Since the 

training and validation of the BRT model was done using a wide range of sites that 

covered the entire domain of the North Slope of Alaska, the model can be readily applied 

to generate tall shrub fractional cover maps. However, because of its empirical nature, it 

can only be used to predict shrub abundance in similar Arctic tundra environments. The 

trained and validated BRT model presented here could be used to analyze temporal 

changes in tall shrub cover in the North Slope of Alaska with the goal of assessing the 

magnitude and direction of the ongoing shrub expansion. 
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CHAPTER 4 

Construction of the 2000 Shrub Fractional Cover Map  

and Comparison to Existing Maps for the North Slope of Alaska. 

 

Abstract 

 The warming experienced in the North Slope of Alaska over the last few decades has 

brought a series of changes in the landscape, the most noticeable being the spreading of 

shrubs in the region. An increase in shrub cover may lead to a lower albedo, affect the 

energy and carbon budget, and alter the disturbance regime. In order to understand the 

magnitude and direction of this change, it is important to go back as much as possible in 

time to assess the initial condition of the landscape. Due to the extent of the North Slope 

and its extreme environments, remote sensing may be the most suitable tool to produce 

wall-to-wall fractional shrub cover maps for the entire region. Most regional maps have 

relied on the Normalized Difference Vegetation Index (NDVI) to track changes in the 

photosynthetic activity of the vegetation over the last few decades. However, vegetation 

indices tell little information about the structural characteristics of the vegetation. The 

only wall-to-wall fractional cover maps for the North Slope needed four years worth of 

data and still did not cover the entire region. Here, a new mapping approach is presented 

that uses satellite imagery from the Multi-angle Imaging SpectroRadiometer (MISR) 

sensor and some landscape variables to predict tall shrub (> 0.5 m) cover. The new tall 

shrub fractional cover map for the year 2000 revealed that cover ranged from 0.00 to 0.21 

and about 75% of the sites had a fractional cover less than 0.013. High cover values were 
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predicted along floodplains, creeks, and sloped terrain. The fractional cover estimates 

related well with the bioclimatic subzones, showing that in warmer environments, shrub 

cover was higher. The map presented here outperformed the Landsat-derived tall shrub 

fractional cover map when compared to the robust validation data set (R2= 0.38, RMSE = 

0.08). Both maps, however, agreed on the fact that tall shrub cover was quite low in the 

North Slope of Alaska in 2000 and that it was restricted to a few areas in the domain.  

 

Keywords: Fractional cover map, tall shrub, North Slope of Alaska, Multi-angle Imaging 

SpectroRadiometer (MISR), bioclimatic subzones, Landsat. 
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4.1 Introduction 

 Over the last few decades, average surface temperatures in the Arctic have increased 

and this has led to a series of changes in the terrestrial and aquatic ecosystems (IPCC, 

2013). A noticeable change on land has been the proliferation of shrubs in the North 

Slope of Alaska. The link between shrub expansion and warmer temperatures has been 

established by a large volume of research. Observational studies and warming 

experiments have linked warming with an increase in shrub cover (Chapin et al., 1995; 

Elmendorf et al., 2012; Hudson & Henry, 2009; Huemmrich et al., 2010). Shrub rings 

have also suggested that warming was a primary contributor to shrub expansion in the 

Arctic (Forbes et al., 2010; Tape et al., 2012). Repeat aerial photography studies have 

detected an increase in shrub cover over five decades and attributed it to an increase in 

temperature in the region (Myers-Smith et al., 2011; Sturm et al., 2001). Remote sensing 

studies has shown that the greening in the Arctic is well correlated with the warming 

trend in the region (Jia & Howard, 2003; Myneni et al., 1997; Stow et al., 2004; Zhou et 

al., 2001). Although the greening is a function of the proportion of dead material in the 

plant canopy, the vegetation type, and the soil background (Sellers, 1985), it has been 

used as a proxy of biomass (Jia & Howard, 2003; Myneni et al., 1997).  

 An increase in shrub cover may affect the environment in several ways. For instance, 

an increase in shrubs may decrease the albedo as their leaves are darker than those of the 

grasses and because of the shadows thrown. Furthermore, the probability that the energy 

reflected from one canopy element will be absorbed by another is higher with an increase 

in leaf area and biomass (Oke, 1987). Similarly, if shrub cover increases, more incoming 
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radiation may be absorbed near the surface and a potential consequence could be the 

increase in surface temperature, which could encourage earlier snow thawing in spring 

(Chapin et al., 2005; Hinzman et al., 2005). Also, an increase in woody vegetation 

coupled with warm surface temperature and low moisture may increase fire frequencies 

and intensity as more fuel would become available (Higuera et al., 2008). In 2007, the 

largest recorded tundra fire in the Arctic burned 1,039 km2 of Alaska's tundra and 

released 2,016 g of carbon per square meter into the atmosphere (Mack et el., 2011). 

Because an increase in shrub cover may alter both local and global carbon budgets, and 

have an effect on the Arctic climate and the ecosystem, it is important to monitor changes 

in vegetation, particularly with respect to increases in deciduous shrubs in the tundra 

(Euskirchen et al., 2009; Tape et al., 2006).  

 There are several global vegetation maps available, but they do not satisfactorily 

characterize shrub cover in the Arctic tundra biome (Selkowitz, 2010): 1) For instance, 

the Circumpolar Arctic Vegetation Map (CAVM) describes five physiognomic categories 

subdivided into 15 vegetation mapping units that depict the dominant plant functional 

type within the mapped polygon (CAVM, 2003). The scale used was 1:7.5 million which 

is not suitable for regional studies. 2) The MODIS Land Cover Type product (MCS12Q1) 

had a spatial resolution of 500 m and used five land cover classification schemes to 

describe land cover properties. The main classification scheme identified 17 land cover 

classes defined by the International Geosphere Biosphere Programme (NASA LPDAAC, 

2001). In the North Slope there were only 14 land cover classes from which open 

shrublands and grasslands occupied most of the domain (Figure 4-1). 3) The Landsat 
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Multispectral Scanner System (MSS)-derived land cover map of northern Alaska had a 

spatial resolution of 100 m and it classified land cover type into eight broad categories 

(Muller et al., 1999). The map showed that 69% of the domain was covered by moist 

dwarf-shrub and tussock-graminoid tundra (28%), moist graminoid and prostrate-shrub 

tundra (22%), and moist low-shrub tundra and other shrublands (19%). 4) The National 

Land Cover Database (NLCD) of 2001 was another land cover map derived from Landsat 

imagery at a 30 m spatial resolution (Figure 4-2) (USGS, 2001). This map used 16 

classes for the North Slope of Alaska and was derived using a decision-tree classification. 

 

 

Figure 4-1. Simplified land cover type for the North Slope of Alaska using the 

International Geosphere Biosphere Programme global vegetation classification scheme. 

Source: MODIS Land Cover Type Product, year 2001.  
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Figure 4-2. Land cover for the North Slope of Alaska based on the National Land Cover 

Database. Spatial resolution of 30 m . Source: USGS website. 

 

Although it had a high spatial resolution and the vegetation classes were very specific, it 

did not provide estimates of shrub cover. 

 The only maps that provided shrub cover estimates for the North Slope of Alaska are 

the ones created by Beck et al. (2011). Their 2000 total and tall shrub fractional cover 

maps were produced using Landsat 7 imagery and the machine-learning algorithm called 

Random Forest. Their results were validated by comparing predicted shrub cover with 

field observations at 24 sites (R2 = 0.63, RMSE = 23%). Although the Landsat-derived 

shrub fractional cover maps provided estimates for the North Slope, they required 

imagery from four years to cover the region and yet there were large portions of the 

domain without data available. This was due to the fact that the North Slope has a short 
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snow-free season and is frequently covered by clouds, especially during summer (Stow et 

al., 2004). In order to increase the chances of capturing a cloud-free/snow-free scene, it is 

necessary that the sensor has a high temporal resolution and a large field-of-view.  

 Comparison of predicted shrub fractional cover derived from Landsat, the Multi-

angle Imaging SpectroRadiometer (MISR), and Moderate Resolution Imaging 

Spectroradiometer (MODIS)—for the North Slope of Alaska—showed that when only 

the spectral information is exploited , sensors with higher spatial resolution provided the 

highest accuracy in the regression tree models (Selkowitz, 2010). On the other hand, 

when using both the angular and spectral information provided by MISR, estimates of 

shrub fractional cover came as accurate as those derived from Landsat data (Selkowitz, 

2010). Therefore, MISR is a promising sensor for mapping shrub cover in Arctic Alaska 

because it can provide fractional cover estimates of similar accuracy to that of higher 

resolution sensors and its higher temporal resolution (1-2 days) and wider swath (360 

km) can increase the likelihood of capturing more cloud-free scenes.  

 Besides persistent cloud cover, some of the other challenges of mapping shrub 

abundance in the Arctic are the low solar angle and the low shrub cover. In the Arctic, the 

effect of the low sun angles affect quality of the radiometric measurements in at least two 

ways: first, the incoming and outgoing radiation must travel a longer path in the 

atmosphere which translates into more energy that is scattered and less reaching the 

sensor; second, shadows make an important contribution to the total reflected energy 

even with the low stature shrubs and gentle rolling hills of the Arctic landscape (Stow et 

al., 2004). Regarding the low shrub cover, at the 250 m spatial resolution, the North 
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Slope has for the most part, a tall shrub cover less than 5% (Duchesne et al., 2015; 

Selkowitz, 2010). Thus, the sensor must be sensitive enough to pick up this very small 

signal. Perhaps the additional information provided by the off-nadir cameras of MISR 

may help to discriminate low shrub cover values.  

 One particular advantage of MISR is that its multi-angular measurements of 

reflectance could be used together with the RossThick-LiSparse Reciprocal (RTLS-R) 

model to obtain the bidirectional reflectance distribution function (BRDF) (Martonchik et 

al., 1998; Wanner et al., 1995). The BRDF is a function that describes the differences in 

the direction of reflected radiance with respect to the direction of irradiance incident to a 

surface (Nicodemus et al., 1997). These variations on surface reflectance due to the 

different sun-sensor geometry, should be accounted for in any study of the Earth's 

surface. 

 One of the considerations in mapping fractional cover in the Arctic is the selection of 

a model that would be sensitive to the small radiometric signal coming from the low 

shrub cover and to the low spectral contrast between the background vegetation and the 

tall shrubs. Today, more studies are using machine-learning algorithms (Beck et al., 

2011; Raynolds et al., 2013; Selkowitz, 2010) because they learn the relationship 

between the predictors and the response and find prevailing patterns (Breiman, 2001; 

Elith et al., 2008). Some machine-learning algorithms like the Neural Nets (preliminary 

modeling efforts) and Random Forest (Beck et al., 2011) provided reasonable shrub cover 

estimates; however these models are considered black boxes because no information is 

provided on the contribution and role of the explanatory variables. In this study, the 
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Boosted Regression Tree model was used to map shrub fractional cover in the North 

Slope of Alaska because besides its many advantages, it provided simple graphical and 

numerical representations of the predicted variation in the response variable in relation to 

the explanatory variables, of the relative influence of the predictors, and of the 

interactions between the independent variables (De'Ath, 2007). 

 The main goal of this study was to create a tall shrub fractional cover map for the 

North Slope of Alaska for year the 2000 using moderate resolution imagery and the 

boosted regression tree model. Specific objectives were to obtain MISR imagery for the 

years 2000 to 2002, to invert the RossThick-LiSparse reciprocal model using the red 

reflectance values of MISR's nine cameras in order to account for the anisotropic 

properties of the surface, to mosaic all MISR paths into one multi-layer map with all the 

surface reflectance-derived predictor variables for the region, to retrieve shrub fractional 

cover using the BRT model, to filter map outputs, and to compare the new map with 

existing shrub cover maps for the North Slope.  

 

4.2. Materials and Methods 

4.2.1 Data Sources 

 The creation of the 2000 tall shrub fractional cover map used MISR data collected in 

years 2000, 2001, and 2002 during the period June1 - August 15 (Appendix D). This 

period matched the growing season when the shrub crowns were at their fullest and 

minimal changes in reflectance were observed. A total of 22 paths (P065-P086) were 

necessary to cover the entire North Slope of Alaska; each path had five potential orbits 
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within the sampling time range. Out of the 330 possible orbits, only 225 had imagery 

available (Table 4-1). Year 2000 had the lowest number of good imagery, probably 

because of adjustments made to the sensor during its first year of orbit. The MISR data 

were downloaded from the NASA Langley Atmospheric Science Data Center using the 

MISR Order and Customization Tool (http://l0dup05.larc.nasa.gov/MISR/cgi-

bin/MISR/main.cgi).  

 

Table 4-1. Summary of available MISR imagery for years 2000-2002. 

Status 2000 2001 2002 

Good Imagery 61 76 86 

Bad Imagery 49 32 24 

Total 110 110 110 

 

 Elevation data for the North Slope of Alaska were obtained from the National 

Elevation Dataset (NED) produced by the U.S. Geological Survey (USGS). The data 

were available at a spatial resolution of 2 arc-second (approximately 60 m). A total of 99 

NED subsets were necessary to cover the entire study area. Latitude (m), slope (degrees), 

and aspect were derived from the elevation map. Considering that aspect is a circular 

variable, it was linearized by creating two variables: northness and eastness: 

 

                                              𝑁𝑜𝑟𝑡ℎ𝑛𝑒𝑠𝑠 = cos (
𝑎𝑠𝑝𝑒𝑐𝑡∗ 𝜋

180
)                                              Eq. 4-1 
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                                              𝐸𝑎𝑠𝑡𝑛𝑒𝑠𝑠 =  sin (
𝑎𝑠𝑝𝑒𝑐𝑡 ∗ 𝜋

180
)                                        Eq. 4-2 

 A value of 1 for northness indicated a north facing slope and a value of -1 a south 

facing one. Similarly, a value of 1 for eastness represented a slope facing directly east 

while a value of -1 a slope facing directly west. 

 The MODIS Collection 5 Burned Area Product (MCD45) was used to identify 

burned areas. This product uses MODIS Aqua and Terra as input data and it is defined on 

a global 483 m sinusoidal grid. The monthly Geotiffs from year 2000 to 2002 (36 tiles) 

were downloaded from the University of Maryland website; just one tile was necessary to 

cover the entire study area (window 1).  

 All data processing was carried out using several software and utility scripts. 

Software included ERDAS Imagine 2014, ArcGIS 10.2.1. , Pythonwin - Python IDE and 

GUI Framework for Windows, and R v3.0.1. All data used were projected unto a 250 m 

Albers Conical Equal Area grid. 

 

4.2.2. MISR Data Processing 

 MISR was launched in December 1999 and it is a sun-synchronous moderate 

resolution sensor on board of the Terra satellite (Diner et al., 1999). It has nine cameras 

pointing at fixed angles and each camera has four optical channels (blue, green, red, and 

near-infrared). MISR can provide simultaneous multi-angular calibrated images in four 

spectral bands. For this study, the red band at all off-nadir cameras and the four spectral 

bands at the nadir camera were used in the analysis. Only these spectral bands have a 
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spatial resolution of 275 m while the other off-nadir spectral bands have a spatial 

resolution of 1 km.  

 This study used four MISR products: the MISR Level 1B2 Terrain Data-MI1B2T, 

the MISR Level 2 Land Surface Parameters-MIL2ASLS, the MISR Geometric 

Parameters-MIB2GEOP, and the Ancillary Geographic Product-MIANCAGP. With the 

aid of the MISR Toolkit the MISR files that came in the Hierarchical Data Format (HDF) 

were extracted and the surface reflectance estimates were obtained and mapped onto the 

Albers Conical Equal Area map projection with a grid interval of 250 m. The MISR red 

band bidirectional reflectance factors (BRFs) in all nine cameras were used to invert the 

RossThick-LiSparse Reciprocal (RTLS-R) model, using the Algorithm for Modeling 

Bidirectional Reflectance Anisotropies of the Land Surface (AMBRALS) code (Wanner 

et al., 1997). The RTLS-R model is a kernel-driven semi-empirical bidirectional 

reflectance distribution function (BRDF) model, suitable for scenes with low values of 

the leaf area index (LAI) (Wanner et al., 1995) and sparse spacing of shrub or tree crowns 

(Li & Strahler, 1992). This step was necessary in order to account for the variations in 

surface reflectance as a result of differences in viewing and illumination geometries. 

Unless corrections for the BRDF are made, comparisons of surface reflectance 

observations across images from MISR are difficult or impossible (Wanner et al., 1997). 

Inversion of this model resulted in 13 parameters: three kernels functions (isotropic, 

volumetric, and geometric) that described the BRDF shape, the weights of these 

functions, the black-sky (directional) and white-sky (diffuse) albedos with their 

respective weights, the RMSE, number of observations, and the weight of determination 
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of the nadir BRDF-adjusted reflectance at solar zenith angle of 45 degrees 

(NBAR_45W). A few of the 13 variables from the RTLS-R model plus the surface 

reflectance from MISR's four spectral bands at nadir were some of the predictor variables 

used in the BRT model to predict shrub fractional cover. 

 

4.2.3. Boosted Regression Tree 

 The boosted regression tree (BRT), which had been previously trained and validated, 

was used in this study to predict fractional cover for the North Slope of Alaska. The BRT 

model, sometimes called 'stochastic gradient boosting', is an ensemble method where a 

large number of simple models (regression trees) are fit and then combined using a 

boosting algorithm to develop a final model (Leathwick et al., 2006). The trees are added 

to the final model in a forward stage-wise fashion, emphasizing observations poorly 

predicted by the previous trees (Friedman et al., 2000). Thus, the final BRT model can be 

seen as an additive regression model in which each of the individual terms is a simple 

regression tree (Elith et al, 2008).  

  The BRT model (learning rate of 0.005 and a tree complexity of three) was fitted in 

R (v3.0.1, 2013) using the 'gbm' library (Ridgeway, 2004) and the 'brt' functions (Elith & 

Leathwick, 2008). Predicted arcsine tall shrub cover values (ArcFC) were obtained by 

using 14 explanatory variables: six parameters that resulted from the inversion of the 

RTLS-R model (three kernels functions, the black-sky and white-sky albedos, and 

NBAR_45W), four spectral bands of MISR at nadir (blue, green, red, and near-infrared), 
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and four terrain variables (latitude, slope, northness, and eastness). The response variable 

was the transformed shrub fractional cover which was later converted to fractional cover. 

 

4.2.4. Work Flow for the Creation of the 2000 Shrub Cover Map of Arctic Alaska 

 MISR data was initially processed using the MISR toolkit routines in order to obtain 

surface reflectance values for the four spectral bands at nadir and the red spectral band at 

all nine angles. When the number of blocks to process in a given orbit was greater than 4, 

MISR data had to be processed in two batches due to limits in the system capacity and 

the MISR toolkit routines.  BRF values for the red spectral band were used to invert the 

RTLS-R model using the AMBRALS algorithm. The output of the AMBRALS included 

13 parameters including the kernel weights and albedos. Following, the reflectance 

values of the four nadir spectral bands and the 13 parameters of AMBRALS were stacked 

in single files of 17 layers each, one file per orbit (Figure 4-3). 

 Several filters were applied in order to clean the data before compositing it. Pixels 

that used less than 8 multi-angular observations for the inversion of the RTLS-R model 

were flagged with a value of -999. Clouds were also flagged using the RMSE value from 

the RTLS-R model as a criterion. If the RMSE was equal or greater than 0.15, then a 

value of -999 was assigned to that pixel. In terrestrial ecosystems, surface reflectance is 

always positive and greater than zero. Thus, pixels with negative or zero surface 

reflectance values for the blue, green, red, or near-infrared bands or for the isotropic 

kernel, which is the diffuse reflectance from the RTLS-R model, were flagged with a       

-999 value. On the contrary, a negative volumetric or geometric kernel weight indicates 
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that the shape of the function is inverted. Although they no longer have physical 

interpretation, they still have meaning and were used in the analysis. However, since the 

compositing algorithm used was the mean and this statistical parameter is sensitive to 

negative values, the absolute values of the volumetric and geometric kernel weights were 

used instead (Figure 4-3). Flagged pixels were not included in further analysis. 

 The next phase was compositing all the filtered MISR orbits that encompassed the 

study area. This was accomplished in three steps. First, each orbit file (which had 17 

layers) was split in 17 files, one file per parameter. In other words, one file would contain 

the blue band reflectance values, other file the green band reflectance values, and so on. 

At this point, only 10 parameters were used in the following steps: the four spectral bands 

at nadir, the three kernel functions, the two albedos, and the weight of determination of 

the nadir BRDF-adjusted reflectance. Second, all valid values for a given parameter were 

averaged on a pixel-per-pixel basis in the study area. Third, the mean values of each of 

the 10 parameters were stacked together in one single file with 10 layers; this was the 

composite data map for the entire North Slope of Alaska.  

 Following, the variables latitude, slope, northness and eastness were added as layers 

to the composite data map. This final version contained 14 variables which were the input 

data to the BRT model. This file was converted to ASCII to several comma-delimited 

files, which were run in R in order to obtain arcsine fractional cover (ArcFC). The BRT 

model outputs were put back together again to form the ArcFC map for the North Slope 

of Alaska. No data values, burned areas, and water/ice pixels in the map were flagged 
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Figure 4-3. Diagram illustrating the processing steps to generate the shrub fractional 

cover map. Abbreviations used are: HDF (Hierarchical Data Format), BGRN (Blue, 

Green, Red, and Near-infrared), BRF (Bidirectional Reflectance Factor), PRM 

(Parameters), ArcFC (Arcsine transformed fractional cover). 
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by comparing the ArcFC map with different parameter values from the composite data 

map. For example, pixels containing water were identified by near-infrared values lower 

than 0.14, while RMSE values higher than 0.15 were used to identify pixels with ice 

content. Burned areas were masked using the MODIS burned area product. Finally, the 

ArcFC values were transformed back to fractional cover (Figure 4-3): 

 

     𝑆ℎ𝑟𝑢𝑏 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑣𝑒𝑟 =  (sin(𝐴𝑟𝑐𝐹𝐶))2                           Eq. 4-3 

 

4.2.5. Comparison of the Fractional Cover Map with the Arctic Bioclimatic Subzones 

Map 

 The Arctic can be divided in five regions (A through E) where subzone A is the 

coldest one and subzone E is the warmest (CAVM, 2003). In the North Slope of Alaska, 

three subzones can be identified from north to south: subzone C, subzone D, and subzone 

E. The mean July temperature in subzone C is about 7°C, in subzone D it is about 9°C, 

and in subzone E it is about 12°C (CAVM, 2003). Therefore, in this section, the median 

of the predicted fractional cover values for each of the three subzones were compared to 

determine if the bioclimatic conditions had an effect on tall shrub cover. Non-parametric 

methods were used since fractional cover estimates within each subzone were not 

normally distributed and each group had different sample sizes. The Kruskal-Wallis, the 

one-way analysis of variance by ranks, was used to test whether the samples originated 

from the same distribution. Rejection of the null hypothesis meant that at least one 

population median of one group was different from the population median of at least one 
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other group. The Bonferroni-Dunn test, a post-hoc method used following a significant 

Kruskal-Wallis test, was deployed to identify which medians differed. 

 4.2.6. Comparison of the Fractional Cover Map with the 2000 Circa Fractional Cover 

Map 

 Estimates of fractional cover for 234 sites across the entire domain of the North 

Slope of Alaska were obtained for the year 2010 from the CANAPI-derived validation 

data (Duchesne et al., 2015). These sites were selected because they were not used to 

train the BRT model and fractional cover estimates were available for the Landsat 

derived map. The predicted fractional cover from the 2000 baseline map (Beck et al., 

2011), and hereafter referred to as the 2000 Landsat map, was re-projected onto a 250 m 

Albers Conical Equal Area grid and compared to the validation data set. Then, the 

predicted cover derived from the BRT model, and hereafter referred to as the 2000 MISR 

map, was compared to the 2000 Landsat map using simple linear regression. Visual 

comparison with high-resolution imagery was also performed on a case-by-case basis. 

  

4.3. Results and Discussion 

4.3.1. MISR-derived Tall Shrub Cover Map of Arctic Alaska for the Year 2000 

 Predicted tall shrub fractional cover values for the North Slope of Alaska were 

derived from moderate resolution imagery using a BRT model with a tree size of three 

and a learning rate of 0.005 (Figure 4-4). Predicted shrub cover ranged from 0 to 0.21 and 

at a spatial resolution of 250 m, 75% of the sites had a fractional cover less than 0.013 

(Table 4-2). This agreed with Selkowitz's research (2010) in the North Slope of Alaska, 
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in which at the same spatial resolution, 80% of the sites in the study area had a cover less 

than 0.05. In the 2000 MISR map, higher shrub fractional cover occurred along 

floodplains, in particular in the southern portion of the Colville, Chandler, Anaktuvuk, 

Nanushuk, Itkillik, and Kuparuk rivers, decreasing as the rivers descended to the coastal 

plain (Figure 4-5). Higher shrub cover also occurred along water tracks, creeks, and 

sloped terrain (Figure 4-5). This distribution also corresponded to the one of erect dwarf-

shrub and low-shrub tundra (CAVM, 2003). Very high fractional cover values were also 

found along the Noatak River, but this corresponded to spruce trees and not shrubs 

(Figure 4-6). As a general pattern, shrub cover drastically decreased toward the coastal 

plain. 

 

Table 4-2. Distribution of tall shrub fractional cover estimates from the MISR-derived 

map. 

Minimum First Quartile Median Third Quartile Maximum 

0 0.0054 0.0084 0.0135 0.2066 

 

 Low values of shrub cover were correlated with higher values of red reflectance from 

MISR's nadir camera and with higher albedo values. Shrubs were more abundant where 

the slope was less than 2° degrees, and again where the slope ranged between 5° and 10° 

degrees. The exception to this pattern was the very flat terrain on the coastal plain where 

severe climatic conditions prevent the growth of tall shrubs. 
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Figure 4-4. Tall shrub fractional cover map for the North Slope of Alaska, year 2000. Fractional cover values were derived 

from the Boosted Regression Tree model.  
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Figure 4-5. Portion of the 2000 MISR-derived tall shrub fractional cover map depicting the correlation of high shrub cover 

along the floodplains of major rivers and water flow lines. Insect A: Major rivers of the North Slope, Insect B: Water flow 

lines west of the Colville river (source: USGS, The National Map, Hydrography). 
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Figure 4-6. Section of the Noatak River in the southwestern portion of the North Slope of 

Alaska. The high values of cover corresponded to a forest of spruce, not shrubs.  

 

4.3.2. Comparison of 2000 MISR Map with the Arctic Bioclimatic Subzones 

 The distribution of fractional cover in the three subzones was highly skewed to the 

left. The highest shrub fractional cover value in Subzone C was remarkably smaller than 

in Subzone E (0.04 and 0.21, respectively) (Figure 4-7). Similarly, the median shrub 

cover was higher in Subzone E (0.009), followed by Subzone D (0.007) and Subzone C 

(0.006). These results agree with the distribution of shrubs among the bioclimatic 

subzones in the Arctic (CAVM, 2003). The harsh conditions and strong winds in 

Subzone C limits the growth to hemi-prostrate dwarf-shrub. Subzone D is dominated by 

prostrate and erect dwarf shrubs (<0.4 m). Subzone E is the warmest one and is 

dominated by hypo-arctic low shrubs often greater than 0.4 m tall. Birch or willow 

thickets in subzone E can reach 0.8 to 2 m in height (CAVM, 2003). 
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Figure 4-7. Boxplots depicting the five number summary (minimum, first quartile, 

median, third quartile, and maximum) for fractional cover in the three bioclimate 

subzones. 

 

 The Kruskal-Wallis test showed that at least one pair of medians was significantly 

different (χ2 = 184055, P < 2.2e-16). The Dunn test showed that the median fractional 

shrub cover of Subzone C and Subzone D are statistically different (P < 0.001), as well as 

the median shrub cover of Subzone C and Subzone E (P < 0.001), and the median shrub 

cover of Subzone D and Subzone E (P < 0.001) (Table 4-3). The test suggested that the 

prevailing climatic conditions in each subzone may have an effect on tall shrub fractional 

cover. Nevertheless, the RMSE (0.03) of the predicted fractional cover values is greater 

than the differences between any given pair of medians. Also to consider is the possibility 

that tall shrub cover estimates could have been overestimated where dwarf shrubs are 

dominant (Subzone C and Subzone D) because their spectral characteristics are similar to 

that of erect and low shrub. 
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Table 4-3. Comparison of tall shrub fractional cover by bioclimatic subzone using Dunn 

Test. Dunn's pairwise z test statistic followed by the P-value associated with the test in 

parenthesis. 

Bioclimate Subzone Subzone C Subzone D 

Subzone D 63.93 (P < 0.001)  

Subzone E 182.70 (P < 0.001) 401.29 (P < 0.001) 

 

 

4.3.3. Comparison of Predicted Fractional Cover Between the 2000 MISR Map and the 

2000 Landsat Map 

 The 2000 Landsat map, which used 4 years worth of imagery, covered most of the 

North Slope of Alaska with some portions of data not available in the southwest, 

probably due to the lack of suitable imagery (Figure 4-8). At a spatial resolution of 250 

m, fractional cover estimates ranged from 0.00 to 0.83. Only a very small proportion of 

sites (49,965 out of 2,613,653) had values of fractional cover greater than 0.21, and most 

were limited to the floodplains and to patches of erect shrub tundra according to the 

CAVM map (2003). The vast majority of sites (about 80%) had fractional cover less than 

0.02. The 2000 MISR map, which used 3 years worth of imagery, covered the entire 

domain of the North Slope except for very small areas with no available data. Tall 

fractional cover ranged from 0.00 to 0.21, and about 88% of the sites had a cover less 

than 0.02 (Figure 4-8). Both maps represented predicted fractional cover, but the 2000 

Landsat map focused on shrubs taller than 1 m height, while the 2000 MISR map 
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Figure 4-8. Fractional cover map for the North Slope of Alaska: top, MISR 2000 map, 

bottom, Landsat 2000 map. Fractional cover was rescaled. Water and ice are not filtered 

for the Landsat 2000 map. 
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focused on shrubs taller than 0.5 m height. The findings from both maps agreed with 

what has been reported by other authors for the region. At a spatial resolution of 250 m, 

most of the sites in the North Slope had a cover less than 0.05 (Duchesne et al., 2015; 

Selkowitz, 2010). However, considering that tall shrub cover (> 0.5 m in height) is 

usually less than 5%, it is very unlikely to have sites with very high shrub cover values, 

especially if shrub height is greater than 1 m. Perhaps those sites with very high cover 

were artifacts of the model used in the 2000 Landsat map. 

 The 2000 MISR map seemed to be more sensitive than the 2000 Landsat map to 

small changes in cover. This is particularly observed north of 70° 25' degrees and south 

of 69° 2' degrees where in the 2000 MISR map fractional cover values varied 

dynamically, while in the 2000 Landsat map the vast majority of sites had a predicted 

cover value of zero (Figure 4-8).  

 The predictive performance of the BRT model used to generate the 2000 MISR map 

(R2= 0.52, RMSE = 0.03) was much better than the one for the re-projected 2000 Landsat 

map (R2= 0.38, RMSE = 0.08). The original 2000 Landsat map which had a spatial 

resolution of 30 m, was able to explain 70% of the variation in the response variable, 

fractional cover (Beck et al., 2011), but the new 2000 Landsat map, re-projected onto a 

250 m grid, could only explain 38% of the variation in the response variable. The 

decrease in accuracy in the 2000 Landsat map when aggregated to a coarser grid may be 

expected . Selkowitz (2010) found that a decrease in the spatial resolution of the input 

variables decreased the accuracy of the model. Nevertheless, there are two important 

considerations, besides the difference in spatial resolution, that could have contributed to 
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the decrease in the predictive performance of the re-projected 2000 Landsat map: 1) the 

original evaluation of the model was done at 20 sites where three observers visually 

assessed tall shrub cover while the new assessment was done using semi-automatic 

fractional cover estimates derived from the CANAPI algorithm at 234 sites; 2) there is a 

temporal gap between the CANAPI estimates derived from imagery for year 2010, and 

the Landsat-derived predicted values obtained for year 2000. The predicted cover from 

the 2000 Landsat map was overestimated with respect to the observed CANAPI estimates 

(Figure 4-9), which may be due to the spectral similarity between tall shrubs—the target 

population, and dwarf shrubs (<0.5 m in height)—the background vegetation (Selkowitz, 

2010). 

 The correlation between both maps was poor (R2 = 0.18). The fractional cover 

estimates from the 2000 Landsat map were consistently higher with respect to the 

estimates from the 2000 MISR map (Figure 4-10). Higher fractional cover values in the 

2000 Landsat map can be identified along the floodplains of major rivers and in the area 

confined between 69° 2' and 70° 25' degrees latitude and -163° 28' and -155° 1' degrees 

longitude. The latest one, corresponding to some patches of erect dwarf-shrub and low-

shrub tundra in subzone E according to the CAVM (2003) map although it is not as 

extensive as predicted by the 2000 Landsat map. Our findings agreed with what has been 

reported in the literature. Selkowitz (2010) found that Landsat-derived models had the 

tendency to overestimate shrub canopy across much of the study area, in particular in 

moist non-acidic tundra. 
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Figure 4-9. Correlation between observed fractional cover derived from the CANAPI 

algorithm for 234 sites and the predicted fractional cover derived from the 2000 Landsat 

map re-projected onto a 250 m grid. 

 

 A closer inspection at four of the validation sites revealed that the 2000 MISR map 

provided estimates that were closer to the observed values after taking into consideration 

the RMSE. For example, at site A (Figure 4-11), the observed cover was 0.12, while the 

2000 Landsat map predicted 0.60 and the 2000 MISR map predicted 0.05. Taking into 
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Figure 4-10. Correlation of the predicted fractional cover from the 2000 MISR map and 

the predicted fractional cover values from the 2000 Landsat map for the 234 validation 

sites. 

 

consideration the RMSE values for both maps (0.08 and 0.03 respectively), it was clear 

that the 2000 MISR estimates were closer to the observed values. From the QuickBird 

imagery it can be seen that where there was an abundant background vegetation that 

added some roughness to the surface (sites A and B), the 2000 Landsat map seemed to be 

more sensitive to it and tended to overestimate fractional cover (Figure 4-11). Where the 

surface was smoother (sites C and D), both the 2000 MISR map and the 2000 Landsat 

map produced predicted fractional cover estimates that were within the expected margin
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Figure 4-11. Comparison of predicted shrub cover from the 2000 Landsat map and the 2000 MISR map with false color and 

panchromatic QuickBird imagery for four selected sites along the Colville River with different shrub cover.
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of error. For example, at site D where the observed cover was 0.008, the 2000 Landsat 

map predicted a cover of 0.00 and the 2000 MISR map a cover of 0.01. After taking into 

consideration the RMSE values, the predicted values from both maps fell within the 

expected range (Figure 4-11).  

 

4.4 Conclusion 

 The boosted regression tree has been used to generate the 2000 MISR map with 

predicted fractional cover values for the North Slope of Alaska. The high temporal 

resolution and larger swath of the MISR sensor reduced the number of years worth of 

data needed to create the regional map and had a better coverage in comparison to higher 

resolution sensors (i.e., Landsat). Predicted fractional cover ranged from 0.00 to 0.21 and 

about 75% of the sites had a fractional cover less than 0.01. Higher fractional cover was 

found along rivers, creeks, and sloped terrain. The 2000 MISR map related well to the 

Arctic bioclimate subzones. It seems to be a positive relationship between tall shrub 

cover and mean temperature. Subzone E, the warmest one, had the highest shrub cover 

(0.21), while Subzone C, the coldest one in Alaska, had the lowest shrub cover (0.04).  

 Comparison of the 2000 MISR map with validation data revealed that the model 

could explain 52% of the variation in the response variable, fractional cover. The model 

was sensitive to low fractional cover values (< 0.03) and tended to underestimate cover 

when the observed values were greater than 0.03. However, underestimation may not be a 

problem considering that the vast majority of the North Slope has a fractional cover less 

than 0.01. The 2000 Landsat map had a small dynamic range for low estimates of shrub 
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cover and when observed fractional cover was greater than 0.01, fractional cover was 

overestimated. The correlation between estimates from the 2000 MISR map and the 2000 

Landsat map was very poor (R2 = 0.18). However, both models agreed that tall shrub 

fractional cover is very low in the North Slope of Alaska (< 0.05). For regional studies, 

where the overall abundance of shrub cover across the landscape is more relevant than to 

know the precise location of pockets with high shrub cover, the 2000 MISR map is the 

tool for such assessment. The 2000 MISR map had a better coverage, needed less years 

worth of imagery, and performed better (R2= 0.52, RMSE = 0.03) than the 2000 Landsat 

map re-projected onto a 250 m grid (R2= 0.38, RMSE = 0.08) . 
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CHAPTER 5 

 

The 2010 Tall Shrub Fractional Cover Map and Temporal Changes in Shrub 

Abundance in the North Slope of Alaska, 2000-2010 

 

Abstract 

 Several lines of evidence point to a shrub expansion in the North Slope of Alaska. In 

order to understand the impact of the many implications that an increase in shrub 

abundance could have on the environment and regional climate, it is necessary to assess 

the direction and magnitude of the vegetation shift at a regional scale. In this study, the 

boosted regression tree model was used to predict tall shrub (> 0.5 m) fractional cover 

change from moderate resolution imagery for the North Slope of Alaska for the year of 

2010. Estimates of change in shrub cover, relative change in shrub cover, and expansion 

rate were obtained by comparing predicted tall shrub cover values from the year 2010 and 

2000. Results showed that shrubs were more abundant along floodplains, river terraces of 

major rivers, and hill slopes. Temporal comparisons of tall shrub abundance in the MISR-

derived maps revealed that shrubs expanded during the period 2000-2010. The extent of 

the area that unequivocally experienced a robust change in tall shrub cover was less than 

1 % (1,487 km2) of the total area of the North Slope of Alaska (213,090 km2). It is 

possible that tall shrubs may have expanded throughout a larger area but there is 

insufficient precision in the MISR-based estimates to make an unequivocal 
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determination. Nevertheless, it seems that there was a positive trend toward an increase in 

shrub cover considering that 95% of the locations that had a robust change saw an 

increase. Most of the shrub expansion was observed along the forest-tundra ecotone, 

north of the Brooks Range, especially along the Naokat River and surrounding areas. It is 

possible that the observed increase in cover indicates that the tree line is slowly moving 

northward, although this process could take many decades or centuries. More research is 

necessary to infer the potential impacts of canopy-forming shrubs on the regional climate 

and ecological processes in view of the findings in this study. 

 

Keywords: Fractional cover map, tall shrub, North Slope of Alaska, Multi-angle Imaging 

SpectroRadiometer (MISR), temporal change, shrub expansion rate. 
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5.1. Introduction 

 Several lines of evidence point to a shrub expansion in the North Slope of Alaska 

over the past few decades (Myneni et al 1997; Stow et al., 2004; Sturm et al., 2001; Tape 

et al., 2006) and changes in the Arctic vegetation can affect the ecosystem in many 

different ways. A shrubbier tundra can influence climate (Hinzman et al., 2005) by 

altering the albedo, the emission of greenhouse gases, and the energy partitioning at the 

surface (McGuire et al., 2006). The vegetation shift could also affect the distribution of 

wildlife by modifying the availability of quality food sources and shelter. For instance, 

Porcupine Caribou herds find mosses and evergreen shrubs to be less digestible than 

willows and immature cotton-grass flowers (Griffith et al., 2002), early bird migrants 

survive by feeding on protruding willow branches when the ground is still covered by 

snow, and passerine migrants prefer nesting near willows as the wind speed is attenuated 

almost completely within 0.1 m of the ground (Wingfield et al., 2004). In addition, an 

increase in shrub density could affect the length of time the snow remains on the ground, 

the depth of the snow pack, and the snow distribution pattern (Liston et al., 2002). Snow-

shrub interactions could affect climate in four ways: by increasing winter efflux of carbon 

dioxide, by reducing runoff during spring melt, by reducing winter sensible heat losses, 

and by reducing the winter albedo (Sturm et al., 2001). A shift toward a shrubbier Arctic 

could alter the nitrogen (N) and carbon (C) cycles and vice-versa (Chapin et al., 2005). 

Warmer winter temperature beneath the snow pack surrounding the shrubs could enhance 

N mineralization, which in turn may promote shrub expansion (Sturm et al., 2005). 

Furthermore, an increase in woody vegetation may increase the likelihood of fires. In 
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Alaska, 232 tundra fires were reported between 1950 and 2005 and most of the cases 

corresponded to warmer and dryer environments (Higuera et al., 2008). 

 In order to understand the impact of the many implications that a shrub expansion 

could have on the environment, it is necessary to assess the direction and magnitude of 

the vegetation shift at a regional scale. Many temporal studies on vegetation change are 

based on discrete observations that impede a thorough assessment across the landscape 

(Myers-Smith et al., 2011). For example, the first plot-based study, carried out from 1981 

to 2008 in the Canadian High Arctic, covered an area of 8 km2 (Hudson & Henry, 2009). 

Another plot-based study evaluated vegetation change in 48 locations spread across the 

pan-Arctic during 1980 and 2010 (Elmendorf et al., 2012). Repeat photography assessed 

shrub expansion in Alaska, during a 50 years span, in an area of about 320 km2 (Sturm et 

al., 2001). Dendrochronology studies in the Russian Arctic showed an increase in shrub 

willow growth for the period 1981-2005 and covered an area of 7.5 km2 (Forbes et al., 

2010). A similar study in Arctic Alaska surveyed 26 transects of 80 m each and found 

that expansion of shrub patches in the last 50 years was associated with floodplains, 

outcrops, and stream corridors ( Tape et al., 2012). On the other hand, most of the 

regional temporal studies are inadequate to assess the magnitude and direction of a 

possible shrub expansion because for the most part they are based on vegetation indices, 

with the Normalized Difference Vegetation Index (NDVI) being the most widely used. 

However, vegetation indices are merely proxies of photosynthetic activity and do not 

adequately represent shrub cover characteristics across the arctic tundra biome 

(Selkowitz, 2010). Furthermore, the relationship between the vegetation indices and 
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biophysical quantities of the vegetation varies with season, proportion of dead material in 

plant canopy, vegetation type, and soil background (Sellers,1985). Nevertheless, these 

kind of studies have shown that the vegetation is changing. For example, an increase in 

NDVI, also called greening, has been observed in the pan-Arctic between 1981 and 1991 

and associated with an increase in plant growth (Myneni et al., 1997). A related study in 

the Arctic Slope of Alaska found a greening trend between 1981 and 2001 and it was 

correlated to an increase in aboveground plant biomass (Jia & Howard, 2003). A second 

study in the same region confirmed an increase in the greenness rate of change during the 

1990s (Stow et al., 2004).  

 Due to the extent of the North Slope of Alaska, harsh weather conditions, and 

relative inaccessibility of the region, remote sensing seems to be a suitable approach for 

mapping regional vegetation changes (Selkowitz, 2010; Stow et al., 2004), as evidenced 

by the success of the greening studies mentioned above. Evaluation of temporal changes 

in shrub abundance calls for sensors with an extensive temporal coverage and for a robust 

canopy model able to predict tall shrub cover. Among the sensors with a long record of 

free data available are Landsat, the Advanced Very High Resolution Radiometer 

(AVHRR), the Moderate-resolution Imaging Spectroradiometer (MODIS), and the Multi-

angle Imaging SpectroRadiometer (MISR). Landsat was launched in 1972 and it is the 

oldest land-surface observation satellite system. The advantage of Landsat is its finer 

spatial resolution in comparison to AVHRR, MISR, and MODIS. Landsat 1, 2, 3, 4, and 

5 had a spatial resolution of 79 m, while Landsat 7—the latest satellite successfully 

launched—had a resolution of 30 m in its multi-spectral bands. The downside of using 
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this satellite for mapping Arctic vegetation is that it has a revisit cycle of 16 days. Using 

Landsat to create wall-to-wall vegetation maps in the Arctic would require many years 

worth of data because the collection of satellite scenes is limited to the summer months 

with its constant cloud cover (Beck et al., 2011; Selkowitz, 2010). The first AVHRR 

sensor was launched in 1978. Many have been launched thereafter and their records 

extend until present. One advantage is its high frequency of coverage as it acquires 

images of the entire Earth twice a day, which increases the likelihood of obtaining cloud-

free scenes—specially for a region like the Arctic that has a persistent cloud cover. In 

spite of its long record and short revisit cycle, the AVHRRs have a coarse spatial 

resolution (local area coverage) of 1.1 km. Since shrub fractional cover is already very 

low (<5%) at a spatial resolution of 250 m ( Duchesne et al., 2015) in the North Slope, 

using a coarser resolution implies detecting a much smaller signal. More importantly, 

post-launch degradation and anomalies observed with the change in satellites affects the 

consistency of measured vegetation parameters (Myneni et al., 1997). Besides the 

aforementioned sensors, MODIS and MISR follow with the longest temporal coverage 

available. MODIS is a multi-spectral sensor launched in 1999 on board of the Terra 

satellite, and in 2002 on board of the Aqua satellite. MISR was launched in 1999 together 

with MODIS on the Terra satellite. Both MODIS and MISR have a repeat coverage of 

about two days in the northern latitudes, but MODIS has a lower spatial resolution (500 

m, depending on the band) than MISR (250 m). Besides, MISR offers near-simultaneous 

multi-angular observations of the land surface, which provides additional information  
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that can improve the predictive performance of canopy models (Selkowitz, 2010). Thus, 

MISR was selected as the sensor of choice in this study. 

 For consistency and in order to reduce bias in evaluating temporal changes in shrub 

abundance, it is better to deploy the same canopy model for every year of analysis. Since 

the year 2000 tall shrub fractional cover map was derived using the Boosted Regression 

Tree (BRT) model, it is reasonable to use the same model to construct the 2010 tall shrub 

fractional cover map. The BRT model is a machine learning algorithm able to explain 

52% of the variability in tall shrub abundance in the North Slope of Alaska. The model 

successfully described the shrub cover pattern observed in high resolution imagery and in 

field plots (Duchesne et al., 2015). Thus, with the aid of this model, it may be possible to 

assess the changes in tall shrub abundance experienced over the last decade in the region. 

 The main goal of this study was twofold: to create a wall-to-wall map of tall shrub 

abundance for the North Slope of Alaska for the year 2010 using moderate resolution 

imagery and the BRT model, and to assess changes in shrub abundance during the period 

2000-2010 in the region. Specific objectives were to obtain MISR imagery for the years 

2010 to 2011, to invert the RossThick-LiSparse reciprocal model using the red 

reflectance values of MISR's nine cameras in order to account for the anisotropic 

properties of the surface, to mosaic all MISR paths into one multi-layer map with all the 

surface reflectance-derived predictor variables for the region, to retrieve shrub fractional 

cover using the BRT model, to filter map outputs, and to evaluate temporal changes in 

woody vegetation by comparing the new map with the previously created one for the year 

2000.  
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5.2. Materials and Methods 

5.2.1. Data Sources 

 The creation of the 2010 tall shrub fractional cover map used MISR data collected in 

the years 2010 and 2011 during the period June1 - August 15 (Appendix E). This period 

matched the growing season when the shrub crowns were at their fullest and minimal 

changes in reflectance were observed. A total of 22 paths (P065-P086) were necessary to 

cover the entire North Slope of Alaska. Out of the 220 potential orbits, only 141 had 

imagery available after processing (Table 5-1). The MISR data were downloaded from 

the NASA Langley Atmospheric Science Data Center using the MISR Order and 

Customization Tool (http://l0dup05.larc.nasa.gov/MISR/cgi-bin/MISR/main.cgi).  

 

Table 5-1. Summary of available MISR imagery for years 2010-2011. 

Status 2010 2011 

Good Imagery 69 72 

Bad Imagery 41 38 

Total 110 110 

 

 Elevation data for the North Slope of Alaska were obtained from the National 

Elevation Dataset (NED) produced by the U.S. Geological Survey (USGS). The data 

were available at a spatial resolution of 2 arc-second (approximately 60 m). A total of 99 

NED subsets mosaic were necessary to cover the entire study area. Latitude (m), slope 

(degrees), and aspect were derived from the elevation map. Considering that aspect is a 
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circular variable, it was linearized by creating two variables: 'northness' and 'eastness'. 

Detailed explanation on the last two variables is provided in chapter 4.  

 The MODIS Collection 5 Burned Area Product - MCD45 was used to identify 

burned areas. The monthly Geotiffs from year 2000 to 2011 (132 tiles) were downloaded 

from the University of Maryland website; just one tile was necessary to cover the entire 

study area (window 1). In addition, the area burned during the Anaktuvuk fire of 2007, 

the largest fire during the last decade, was digitized since the MODIS product did not 

cover its entire extent.  

 All data processing was carried out using several software and utility scripts. 

Software included ERDAS Imagine 2014, ArcGIS 10.2.1. , Pythonwin - Python IDE and 

GUI Framework for Windows, and R v3.0.1. All data used were projected unto a 250 m 

Albers Conical Equal Area grid (Appendix A).  

 

5.2.2. Production of the 2010 Tall Shrub Cover Map 

 The same steps taken to construct the tall shrub fractional cover map for the year 

2000 were followed in order to produce the 2010 tall shrub fractional cover map. Chapter 

4 provides a detailed explanation of the processing of MISR imagery, the BRT model, 

and the work flow for the creation of the shrub cover map of Arctic Alaska. This study 

used MISR's red band from all off-nadir cameras and the four spectral bands from the 

nadir camera. With the aid of the MISR Toolkit the MISR files that came in the 

Hierarchical Data Format (HDF) were extracted, and the surface reflectance estimates 

were obtained and mapped onto the Albers Conical Equal Area map projection. The 
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MISR red band bidirectional reflectance factors (BRFs) in all nine cameras were used to 

invert the RossThick-LiSparse Reciprocal (RTLS-R) model, using the Algorithm for 

Modeling Bidirectional Reflectance Anisotropies of the Land Surface (AMBRALS) code 

(Wanner et al., 1997). Inversion of this model resulted in 13 parameters but only 6 were 

used in the canopy model.  

 Clouds and invalid surface reflectance values were removed from the MISR data 

using several criteria. Then, the MISR orbits were composited by averaging all valid 

values for a given parameter on a pixel-per-pixel basis. Following, the variables latitude, 

elevation, slope, northness and eastness were added as layers to the composite data map. 

This final version contained 15 variables: six parameters that resulted from the inversion 

of the RTLS-R model (three kernels functions, the black-sky and white-sky albedos, and 

the weight of determination of the nadir BRDF-adjusted reflectance at solar zenith angle 

of 45 degrees), MISR's four spectral bands at nadir (blue, green, red, and near-infrared), 

and five terrain variables (latitude, elevation, slope, northness, and eastness), which were 

the input data to the Boosted Regression Tree model. The model, which had been 

previously trained and validated (see chapter 3), was fitted in R (v3.0.1, 2013) using the 

'gbm' library (Ridgeway, 2004) and the brt.functions (Elith and Leathwick, 2008). The 

response variable was the arcsine transformed shrub fractional cover, which was later 

converted to fractional cover. No data values and water/ice pixels in the map were 

flagged using multiple criteria. Burned areas were masked using the MODIS burned area 

product and a mask of the Anaktuvuk fire.  
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5.2.3. Temporal Comparison of the 2000 and 2010 Fractional Cover Maps 

 Estimates of tall shrub cover obtained for the years 2000 and 2010 across the entire 

domain of the North Slope of Alaska were compared in order to assess the magnitude and 

direction of the vegetation change. Two measures of change: the change in tall shrub 

cover (CSC) and the relative change in tall shrub cover (RSC), also called percent 

change, were computed on a pixel-by-pixel basis: 

 

         𝐶𝑆𝐶 = 𝐹𝑟𝑎𝑐𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑣𝑒𝑟 𝑖𝑛 2010 − 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑣𝑒𝑟 𝑖𝑛 2000           Eq. 5-1 

           𝑅𝑆𝐶 =  (
𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑣𝑒𝑟 𝑖𝑛 2010−𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑣𝑒𝑟 𝑖𝑛 2000

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑣𝑒𝑟 𝑖𝑛 2000
) × 100 %                  Eq. 5-2 

  

 Negative values of CSC indicated a decrease in cover, while positive values of CSC 

showed an increase in cover. Considering that the root mean square error (RMSE) of the 

2000 and 2010 fractional cover maps was 0.03, the direction of the change in cover 

(CSC) was uncertain within the bracket -0.06 to 0.06. Change in shrub cover outside of 

this bracket was considered trustworthy. 

 The annual expansion rate was determined for the pixels showing a reliable increase 

in tall shrub cover and it was calculated as the ratio of the change in shrub cover by the 

number of years in the temporal range, which in this study was 10 years (2000-2010): 

 

                                      𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 =
𝐶𝑆𝐶

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑦𝑒𝑎𝑟𝑠
                              Eq. 5-3 
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5.3. Results and Discussion 

5.3.1. Tall Shrub Fractional Cover Map of Arctic Alaska, 2010 

 Similar to the construction of the 2000 fractional cover map of the North Slope of 

Alaska, the spatial prediction of tall shrub fractional cover for the year 2010 was obtained 

using the trained and validated boosted regression tree model with the same input 

parameters and settings as for the 2000 map (Fig 5-1). The Anaktuvuk fire of 2007, 

which extended from the margins of the Nanushuk River to the margins of the Itkillik 

River, was flagged in the map. Predicted fractional cover in 2010 ranged from 0 to 0.21 

(RMSE of 0.03) and 52 % of the variation in the response, fractional cover, was 

explained by the predictor variables of the model (see Chapter 3; Table 5-2). At a spatial 

resolution of 250 m, 75% of the sites had a fractional cover less than 0.015. Similarly, 

Selkowitz (2010) found that at the same spatial resolution, 80% of his sites had a cover 

less than 0.05 . Very high fractional cover was found along the Noatak River and it 

extended east of it (Fig 5-2). This mainly corresponded to spruce trees and the tree-shrub 

transition. Spruce trees grew more abundantly on the south-west side of the mountains 

and on the floodplains. High fractional cover occurred along floodplains, in particular in 

the southern portion of the Colville, Chandler, Anaktuvuk, Nanushuk, Itkillik, and 

Kuparuk rivers, decreasing as the rivers descended to the coastal plain (Fig 5-3). This 

distribution pattern also corresponded to the one of the erect dwarf-shrub and low-shrub 

tundra, which is dominated by tall shrubs (Walker et al., 2003). Slightly lower fractional 

cover occurred along water tracks, creeks, and sloped terrain (Fig 5-3), but it drastically 

decreased toward the coastal plain (Fig. 5-1). The patchy distribution of tall shrubs agrees 
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with similar studies that documented tall shrub cover in floodplains and terraces of major 

rivers, steeper hill slopes, and stream drainages (Selkowitz, 2010; Tape at al., 2006). The 

availability of water carrying sediment and nutrients seemed to enhance shrub expansion. 

  

Table 5-2. Distribution of fractional cover estimates from 2010 tall shrub cover map. 

Minimum First Quartile Median Third Quartile Maximum 

0 0.0056 0.0086 0.0148 0.2077 

 

 Low values of shrub cover were correlated with higher values of red reflectance from 

MISR's nadir camera. Shrubs were more abundant where the slope was lower than 2° 

degrees (i.e., floodplains), and again where the slope ranged between 5° and 10° degrees 

(i.e., hillslopes). The exception to this pattern was the very flat terrain on the coastal plain 

where severe climatic conditions prevail. Sites with low shrub cover also exhibited higher 

albedo values, which is expected given that the shrubs are darker than the background 

vegetation. Tall shrub cover also decreases when latitude increases, which agrees with the 

observation that shrub abundance declines northward. The strong winds, cold conditions, 

low soil moisture, and dry climate in the High Arctic (Epstein et al., 2004) may hinder 

the expansion of tall shrubs in the coastal plain. 
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Figure 5-1. Tall shrub fractional cover map for the North Slope of Alaska, year 2010. Fractional cover values derived from the 

Boosted Regression Tree model and it ranged from 0.0 to 0.2.  
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Figure 5-2. Section east of the Noatak River in the southwestern portion of the North Slope of Alaska (A). The high values of 

cover corresponded to a forest of spruce (C and D), and the transition between trees and shrubs (B). 
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Figure 5-3. Portion of the 2010 fractional cover map depicting the correlation of high shrub cover along floodplains of major 

rivers and water tracks. Water flow lines west of the Colville river (source: USGS, The National Map, Hydrography). 
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5.3.2. Temporal Change in Tall Shrub Cover over the Last Decade 

 The predicted tall shrub cover map of the year 2010, and hereafter the 2010 MISR 

map, had a similar pattern of shrub abundance distribution as of the predicted tall shrub 

cover map of the year 2000, and hereafter the 2000 MISR map. The similarity in the tall 

shrub spatial distribution pattern in the 2000 and 2010 MISR maps indicates that the 

boosted regression tree model is consistent in predicting estimates of tall shrub cover. 

Shrubs were more abundant along floodplains, terraces, and water tracks on the hill 

slopes, which indicates that water may be a limiting factor for shrub expansion. There 

was a marked increase of shrubs southward, closer to the Brooks Range.  

 During the short period of the study (10 years), the extent of the area that 

unequivocally experienced a change in tall shrub cover was less than 1 % (1,487 km2) of 

the total area of the North Slope of Alaska (213,090 km2). It is possible that tall shrubs 

may have expanded throughout a larger area but there is insufficient precision in the 

MISR-based estimates to make an absolute determination. On the other hand, this study 

was limited to the mapping of tall shrubs but it is all together possible that smaller shrubs 

may be expanding even faster. Although Pattison et al., (2015) found that at 27 pairs of 

field plots that represented five different tundra types, deciduous and evergreen shrubs 

did not have an important change in cover during the period 1984-2009, other studies 

support the widespread shrub expansion (Elmendorf et al., 2012; Tape et al., 2006). This 

study showed that shrubs are expanding, but the propagation is site specific. The number 

of pixels that unequivocally exhibited an increase in tall shrub cover (greater than 0.06 

considering that the model had an RMSE of 0.03; 22,603 pixels) was twenty times more 
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than the pixels where vegetation decreased. In about 90% of the pixels that showed an 

unequivocally increase in cover, tall vegetation increased by more than 100% (Table 5-

3). In many of the cases, vegetation went from virtually zero canopy cover to 10% or 

more. On the other hand, there were a total of 1,200 pixels that displayed a decrease in 

tall shrub cover, which represented a total area of 75 km2 (Table 5-3). Vegetation canopy 

decreased by 60% or more in 1,026 pixels. 

 

Table 5-3. Relative change in tall shrub cover in the North Slope of Alaska, 2000-2010. 

Only an unequivocally change (greater than 0.06, model RMSE of 0.03) is displayed.  

Percentage Change Number of Pixels Area (km2) 

-98 to -80 695 43.44 

-79.9 to -60 331 20.69 

-59.9 to -40 165 10.31 

-39.9 to -20 9 0.56 

-19.9 to < 0 0 0 

 > 0 to 100 489 30.56 

100.01 to 500 9922 620.12 

500.01 to 1,000 7191 449.44 

1,000.01 to 2,000 4072 254.5 

2,000.01 to 5,297 929 58.06 

Total 23,803 1,487.69 
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 A map of the change in shrub cover revealed the direction of the change in tall shrub 

cover over the last decade (Fig. 5-4). The map showed that tall vegetation has expanded 

immediately north of the Brooks Range, in particular near the Noakat River in the 

southwestern portion of the North Slope of Alaska (Fig. 5-5). This region is dominated by 

spruce trees and it is the transition zone between the tree line and the tundra (Fig. 5-3 and 

Fig. 5-5). It is possible that the observed increase in cover indicates that the tree line is 

slowly moving northward. Nevertheless, the conversion of the forest-tundra ecotone is a 

slow process that could take many decades or centuries (Macdonald et al., 2005). Suarez 

et al. (1999) documented an invasion of white spruce into adjacent tundra ecosystems in 

the same region —the Noatak National Preserve —by about 100 m in the past 200 years 

and it seemed to be influenced by climate. Temperature is the main factor that determines 

location of the boundary between the boreal forest and the tundra ecosystems, but other 

factors like wind and precipitation also influence the rate of change of the treeline 

(Hinzman et al., 2005). On the other hand, the North Slope of Alaska has experienced an 

increase in summer temperature—Summer Warmth Index (SWI)—and vegetation 

productivity—Maximum Normalized Difference Vegetation Index (MaxNDVI)—as a 

result of declining sea ice levels (Bhatt et al., 2013), but the observed increase in shrub 

cover is not homogeneous across the landscape, which suggests that other factors may 

influence the distribution and expansion of shrubs. The patchy distribution of shrubs 

seems to respond more to indirect effects of warming such as nutrient availability 

(Chapin, 1983). It seems that shrubs are slowly expanding along some floodplains and  



157 

 

 

 

 

Figure 5-4. Change in tall shrub cover (CSC) for the North Slope of Alaska during the period 2000 - 2010. In the legend, the 

region between -0.06 and 0.06 represents locations where the direction of change is uncertain. 
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Figure 5-5. Change in tall shrub cover (CSC) depicting increase of tall vegetation. In the legend, the region between -0.06 and 

0.06 represents locations where the direction of change is uncertain. A. Noakat River and surrounding areas, B. Floodplains 

and river terraces, C. Southern boundary of the North Slope of Alaska. 
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slopes. For instance, the map shows a small proliferation of shrubs on the northern 

portion of the Colville River and in the floodplains of the Killik River (Fig. 5-5). A 

possible reason is that the increase in soil temperature may have produced the thawing of 

permafrost, thus increasing groundwater transport and making nutrients available in those 

areas (Raynolds et al., 2013).  

 The decrease in shrub cover was limited to a few areas in the North Slope of Alaska 

(Fig 5-6). In two of them it seems that it corresponded to a residual effect of the 

compositing technique in the 2000 MISR map (Fig 5-6). This might have been the result 

of only having one orbit available passing through that region. Besides the 

aforementioned specific events, the other few cases of decrease in shrub cover were 

mainly along the Colville River and its surrounding areas and in the northern portion of 

the Kiruktagiak River. This area is dominated by erect dwarf-shrub tundra and low-shrub 

tundra (Walker et al., 2003). At least four hypotheses may explain declines in shrub 

cover: changes in stream channels (Raynolds et al., 2013), wildfires (Verbyla, 2008), 

shrub mortality from insects and diseases (Soja et al., 2007), and changes in carbon 

allocation —a decrease in leaf production and a proliferation of roots— due to a dryer 

environment (Verbyla, 2008). Changes in stream channels seem to be a localized effect 

(small patches less than 100 m2, Raynolds et al., 2013), which may be the case here as 

some areas of decrease are only a couple of pixels in size (250 m/ pixel). The location of 

fires during the period 2000-2010 and the occurrence of shrub cover declines do not 

correspond, thus, it is unlikely that fires led to a decline in shrub abundance (Fig 5-6). 
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Figure 5-6. Change in tall shrub cover (CSC) depicting decrease of tall vegetation. In the legend, the region between -0.06 and 

0.06 represents locations where the direction of change is uncertain. A. Residual effect of compositing technique in white 

polygon, B. Decrease in a few patches along the Colville River, C. Residual effect of compositing technique within the white 

polygon and decrease in tall shrub cover along the Kiruktagiak River.
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Changes in carbon allocation have been documented in the Russian forests where warmer 

but dryer conditions have led to an increase in roots and a decrease in leaves and needles 

(Lapenis et al., 2005). If similar conditions apply to the North Slope of Alaska, then the 

decrease in shrub cover should be widespread and it is not. Another plausible option, 

although this theory is not confirmed, is an insect invasion or disease affecting the 

canopy of the shrubs. Cases of infestation have been reported in interior Alaska (Furniss 

et al., 2001; Nossov et al., 2011; Ruess et al., 2006; Snyder et al., 2007) . For example, 

willows (Salix spp.) in drainages of the Kuskokwim and Yukon Rivers were infested by a 

leafblotch miner (Micrurapteryx salicifoliella) twice in the 1990s (Furniss et al., 2001). 

Birch have also been infested by three nonnative leaf mining sawflies that were 

introduced to Alaska around 1997, the most harmful of them being Profenusa thomsoni. 

P. thomsoni was found in Anchorage, Fairbanks, and in some remote areas of the Kenai 

Peninsula that were only accessible by float plane (Snyder et al., 2007). 

 The annual expansion rate for the plots that experienced an increase in shrub cover 

greater than 0.06 between the years 2000 and 2010 varied between 0.006 yr-1 and 0.017 

yr-1 (Fig. 5-7). These rates are reasonable considering that Naito et al. (2014) found that 

the annual percent change in tall shrub cover within river valleys of the Brooks Range 

and North Slope uplands was about 1.2% per year. Tape et al. (2006) found a lower 

annual shrub expansion rate (0.4% per year), but this included all shrubs, tall and low 

ones. Expansion rate may be affected by site-specific factors such as soil condition and 

hydrology. For example, in a warming experiment, tall shrubs' expansion was enhanced 

in moist to wet soils (Elmendorf et al., 2012). Another aspect of consideration is the scale 
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of analysis; while this study used a moderate spatial resolution (250 m), a finer spatial 

scale may reveal micro-site differences (Tape et al., 2012; Raynolds et al., 2013). Factors 

not accounted for in the estimation of the expansion rate in this study and that may have 

an effect on it are the kind of plant community and type of shrubs. While in alpine plant 

communities deciduous shrubs concentrate in increasing cover, the Low Arctic plant 

community concentrates in vertical growth (Walker et al. 2006). There are also 

differences in the expansion rates between evergreen and deciduous shrubs. For example, 

Hudson and Henry (2009) found that in a High Arctic heath community, during the 

period 1981 to 2008, evergreen shrubs' cover increased, while deciduous shrub cover did 

not.  

 

Figure 5-7. Tall shrub expansion rate against the initial fractional cover in year 2000.  
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 The minimum initial fractional cover value necessary to see at least an increase 

greater than 0.06 in cover after a 10 year period was 0.001. It seems that tall shrubs tend 

to expand faster in areas where the initial shrub cover was very low, yet not zero. The 

fastest expansion rate was seen when the initial shrub cover was about 0.01, after which 

the expansion rate decreased rapidly. This may be due to the presence of large herbivores 

and the availability of more palatable food. Cahoon et al. (2012) found that the presence 

of large herbivores led to reductions in leaf-area index and net carbon dioxide uptake. He 

explained that the mechanism by which large herbivores like caribou and muskoxen 

reduce the shrub cover is by feeding on the leaves of deciduous shrubs early in the 

season. Their preference for grazing on freshly emergent leaves reduces the number of 

axillary and apical meristems in the shrub that would have provided canopy area (Cahoon 

et al., 2012).  

 

5.4 Conclusion 

 As of 2010, tall shrub (> 0.5 m) fractional cover in the North Slope of Alaska was 

found to be very low at a spatial resolution of 250 m. Tall shrubs were more abundant in 

the floodplains, river terraces, and hill slopes, as well as on the tree-shrub transition zone 

along the northern boundary of the Brooks Range. Shrub cover considerably decreased 

northward, where harsh climatic conditions prevail. Comparisons of shrub cover between 

the years 2000 and 2010 revealed that the increase in shrub cover is not widespread but 

rather it is focused on a few landscape features. Areas where shrubs proliferated were 

located in the central and southern region of the North Slope, while there was no major 
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expansion in the High Arctic. The fastest expansion rate was experienced when shrub 

cover was about 0.01, after which the rate declined rapidly, which may indicate that when 

cover increases, abiotic and biotic factors may slow down the shrub expansion. Since the 

length of this study is relatively short (10 years), the results may reflect the influence of 

natural variations such as the Arctic Oscillation (time scale of 5-7 years). Thus, it would 

be necessary to continue extending the length of study period to include several Arctic 

Oscillation phases. This study focused only on shrubs taller than 0.5 m in height, which 

are often associated with riparian communities. However, shrubs less than 0.5 m, 

abundant in upland communities, are predicted to become increasingly dominant. 

Therefore, future work should aim to also quantify the magnitude and direction of the 

expansion of low shrub communities. In the face of climate change and the potential 

implications of a shrub expansion on the climate and ecology of the region, this study 

provided evidence of the site-specific tall shrub expansion and its rate in the North Slope 

during the period 2000-2010. Also, this study has demonstrated the efficacy of the MISR 

sensor to provide good coverage of the region considering the short window of time for 

data collection and it also has shown that machine learning algorithms, in particular, the 

boosted regression tree, are robust canopy models to predict tall shrub cover in spite of 

the low shrub cover values and low contrast between the target shrub population and 

background vegetation. More research is necessary to infer the potential impacts of 

canopy-forming shrubs on the regional climate and ecological processes in view of the 

findings in this study.  
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Appendix A 

 

A.1. Parameters of the Albers Conical Equal Area projection used for field sites as well 

as for all imagery and map products. Units: meters. 

 

Projection Type 

Spheroid Name 

Datum Name 

Latitude of 1st Standard Parallel 

Latitude of 2nd Standard Parallel 

Longitude of Central Meridian 

Latitude of Origin of Projection 

False Easting at Central Meridian 

False Northing at Origin 

Albers Conical Equal Area 

WGS 84 

WGS 84 

55 N 

65 N 

154 W 

50 N 

0.0 meters 

0.0 meters 
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Appendix B 

 

B.1. Shrub structural parameters collected during field campaign along the Colville River 

in 2010. The column headers mean: Site, field site surveyed; Sp_genus, species genus; X 

and Y, the coordinate location of the shrub in UTM, Zone 5N.  

 

Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-01 Alnus sp. 1.32 0.73 558010 7729420 

Colville-01 Alnus sp. 1.34 1.05 558010 7729420 

Colville-01 Alnus sp. 1.27 0.7 558022 7729439 

Colville-01 Alnus sp. 1.18 1.35 558055 7729407 

Colville-01 Alnus sp. 1.42 1.02 558043 7729464 

Colville-01 Alnus sp. 1.07 2.3 558048 7729455 

Colville-01 Alnus sp. 1.3 0.84 558099 7729300 

Colville-01 Alnus sp. 1.19 1.11 557971 7729273 

Colville-01 Alnus sp. 1.18 0.94 557974 7729280 

Colville-01 Alnus sp. 1.51 1.12 557978 7729289 

Colville-01 Alnus sp. 1.37 0.75 557965 7729298 

Colville-01 Alnus sp. 1.52 1.74 557968 7729348 

Colville-01 Alnus sp. 1.15 1.31 557929 7729335 

Colville-01 Alnus sp. 1.15 0.78 557929 7729335 

Colville-01 Alnus sp. 1 1.46 557922 7729316 

Colville-01 Alnus sp. 0.96 1.07 557941 7729315 

Colville-01 Alnus sp. 0.94 1.01 557937 7729306 

Colville-01 Alnus sp. 1.08 1.28 557937 7729292 

Colville-02 Alnus sp. 2.03 1.37 562042 7726370 

Colville-02 Alnus sp. 1.78 1.36 562103 7726386 

Colville-02 Alnus sp. 1.6 1.27 562182 7726371 

Colville-02 Alnus sp. 1.9 2.42 562195 7726375 

Colville-02 Alnus sp. 2.37 2.07 562220 7726379 

Colville-02 Salix sp. 0.82 2.23 562245 7726374 

Colville-02 Salix sp. 1.32 0.54 562234 7726400 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-02 Alnus sp. 1.8 0.62 562225 7726402 

Colville-02 Alnus sp. 2.41 1.65 562205 7726405 

Colville-02 Alnus sp. 1.67 2.8 562185 7726402 

Colville-02 Alnus sp. 1.41 0.7 562173 7726401 

Colville-02 Alnus sp. 1.42 1.38 562165 7726400 

Colville-02 Alnus sp. 1.26 1.68 562159 7726399 

Colville-02 Alnus sp. 1.2 1.49 562127 7726398 

Colville-02 Alnus sp. 2.27 2.3 562077 7726392 

Colville-02 Alnus sp. 1.54 0.99 562042 7726391 

Colville-02 Alnus sp. 2.27 1.42 562030 7726392 

Colville-02 Alnus sp. 1.48 0.46 562020 7726389 

Colville-02 Alnus sp. 1.81 1.57 561995 7726427 

Colville-02 Alnus sp. 2.4 0.76 562000 7726429 

Colville-02 Alnus sp. 1.37 0.48 562006 7726432 

Colville-02 Alnus sp. 1.19 0.44 562054 7726438 

Colville-02 Alnus sp. 2.03 1.04 562075 7726443 

Colville-02 Alnus sp. 1.42 0.53 562085 7726443 

Colville-02 Alnus sp. 2 2.01 562093 7726444 

Colville-02 Alnus sp. 1.34 0.99 562097 7726445 

Colville-02 Alnus sp. 0.79 1.41 562105 7726445 

Colville-02 Alnus sp. 1.88 1.62 562111 7726441 

Colville-02 Alnus sp. 1.88 0.64 562130 7726435 

Colville-02 Alnus sp. 1.96 0.81 562130 7726435 

Colville-02 Alnus sp. 1.51 1.56 562151 7726431 

Colville-02 Alnus sp. 1.78 0.63 562195 7726431 

Colville-02 Alnus sp. 1.11 0.64 562230 7726429 

Colville-02 Alnus sp. 2.34 1.7 562241 7726427 

Colville-02 Alnus sp. 1.51 0.79 562241 7726427 

Colville-02 Alnus sp. 1.73 1.25 562243 7726446 

Colville-02 Alnus sp. 1.99 1.25 562235 7726448 

Colville-02 Alnus sp. 1.73 0.81 562235 7726448 

Colville-02 Alnus sp. 1.92 1.05 562229 7726448 

Colville-02 Alnus sp. 2.05 1.58 562212 7726442 

Colville-02 Alnus sp. 1.9 1.58 562157 7726439 

Colville-02 Alnus sp. 1.47 0.55 562152 7726439 

Colville-02 Alnus sp. 1.82 0.86 562146 7726438 

Colville-02 Alnus sp. 2.24 0.69 562135 7726438 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-02 Alnus sp. 1.81 0.5 562131 7726437 

Colville-02 Alnus sp. 1.07 0.49 562116 7726436 

Colville-02 Alnus sp. 1.37 0.47 562112 7726434 

Colville-02 Alnus sp. 1.53 0.53 562112 7726434 

Colville-02 Alnus sp. 1.66 0.64 562106 7726437 

Colville-02 Alnus sp. 1.56 1.51 562099 7726438 

Colville-02 Alnus sp. 1.85 0.44 562094 7726438 

Colville-02 Alnus sp. 1.08 0.49 562084 7726439 

Colville-02 Alnus sp. 1.85 0.96 562078 7726439 

Colville-02 Alnus sp. 1.12 0.44 562056 7726439 

Colville-02 Alnus sp. 1.08 0.49 562039 7726447 

Colville-02 Alnus sp. 1.43 1.14 562034 7726447 

Colville-02 Alnus sp. 1.34 0.46 562034 7726447 

Colville-02 Alnus sp. 0.86 0.33 562028 7726448 

Colville-02 Alnus sp. 1.12 1.37 562008 7726475 

Colville-02 Alnus sp. 1.12 0.42 562054 7726479 

Colville-02 Alnus sp. 1.61 1.41 562062 7726479 

Colville-02 Alnus sp. 1.54 1.25 562073 7726482 

Colville-02 Alnus sp. 2.68 1.94 562085 7726483 

Colville-02 Alnus sp. 1.37 1.02 562101 7726479 

Colville-02 Alnus sp. 1.5 1.45 562119 7726473 

Colville-02 Alnus sp. 1.32 1.16 562119 7726475 

Colville-02 Alnus sp. 1.07 0.68 562124 7726474 

Colville-02 Alnus sp. 1.75 0.63 562133 7726476 

Colville-02 Alnus sp. 2.21 1.48 562152 7726469 

Colville-02 Alnus sp. 1.87 1.5 562180 7726467 

Colville-02 Alnus sp. 2.26 1.07 562198 7726468 

Colville-02 Alnus sp. 1.44 1.02 562195 7726502 

Colville-02 Alnus sp. 1.84 0.81 562179 7726501 

Colville-02 Alnus sp. 1.55 0.72 562169 7726500 

Colville-02 Alnus sp. 2.05 1.26 562153 7726505 

Colville-02 Alnus sp. 1.72 2.71 562133 7726498 

Colville-02 Alnus sp. 2.57 1.79 562118 7726493 

Colville-02 Alnus sp. 1.21 1.06 562107 7726491 

Colville-02 Alnus sp. 2 1.39 562099 7726492 

Colville-02 Alnus sp. 1.42 1.02 562086 7726488 

Colville-02 Alnus sp. 1.75 5.08 562071 7726494 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-02 Alnus sp. 0.92 0.54 562071 7726494 

Colville-02 Alnus sp. 1.81 1.06 562065 7726491 

Colville-02 Alnus sp. 1.23 0.49 562065 7726491 

Colville-02 Alnus sp. 1.28 0.38 562053 7726494 

Colville-02 Alnus sp. 1.17 0.63 562022 7726533 

Colville-02 Alnus sp. 0.96 0.66 562041 7726531 

Colville-02 Alnus sp. 1.46 1.02 562084 7726530 

Colville-02 Alnus sp. 2 1.46 562098 7726529 

Colville-02 Alnus sp. 1.48 1.44 562106 7726532 

Colville-02 Alnus sp. 1.12 1.32 562109 7726533 

Colville-02 Alnus sp. 0.93 0.26 562109 7726533 

Colville-02 Alnus sp. 1.29 0.49 562121 7726533 

Colville-02 Alnus sp. 0.85 0.28 562121 7726533 

Colville-02 Alnus sp. 0.93 0.61 562128 7726535 

Colville-02 Alnus sp. 1.13 1.06 562142 7726537 

Colville-02 Alnus sp. 2.22 1.93 562158 7726534 

Colville-02 Alnus sp. 1.58 0.96 562158 7726534 

Colville-02 Alnus sp. 1.26 0.49 562165 7726532 

Colville-02 Alnus sp. 1.44 0.48 562172 7726531 

Colville-02 Alnus sp. 1.18 0.38 562177 7726530 

Colville-02 Alnus sp. 1.62 1.09 562177 7726530 

Colville-02 Alnus sp. 1.24 1.91 562218 7726527 

Colville-02 Alnus sp. 1.65 1.31 562230 7726546 

Colville-02 Alnus sp. 1.06 0.69 562225 7726549 

Colville-02 Alnus sp. 1.07 0.32 562225 7726549 

Colville-02 Alnus sp. 0.77 0.42 562225 7726549 

Colville-02 Alnus sp. 1.53 1.49 562218 7726549 

Colville-02 Alnus sp. 1.83 0.94 562202 7726548 

Colville-02 Alnus sp. 1.08 0.42 562202 7726548 

Colville-02 Alnus sp. 1.15 0.62 562186 7726549 

Colville-02 Alnus sp. 1.22 0.65 562178 7726548 

Colville-02 Alnus sp. 1.09 0.36 562160 7726552 

Colville-02 Alnus sp. 1.09 0.82 562154 7726551 

Colville-02 Alnus sp. 1.79 0.84 562140 7726548 

Colville-02 Alnus sp. 2.17 1.59 562125 7726548 

Colville-02 Alnus sp. 2.41 2 562071 7726546 

Colville-02 Alnus sp. 1.14 0.58 562034 7726552 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-02 Alnus sp. 1.32 1.5 561995 7726548 

Colville-02 Alnus sp. 1.62 0.71 561999 7726575 

Colville-02 Alnus sp. 2 2.18 562005 7726575 

Colville-02 Alnus sp. 1.88 3.27 562017 7726579 

Colville-02 Alnus sp. 2.2 0.9 562017 7726579 

Colville-02 Alnus sp. 2.45 0.33 562017 7726579 

Colville-02 Alnus sp. 2.62 1.46 562029 7726578 

Colville-02 Alnus sp. 1.69 3.64 562047 7726573 

Colville-02 Alnus sp. 2 2.08 562065 7726580 

Colville-02 Alnus sp. 1.57 0.75 562079 7726576 

Colville-02 Alnus sp. 1.8 1.32 562131 7726578 

Colville-02 Alnus sp. 1.59 0.6 562149 7726577 

Colville-02 Alnus sp. 1.61 0.5 562163 7726577 

Colville-02 Alnus sp. 2.03 1.67 562172 7726578 

Colville-02 Alnus sp. 1.1 4.91 562184 7726578 

Colville-02 Alnus sp. 1.52 0.87 562197 7726576 

Colville-02 Alnus sp. 1.02 0.41 562215 7726573 

Colville-02 Alnus sp. 1.85 2.16 562206 7726604 

Colville-02 Alnus sp. 1.75 2.25 562195 7726606 

Colville-02 Alnus sp. 1.76 0.87 562171 7726602 

Colville-02 Alnus sp. 2.57 1.88 562162 7726602 

Colville-02 Alnus sp. 1.83 1.42 562131 7726599 

Colville-02 Alnus sp. 1.57 1.48 562114 7726597 

Colville-02 Alnus sp. 1.39 0.74 562114 7726597 

Colville-02 Alnus sp. 1.88 0.67 562105 7726627 

Colville-02 Alnus sp. 1.25 1.08 562096 7726613 

Colville-02 Alnus sp. 0.95 0.65 562096 7726613 

Colville-02 Alnus sp. 1.45 0.65 562096 7726613 

Colville-02 Alnus sp. 0.82 0.73 562071 7726606 

Colville-02 Alnus sp. 1.28 0.65 562024 7726595 

Colville-02 Alnus sp. 1.64 1.05 562013 7726596 

Colville-02 Alnus sp. 1.79 1.36 562005 7726596 

Colville-02 Alnus sp. 1.92 1.85 561996 7726600 

Colville-03 Salix sp. 1.19 0.9 557214 7711231 

Colville-03 Alnus sp. 1.39 1.29 557249 7711230 

Colville-03 Alnus sp. 1.38 0.64 557249 7711230 

Colville-03 Salix sp. 1.35 1.39 557267 7711232 



196 

 

 

 

Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-03 Alnus sp. 0.81 0.94 557277 7711232 

Colville-03 Alnus sp. 0.88 0.92 557310 7711251 

Colville-03 Alnus sp. 1.17 1.5 557280 7711245 

Colville-03 Alnus sp. 1.48 0.51 557272 7711246 

Colville-03 Alnus sp. 1.07 0.98 557272 7711246 

Colville-03 Alnus sp. 0.61 0.4 557263 7711249 

Colville-03 Alnus sp. 1.14 1.27 557257 7711246 

Colville-03 Alnus sp. 1.11 1 557250 7711247 

Colville-03 Alnus sp. 1.31 0.49 557250 7711247 

Colville-03 Alnus sp. 1.19 1.28 557250 7711247 

Colville-03 Alnus sp. 1.33 1.08 557250 7711247 

Colville-03 Salix sp. 1.01 0.84 557216 7711244 

Colville-03 Alnus sp. 1.68 0.95 557208 7711244 

Colville-03 Salix sp. 1.16 1.46 557168 7711248 

Colville-03 Alnus sp. 1.53 0.95 557184 7711273 

Colville-03 Salix sp. 1.1 1.19 557218 7711271 

Colville-03 Salix sp. 1.14 0.66 557218 7711271 

Colville-03 Salix sp. 0.77 0.71 557230 7711270 

Colville-03 Alnus sp. 1.13 0.6 557346 7711300 

Colville-03 Alnus sp. 1.05 1.12 557268 7711293 

Colville-03 Alnus sp. 0.8 0.51 557256 7711293 

Colville-03 Alnus sp. 1 0.73 557246 7711290 

Colville-03 Alnus sp. 1.72 1.25 557241 7711291 

Colville-03 Alnus sp. 1.35 0.65 557235 7711291 

Colville-03 Salix sp. 1.04 0.69 557231 7711290 

Colville-03 Alnus sp. 1.78 2.67 557209 7711289 

Colville-03 Alnus sp. 1.11 0.87 557135 7711295 

Colville-03 Alnus sp. 1.2 1.18 557135 7711295 

Colville-03 Salix sp. 1.12 0.89 557251 7711330 

Colville-03 Alnus sp. 1.3 1.64 557257 7711328 

Colville-03 Alnus sp. 1.06 0.58 557314 7711328 

Colville-03 Alnus sp. 1.17 1 557324 7711326 

Colville-03 Alnus sp. 1.04 1.35 557378 7711349 

Colville-03 Alnus sp. 1.04 0.81 557358 7711348 

Colville-03 Alnus sp. 0.96 0.82 557313 7711345 

Colville-03 Alnus sp. 0.96 0.72 557307 7711345 

Colville-03 Alnus sp. 1.16 0.85 557307 7711345 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-03 Alnus sp. 1.36 0.85 557301 7711343 

Colville-03 Alnus sp. 1.47 1 557280 7711340 

Colville-03 Salix sp. 0.92 1.22 557275 7711345 

Colville-03 Alnus sp. 1.17 0.89 557207 7711373 

Colville-03 Salix sp. 0.94 0.91 557236 7711371 

Colville-03 Salix sp. 1.54 1.37 557277 7711370 

Colville-03 Salix sp. 2.13 1.33 557290 7711371 

Colville-03 Alnus sp. 1.14 0.77 557353 7711376 

Colville-03 Alnus sp. 0.69 1.08 557373 7711378 

Colville-03 Alnus sp. 1.13 0.6 557377 7711403 

Colville-03 Alnus sp. 1.08 0.5 557355 7711400 

Colville-03 Alnus sp. 1.21 1.18 557350 7711401 

Colville-03 Alnus sp. 1.37 1.07 557344 7711400 

Colville-03 Salix sp. 2.65 2.28 557308 7711398 

Colville-03 Salix sp. 1.34 1.75 557131 7711424 

Colville-03 Salix sp. 1.07 1.69 557140 7711422 

Colville-03 Salix sp. 1.31 2.39 557175 7711421 

Colville-03 Salix sp. 1.32 1.75 557229 7711423 

Colville-03 Alnus sp. 1.18 1.1 557253 7711425 

Colville-03 Salix sp. 2.34 1.31 557315 7711426 

Colville-03 Alnus sp. 1.14 1.45 557324 7711426 

Colville-03 Alnus sp. 0.96 0.83 557353 7711425 

Colville-03 Alnus sp. 0.98 0.82 557367 7711426 

Colville-03 Alnus sp. 1.13 0.8 557376 7711424 

Colville-03 Alnus sp. 0.93 0.79 557387 7711423 

Colville-03 Alnus sp. 2 2.32 557331 7711451 

Colville-03 Alnus sp. 1.15 1.1 557251 7711447 

Colville-03 Salix sp. 1.15 1.24 557245 7711446 

Colville-03 Salix sp. 1.12 1.81 557192 7711441 

Colville-03 Salix sp. 1.98 1.86 557159 7711445 

Colville-03 Salix sp. 1.85 1.29 557154 7711449 

Colville-04 Salix sp. 2.58 1.49 557283 7710176 

Colville-04 Salix sp. 1.19 1.21 557269 7710174 

Colville-04 Salix sp. 1.07 0.98 557251 7710179 

Colville-04 Salix sp. 0.59 1.23 557226 7710180 

Colville-04 Salix sp. 1.05 1.82 557213 7710180 

Colville-04 Alnus sp. 2.33 3.6 557204 7710181 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-04 Salix sp. 2.65 2.41 557192 7710178 

Colville-04 Alnus sp. 2.21 2.23 557157 7710171 

Colville-04 Alnus sp. 1.33 1.18 557147 7710174 

Colville-04 Salix sp. 1.22 0.92 557141 7710176 

Colville-04 Salix sp. 1.23 1.02 557133 7710177 

Colville-04 Salix sp. 1.14 1.57 557127 7710176 

Colville-04 Salix sp. 1.03 1.15 557129 7710121 

Colville-04 Salix sp. 1.55 1.18 557152 7710122 

Colville-04 Salix sp. 1.79 1.86 557160 7710125 

Colville-04 Salix sp. 1.18 0.71 557165 7710125 

Colville-04 Salix sp. 1.04 0.9 557172 7710124 

Colville-04 Salix sp. 1.44 1.23 557178 7710122 

Colville-04 Salix sp. 1.2 1.16 557178 7710122 

Colville-04 Salix sp. 1.5 1.41 557181 7710123 

Colville-04 Salix sp. 1.17 2.03 557198 7710120 

Colville-04 Salix sp. 1.48 0.41 557208 7710118 

Colville-04 Salix sp. 0.71 1.41 557208 7710118 

Colville-04 Salix sp. 1.43 1.12 557214 7710115 

Colville-04 Salix sp. 1.48 1.62 557223 7710113 

Colville-04 Salix sp. 3.68 3.59 557255 7710113 

Colville-04 Salix sp. 3.07 0.86 557262 7710124 

Colville-04 Alnus sp. 1.89 2.6 557295 7710120 

Colville-04 Salix sp. 0.83 0.95 557325 7710119 

Colville-04 Salix sp. 0.9 0.86 557337 7710119 

Colville-04 Salix sp. 1.52 1.8 557369 7710074 

Colville-04 Salix sp. 1.02 2.45 557252 7710075 

Colville-04 Salix sp. 1.89 1.85 557236 7710075 

Colville-04 Alnus sp. 2.47 1.1 557229 7710078 

Colville-04 Salix sp. 2.08 1.17 557217 7710075 

Colville-04 Salix sp. 0.88 0.87 557213 7710074 

Colville-04 Salix sp. 1.41 1.03 557206 7710076 

Colville-04 Salix sp. 1.51 2.44 557197 7710078 

Colville-04 Salix sp. 1.98 1.81 557192 7710078 

Colville-04 Salix sp. 0.69 0.46 557186 7710078 

Colville-04 Salix sp. 0.92 1 557186 7710078 

Colville-04 Salix sp. 0.84 0.56 557180 7710078 

Colville-04 Salix sp. 0.92 0.72 557180 7710078 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-04 Salix sp. 1.02 0.41 557180 7710078 

Colville-04 Salix sp. 1.07 0.36 557180 7710078 

Colville-04 Alnus sp. 2.69 5.69 557150 7710081 

Colville-04 Salix sp. 1.12 1.44 557131 7710077 

Colville-04 Salix sp. 1.12 1.69 557124 7710029 

Colville-04 Salix sp. 1.13 1.18 557136 7710027 

Colville-04 Salix sp. 1.3 1.72 557143 7710026 

Colville-04 Salix sp. 0.91 1.13 557164 7710023 

Colville-04 Salix sp. 1.35 1.63 557175 7710024 

Colville-04 Salix sp. 0.89 0.74 557178 7710024 

Colville-04 Salix sp. 1.12 1.2 557190 7710024 

Colville-04 Salix sp. 1.17 1.32 557200 7710026 

Colville-04 Salix sp. 1.06 1.48 557224 7710025 

Colville-04 Salix sp. 1.12 0.93 557233 7710024 

Colville-04 Salix sp. 1.75 1.71 557243 7710022 

Colville-04 Salix sp. 1.72 2.04 557252 7710022 

Colville-04 Salix sp. 1.3 2.71 557261 7710022 

Colville-04 Salix sp. 1.2 2.1 557268 7710021 

Colville-04 Salix sp. 0.75 1.48 557364 7709984 

Colville-04 Salix sp. 1.31 1.54 557294 7709974 

Colville-04 Salix sp. 3.54 3.75 557284 7709973 

Colville-04 Salix sp. 2.46 2.48 557266 7709964 

Colville-04 Alnus sp. 1.96 2.08 557253 7710012 

Colville-04 Salix sp. 1.04 0.79 557243 7709985 

Colville-04 Salix sp. 0.93 1.22 557243 7709985 

Colville-04 Salix sp. 1.41 1.19 557251 7710039 

Colville-04 Alnus sp. 2.2 1.25 557222 7709966 

Colville-04 Alnus sp. 2.15 1.55 557212 7709970 

Colville-04 Salix sp. 1.85 1.6 557209 7709967 

Colville-04 Alnus sp. 2.18 1.82 557204 7709967 

Colville-04 Alnus sp. 2.83 1.01 557198 7709967 

Colville-04 Alnus sp. 2.17 1.96 557194 7709966 

Colville-04 Alnus sp. 1.82 0.54 557187 7709966 

Colville-04 Salix sp. 0.9 0.35 557183 7709965 

Colville-04 Salix sp. 1.04 0.97 557183 7709965 

Colville-04 Salix sp. 1.93 2.01 557117 7709968 

Colville-04 Salix sp. 1.58 1.9 557117 7709968 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-04 Salix sp. 1.68 1.28 557117 7709968 

Colville-05 Alnus sp. 2.12 1.17 546727 7667525 

Colville-05 Alnus sp. 1.42 0.83 546741 7667532 

Colville-05 Alnus sp. 2.21 1.71 546753 7667534 

Colville-05 Alnus sp. 2.19 1.07 546770 7667533 

Colville-05 Alnus sp. 1.63 0.87 546795 7667534 

Colville-05 Alnus sp. 2.16 1.8 546810 7667533 

Colville-05 Alnus sp. 2.31 0.87 546824 7667531 

Colville-05 Alnus sp. 1.95 1.08 546831 7667541 

Colville-05 Alnus sp. 1.75 0.55 546846 7667536 

Colville-05 Alnus sp. 1.95 0.67 546846 7667536 

Colville-05 Alnus sp. 1.69 0.68 546853 7667532 

Colville-05 Alnus sp. 2.2 2.05 546859 7667532 

Colville-05 Alnus sp. 2.53 1.13 546866 7667532 

Colville-05 Alnus sp. 2.21 1.3 546870 7667531 

Colville-05 Alnus sp. 2.28 1.33 546870 7667531 

Colville-05 Alnus sp. 1.97 0.87 546879 7667531 

Colville-05 Alnus sp. 2.24 1.77 546885 7667528 

Colville-05 Alnus sp. 2.04 1.04 546890 7667528 

Colville-05 Alnus sp. 1.81 0.79 546890 7667528 

Colville-05 Alnus sp. 1.8 1.31 546897 7667530 

Colville-05 Alnus sp. 2.34 1.57 546911 7667529 

Colville-05 Alnus sp. 2.78 1.35 546911 7667529 

Colville-05 Alnus sp. 2.2 0.78 546921 7667530 

Colville-05 Alnus sp. 1.57 0.4 546938 7667527 

Colville-05 Alnus sp. 2.16 1.58 546943 7667527 

Colville-05 Alnus sp. 1.93 0.76 546948 7667529 

Colville-05 Alnus sp. 2.04 0.63 546952 7667529 

Colville-05 Alnus sp. 2.18 1.14 546952 7667529 

Colville-05 Alnus sp. 1.75 0.88 546955 7667528 

Colville-05 Alnus sp. 1.43 0.93 546961 7667526 

Colville-05 Alnus sp. 1.91 0.86 546966 7667526 

Colville-05 Alnus sp. 1.93 1.02 546969 7667526 

Colville-05 Alnus sp. 1.76 0.78 546978 7667473 

Colville-05 Alnus sp. 1.52 0.79 546965 7667472 

Colville-05 Alnus sp. 1.48 0.68 546958 7667470 

Colville-05 Alnus sp. 1.86 0.45 546958 7667470 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-05 Alnus sp. 1.24 0.37 546953 7667469 

Colville-05 Alnus sp. 1.91 1.8 546946 7667471 

Colville-05 Alnus sp. 2.67 0.69 546941 7667471 

Colville-05 Alnus sp. 2.53 0.74 546927 7667471 

Colville-05 Alnus sp. 2.41 1.53 546921 7667473 

Colville-05 Alnus sp. 2.52 2.41 546906 7667472 

Colville-05 Alnus sp. 1.71 0.83 546900 7667474 

Colville-05 Alnus sp. 1.47 0.77 546896 7667473 

Colville-05 Alnus sp. 2.2 0.81 546896 7667473 

Colville-05 Alnus sp. 3.1 2.11 546878 7667478 

Colville-05 Alnus sp. 2.11 0.96 546867 7667475 

Colville-05 Alnus sp. 1.47 0.84 546850 7667478 

Colville-05 Alnus sp. 2.73 1.74 546835 7667475 

Colville-05 Alnus sp. 2.28 1.63 546824 7667474 

Colville-05 Alnus sp. 2.16 0.75 546817 7667474 

Colville-05 Alnus sp. 1.53 0.76 546801 7667475 

Colville-05 Alnus sp. 2.01 0.87 546782 7667473 

Colville-05 Alnus sp. 1.38 0.61 546770 7667472 

Colville-05 Alnus sp. 1.15 0.67 546762 7667475 

Colville-05 Alnus sp. 2.21 1.28 546755 7667477 

Colville-05 Alnus sp. 1.86 0.79 546724 7667421 

Colville-05 Alnus sp. 2.04 0.4 546733 7667420 

Colville-05 Alnus sp. 2.14 0.73 546733 7667420 

Colville-05 Alnus sp. 1.87 0.36 546772 7667422 

Colville-05 Alnus sp. 2.32 1.01 546772 7667422 

Colville-05 Alnus sp. 2.12 0.97 546780 7667424 

Colville-05 Alnus sp. 1.92 1.44 546817 7667435 

Colville-05 Alnus sp. 2.33 0.71 546856 7667428 

Colville-05 Alnus sp. 2 0.87 546856 7667428 

Colville-05 Alnus sp. 1.74 1 546862 7667428 

Colville-05 Alnus sp. 1.85 1.86 546875 7667427 

Colville-05 Alnus sp. 1.82 0.95 546886 7667426 

Colville-05 Alnus sp. 1.26 0.89 546886 7667426 

Colville-05 Alnus sp. 2.17 0.85 546886 7667426 

Colville-05 Alnus sp. 1.56 1.14 546896 7667425 

Colville-05 Alnus sp. 1.62 0.61 546899 7667424 

Colville-05 Alnus sp. 2.03 1.21 546908 7667423 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-05 Alnus sp. 1.28 0.48 546908 7667423 

Colville-05 Alnus sp. 1.47 0.75 546963 7667428 

Colville-05 Alnus sp. 1.38 0.71 546963 7667428 

Colville-05 Alnus sp. 2.27 0.83 546975 7667427 

Colville-05 Alnus sp. 2.4 1.59 546971 7667382 

Colville-05 Alnus sp. 2.13 1.78 546962 7667380 

Colville-05 Alnus sp. 1.69 0.69 546952 7667380 

Colville-05 Alnus sp. 1.42 1.15 546937 7667378 

Colville-05 Alnus sp. 1.88 0.91 546921 7667377 

Colville-05 Alnus sp. 2.23 1.14 546906 7667376 

Colville-05 Alnus sp. 2.16 1.76 546906 7667376 

Colville-05 Alnus sp. 1.92 1.16 546892 7667376 

Colville-05 Alnus sp. 1.69 0.7 546885 7667373 

Colville-05 Alnus sp. 0.96 0.54 546874 7667373 

Colville-05 Alnus sp. 1.49 0.48 546867 7667374 

Colville-05 Alnus sp. 2.05 1.54 546911 7667379 

Colville-05 Alnus sp. 2.81 1.76 546793 7667382 

Colville-05 Alnus sp. 1.19 0.69 546733 7667379 

Colville-05 Alnus sp. 1.39 1.03 546733 7667379 

Colville-05 Alnus sp. 1.76 1.78 546740 7667322 

Colville-05 Alnus sp. 1.39 0.96 546872 7667332 

Colville-05 Alnus sp. 1.99 1.51 546890 7667333 

Colville-05 Alnus sp. 1.73 0.79 546890 7667333 

Colville-05 Alnus sp. 1.43 1.22 546890 7667333 

Colville-05 Alnus sp. 1.2 0.98 546890 7667333 

Colville-05 Alnus sp. 1.99 1.54 546923 7667332 

Colville-06 Alnus sp. 1.32 1.64 545733 7667027 

Colville-06 Alnus sp. 1.42 1.06 545738 7667030 

Colville-06 Alnus sp. 1.09 0.54 545748 7667031 

Colville-06 Alnus sp. 1.71 1.17 545755 7667030 

Colville-06 Alnus sp. 1.78 1.36 545763 7667031 

Colville-06 Alnus sp. 1.78 1.19 545768 7667031 

Colville-06 Alnus sp. 1.95 0.72 545781 7667032 

Colville-06 Alnus sp. 1.73 1.34 545781 7667032 

Colville-06 Alnus sp. 2.44 1.85 545794 7667032 

Colville-06 Alnus sp. 1.61 0.52 545803 7667034 

Colville-06 Alnus sp. 1.77 0.31 545803 7667034 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-06 Alnus sp. 2.12 1.12 545803 7667034 

Colville-06 Alnus sp. 2.32 1.34 545813 7667034 

Colville-06 Alnus sp. 1.31 1.23 545850 7667034 

Colville-06 Alnus sp. 1.17 0.84 545850 7667034 

Colville-06 Alnus sp. 1.57 0.66 545867 7667034 

Colville-06 Alnus sp. 1.52 1 545867 7667034 

Colville-06 Alnus sp. 1.4 0.73 545876 7667034 

Colville-06 Alnus sp. 1.46 1.46 545886 7667032 

Colville-06 Alnus sp. 1.09 1.05 545931 7667030 

Colville-06 Alnus sp. 1.21 0.85 545987 7667022 

Colville-06 Alnus sp. 0.92 0.83 545965 7666998 

Colville-06 Alnus sp. 1.33 1.06 545959 7666997 

Colville-06 Alnus sp. 1.85 0.73 545929 7666994 

Colville-06 Alnus sp. 1.48 0.76 545929 7666994 

Colville-06 Alnus sp. 1.55 2.13 545925 7666992 

Colville-06 Alnus sp. 1.35 0.48 545916 7666989 

Colville-06 Alnus sp. 1.24 1.03 545916 7666989 

Colville-06 Alnus sp. 1.35 0.5 545916 7666989 

Colville-06 Alnus sp. 1.3 1.67 545906 7666989 

Colville-06 Alnus sp. 1.61 1.52 545906 7666989 

Colville-06 Alnus sp. 1.12 1.07 545886 7666985 

Colville-06 Alnus sp. 1.12 0.53 545886 7666985 

Colville-06 Alnus sp. 1.46 0.68 545886 7666985 

Colville-06 Alnus sp. 1.16 0.85 545844 7666981 

Colville-06 Alnus sp. 1 0.96 545844 7666981 

Colville-06 Alnus sp. 1.19 0.68 545817 7666983 

Colville-06 Alnus sp. 1.9 1.51 545806 7666988 

Colville-06 Alnus sp. 2.17 1.91 545798 7666990 

Colville-06 Alnus sp. 2.08 2.14 545785 7666992 

Colville-06 Alnus sp. 1.81 1.63 545773 7666992 

Colville-06 Alnus sp. 2.33 2.52 545732 7666976 

Colville-06 Alnus sp. 2.02 1.76 545814 7667004 

Colville-06 Alnus sp. 1.71 1.39 545809 7666986 

Colville-06 Alnus sp. 2.18 1.14 545809 7666986 

Colville-06 Alnus sp. 1.49 1.48 545812 7666982 

Colville-06 Alnus sp. 0.86 1.4 545818 7666981 

Colville-06 Alnus sp. 1.24 1.15 545824 7666979 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-06 Alnus sp. 1.28 0.62 545841 7666977 

Colville-06 Alnus sp. 1.33 0.56 545841 7666977 

Colville-06 Alnus sp. 1.64 0.75 545865 7666978 

Colville-06 Alnus sp. 2.01 0.57 545865 7666978 

Colville-06 Alnus sp. 1.9 1.69 545883 7666978 

Colville-06 Alnus sp. 2.13 1.13 545903 7666977 

Colville-06 Alnus sp. 2.05 1.09 545903 7666977 

Colville-06 Alnus sp. 1.87 0.61 545928 7666976 

Colville-06 Alnus sp. 1.5 0.51 545936 7666975 

Colville-06 Alnus sp. 1.74 1.43 545946 7666979 

Colville-06 Alnus sp. 2.1 1.46 545952 7666978 

Colville-06 Alnus sp. 1.24 0.75 545959 7666979 

Colville-06 Alnus sp. 1.77 1.22 545959 7666979 

Colville-06 Alnus sp. 2.1 1.3 545966 7666978 

Colville-06 Alnus sp. 1.13 1.04 545970 7666980 

Colville-06 Alnus sp. 1.74 0.63 545987 7666975 

Colville-06 Alnus sp. 1.6 0.54 545970 7666953 

Colville-06 Alnus sp. 1.95 0.83 545957 7666951 

Colville-06 Alnus sp. 1.57 0.96 545951 7666950 

Colville-06 Alnus sp. 1.26 1.28 545937 7666951 

Colville-06 Alnus sp. 1.54 0.81 545924 7666950 

Colville-06 Alnus sp. 1.37 0.42 545917 7666948 

Colville-06 Alnus sp. 1.58 0.68 545908 7666947 

Colville-06 Alnus sp. 1.1 0.3 545895 7666945 

Colville-06 Alnus sp. 1.33 0.53 545895 7666945 

Colville-06 Alnus sp. 1.12 0.52 545891 7666944 

Colville-06 Alnus sp. 2.18 1.28 545880 7666945 

Colville-06 Alnus sp. 2.45 0.88 545880 7666945 

Colville-06 Alnus sp. 1.21 0.82 545875 7666946 

Colville-06 Alnus sp. 1.15 0.5 545867 7666948 

Colville-06 Alnus sp. 1.23 0.62 545863 7666947 

Colville-06 Alnus sp. 1.79 0.56 545859 7666946 

Colville-06 Alnus sp. 1.3 0.59 545830 7666947 

Colville-06 Alnus sp. 2.24 1.39 545830 7666947 

Colville-06 Alnus sp. 2.15 0.99 545822 7666946 

Colville-06 Alnus sp. 1.81 0.71 545817 7666947 

Colville-06 Alnus sp. 2.04 1.67 545811 7666945 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-06 Alnus sp. 1.48 0.91 545793 7666920 

Colville-06 Alnus sp. 1.59 1.22 545793 7666920 

Colville-06 Alnus sp. 2.13 0.74 545824 7666920 

Colville-06 Alnus sp. 1.63 0.31 545833 7666923 

Colville-06 Alnus sp. 1.24 0.69 545833 7666923 

Colville-06 Alnus sp. 1.74 1.19 545842 7666924 

Colville-06 Alnus sp. 2.08 2.25 545851 7666916 

Colville-06 Alnus sp. 2.56 1.44 545851 7666916 

Colville-06 Alnus sp. 1.93 0.89 545857 7666910 

Colville-06 Alnus sp. 1.81 0.89 545857 7666910 

Colville-06 Alnus sp. 1.86 0.64 545867 7666917 

Colville-06 Alnus sp. 1.87 0.81 545874 7666918 

Colville-06 Alnus sp. 1.67 0.6 545892 7666921 

Colville-06 Alnus sp. 2.14 0.92 545892 7666921 

Colville-06 Alnus sp. 1.84 0.72 545897 7666922 

Colville-06 Alnus sp. 1.87 0.92 545902 7666925 

Colville-06 Alnus sp. 1.7 0.71 545914 7666929 

Colville-06 Alnus sp. 1.63 0.78 545925 7666929 

Colville-06 Alnus sp. 1.84 0.45 545935 7666931 

Colville-06 Alnus sp. 2.12 0.7 545935 7666931 

Colville-06 Alnus sp. 1.87 0.86 545951 7666929 

Colville-06 Alnus sp. 0.89 1.34 545985 7666926 

Colville-06 Alnus sp. 2.15 1.73 545983 7666897 

Colville-06 Alnus sp. 1.23 0.73 545974 7666898 

Colville-06 Alnus sp. 2.12 1.44 545855 7666886 

Colville-06 Alnus sp. 1.87 3.11 545732 7666874 

Colville-06 Alnus sp. 1.25 1.74 545755 7666878 

Colville-06 Alnus sp. 2.05 1.99 545866 7666897 

Colville-06 Alnus sp. 1.48 0.99 545924 7667504 

Colville-06 Alnus sp. 1.72 0.58 545984 7666847 

Colville-06 Alnus sp. 1.82 0.67 545984 7666847 

Colville-06 Alnus sp. 1.22 0.58 545973 7666844 

Colville-06 Alnus sp. 1.46 0.6 545973 7666844 

Colville-06 Alnus sp. 1.11 0.47 545959 7666843 

Colville-06 Alnus sp. 1.1 0.38 545951 7666843 

Colville-06 Alnus sp. 0.95 0.26 545951 7666843 

Colville-06 Alnus sp. 1.2 0.57 545941 7666841 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-06 Alnus sp. 1.16 0.5 545932 7666842 

Colville-06 Alnus sp. 1 0.65 545932 7666842 

Colville-06 Alnus sp. 1.36 0.5 545921 7666843 

Colville-06 Alnus sp. 1.31 0.86 545914 7666842 

Colville-06 Alnus sp. 2.27 1.57 545908 7666842 

Colville-06 Alnus sp. 1.13 0.2 545902 7666843 

Colville-06 Alnus sp. 1.1 0.33 545902 7666843 

Colville-06 Alnus sp. 1.12 0.21 545902 7666843 

Colville-06 Alnus sp. 2.21 1.98 545893 7666842 

Colville-06 Alnus sp. 1.91 1.45 545884 7666841 

Colville-06 Alnus sp. 1.88 1.04 545876 7666836 

Colville-06 Alnus sp. 1.89 1.66 545835 7666833 

Colville-06 Alnus sp. 1.84 1.04 545838 7666822 

Colville-06 Alnus sp. 1.61 0.91 545861 7666827 

Colville-06 Alnus sp. 1.89 1.38 545883 7666826 

Colville-06 Alnus sp. 1.92 1.51 545893 7666825 

Colville-06 Alnus sp. 1.38 1.77 545903 7666823 

Colville-06 Alnus sp. 2.12 1.09 545908 7666825 

Colville-06 Alnus sp. 1.62 0.94 545918 7666823 

Colville-06 Alnus sp. 2.08 1.25 545923 7666823 

Colville-06 Alnus sp. 1.31 0.62 545932 7666821 

Colville-06 Alnus sp. 2.18 0.89 545932 7666821 

Colville-06 Alnus sp. 1.14 0.74 545951 7666821 

Colville-06 Alnus sp. 2.08 0.96 545956 7666822 

Colville-06 Alnus sp. 1.6 0.67 545968 7666823 

Colville-06 Alnus sp. 2.19 1.41 545976 7666824 

Colville-06 Alnus sp. 1.91 1.34 545984 7666800 

Colville-06 Alnus sp. 2.29 1.34 545970 7666798 

Colville-06 Alnus sp. 1.54 0.86 545965 7666798 

Colville-06 Alnus sp. 1.63 1.21 545957 7666797 

Colville-06 Alnus sp. 2.34 1.53 545951 7666802 

Colville-06 Alnus sp. 1.48 1.05 545940 7666801 

Colville-06 Alnus sp. 1.79 1.11 545927 7666805 

Colville-06 Alnus sp. 2.06 1.93 545915 7666803 

Colville-06 Alnus sp. 2.26 0.87 545905 7666800 

Colville-06 Alnus sp. 1.4 1.51 545879 7666794 

Colville-06 Alnus sp. 1.88 1.17 545872 7666793 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-07 Alnus sp. 0.92 0.83 548660 7658614 

Colville-07 Alnus sp. 1.3 0.98 548640 7658627 

Colville-07 Alnus sp. 2.98 1.92 548646 7658629 

Colville-07 Alnus sp. 0.93 0.57 548643 7658578 

Colville-07 Alnus sp. 0.72 0.97 548646 7658577 

Colville-07 Alnus sp. 3.05 2.1 548655 7658574 

Colville-07 Alnus sp. 1 0.87 548604 7658527 

Colville-07 Alnus sp. 1.15 0.57 548592 7658545 

Colville-07 Alnus sp. 0.57 0.51 548592 7658545 

Colville-07 Alnus sp. 0.94 0.57 548640 7658530 

Colville-07 Alnus sp. 0.9 1.02 548646 7658530 

Colville-07 Alnus sp. 0.84 0.92 548646 7658530 

Colville-07 Alnus sp. 1.55 0.59 548646 7658530 

Colville-07 Alnus sp. 0.96 1.14 548671 7658533 

Colville-07 Alnus sp. 1.41 1.34 548671 7658533 

Colville-07 Alnus sp. 2.22 1.34 548691 7658543 

Colville-07 Alnus sp. 1.12 0.89 548731 7658769 

Colville-07 Alnus sp. 1.1 0.58 548731 7658769 

Colville-07 Alnus sp. 1.06 0.6 548706 7658542 

Colville-07 Alnus sp. 0.81 0.4 548706 7658542 

Colville-07 Alnus sp. 0.75 0.45 548811 7658533 

Colville-07 Alnus sp. 1.05 0.73 548811 7658533 

Colville-07 Alnus sp. 1.49 0.84 548832 7658526 

Colville-07 Alnus sp. 1.25 1.22 548755 7658631 

Colville-07 Alnus sp. 1.67 0.93 548755 7658631 

Colville-07 Alnus sp. 0.97 1.04 548755 7658631 

Colville-07 Alnus sp. 0.93 0.56 548788 7658568 

Colville-07 Alnus sp. 1.01 0.61 548805 7658567 

Colville-07 Alnus sp. 1 0.56 548813 7658569 

Colville-07 Alnus sp. 0.95 0.65 548831 7658572 

Colville-07 Alnus sp. 0.86 0.44 548831 7658572 

Colville-07 Alnus sp. 0.88 1.65 548729 7658471 

Colville-07 Alnus sp. 0.91 1.04 548729 7658471 

Colville-07 Alnus sp. 1.46 2.8 548709 7658468 

Colville-07 Alnus sp. 2.26 1.51 548700 7658469 

Colville-07 Alnus sp. 3.45 2.4 548691 7658470 

Colville-07 Alnus sp. 1.53 1.63 548685 7658464 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-07 Alnus sp. 1.08 0.63 548617 7658469 

Colville-07 Alnus sp. 0.77 1.19 548677 7658417 

Colville-07 Alnus sp. 0.9 0.45 548677 7658417 

Colville-07 Alnus sp. 1 0.89 548684 7658415 

Colville-07 Alnus sp. 0.93 0.73 548689 7658413 

Colville-07 Alnus sp. 2.09 2.08 548710 7658410 

Colville-07 Alnus sp. 2.2 2.15 548723 7658417 

Colville-07 Alnus sp. 0.83 0.26 548723 7658417 

Colville-07 Alnus sp. 1.37 0.53 548736 7658418 

Colville-07 Alnus sp. 1.28 1.12 548736 7658418 

Colville-07 Alnus sp. 0.99 1.58 548742 7658417 

Colville-07 Alnus sp. 0.81 0.52 548742 7658417 

Colville-07 Alnus sp. 1.21 1.6 548760 7658414 

Colville-08 Alnus sp. 1.29 0.8 548348 7657625 

Colville-08 Alnus sp. 1.66 0.63 548370 7657631 

Colville-08 Alnus sp. 1 1.23 548379 7657627 

Colville-08 Alnus sp. 1.7 0.73 548381 7657627 

Colville-08 Alnus sp. 1.14 0.89 548388 7657628 

Colville-08 Alnus sp. 1.21 1.24 548388 7657628 

Colville-08 Alnus sp. 1.63 1.24 548388 7657628 

Colville-08 Alnus sp. 1.21 0.66 548404 7657628 

Colville-08 Alnus sp. 1.23 1.68 548404 7657628 

Colville-08 Alnus sp. 1.1 0.89 548450 7657626 

Colville-08 Alnus sp. 1.32 0.74 548461 7657625 

Colville-08 Alnus sp. 1.23 0.65 548461 7657625 

Colville-08 Alnus sp. 1.16 0.8 548475 7657621 

Colville-08 Alnus sp. 0.55 0.33 548475 7657621 

Colville-08 Alnus sp. 0.92 0.57 548491 7657615 

Colville-08 Alnus sp. 0.76 0.45 548491 7657615 

Colville-08 Alnus sp. 1.27 0.65 548515 7657609 

Colville-08 Alnus sp. 1.51 1.12 548486 7657581 

Colville-08 Alnus sp. 1.28 0.83 548486 7657581 

Colville-08 Alnus sp. 1.23 1.01 548486 7657581 

Colville-08 Alnus sp. 1.24 0.6 548388 7657553 

Colville-08 Alnus sp. 0.98 0.51 548388 7657553 

Colville-08 Alnus sp. 0.74 0.38 548388 7657553 

Colville-08 Alnus sp. 1.14 0.52 548386 7657525 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-08 Alnus sp. 0.92 0.92 548342 7657527 

Colville-08 Alnus sp. 0.64 0.32 548342 7657527 

Colville-08 Alnus sp. 0.85 0.6 548347 7657525 

Colville-08 Alnus sp. 0.7 0.7 548347 7657525 

Colville-08 Alnus sp. 1.02 0.7 548347 7657525 

Colville-08 Alnus sp. 0.7 0.6 548360 7657524 

Colville-08 Alnus sp. 0.91 0.56 548367 7657526 

Colville-08 Alnus sp. 1.34 2.29 548472 7657454 

Colville-08 Alnus sp. 1.26 2.11 548445 7657456 

Colville-08 Alnus sp. 1 0.5 548445 7657456 

Colville-08 Alnus sp. 0.94 0.84 548434 7657457 

Colville-08 Alnus sp. 0.7 0.49 548434 7657457 

Colville-08 Alnus sp. 0.84 0.69 548429 7657457 

Colville-08 Alnus sp. 0.65 0.39 548429 7657457 

Colville-08 Alnus sp. 0.78 0.32 548429 7657457 

Colville-08 Alnus sp. 1.25 1.31 548415 7657460 

Colville-08 Alnus sp. 0.73 0.77 548415 7657460 

Colville-08 Alnus sp. 1.11 0.89 548371 7657466 

Colville-08 Alnus sp. 1.01 0.38 548371 7657466 

Colville-08 Alnus sp. 1.04 0.5 548331 7657422 

Colville-08 Alnus sp. 0.77 0.81 548380 7657424 

Colville-08 Alnus sp. 0.92 0.65 548391 7657429 

Colville-08 Alnus sp. 1.1 0.69 548400 7657428 

Colville-08 Alnus sp. 0.76 1.3 548406 7657426 

Colville-08 Alnus sp. 1.27 1.01 548526 7657425 

Colville-08 Alnus sp. 0.6 0.74 548526 7657425 

Colville-08 Alnus sp. 1.09 0.74 548538 7657425 

Colville-08 Alnus sp. 1.25 0.92 548538 7657425 

Colville-09 Alnus sp. 0.89 0.78 540362 7633985 

Colville-09 Alnus sp. 0.72 0.55 540301 7633974 

Colville-09 Alnus sp. 0.56 0.34 540301 7633974 

Colville-09 Alnus sp. 0.75 0.36 540290 7633974 

Colville-09 Alnus sp. 1.13 0.67 540276 7633969 

Colville-09 Alnus sp. 0.62 0.49 540227 7633965 

Colville-09 Alnus sp. 1 0.55 540192 7633965 

Colville-09 Alnus sp. 0.72 1.01 540214 7633956 

Colville-09 Alnus sp. 1 0.43 540287 7633958 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-09 Alnus sp. 0.7 0.37 540325 7633959 

Colville-09 Alnus sp. 0.72 0.56 540331 7633958 

Colville-09 Alnus sp. 0.72 0.34 540337 7633958 

Colville-09 Alnus sp. 1.01 0.56 540352 7633956 

Colville-09 Alnus sp. 1 0.82 540355 7633955 

Colville-09 Alnus sp. 0.8 0.66 540351 7633934 

Colville-09 Alnus sp. 0.66 0.21 540351 7633934 

Colville-09 Alnus sp. 0.75 0.43 540323 7633931 

Colville-09 Alnus sp. 0.62 0.39 540316 7633932 

Colville-09 Alnus sp. 0.66 0.56 540287 7633931 

Colville-09 Alnus sp. 0.89 0.64 540265 7633936 

Colville-09 Alnus sp. 0.91 0.34 540233 7633937 

Colville-09 Alnus sp. 0.63 0.69 540198 7633940 

Colville-09 Alnus sp. 0.68 0.34 540198 7633940 

Colville-09 Alnus sp. 0.55 0.27 540198 7633940 

Colville-09 Alnus sp. 0.79 0.76 540166 7633937 

Colville-09 Alnus sp. 0.92 0.65 540153 7633937 

Colville-09 Alnus sp. 0.79 0.53 540121 7633908 

Colville-09 Alnus sp. 0.79 0.35 540169 7633908 

Colville-09 Alnus sp. 0.72 0.92 540239 7633912 

Colville-09 Alnus sp. 0.79 0.55 540258 7633912 

Colville-09 Alnus sp. 0.74 0.45 540268 7633915 

Colville-09 Alnus sp. 0.96 0.36 540326 7633912 

Colville-09 Alnus sp. 0.86 0.86 540332 7633913 

Colville-09 Alnus sp. 1.05 0.46 540370 7633904 

Colville-09 Alnus sp. 0.82 0.64 540326 7633877 

Colville-09 Alnus sp. 0.71 0.48 540326 7633877 

Colville-09 Alnus sp. 0.79 0.54 540307 7633878 

Colville-09 Alnus sp. 1.04 0.34 540307 7633878 

Colville-09 Alnus sp. 1.25 0.63 540307 7633878 

Colville-09 Alnus sp. 0.68 0.32 540307 7633878 

Colville-09 Alnus sp. 1.53 0.77 540293 7633876 

Colville-09 Alnus sp. 1.07 0.61 540285 7633875 

Colville-09 Alnus sp. 0.87 0.75 540274 7633874 

Colville-09 Alnus sp. 1.27 0.57 540256 7633876 

Colville-09 Alnus sp. 0.99 0.79 540215 7633880 

Colville-09 Alnus sp. 0.65 0.38 540215 7633880 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-09 Alnus sp. 0.68 0.66 540155 7633885 

Colville-09 Alnus sp. 0.78 0.52 540142 7633879 

Colville-09 Alnus sp. 0.74 0.43 540153 7633848 

Colville-09 Alnus sp. 0.91 0.84 540177 7633853 

Colville-09 Alnus sp. 0.96 0.87 540280 7633849 

Colville-09 Alnus sp. 0.93 0.65 540298 7633850 

Colville-09 Alnus sp. 0.66 0.63 540311 7633851 

Colville-09 Alnus sp. 0.77 0.5 540361 7633826 

Colville-09 Alnus sp. 0.93 0.95 540347 7633826 

Colville-09 Alnus sp. 0.62 0.3 540347 7633826 

Colville-09 Alnus sp. 0.82 1.05 540241 7633819 

Colville-09 Alnus sp. 1.06 0.92 540228 7633818 

Colville-09 Alnus sp. 0.85 0.92 540228 7633818 

Colville-09 Alnus sp. 0.89 0.33 540191 7633820 

Colville-09 Alnus sp. 0.64 0.84 540151 7633823 

Colville-09 Alnus sp. 0.82 0.65 540158 7633805 

Colville-09 Alnus sp. 0.86 0.93 540171 7633806 

Colville-09 Alnus sp. 0.77 0.95 540196 7633807 

Colville-09 Alnus sp. 0.8 1.31 540202 7633805 

Colville-09 Alnus sp. 0.66 0.16 540202 7633805 

Colville-09 Alnus sp. 0.85 0.61 540213 7633807 

Colville-09 Alnus sp. 0.94 1.31 540235 7633811 

Colville-09 Alnus sp. 1.03 1.4 540247 7633809 

Colville-09 Alnus sp. 1.15 0.78 540323 7633816 

Colville-09 Alnus sp. 1.04 0.6 540339 7633818 

Colville-09 Alnus sp. 1.27 1.2 540344 7633813 

Colville-09 Alnus sp. 1.19 0.49 540358 7633808 

Colville-09 Alnus sp. 2.21 1.14 540369 7633802 

Colville-09 Alnus sp. 1.18 0.93 540364 7633777 

Colville-09 Alnus sp. 2.39 2.97 540357 7633778 

Colville-09 Alnus sp. 2.6 1.32 540354 7633777 

Colville-09 Alnus sp. 1.47 1.02 540348 7633777 

Colville-09 Alnus sp. 1.48 0.71 540337 7633781 

Colville-09 Alnus sp. 1.05 0.73 540316 7633780 

Colville-09 Alnus sp. 0.75 0.67 540311 7633783 

Colville-09 Alnus sp. 1.11 0.51 540269 7633777 

Colville-09 Alnus sp. 0.74 0.37 540187 7633749 



212 

 

 

 

Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-09 Alnus sp. 1.23 1.08 540213 7633746 

Colville-09 Alnus sp. 0.57 0.19 540213 7633746 

Colville-09 Alnus sp. 1.23 0.58 540226 7633746 

Colville-09 Alnus sp. 0.57 0.33 540226 7633746 

Colville-09 Alnus sp. 1.31 0.46 540251 7633746 

Colville-09 Alnus sp. 1.61 1.52 540300 7633744 

Colville-09 Alnus sp. 1.39 0.93 540320 7633744 

Colville-09 Alnus sp. 2.29 0.87 540329 7633744 

Colville-09 Alnus sp. 1.49 1.01 540339 7633745 

Colville-09 Alnus sp. 2.73 1.31 540343 7633745 

Colville-09 Alnus sp. 1.67 1.12 540355 7633744 

Colville-09 Alnus sp. 1.6 0.8 540367 7633754 

Colville-10 Alnus sp. 1.47 1.02 539601 7630441 

Colville-10 Alnus sp. 1.11 0.45 539604 7630418 

Colville-10 Alnus sp. 1.05 0.74 539603 7630404 

Colville-10 Alnus sp. 0.9 0.75 539603 7630404 

Colville-10 Alnus sp. 2.52 1.19 539601 7630337 

Colville-10 Alnus sp. 1.28 0.73 539606 7630321 

Colville-10 Alnus sp. 2 1.27 539607 7630305 

Colville-10 Alnus sp. 3.05 1.99 539603 7630295 

Colville-10 Alnus sp. 1.69 1.99 539603 7630295 

Colville-10 Alnus sp. 0.82 0.89 539603 7630268 

Colville-10 Alnus sp. 1.15 1.67 539603 7630268 

Colville-10 Alnus sp. 1.25 3.65 539604 7630237 

Colville-10 Alnus sp. 1.3 1.31 539601 7630225 

Colville-10 Salix sp. 2.07 1.82 539653 7630206 

Colville-10 Alnus sp. 1.48 1.08 539805 7630461 

Colville-10 Alnus sp. 1.73 1.24 539806 7630453 

Colville-10 Alnus sp. 0.88 0.91 539803 7630442 

Colville-10 Alnus sp. 1.29 0.72 539804 7630437 

Colville-10 Alnus sp. 1.28 0.79 539804 7630420 

Colville-10 Alnus sp. 1.8 0.73 539801 7630371 

Colville-10 Alnus sp. 1.24 0.84 539800 7630366 

Colville-10 Alnus sp. 2.22 2.45 539800 7630353 

Colville-10 Alnus sp. 2.49 1.13 539795 7630343 

Colville-10 Alnus sp. 1.62 0.96 539797 7630328 

Colville-10 Alnus sp. 1.29 2.06 539794 7630315 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-10 Alnus sp. 2.79 1.23 539794 7630315 

Colville-10 Alnus sp. 2.33 1.16 539804 7630284 

Colville-10 Alnus sp. 1.29 1.39 539804 7630284 

Colville-10 Alnus sp. 2.45 1.58 539806 7630272 

Colville-10 Alnus sp. 1.63 1.38 539804 7630265 

Colville-10 Alnus sp. 1.91 1.11 539803 7630259 

Colville-10 Alnus sp. 1.21 1.18 539803 7630232 

Colville-10 Alnus sp. 0.86 0.96 539801 7630214 

Colville-10 Alnus sp. 1.18 0.79 539750 7630218 

Colville-10 Alnus sp. 1.58 1.41 539750 7630240 

Colville-10 Alnus sp. 2.22 1.29 539751 7630250 

Colville-10 Salix sp. 1.52 1.01 539750 7630260 

Colville-10 Alnus sp. 2.71 1.87 539747 7630275 

Colville-10 Alnus sp. 2.79 1.01 539745 7630287 

Colville-10 Alnus sp. 1.81 1.38 539745 7630307 

Colville-10 Alnus sp. 0.86 0.85 539745 7630307 

Colville-10 Alnus sp. 2.65 2.12 539744 7630329 

Colville-10 Alnus sp. 1.92 1.18 539749 7630353 

Colville-10 Alnus sp. 2.82 2.77 539747 7630374 

Colville-10 Alnus sp. 1.23 0.96 539745 7630382 

Colville-10 Alnus sp. 1.42 0.88 539744 7630399 

Colville-10 Alnus sp. 0.98 0.89 539742 7630429 

Colville-10 Alnus sp. 0.72 0.51 539746 7630447 

Colville-10 Alnus sp. 1.22 0.94 539746 7630447 

Colville-10 Alnus sp. 1.62 1.15 539746 7630454 

Colville-10 Alnus sp. 1.1 1.17 539749 7630463 

Colville-10 Alnus sp. 1.58 1.05 539698 7630465 

Colville-10 Alnus sp. 1.26 1.46 539698 7630465 

Colville-10 Alnus sp. 1.66 1.96 539696 7630431 

Colville-10 Alnus sp. 1.03 1.01 539696 7630387 

Colville-10 Alnus sp. 0.83 1.21 539696 7630384 

Colville-10 Alnus sp. 2.38 2.24 539694 7630362 

Colville-10 Alnus sp. 2.01 1.04 539696 7630345 

Colville-10 Alnus sp. 1.18 1.08 539696 7630345 

Colville-10 Salix sp. 3.21 3.68 539693 7630330 

Colville-10 Alnus sp. 1.32 1.37 539689 7630304 

Colville-10 Alnus sp. 2.26 2.28 539687 7630276 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-10 Alnus sp. 0.82 1.19 539680 7630262 

Colville-10 Alnus sp. 1.49 2.37 539699 7630209 

Colville-10 Alnus sp. 1.37 3.95 539647 7630215 

Colville-10 Alnus sp. 3.35 1.95 539655 7630267 

Colville-10 Alnus sp. 1.58 1.66 539655 7630267 

Colville-10 Alnus sp. 2.62 0.94 539651 7630281 

Colville-10 Alnus sp. 2.54 1.4 539651 7630281 

Colville-10 Alnus sp. 2.53 0.81 539652 7630289 

Colville-10 Alnus sp. 1.86 1.1 539652 7630289 

Colville-10 Alnus sp. 1.29 1.21 539655 7630326 

Colville-10 Alnus sp. 1.13 2.98 539653 7630338 

Colville-10 Alnus sp. 1.22 1.19 539656 7630346 

Colville-10 Alnus sp. 0.67 0.75 539654 7630351 

Colville-10 Alnus sp. 1.56 0.9 539657 7630414 

Colville-10 Alnus sp. 0.79 1.13 539655 7630431 

Colville-10 Alnus sp. 1.43 0.39 539653 7630453 

Colville-10 Alnus sp. 1.27 0.79 539652 7630462 

Colville-11 Salix sp. 4.18 2.76 536830 7630770 

Colville-11 Alnus sp. 1.17 1.36 536808 7630776 

Colville-11 Alnus sp. 1.75 1.69 536730 7630779 

Colville-11 Alnus sp. 1.03 1 536730 7630779 

Colville-11 Alnus sp. 1.12 0.37 536659 7630774 

Colville-11 Alnus sp. 1.86 1 536659 7630774 

Colville-11 Alnus sp. 1.71 1.05 536642 7630774 

Colville-11 Alnus sp. 1.35 0.74 536638 7630775 

Colville-11 Alnus sp. 1 0.38 536638 7630775 

Colville-11 Alnus sp. 1.41 2.02 536629 7630804 

Colville-11 Alnus sp. 1.13 0.68 536632 7630802 

Colville-11 Alnus sp. 1.01 1.34 536648 7630806 

Colville-11 Alnus sp. 1.54 1.24 536658 7630803 

Colville-11 Alnus sp. 1.39 0.49 536662 7630804 

Colville-11 Alnus sp. 1.46 1.04 536662 7630804 

Colville-11 Salix sp. 4.67 1.77 536665 7630804 

Colville-11 Salix sp. 4.35 7.34 536793 7630816 

Colville-11 Alnus sp. 0.86 0.75 536782 7630838 

Colville-11 Alnus sp. 2.06 1.47 536749 7630839 

Colville-11 Alnus sp. 2.14 1.28 536749 7630839 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-11 Alnus sp. 0.77 0.53 536699 7630833 

Colville-11 Alnus sp. 0.91 0.53 536699 7630833 

Colville-11 Alnus sp. 1.05 0.37 536680 7630830 

Colville-11 Alnus sp. 1.69 0.49 536664 7630829 

Colville-11 Alnus sp. 0.98 0.9 536664 7630829 

Colville-11 Alnus sp. 1.44 0.96 536636 7630828 

Colville-11 Alnus sp. 1.28 0.82 536627 7630824 

Colville-11 Alnus sp. 0.77 0.71 536619 7630823 

Colville-11 Alnus sp. 1.55 0.57 536619 7630823 

Colville-11 Alnus sp. 1.66 1.07 536646 7630852 

Colville-11 Alnus sp. 1.32 0.73 536663 7630855 

Colville-11 Alnus sp. 0.88 0.93 536675 7630852 

Colville-11 Alnus sp. 1.11 1.28 536694 7630848 

Colville-11 Alnus sp. 0.9 0.97 536702 7630850 

Colville-11 Salix sp. 4.06 1.31 536723 7630851 

Colville-11 Salix sp. 4.16 2.7 536723 7630851 

Colville-11 Salix sp. 1.81 1.48 536776 7630845 

Colville-11 Alnus sp. 1.18 0.46 536774 7630880 

Colville-11 Alnus sp. 1.18 0.59 536774 7630880 

Colville-11 Alnus sp. 1.18 0.79 536774 7630880 

Colville-11 Alnus sp. 1.05 0.61 536704 7630883 

Colville-11 Alnus sp. 1.01 0.61 536692 7630883 

Colville-11 Alnus sp. 1.18 0.56 536678 7630881 

Colville-11 Alnus sp. 1.15 0.4 536678 7630881 

Colville-11 Alnus sp. 0.93 0.31 536678 7630881 

Colville-11 Alnus sp. 0.88 0.95 536650 7630882 

Colville-11 Alnus sp. 0.96 0.42 536648 7630918 

Colville-11 Alnus sp. 1.32 0.4 536661 7630901 

Colville-11 Alnus sp. 1.81 1.5 536661 7630901 

Colville-11 Alnus sp. 0.98 0.35 536669 7630903 

Colville-11 Alnus sp. 1.24 0.92 536669 7630903 

Colville-11 Alnus sp. 1.29 0.92 536669 7630905 

Colville-11 Alnus sp. 1.45 0.99 536678 7630904 

Colville-11 Alnus sp. 1.29 1.01 536684 7630907 

Colville-11 Alnus sp. 1.51 0.7 536690 7630907 

Colville-11 Alnus sp. 0.96 0.84 536691 7630904 

Colville-11 Alnus sp. 2.67 2.34 536714 7630905 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-11 Alnus sp. 1.13 1.73 536743 7630907 

Colville-11 Alnus sp. 2.17 1.36 536750 7630915 

Colville-11 Alnus sp. 1.88 1.55 536747 7630919 

Colville-11 Alnus sp. 1.21 1.85 536753 7630915 

Colville-11 Alnus sp. 1.61 1.35 536701 7630916 

Colville-11 Alnus sp. 1.31 0.38 536692 7630919 

Colville-11 Alnus sp. 1.24 0.49 536692 7630919 

Colville-11 Alnus sp. 1.66 1.41 536684 7630915 

Colville-11 Alnus sp. 1.5 0.92 536657 7630917 

Colville-11 Alnus sp. 1.08 0.47 536647 7630917 

Colville-11 Alnus sp. 0.83 0.41 536640 7630957 

Colville-11 Alnus sp. 1.13 0.82 536659 7630954 

Colville-11 Alnus sp. 1.62 1.01 536693 7630953 

Colville-11 Salix sp. 4.43 2.9 536704 7630951 

Colville-11 Alnus sp. 1.47 0.97 536736 7630952 

Colville-11 Alnus sp. 1.55 0.95 536847 7630961 

Colville-11 Alnus sp. 1.26 1.39 536860 7630957 

Colville-11 Alnus sp. 1.17 1.04 536863 7630956 

Colville-11 Alnus sp. 0.94 1.41 536837 7630974 

Colville-11 Alnus sp. 1.26 1.35 536837 7630974 

Colville-11 Alnus sp. 1.42 0.81 536858 7631004 

Colville-11 Alnus sp. 1.69 2.19 536832 7631000 

Colville-11 Alnus sp. 2.77 2.08 536780 7631000 

Colville-11 Alnus sp. 0.84 1.32 536725 7631000 

Colville-11 Alnus sp. 0.8 0.83 536695 7630994 

Colville-11 Alnus sp. 1.25 0.82 536682 7630994 

Colville-11 Alnus sp. 1.09 0.82 536682 7630994 

Colville-11 Alnus sp. 0.86 0.8 536666 7630993 

Colville-11 Alnus sp. 1.31 0.79 536635 7630994 

Colville-11 Alnus sp. 0.88 0.41 536625 7630997 

Colville-11 Alnus sp. 0.86 0.59 536735 7631045 

Colville-11 Alnus sp. 1.13 0.76 536670 7630924 

Colville-11 Alnus sp. 1.24 1.48 536681 7630919 

Colville-11 Alnus sp. 1.82 0.62 536664 7630975 

Colville-11 Alnus sp. 5.05 1.09 536693 7630971 

Colville-11 Alnus sp. 4.91 1.9 536693 7630971 

Colville-12 Alnus sp. 0.92 1.21 528809 7628879 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-12 Alnus sp. 0.78 0.88 528818 7628878 

Colville-12 Salix sp. 0.85 1.07 528833 7628880 

Colville-12 Salix sp. 2.63 0.66 528846 7628877 

Colville-12 Salix sp. 2.6 1.76 528846 7628877 

Colville-12 Salix sp. 2.9 0.87 528862 7628883 

Colville-12 Alnus sp. 1.26 0.74 528866 7628881 

Colville-12 Alnus sp. 1.24 1.12 528892 7628879 

Colville-12 Salix sp. 2.32 1.66 528911 7628881 

Colville-12 Alnus sp. 1.58 1.29 528924 7628876 

Colville-12 Alnus sp. 1.9 2.26 528941 7628874 

Colville-12 Alnus sp. 1.93 1.54 528933 7628928 

Colville-12 Alnus sp. 2.41 2.09 528917 7628933 

Colville-12 Alnus sp. 1.41 2.56 528900 7628934 

Colville-12 Alnus sp. 1.74 1.38 528886 7628930 

Colville-12 Salix sp. 1.28 1.1 528852 7628929 

Colville-12 Alnus sp. 1.34 1.36 528848 7628930 

Colville-12 Alnus sp. 1.75 1.53 528808 7628931 

Colville-12 Alnus sp. 2.05 1.1 528798 7628927 

Colville-12 Alnus sp. 1.64 1.47 528795 7628929 

Colville-12 Salix sp. 1.19 1.23 528771 7628931 

Colville-12 Alnus sp. 1.73 1 528765 7628927 

Colville-12 Alnus sp. 2.2 1.03 528753 7628921 

Colville-12 Alnus sp. 2.2 1.3 528746 7628922 

Colville-12 Alnus sp. 1.69 1.13 528686 7628929 

Colville-12 Alnus sp. 1.55 0.94 528720 7628920 

Colville-12 Alnus sp. 2.33 1.99 528711 7628921 

Colville-12 Salix sp. 1.89 1.49 528698 7628920 

Colville-12 Alnus sp. 2.54 1.81 528692 7628925 

Colville-12 Alnus sp. 1.25 0.62 528687 7628923 

Colville-12 Alnus sp. 1.64 2.12 528737 7628976 

Colville-12 Salix sp. 1.43 0.96 528739 7628980 

Colville-12 Alnus sp. 1.2 1.25 528759 7628991 

Colville-12 Alnus sp. 0.76 1.58 528775 7628982 

Colville-12 Alnus sp. 0.64 0.45 528783 7628980 

Colville-12 Alnus sp. 0.87 0.64 528783 7628980 

Colville-12 Alnus sp. 1.17 0.89 528787 7628982 

Colville-12 Alnus sp. 1.16 0.87 528807 7628984 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-12 Alnus sp. 1 1.35 528823 7628982 

Colville-12 Salix sp. 1.31 1.83 528843 7628972 

Colville-12 Salix sp. 1.71 1.19 528859 7628980 

Colville-12 Alnus sp. 1.85 1.14 528868 7628979 

Colville-12 Salix sp. 1.77 0.66 528937 7629033 

Colville-12 Alnus sp. 1.94 1.34 528937 7629036 

Colville-12 Alnus sp. 1.69 0.97 528916 7629044 

Colville-12 Alnus sp. 2.44 1.34 528916 7629044 

Colville-12 Alnus sp. 2.35 1.51 528896 7629043 

Colville-12 Alnus sp. 1.75 1.97 528887 7629043 

Colville-12 Alnus sp. 2.41 0.9 528886 7629043 

Colville-12 Alnus sp. 1.42 0.65 528886 7629043 

Colville-12 Alnus sp. 2.65 0.49 528878 7629040 

Colville-12 Alnus sp. 1.99 1.06 528878 7629040 

Colville-12 Alnus sp. 1.96 0.99 528866 7629035 

Colville-12 Alnus sp. 1.07 2.45 528862 7629037 

Colville-12 Salix sp. 2.18 1.22 528838 7629036 

Colville-12 Alnus sp. 1.16 1.11 528812 7629032 

Colville-12 Alnus sp. 1.54 2.08 528800 7629033 

Colville-12 Alnus sp. 1.28 1.26 528760 7629024 

Colville-12 Alnus sp. 1.64 1.38 528748 7629022 

Colville-12 Alnus sp. 1.31 0.95 528748 7629022 

Colville-12 Alnus sp. 1.91 0.91 528737 7629018 

Colville-12 Alnus sp. 0.78 0.63 528724 7629019 

Colville-12 Alnus sp. 1.22 0.43 528720 7629016 

Colville-12 Alnus sp. 1.51 1.8 528779 7629077 

Colville-12 Alnus sp. 2.34 1.97 528812 7629077 

Colville-12 Alnus sp. 2.4 0.57 528820 7629082 

Colville-12 Alnus sp. 1.5 1.3 528820 7629082 

Colville-12 Alnus sp. 1.1 0.8 528858 7629082 

Colville-12 Alnus sp. 1.03 0.8 528858 7629082 

Colville-12 Alnus sp. 0.92 0.4 528858 7629082 

Colville-12 Alnus sp. 0.72 1.05 528868 7629078 

Colville-12 Alnus sp. 1.22 1.37 528879 7629075 

Colville-12 Alnus sp. 1.87 1.55 528908 7629039 

Colville-12 Salix sp. 2.15 1.51 528907 7629083 

Colville-12 Alnus sp. 2.48 1.98 528913 7629079 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-12 Alnus sp. 2.71 1.38 528922 7629078 

Colville-12 Alnus sp. 0.57 0.48 528700 7628879 

Colville-12 Alnus sp. 0.81 0.72 528700 7628879 

Colville-12 Alnus sp. 0.87 1.06 528735 7628881 

Colville-12 Alnus sp. 1.45 0.84 528745 7628880 

Colville-12 Alnus sp. 1.22 0.87 528751 7628874 

Colville-13 Betula sp. 0.99 1.04 528649 7628604 

Colville-13 Alnus sp. 1.53 1.71 528457 7628611 

Colville-13 Alnus sp. 1.8 1.88 528445 7628612 

Colville-13 Alnus sp. 1.91 1.75 528428 7628576 

Colville-13 Alnus sp. 2.47 1.36 528433 7628574 

Colville-13 Alnus sp. 2.73 3.43 528439 7628573 

Colville-13 Salix sp. 0.75 1.17 528590 7628574 

Colville-13 Alnus sp. 1.32 0.79 528593 7628547 

Colville-13 Alnus sp. 1.39 0.76 528558 7628548 

Colville-13 Alnus sp. 2.25 2.27 528558 7628548 

Colville-13 Alnus sp. 2.2 1.31 528468 7628546 

Colville-13 Alnus sp. 2.28 0.97 528468 7628546 

Colville-13 Alnus sp. 1.41 1.06 528468 7628546 

Colville-13 Salix sp. 2.59 3.69 528445 7628549 

Colville-13 Alnus sp. 2.66 1.93 528440 7628548 

Colville-13 Salix sp. 1.37 1.46 528431 7628549 

Colville-13 Alnus sp. 3 1.63 528430 7628552 

Colville-13 Alnus sp. 1.23 0.63 528428 7628521 

Colville-13 Alnus sp. 2.67 0.66 528428 7628521 

Colville-13 Alnus sp. 1.58 0.83 528437 7628521 

Colville-13 Alnus sp. 1.9 1.21 528441 7628520 

Colville-13 Alnus sp. 1.22 1.34 528452 7628522 

Colville-13 Alnus sp. 1.87 0.88 528461 7628517 

Colville-13 Alnus sp. 2.48 1.79 528487 7628517 

Colville-13 Salix sp. 2.66 2.3 528496 7628515 

Colville-13 Alnus sp. 1.89 0.61 528512 7628513 

Colville-13 Alnus sp. 2.19 1.25 528512 7628513 

Colville-13 Salix sp. 2.08 2.64 528559 7628506 

Colville-13 Salix sp. 4.37 2.52 528584 7628519 

Colville-13 Alnus sp. 3.18 3.27 528589 7628508 

Colville-13 Betula sp. 1.19 1.02 528617 7628513 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-13 Alnus sp. 1.3 2.82 528578 7628498 

Colville-13 Salix sp. 3.25 2.37 528571 7628510 

Colville-13 Salix sp. 1.87 1.53 528559 7628509 

Colville-13 Salix sp. 0.9 1.76 528533 7628509 

Colville-13 Alnus sp. 2.62 1.68 528501 7628475 

Colville-13 Alnus sp. 3.01 2.44 528492 7628480 

Colville-13 Salix sp. 1.69 1.48 528485 7628483 

Colville-13 Salix sp. 1.74 1.03 528437 7628500 

Colville-13 Alnus sp. 1.63 1.28 528427 7628499 

Colville-13 Alnus sp. 2.14 1.04 528427 7628499 

Colville-13 Alnus sp. 2.7 2.07 528425 7628476 

Colville-13 Alnus sp. 3.09 2.02 528469 7628471 

Colville-13 Alnus sp. 2.65 1.81 528478 7628468 

Colville-13 Salix sp. 1.71 1.12 528487 7628466 

Colville-13 Salix sp. 2.17 2.01 528515 7628464 

Colville-13 Salix sp. 1.9 2.29 528521 7628459 

Colville-13 Salix sp. 0.78 1.84 528593 7628456 

Colville-13 Salix sp. 2.2 2.98 528515 7628457 

Colville-13 Salix sp. 2.37 1.52 528505 7628460 

Colville-13 Alnus sp. 1.53 0.92 528492 7628458 

Colville-13 Alnus sp. 1.23 2.1 528482 7628457 

Colville-13 Alnus sp. 2.57 0.77 528474 7628456 

Colville-13 Alnus sp. 2.43 2.51 528439 7628423 

Colville-13 Salix sp. 1.98 1.71 528444 7628418 

Colville-13 Alnus sp. 2 1.45 528450 7628418 

Colville-13 Alnus sp. 1.94 1.49 528461 7628414 

Colville-13 Alnus sp. 1.56 1.21 528471 7628411 

Colville-13 Alnus sp. 1.42 1.49 528480 7628410 

Colville-13 Alnus sp. 1.42 1.52 528480 7628410 

Colville-13 Salix sp. 1.27 0.93 528589 7628407 

Colville-13 Salix sp. 2.15 0.97 528599 7628405 

Colville-13 Salix sp. 1.25 1.35 528614 7628401 

Colville-13 Alnus sp. 1.81 1.13 528481 7628390 

Colville-13 Alnus sp. 1.42 1.26 528470 7628399 

Colville-13 Alnus sp. 1.79 1.19 528462 7628400 

Colville-13 Alnus sp. 1.59 1.28 528453 7628401 

Colville-13 Alnus sp. 1.7 2.07 528441 7628400 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-13 Alnus sp. 2.87 2.01 528458 7628414 

Colville-13 Alnus sp. 2.37 1.74 528457 7628365 

Colville-13 Salix sp. 2.22 1.28 528478 7628372 

Colville-13 Salix sp. 1.43 2.01 528486 7628369 

Colville-13 Alnus sp. 3.02 3.14 528576 7628383 

Colville-13 Alnus sp. 2.44 1.3 528660 7628378 

Colville-13 Alnus sp. 1.91 1.63 528677 7628355 

Colville-13 Salix sp. 1.47 0.79 528658 7628347 

Colville-13 Salix sp. 1.86 0.38 528658 7628347 

Colville-13 Alnus sp. 1.91 1.64 528651 7628348 

Colville-13 Salix sp. 2 1.11 528546 7628339 

Colville-13 Salix sp. 1.07 1.94 528515 7628319 

Colville-13 Salix sp. 2.14 1.25 528508 7628339 

Colville-14 Alnus sp. 0.8 0.35 528152 7626827 

Colville-14 Alnus sp. 0.9 0.61 528133 7626824 

Colville-14 Alnus sp. 0.93 0.27 528113 7626824 

Colville-14 Alnus sp. 0.69 0.56 528068 7626820 

Colville-14 Alnus sp. 0.62 0.36 528029 7626829 

Colville-14 Alnus sp. 0.67 0.71 528006 7626827 

Colville-14 Alnus sp. 0.75 1.16 527977 7626830 

Colville-14 Alnus sp. 0.92 0.42 527975 7626828 

Colville-14 Alnus sp. 0.67 0.9 527960 7626826 

Colville-14 Alnus sp. 0.69 0.78 527953 7626827 

Colville-14 Alnus sp. 0.75 0.55 527953 7626827 

Colville-14 Alnus sp. 1.32 1.01 527964 7626802 

Colville-14 Alnus sp. 0.83 0.7 527968 7626802 

Colville-14 Alnus sp. 0.88 1.11 527978 7626803 

Colville-14 Alnus sp. 0.77 0.87 527998 7626803 

Colville-14 Alnus sp. 0.73 0.41 528033 7626802 

Colville-14 Alnus sp. 0.69 0.72 528065 7626805 

Colville-14 Alnus sp. 0.97 0.86 528077 7626805 

Colville-14 Alnus sp. 0.96 0.93 528110 7626807 

Colville-14 Alnus sp. 0.69 0.58 528114 7626808 

Colville-14 Alnus sp. 0.71 0.56 528157 7626805 

Colville-14 Alnus sp. 0.5 0.92 528158 7626779 

Colville-14 Alnus sp. 0.62 0.93 528090 7626778 

Colville-14 Alnus sp. 0.58 0.44 528078 7626778 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Colville-14 Alnus sp. 0.57 0.97 528074 7626777 

Colville-14 Alnus sp. 0.5 1.54 527992 7626772 

Colville-14 Alnus sp. 0.59 0.86 527907 7626779 

Colville-14 Alnus sp. 0.85 0.93 527924 7626748 

Colville-14 Alnus sp. 0.83 0.44 528063 7626749 

Colville-14 Alnus sp. 0.61 0.75 528094 7626747 

Colville-14 Alnus sp. 0.64 0.59 528063 7626731 

Colville-14 Alnus sp. 0.61 0.51 528063 7626731 

Colville-14 Alnus sp. 0.9 0.65 527961 7626701 

Colville-14 Alnus sp. 0.69 0.26 528089 7626678 

Colville-14 Alnus sp. 0.79 0.74 527975 7626685 

Colville-14 Alnus sp. 0.78 1 527913 7626678 

Colville-14 Alnus sp. 0.75 0.56 527928 7626652 

Colville-14 Alnus sp. 0.57 0.37 527979 7626649 

Colville-14 Alnus sp. 1.22 0.77 528087 7626648 

Colville-14 Alnus sp. 0.77 0.48 528145 7626639 

Colville-14 Salix sp. 0.87 1.1 528103 7626628 

Colville-14 Alnus sp. 0.64 0.59 527996 7626627 

Colville-14 Alnus sp. 1.09 0.64 528015 7626590 

Colville-14 Alnus sp. 0.81 1.04 528015 7626590 

Colville-14 Salix sp. 1.09 1.05 528049 7626595 

Colville-14 Salix sp. 1.14 1 528102 7626598 

Colville-14 Salix sp. 0.79 0.88 528109 7626599 

Colville-14 Salix sp. 1.18 0.79 528109 7626599 

Colville-14 Salix sp. 0.7 0.79 528127 7626600 

Colville-14 Alnus sp. 1.05 0.49 528140 7626603 

Colville-14 Alnus sp. 0.87 1.31 528161 7626608 
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B.2. Shrub structural parameters collected during field campaign along the Dalton 

Highway in 2011. The column headers mean: Site, field site surveyed; Sp_genus, species 

genus; X and Y, the coordinate location of the shrub in UTM, Zone 5N. A value of -999 

represents no shrubs surveyed at that site. 

 

Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-01 Willow sp. 0.53 0.5 431147 7750248 

Dalton-01 Willow sp. 0.68 0.45 431102 7750251 

Dalton-01 Willow sp. 0.52 0.38 430980 7750350 

Dalton-01 Willow sp. 0.6 0.27 431094 7750394 

Dalton-02 Willow sp. 0.61 0.36 431380 7750454 

Dalton-03 Willow sp. 0.51 0.53 434854 7705571 

Dalton-03 Willow sp. 0.5 0.66 434854 7705571 

Dalton-03 Willow sp. 0.57 0.66 434871 7705570 

Dalton-03 Willow sp. 0.55 0.85 434888 7705572 

Dalton-03 Willow sp. 0.51 0.68 434936 7705573 

Dalton-03 Willow sp. 0.6 0.48 434972 7705572 

Dalton-03 Willow sp. 0.71 1.16 434991 7705571 

Dalton-03 Willow sp. 0.51 0.55 434991 7705571 

Dalton-03 Willow sp. 0.5 0.36 435071 7705573 

Dalton-03 Birch sp. 0.5 0.73 435062 7705528 

Dalton-03 Willow sp. 0.57 0.69 435032 7705527 

Dalton-03 Willow sp. 0.6 0.45 435026 7705528 

Dalton-03 Willow sp. 0.5 0.81 435022 7705523 

Dalton-03 Willow sp. 0.56 0.38 435010 7705524 

Dalton-03 Willow sp. 0.57 0.42 435000 7705521 

Dalton-03 Willow sp. 0.83 0.3 434996 7705523 

Dalton-03 Willow sp. 0.53 0.26 434990 7705526 

Dalton-03 Willow sp. 0.54 0.47 434979 7705522 

Dalton-03 Willow sp. 0.56 0.57 434972 7705523 

Dalton-03 Willow sp. 0.53 0.54 434972 7705523 

Dalton-03 Willow sp. 0.55 0.64 434966 7705526 

Dalton-03 Willow sp. 0.57 0.89 434957 7705524 

Dalton-03 Willow sp. 0.75 0.57 434953 7705525 

Dalton-03 Willow sp. 0.67 0.42 434948 7705523 

Dalton-03 Willow sp. 0.5 0.67 434942 7705526 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-03 Willow sp. 0.5 0.25 434923 7705526 

Dalton-03 Willow sp. 0.54 1.02 434923 7705526 

Dalton-03 Willow sp. 0.65 0.42 434914 7705523 

Dalton-03 Willow sp. 0.57 0.75 434907 7705521 

Dalton-03 Willow sp. 0.57 0.44 434904 7705524 

Dalton-03 Willow sp. 0.6 0.3 434895 7705523 

Dalton-03 Willow sp. 0.53 0.22 434856 7705521 

Dalton-03 Willow sp. 0.58 0.3 434865 7705474 

Dalton-03 Willow sp. 0.54 0.58 434899 7705475 

Dalton-03 Willow sp. 0.51 0.36 434899 7705475 

Dalton-03 Willow sp. 0.62 0.61 434907 7705472 

Dalton-03 Willow sp. 0.53 0.48 434912 7705475 

Dalton-03 Willow sp. 0.53 0.73 434912 7705475 

Dalton-03 Willow sp. 0.51 0.41 434921 7705476 

Dalton-03 Willow sp. 0.59 0.38 434928 7705473 

Dalton-03 Willow sp. 0.5 0.3 434928 7705473 

Dalton-03 Willow sp. 0.51 0.34 434994 7705473 

Dalton-03 Willow sp. 0.57 0.21 435006 7705470 

Dalton-03 Willow sp. 0.58 0.28 435006 7705470 

Dalton-03 Willow sp. 0.54 0.32 435006 7705470 

Dalton-03 Willow sp. 0.58 0.24 435058 7705475 

Dalton-03 Willow sp. 0.5 0.46 435060 7705475 

Dalton-03 Willow sp. 0.6 0.18 435060 7705475 

Dalton-03 Willow sp. 0.57 1 435071 7705423 

Dalton-03 Willow sp. 0.68 0.41 435053 7705420 

Dalton-03 Willow sp. 0.5 0.39 435053 7705420 

Dalton-03 Willow sp. 0.52 0.34 435038 7705419 

Dalton-03 Willow sp. 0.56 0.34 435032 7705418 

Dalton-03 Willow sp. 0.6 0.35 435032 7705418 

Dalton-03 Willow sp. 0.5 0.53 435032 7705418 

Dalton-03 Willow sp. 0.67 0.55 435006 7705419 

Dalton-03 Willow sp. 0.57 0.26 434993 7705418 

Dalton-03 Willow sp. 0.67 0.46 434986 7705419 

Dalton-03 Willow sp. 0.51 0.55 434986 7705419 

Dalton-03 Willow sp. 0.72 0.45 434965 7705419 

Dalton-03 Willow sp. 0.52 0.51 434947 7705418 

Dalton-03 Willow sp. 0.52 0.57 434947 7705418 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-03 Willow sp. 0.64 0.93 434937 7705417 

Dalton-03 Willow sp. 0.6 0.23 434932 7705417 

Dalton-03 Willow sp. 0.6 0.28 434932 7705417 

Dalton-03 Willow sp. 0.53 0.27 434932 7705417 

Dalton-03 Willow sp. 0.66 0.52 434932 7705417 

Dalton-03 Willow sp. 0.67 0.4 434932 7705417 

Dalton-03 Willow sp. 0.5 0.59 434932 7705417 

Dalton-03 Willow sp. 0.58 0.15 434871 7705420 

Dalton-03 Willow sp. 0.67 0.16 434871 7705420 

Dalton-03 Willow sp. 0.6 0.46 434356 7705418 

Dalton-03 Willow sp. 0.55 0.74 434356 7705418 

Dalton-03 Willow sp. 0.54 0.69 434356 7705418 

Dalton-03 Willow sp. 0.61 0.4 434356 7705418 

Dalton-03 Willow sp. 0.59 1.15 434859 7705375 

Dalton-03 Willow sp. 0.53 0.43 434895 7705374 

Dalton-03 Willow sp. 0.67 0.76 434947 7705373 

Dalton-03 Willow sp. 0.53 0.67 434986 7705376 

Dalton-03 Willow sp. 0.51 0.42 435013 7705375 

Dalton-03 Willow sp. 0.55 0.64 435013 7705375 

Dalton-03 Willow sp. 0.59 0.6 435029 7705372 

Dalton-03 Willow sp. 0.59 0.33 735048 7705370 

Dalton-04 Willow sp. 0.57 0.89 435083 7705302 

Dalton-04 Willow sp. 0.58 0.67 435104 7705298 

Dalton-04 Willow sp. 0.75 0.95 435116 7705299 

Dalton-04 Willow sp. 0.6 0.5 435120 7705297 

Dalton-04 Willow sp. 0.5 0.18 435120 7705297 

Dalton-04 Willow sp. 0.5 0.75 435120 7705297 

Dalton-04 Willow sp. 0.63 0.66 435120 7705297 

Dalton-04 Willow sp. 0.52 0.26 435140 7705298 

Dalton-04 Willow sp. 0.65 0.58 435140 7705298 

Dalton-04 Willow sp. 0.56 0.3 435140 7705298 

Dalton-04 Willow sp. 0.71 0.38 435179 7705298 

Dalton-04 Willow sp. 0.51 0.45 435216 7705299 

Dalton-04 Willow sp. 0.68 0.34 435282 7705249 

Dalton-04 Willow sp. 0.5 0.15 435282 7705249 

Dalton-04 Willow sp. 0.59 0.89 435282 7705249 

Dalton-04 Willow sp. 0.67 1 435282 7705249 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-04 Willow sp. 0.6 0.39 435269 7705250 

Dalton-04 Willow sp. 0.7 0.75 435250 7705248 

Dalton-04 Willow sp. 0.56 0.39 435236 7705248 

Dalton-04 Willow sp. 0.51 0.24 435232 7705247 

Dalton-04 Willow sp. 0.51 0.3 435216 7705247 

Dalton-04 Willow sp. 0.69 0.47 435190 7705249 

Dalton-04 Willow sp. 0.58 0.49 435168 7705251 

Dalton-04 Willow sp. 0.61 0.43 435168 7705251 

Dalton-04 Willow sp. 0.52 0.55 435110 7705251 

Dalton-04 Willow sp. 0.58 0.46 435106 7705249 

Dalton-04 Willow sp. 0.58 0.48 435098 7705248 

Dalton-04 Willow sp. 0.75 0.53 435078 7705249 

Dalton-04 Willow sp. 0.63 0.27 435078 7705249 

Dalton-04 Willow sp. 0.6 0.25 435078 7705249 

Dalton-04 Willow sp. 0.92 1.22 435071 7705202 

Dalton-04 Willow sp. 0.63 0.73 435071 7705202 

Dalton-04 Willow sp. 0.76 0.22 435076 7705202 

Dalton-04 Willow sp. 0.53 0.5 435076 7705202 

Dalton-04 Willow sp. 0.52 0.25 435091 7705205 

Dalton-04 Willow sp. 0.53 0.51 435102 7705200 

Dalton-04 Willow sp. 0.5 0.63 435102 7705200 

Dalton-04 Willow sp. 0.5 0.23 435102 7705200 

Dalton-04 Willow sp. 0.54 0.43 435155 7705202 

Dalton-04 Willow sp. 0.58 0.52 435155 7705202 

Dalton-04 Willow sp. 0.59 0.6 435160 7705199 

Dalton-04 Willow sp. 0.51 0.41 435168 7705201 

Dalton-04 Willow sp. 0.57 0.54 435221 7705198 

Dalton-04 Willow sp. 0.64 0.38 435221 7705198 

Dalton-04 Willow sp. 0.58 0.54 435228 7705200 

Dalton-04 Willow sp. 0.51 0.54 435228 7705200 

Dalton-04 Willow sp. 0.55 1.13 435251 7705198 

Dalton-04 Willow sp. 0.5 0.3 435251 7705198 

Dalton-04 Willow sp. 0.63 0.49 435251 7705198 

Dalton-04 Willow sp. 0.57 0.6 435251 7705198 

Dalton-04 Willow sp. 0.56 0.35 435278 7705199 

Dalton-04 Willow sp. 0.65 0.43 435278 7705199 

Dalton-04 Willow sp. 0.54 0.49 435278 7705199 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-04 Willow sp. 0.64 0.71 435283 7705202 

Dalton-04 Willow sp. 0.5 0.19 435283 7705152 

Dalton-04 Willow sp. 0.54 0.12 435278 7705152 

Dalton-04 Willow sp. 0.56 0.61 435269 7705150 

Dalton-04 Willow sp. 0.56 0.47 435253 7705150 

Dalton-04 Willow sp. 0.53 0.29 435253 7705150 

Dalton-04 Willow sp. 0.5 0.22 435245 7705149 

Dalton-04 Willow sp. 0.52 0.23 435223 7705149 

Dalton-04 Willow sp. 0.8 0.51 435223 7705149 

Dalton-04 Willow sp. 0.89 0.29 435223 7705149 

Dalton-04 Willow sp. 0.94 0.83 435223 7705149 

Dalton-04 Willow sp. 0.62 0.58 435075 7705100 

Dalton-04 Willow sp. 0.6 0.37 435095 7705097 

Dalton-04 Willow sp. 0.56 0.59 435095 7705097 

Dalton-04 Willow sp. 0.71 0.71 435095 7705097 

Dalton-04 Willow sp. 0.75 0.74 435090 7705097 

Dalton-04 Willow sp. 0.77 0.49 435090 7705097 

Dalton-04 Birch sp. 0.54 0.36 435090 7705097 

Dalton-04 Willow sp. 0.85 1.55 435092 7705099 

Dalton-04 Birch sp. 0.64 0.39 435092 7705099 

Dalton-04 Willow sp. 0.51 0.22 435094 7705094 

Dalton-04 Willow sp. 0.55 0.29 435094 7705094 

Dalton-04 Birch sp. 0.51 0.92 435096 7705097 

Dalton-04 Willow sp. 0.57 0.56 435107 7705094 

Dalton-04 Willow sp. 0.56 0.13 435122 7705095 

Dalton-04 Willow sp. 0.57 0.56 435128 7705097 

Dalton-04 Birch sp. 0.76 2.84 435128 7705097 

Dalton-04 Birch sp. 0.51 2.01 435142 7705096 

Dalton-04 Willow sp. 0.55 0.81 435155 7705093 

Dalton-05 Willow sp. 0.77 0.28 426126 7660750 

Dalton-05 Willow sp. 0.57 0.39 426114 7660750 

Dalton-05 Willow sp. 0.53 0.44 426114 7660750 

Dalton-05 Willow sp. 0.55 0.24 426094 7660747 

Dalton-05 Willow sp. 0.85 0.3 426089 7660748 

Dalton-05 Willow sp. 0.5 0.45 426089 7660748 

Dalton-05 Willow sp. 0.62 0.22 426081 7660746 

Dalton-05 Willow sp. 0.66 0.48 426075 7660749 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-05 Birch sp. 0.59 0.14 426071 7660747 

Dalton-05 Willow sp. 0.65 0.46 426065 7660744 

Dalton-05 Willow sp. 0.5 0.53 426057 7660743 

Dalton-05 Willow sp. 0.6 0.59 426034 7660744 

Dalton-05 Willow sp. 0.5 0.39 426020 7660742 

Dalton-05 Willow sp. 0.5 0.32 426025 7660804 

Dalton-05 Willow sp. 0.55 0.17 426045 7660804 

Dalton-05 Willow sp. 0.54 0.28 426049 7660803 

Dalton-05 Willow sp. 0.59 0.44 426079 7660802 

Dalton-05 Willow sp. 0.57 0.29 426079 7660802 

Dalton-05 Willow sp. 0.51 0.52 426116 7660855 

Dalton-05 Willow sp. 0.5 0.24 426030 7660906 

Dalton-06 Birch sp. 0.51 1.08 426587 7660447 

Dalton-06 Willow sp. 0.63 1.1 426587 7660447 

Dalton-06 Willow sp. 0.93 0.34 426583 7660447 

Dalton-06 Willow sp. 0.87 0.87 426583 7660447 

Dalton-06 Willow sp. 0.87 0.36 426583 7660447 

Dalton-06 Willow sp. 0.71 0.44 426578 7660450 

Dalton-06 Willow sp. 0.79 0.34 426578 7660450 

Dalton-06 Willow sp. 0.79 0.36 426578 7660450 

Dalton-06 Willow sp. 0.81 0.67 426578 7660450 

Dalton-06 Willow sp. 0.81 0.59 426578 7660450 

Dalton-06 Willow sp. 0.51 0.57 426578 7660450 

Dalton-06 Willow sp. 0.85 0.57 426578 7660450 

Dalton-06 Willow sp. 0.76 0.28 426578 7660450 

Dalton-06 Willow sp. 0.75 1.26 426572 7660452 

Dalton-06 Willow sp. 0.83 0.74 426572 7660452 

Dalton-06 Willow sp. 0.62 0.47 426572 7660452 

Dalton-06 Willow sp. 0.9 0.74 426573 7660448 

Dalton-06 Willow sp. 0.61 0.87 426573 7660448 

Dalton-06 Willow sp. 1.02 0.79 426569 7660448 

Dalton-06 Willow sp. 0.78 0.67 426569 7660448 

Dalton-06 Willow sp. 1.18 0.54 426569 7660448 

Dalton-06 Willow sp. 0.91 1.07 426569 7660452 

Dalton-06 Willow sp. 0.88 1.48 426569 7660452 

Dalton-06 Willow sp. 0.96 0.66 426459 7660451 

Dalton-06 Willow sp. 0.99 0.58 426459 7660451 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-06 Willow sp. 1.11 1.77 426459 7660451 

Dalton-06 Willow sp. 0.67 0.42 426511 7660495 

Dalton-06 Willow sp. 0.84 0.74 426514 7660497 

Dalton-06 Willow sp. 1.01 2.83 426520 7660497 

Dalton-06 Willow sp. 0.82 0.96 426520 7660494 

Dalton-06 Willow sp. 0.75 1.5 426529 7660496 

Dalton-06 Birch sp. 0.64 1.21 426529 7660496 

Dalton-06 Birch sp. 0.89 1.34 426529 7660496 

Dalton-06 Birch sp. 0.84 0.99 426531 7660495 

Dalton-06 Birch sp. 0.9 0.9 426531 7660495 

Dalton-06 Birch sp. 0.59 2.1 426531 7660495 

Dalton-06 Birch sp. 0.7 1.25 426543 7660494 

Dalton-06 Willow sp. 0.68 0.3 426593 7660552 

Dalton-06 Birch sp. 0.58 0.88 426467 7660552 

Dalton-06 Birch sp. 0.77 1.75 426465 7660551 

Dalton-06 Birch sp. 0.82 0.67 426464 7660552 

Dalton-06 Birch sp. 0.65 0.83 426464 7660552 

Dalton-06 Birch sp. 0.62 0.6 426464 7660552 

Dalton-06 Willow sp. 1.1 1.23 426461 7660552 

Dalton-06 Willow sp. 0.74 0.39 426461 7660552 

Dalton-06 Willow sp. 0.8 0.26 426461 7660552 

Dalton-06 Willow sp. 0.87 0.86 426454 7660554 

Dalton-06 Willow sp. 1 0.99 426454 7660554 

Dalton-06 Willow sp. 0.92 0.86 426454 7660554 

Dalton-06 Willow sp. 0.68 0.7 426454 7660554 

Dalton-06 Birch sp. 0.77 0.95 426449 7660552 

Dalton-06 Willow sp. 1.07 0.73 426449 7660552 

Dalton-06 Willow sp. 1.27 1.47 426449 7660552 

Dalton-06 Willow sp. 0.79 1.96 426445 7660554 

Dalton-06 Willow sp. 1.31 2.24 426445 7660554 

Dalton-06 Willow sp. 1.1 2.05 426445 7660554 

Dalton-06 Willow sp. 1.18 2.2 426441 7660555 

Dalton-06 Willow sp. 0.76 1.1 426441 7660555 

Dalton-06 Willow sp. 0.87 1.36 426435 7660560 

Dalton-06 Willow sp. 0.9 1.64 426435 7660560 

Dalton-06 Willow sp. 0.72 1.68 426435 7660560 

Dalton-06 Birch sp. 0.58 0.86 426428 7660562 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-06 Willow sp. 0.7 1.39 426428 7660562 

Dalton-06 Willow sp. 0.51 0.72 426409 7660601 

Dalton-06 Willow sp. 0.7 1.3 426413 7660600 

Dalton-06 Willow sp. 0.67 1.32 426413 7660600 

Dalton-06 Willow sp. 0.63 1.03 426413 7660600 

Dalton-06 Willow sp. 0.64 1.3 426418 7660598 

Dalton-06 Willow sp. 1.01 1.29 426418 7660598 

Dalton-06 Willow sp. 0.73 0.71 426424 7660597 

Dalton-06 Willow sp. 0.69 0.9 426424 7660597 

Dalton-06 Willow sp. 0.68 0.59 426506 7660591 

Dalton-06 Birch sp. 0.6 0.12 426511 7660589 

Dalton-06 Willow sp. 0.61 0.29 426590 7660651 

Dalton-06 Willow sp. 0.53 0.3 426460 7660649 

Dalton-06 Willow sp. 0.67 1.05 426460 7660649 

Dalton-06 Willow sp. 0.83 1.13 426432 7660650 

Dalton-06 Willow sp. 0.71 1.15 426425 7660650 

Dalton-06 Willow sp. 0.77 1.12 426425 7660650 

Dalton-06 Birch sp. 0.52 1.79 426421 7660649 

Dalton-06 Birch sp. 0.66 0.84 426410 7660650 

Dalton-07 Birch sp. 0.5 0.81 426159 7643100 

Dalton-07 Birch sp. 0.68 0.78 426159 7643100 

Dalton-07 Birch sp. 0.54 0.56 426027 7643050 

Dalton-07 Birch sp. 0.56 0.59 426016 7643048 

Dalton-07 Willow sp. 0.59 0.25 426010 7643047 

Dalton-07 Birch sp. 0.57 0.21 426090 7643001 

Dalton-07 Birch sp. 0.5 0.27 426144 7643000 

Dalton-07 Willow sp. 0.58 0.23 426150 7643001 

Dalton-07 Willow sp. 0.65 0.54 426164 7643002 

Dalton-07 Willow sp. 0.56 0.62 426174 7643003 

Dalton-07 Willow sp. 0.75 0.51 426179 7643001 

Dalton-07 Willow sp. 0.53 0.18 426182 7643001 

Dalton-07 Willow sp. 0.63 0.16 426182 7643001 

Dalton-07 Willow sp. 0.59 0.16 426188 7643001 

Dalton-07 Willow sp. 0.58 0.43 426212 7642998 

Dalton-07 Willow sp. 0.56 0.37 426217 7642997 

Dalton-07 Willow sp. 0.56 0.26 426222 7643000 

Dalton-07 Willow sp. 0.59 0.61 426222 7643000 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-07 Willow sp. 0.53 0.74 426207 7642945 

Dalton-07 Willow sp. 0.72 0.57 426207 7642945 

Dalton-07 Willow sp. 0.56 0.47 426207 7642945 

Dalton-07 Willow sp. 0.58 0.51 426206 7642945 

Dalton-07 Willow sp. 0.53 0.25 426207 7642947 

Dalton-07 Willow sp. 0.61 0.25 426205 7642948 

Dalton-07 Willow sp. 0.54 0.46 426166 7642948 

Dalton-07 Willow sp. 0.59 0.27 426158 7642950 

Dalton-07 Willow sp. 0.51 1.37 426153 7642944 

Dalton-07 Willow sp. 0.57 0.72 426149 7642949 

Dalton-07 Willow sp. 0.64 0.91 426143 7642950 

Dalton-08 Willow sp. 0.52 0.18 425953 7642448 

Dalton-08 Willow sp. 0.62 0.47 425976 7642444 

Dalton-08 Willow sp. 0.55 0.3 425982 7642443 

Dalton-08 Willow sp. 0.72 0.65 425986 7642443 

Dalton-08 Willow sp. 0.76 0.25 425989 7642447 

Dalton-08 Willow sp. 0.65 0.44 426053 7642437 

Dalton-08 Willow sp. 0.66 0.28 426056 7642436 

Dalton-08 Willow sp. 0.74 0.75 426056 7642436 

Dalton-08 Willow sp. 0.56 0.25 426092 7642438 

Dalton-08 Willow sp. 0.62 0.22 426131 7642436 

Dalton-08 Willow sp. 0.72 0.63 426131 7642436 

Dalton-08 Willow sp. 0.58 0.29 426131 7642436 

Dalton-08 Willow sp. 0.8 0.5 426131 7642436 

Dalton-08 Willow sp. 0.51 0.77 426131 7642436 

Dalton-08 Willow sp. 0.53 0.49 426134 7642437 

Dalton-08 Willow sp. 0.69 0.56 426138 7642436 

Dalton-08 Willow sp. 0.6 0.24 426143 7642433 

Dalton-08 Birch sp. 0.62 0.52 426143 7642433 

Dalton-08 Willow sp. 0.55 0.49 426143 7642433 

Dalton-08 Willow sp. 0.51 0.3 426143 7642433 

Dalton-08 Birch sp. 0.69 0.39 426143 7642433 

Dalton-08 Birch sp. 0.71 0.52 426143 7642433 

Dalton-08 Willow sp. 0.67 0.61 426145 7642435 

Dalton-08 Willow sp. 0.51 0.32 426150 7642437 

Dalton-08 Willow sp. 0.67 0.35 426150 7642437 

Dalton-08 Willow sp. 0.51 0.2 426156 7642432 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-08 Willow sp. 0.69 0.34 426162 7642434 

Dalton-08 Willow sp. 0.87 0.35 426162 7642434 

Dalton-08 Willow sp. 0.9 0.2 426162 7642434 

Dalton-08 Willow sp. 0.73 0.37 426162 7642434 

Dalton-08 Willow sp. 0.62 0.47 426167 7642433 

Dalton-08 Willow sp. 0.5 0.41 426036 7642496 

Dalton-08 Willow sp. 0.62 0.34 425953 7642504 

Dalton-08 Willow sp. 0.64 0.61 425977 7642546 

Dalton-08 Willow sp. 0.6 0.13 426051 7642551 

Dalton-08 Willow sp. 0.58 0.32 426051 7642551 

Dalton-08 Willow sp. 0.61 0.46 426063 7642553 

Dalton-08 Willow sp. 0.72 0.36 426126 7642553 

Dalton-08 Willow sp. 0.67 0.2 426140 7642557 

Dalton-08 Alder sp. 0.91 1.06 426168 7642558 

Dalton-08 Alder sp. 0.73 1.37 426168 7642558 

Dalton-08 Alder sp. 0.78 1.14 426175 7642557 

Dalton-08 Willow sp. 0.58 0.17 426161 7642603 

Dalton-08 Willow sp. 0.53 0.41 426158 7642602 

Dalton-08 Willow sp. 0.52 0.21 426150 7642601 

Dalton-08 Willow sp. 0.57 0.26 426150 7642601 

Dalton-08 Willow sp. 0.6 0.19 426150 7642601 

Dalton-08 Willow sp. 0.55 0.26 426143 7642602 

Dalton-08 Willow sp. 0.5 0.36 426140 7642600 

Dalton-08 Willow sp. 0.57 0.2 426140 7642600 

Dalton-08 Willow sp. 0.52 0.4 426138 7642602 

Dalton-08 Willow sp. 0.59 0.22 426131 7642606 

Dalton-08 Willow sp. 0.65 0.66 426131 7642606 

Dalton-08 Willow sp. 0.52 0.45 426131 7642606 

Dalton-08 Alder sp. 0.85 1.38 426131 7642606 

Dalton-08 Willow sp. 0.57 0.23 426131 7642606 

Dalton-08 Willow sp. 0.68 0.25 426131 7642606 

Dalton-08 Willow sp. 0.71 0.65 426131 7642606 

Dalton-08 Willow sp. 0.52 0.52 426131 7642606 

Dalton-08 Willow sp. 0.74 0.56 426131 7642606 

Dalton-08 Willow sp. 0.54 0.22 426131 7642606 

Dalton-08 Willow sp. 0.73 0.41 426116 7642601 

Dalton-08 Willow sp. 0.55 0.41 426105 7642600 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-08 Willow sp. 0.71 0.53 426099 7642600 

Dalton-08 Willow sp. 0.59 0.47 426099 7642600 

Dalton-08 Willow sp. 0.54 0.31 426094 7642596 

Dalton-08 Willow sp. 0.6 0.42 426088 7642594 

Dalton-08 Willow sp. 0.69 0.31 426068 7642598 

Dalton-08 Willow sp. 0.5 0.18 425981 7642599 

Dalton-08 Willow sp. 0.52 0.23 425963 7642601 

Dalton-08 Willow sp. 0.59 0.74 425969 7642653 

Dalton-08 Willow sp. 0.59 0.94 426035 7642647 

Dalton-08 Willow sp. 0.64 1.37 426040 7642648 

Dalton-08 Willow sp. 0.57 0.46 426046 7642651 

Dalton-08 Willow sp. 0.7 1.35 426046 7642651 

Dalton-08 Willow sp. 0.79 0.97 426051 7642651 

Dalton-08 Willow sp. 0.86 0.7 426051 7642649 

Dalton-08 Willow sp. 0.53 0.57 426051 7642649 

Dalton-08 Birch sp. 0.63 0.8 426065 7642652 

Dalton-08 Willow sp. 0.79 1.25 426069 7642650 

Dalton-08 Willow sp. 0.82 0.26 426072 7642652 

Dalton-08 Willow sp. 0.53 0.4 426100 7642653 

Dalton-08 Willow sp. 0.53 0.51 426107 7642652 

Dalton-08 Willow sp. 0.7 0.4 426111 7642651 

Dalton-08 Willow sp. 0.65 0.55 426113 7642649 

Dalton-08 Willow sp. 0.7 0.51 426113 7642649 

Dalton-08 Willow sp. 0.55 0.51 426116 7642651 

Dalton-08 Willow sp. 0.68 0.43 426144 7642650 

Dalton-08 Willow sp. 0.58 0.15 426145 7642649 

Dalton-08 Willow sp. 0.6 0.24 426152 7642649 

Dalton-08 Willow sp. 0.74 0.67 426163 7642648 

Dalton-09 Willow sp. 0.94 4.55 396638 7617201 

Dalton-09 Willow sp. 0.71 4.43 396655 7617200 

Dalton-09 Willow sp. 1.52 2.17 396658 7617201 

Dalton-09 Willow sp. 1.94 3.79 396658 7617201 

Dalton-09 Willow sp. 1.13 2.62 396687 7617199 

Dalton-09 Willow sp. 0.89 1.66 396700 7617198 

Dalton-09 Birch sp. 0.84 0.93 396707 7617197 

Dalton-09 Willow sp. 0.88 2.14 396707 7617197 

Dalton-09 Birch sp. 0.63 2.9 396712 7617199 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-09 Willow sp. 0.66 2.45 396712 7617199 

Dalton-09 Willow sp. 0.85 3.13 396727 7617196 

Dalton-09 Willow sp. 1.05 3.33 396736 7617195 

Dalton-09 Birch sp. 0.63 2.53 396746 7617200 

Dalton-09 Willow sp. 0.56 3.79 396768 7617202 

Dalton-09 Birch sp. 0.68 3.2 396777 7617202 

Dalton-09 Birch sp. 0.7 2.63 396784 7617202 

Dalton-09 Birch sp. 0.8 1.38 396788 7617202 

Dalton-09 Willow sp. 0.74 1.45 396802 7617202 

Dalton-09 Willow sp. 0.83 1.41 396829 7617199 

Dalton-09 Willow sp. 0.65 1.25 396844 7617199 

Dalton-09 Willow sp. 0.62 2.1 396848 7617200 

Dalton-09 Willow sp. 0.64 0.43 396858 7617248 

Dalton-09 Willow sp. 0.75 0.28 396858 7617248 

Dalton-09 Birch sp. 0.52 0.56 396838 7617242 

Dalton-09 Willow sp. 0.62 0.92 396831 7617239 

Dalton-09 Willow sp. 0.68 0.88 396831 7617239 

Dalton-09 Willow sp. 0.69 1.01 396822 7617238 

Dalton-09 Willow sp. 0.68 2.68 396812 7617236 

Dalton-09 Willow sp. 0.85 0.82 396806 7617235 

Dalton-09 Willow sp. 0.69 1.21 396806 7617235 

Dalton-09 Willow sp. 0.97 1.59 396806 7617235 

Dalton-09 Willow sp. 1.09 1.38 396806 7617235 

Dalton-09 Willow sp. 0.57 0.77 396806 7617235 

Dalton-09 Willow sp. 0.75 1.39 396801 7617234 

Dalton-09 Willow sp. 0.86 1.31 396796 7617235 

Dalton-09 Willow sp. 1.1 2.06 396781 7617232 

Dalton-09 Willow sp. 0.61 0.55 396768 7617231 

Dalton-09 Willow sp. 0.58 0.49 396768 7617231 

Dalton-09 Willow sp. 0.69 0.41 396768 7617231 

Dalton-09 Willow sp. 0.74 2.18 396764 7617232 

Dalton-09 Willow sp. 0.68 2.03 396754 7617232 

Dalton-09 Willow sp. 0.62 1.22 396739 7617229 

Dalton-09 Willow sp. 0.7 2.34 396679 7617245 

Dalton-09 Birch sp. 0.53 0.56 396659 7617248 

Dalton-09 Birch sp. 0.85 0.73 396666 7617307 

Dalton-09 Birch sp. 0.53 3.27 396749 7617323 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-09 Willow sp. 0.5 1.93 396752 7617321 

Dalton-09 Birch sp. 0.59 2.41 396769 7617320 

Dalton-09 Birch sp. 0.5 0.71 396807 7617310 

Dalton-09 Birch sp. 0.53 0.81 396807 7617310 

Dalton-09 Birch sp. 0.69 0.86 396806 7617307 

Dalton-09 Birch sp. 0.5 0.64 396828 7617307 

Dalton-09 Willow sp. 0.57 0.35 396835 7617305 

Dalton-09 Willow sp. 0.58 2.18 396840 7617301 

Dalton-09 Willow sp. 0.79 1.47 396845 7617302 

Dalton-09 Willow sp. 0.53 1 396848 7617301 

Dalton-09 Willow sp. 0.51 1.27 396857 7617300 

Dalton-09 Willow sp. 0.53 3.05 396848 7617348 

Dalton-09 Birch sp. 0.69 0.46 396811 7617347 

Dalton-09 Birch sp. 0.5 0.58 396773 7617344 

Dalton-09 Birch sp. 0.51 1.95 396771 7617347 

Dalton-09 Birch sp. 0.58 0.79 396760 7617346 

Dalton-09 Willow sp. 0.55 0.49 396759 7617343 

Dalton-09 Willow sp. 0.51 0.78 396752 7617344 

Dalton-09 Birch sp. 0.56 1.96 396741 7617345 

Dalton-09 Willow sp. 0.61 0.99 396739 7617349 

Dalton-09 Not identified 0.8 0.41 396735 7617347 

Dalton-09 Willow sp. 0.81 2.59 396729 7617347 

Dalton-09 Willow sp. 0.64 1.83 396720 7617346 

Dalton-09 Birch sp. 0.57 1.63 396697 7617345 

Dalton-09 Birch sp. 0.87 0.43 396648 7617402 

Dalton-09 Birch sp. 0.59 1.05 396657 7617399 

Dalton-09 Willow sp. 0.5 0.47 396687 7617394 

Dalton-09 Willow sp. 0.52 0.67 396706 7617393 

Dalton-09 Willow sp. 0.5 1.2 396719 7617393 

Dalton-09 Willow sp. 0.65 2.04 396724 7617394 

Dalton-09 Birch sp. 0.53 1.02 396734 7617393 

Dalton-09 Willow sp. 0.58 1.25 396747 7617394 

Dalton-09 Birch sp. 0.55 0.48 396788 7617394 

Dalton-09 Birch sp. 0.55 1.49 396791 7617392 

Dalton-09 Birch sp. 0.57 1.68 396799 7617394 

Dalton-09 Birch sp. 0.56 1.04 396819 7617392 

Dalton-09 Willow sp. 0.56 1.16 396828 7617394 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-09 Willow sp. 0.86 2.23 396828 7617394 

Dalton-09 Birch sp. 0.6 2.52 396836 7617395 

Dalton-09 Willow sp. 0.55 1.88 396846 7617395 

Dalton-09 Birch sp. 0.57 2.12 396850 7617398 

Dalton-10 Willow sp. 0.69 1.09 402627 7615752 

Dalton-10 Willow sp. 0.73 1.13 402627 7615752 

Dalton-10 Willow sp. 0.65 1.79 402627 7615752 

Dalton-10 Willow sp. 0.66 2.39 402610 7615755 

Dalton-10 Birch sp. 1 0.48 402610 7615755 

Dalton-10 Birch sp. 0.88 0.34 402610 7615755 

Dalton-10 Willow sp. 0.63 1.39 402597 7615753 

Dalton-10 Willow sp. 0.61 0.51 402592 7615754 

Dalton-10 Birch sp. 0.58 0.71 402592 7615754 

Dalton-10 Willow sp. 0.64 0.7 402537 7615750 

Dalton-10 Willow sp. 0.64 0.44 402492 7615753 

Dalton-10 Willow sp. 0.86 0.51 402449 7615696 

Dalton-10 Willow sp. 0.57 0.81 402455 7615695 

Dalton-10 Willow sp. 0.65 0.33 402461 7615694 

Dalton-10 Willow sp. 0.78 1.27 402475 7615696 

Dalton-10 Willow sp. 0.89 1.07 402475 7615696 

Dalton-10 Birch sp. 0.55 0.74 402485 7615699 

Dalton-10 Birch sp. 0.67 0.34 402488 7615698 

Dalton-10 Willow sp. 0.72 0.35 402492 7615698 

Dalton-10 Birch sp. 0.79 0.86 402604 7615692 

Dalton-10 Birch sp. 0.6 0.65 402604 7615692 

Dalton-10 Birch sp. 0.53 1.17 402609 7615693 

Dalton-10 Willow sp. 0.63 0.93 402609 7615693 

Dalton-10 Birch sp. 0.53 1.38 402614 7615694 

Dalton-10 Birch sp. 0.67 0.62 402649 7615694 

Dalton-10 Willow sp. 0.53 0.55 402628 7615650 

Dalton-10 Willow sp. 0.68 0.66 402619 7615652 

Dalton-10 Willow sp. 0.6 0.48 402619 7615652 

Dalton-10 Willow sp. 0.5 0.28 402619 7615652 

Dalton-10 Willow sp. 0.65 0.81 402586 7615652 

Dalton-10 Willow sp. 0.5 1.43 402441 7615651 

Dalton-10 Willow sp. 0.54 1.23 402441 7615651 

Dalton-10 Birch sp. 0.63 1.34 402441 7615602 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-10 Willow sp. 0.67 0.4 402441 7615602 

Dalton-10 Birch sp. 0.9 1.06 402441 7615602 

Dalton-10 Birch sp. 0.52 1.08 402450 7615599 

Dalton-10 Birch sp. 0.56 0.41 402464 7615599 

Dalton-10 Willow sp. 0.56 0.32 402537 7615602 

Dalton-10 Birch sp. 0.5 0.6 402584 7615600 

Dalton-10 Willow sp. 0.74 0.75 402601 7615600 

Dalton-10 Birch sp. 0.72 0.53 402601 7615600 

Dalton-10 Birch sp. 0.5 0.45 402601 7615600 

Dalton-10 Willow sp. 0.71 1.1 402601 7615600 

Dalton-10 Willow sp. 0.58 1.43 402601 7615600 

Dalton-10 Birch sp. 0.66 0.69 402605 7615599 

Dalton-10 Birch sp. 0.74 0.79 402605 7615599 

Dalton-10 Willow sp. 0.69 0.83 402657 7615601 

Dalton-10 Birch sp. 0.86 0.77 402563 7615555 

Dalton-10 Birch sp. 0.8 0.76 402563 7615555 

Dalton-10 Birch sp. 0.78 0.76 402563 7615555 

Dalton-10 Birch sp. 0.65 1.09 402556 7615556 

Dalton-10 Birch sp. 0.53 0.74 402556 7615556 

Dalton-10 Birch sp. 0.5 0.38 402556 7615556 

Dalton-10 Willow sp. 0.57 0.68 402445 7615551 

Dalton-10 Willow sp. 0.54 0.45 402445 7615551 

Dalton-10 Birch sp. 0.57 0.55 402445 7615551 

Dalton-10 Birch sp. 0.78 0.4 402439 7615549 

Dalton-11 Dasiphora sp. 0.54 0.3 396444 7616981 

Dalton-11 Birch sp. 0.5 0.51 396444 7616978 

Dalton-11 Willow sp. 0.58 0.42 396461 7616984 

Dalton-11 Birch sp. 0.51 0.5 396517 7616979 

Dalton-11 Birch sp. 0.6 1.14 396521 7616980 

Dalton-11 Birch sp. 0.55 0.68 396534 7616976 

Dalton-11 Willow sp. 0.82 0.99 396543 7616976 

Dalton-11 Willow sp. 0.54 0.69 396548 7616980 

Dalton-11 Willow sp. 0.52 0.3 396560 7616980 

Dalton-11 Willow sp. 0.68 0.82 396563 7616980 

Dalton-11 Willow sp. 0.55 0.43 396576 7616979 

Dalton-11 Birch sp. 0.53 0.87 396586 7616981 

Dalton-11 Birch sp. 0.7 0.37 396589 7616981 
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Site Sp_genus 

Canopy_height 

(m) 

Crown_radius 

(m) X (m) Y (m) 

Dalton-11 Birch sp. 0.79 0.62 396589 7616983 

Dalton-11 Willow sp. 0.59 1.08 396448 7617015 

Dalton-11 Birch sp. 0.68 0.75 396384 7617081 

Dalton-11 Birch sp. 0.51 0.7 396384 7617079 

Dalton-11 Birch sp. 0.69 1.04 396384 7617079 

Dalton-11 Willow sp. 0.62 0.54 396393 7617079 

Dalton-11 Willow sp. 0.86 1.27 396561 7617063 

Dalton-11 Willow sp. 0.67 0.94 396565 7617063 

Dalton-11 Willow sp. 0.73 0.65 396383 7617181 

Dalton-11 Willow sp. 0.61 0.75 396437 7617169 

Dalton-11 Willow sp. 0.53 0.15 396437 7617169 

Dalton-11 Willow sp. 0.58 0.7 396442 7617168 

Dalton-11 Willow sp. 0.76 0.39 396510 7617170 

Dalton-11 Willow sp. 0.62 0.29 396519 7617168 

Dalton-11 Willow sp. 0.53 0.76 396521 7617170 

Dalton-11 Willow sp. 0.84 1.17 396596 7617129 

Dalton-11 Birch sp. 0.72 0.58 396591 7617127 

Dalton-11 Willow sp. 0.8 0.54 396587 7617131 

Dalton-11 Willow sp. 0.56 0.52 396513 7617125 

Dalton-11 Willow sp. 0.54 0.57 396506 7617123 

Dalton-11 Birch sp. 0.78 0.96 396487 7617127 

Dalton-11 Birch sp. 0.51 0.39 396475 7617126 

Dalton-11 Birch sp. 0.53 0.84 396474 7617123 

Dalton-12 -999 -999 -999 -999 -999 
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B.3. Field data estimates per site after using the belt transect equations. The column 

headers mean: Site, field site surveyed; X and Y, the coordinate location of the site center 

in Albers Conical Equal Area grid, . A value of -999 represents that there were no shrubs 

to survey at that site. 

 

Site 

Number_of_ 

Shrubs_per_ 

unit_area 

Canopy_ 

height_ 

mean 

Crown_ 

radius_ 

mean 

Shrub_ 

area_ 

fraction X Y 

Colville-01 18 1.22 1.142 0.001 98250 2190000 

Colville-02 1520 1.582 1.007 0.126 102500 2187250 

Colville-03 365 1.231 0.986 0.026 97750 2172250 

Colville-04 810 1.516 1.205 0.097 97750 2171000 

Colville-05 990 1.919 0.982 0.064 87750 2128750 

Colville-06 795 1.648 0.958 0.051 86750 2128250 

Colville-07 500 1.267 0.819 0.034 89750 2120000 

Colville-08 540 1.028 0.787 0.021 89500 2119000 

Colville-09 480 0.999 0.669 0.014 81500 2095500 

Colville-10 810 1.659 1.077 0.081 81000 2092000 

Colville-11 465 1.581 0.939 0.033 78000 2092500 

Colville-12 810 1.595 1.029 0.071 70000 2090500 

Colville-13 405 1.983 1.184 0.055 69750 2090000 

Colville-14 280 0.765 0.75 0.009 69250 2088250 

Dalton-01 40 0.583 0.398 0 203250 2216500 

Dalton-02 10 0.61 0.36 0 203500 2216750 

Dalton-03 830 0.572 0.502 0.013 213750 2178750 

Dalton-04 820 0.603 0.504 0.018 214000 2179000 

Dalton-05 200 0.583 0.357 0.001 207750 2128250 

Dalton-06 810 0.796 0.523 0.05 208250 2128000 

Dalton-07 290 0.583 0.417 0.004 209750 2110750 

Dalton-08 910 0.637 0.452 0.014 209750 2110250 

Dalton-09 870 0.695 0.919 0.118 183000 2082250 

Dalton-10 570 0.656 0.529 0.023 189000 2081250 

Dalton-11 360 0.63 0.67 0.009 182750 2082000 

Dalton-12 0 0 0 0 188500 2081250 
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  Appendix C 

 

C.1. List of paths, orbits, and blocks of MISR imagery, downloaded for the period 

June15 - July 31 for the year 2010, used for the training and validation of the BRT model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Path Orbit Blocks 

065 

55913 35-38 

56146 35-38 

56379 35-38 

066 
56015 34-38 

56248 34-38 

067 

55884 34-38 

56117 34-38 

56350 34-38 

068 

55986 34-38 

56219 34-38 

56452 34-38 

069 

55855 34-38 

56088 34-38 

56321 34-38 

070 

55957 34-38 

56190 34-38 

56423 34-38 

071 

55826 33-38 

56059 33-38 

56292 33-38 

072 

55928 33-38 

56161 33-38 

56394 33-38 

073 56263 33-38 

074 

55899 33-38 

56132 33-38 

56365 33-38 

075 

56001 33-38 

56234 33-38 

56467 33-38 

Path Orbit Blocks 

076 

55870 33-38 

56103 33-38 

56336 33-38 

077 

55972 33-38 

56205 33-38 

56438 33-38 

078 

55841 33-38 

56074 33-38 

56307 33-38 

079 

55943 33-38 

56176 33-38 

56409 33-38 

080 

55812 32-38 

56045 32-38 

56278 32-38 

081 

55914 32-38 

56147 32-38 

56380 32-38 

082 
56016 32-38 

56249 32-38 

083 

55885 32-38 

56118 32-38 

56351 32-38 

084 

55987 32-38 

56220 32-38 

56453 32-38 

085 56322 33-35 
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Appendix D 

 

D.1. List of paths, orbits, and blocks of MISR imagery, downloaded for the period June 1 

- August 15 for the year 2000, used for construction of the 2000 fractional cover map. 

 

Path Block Orbits (Good imagery available out of five potential orbits) 

065 35-38 2556, 3022 

066 34-38 2658, 2891, 3124 

067 34-38 2527, 2760, 2993, 3226, 3459 

068 34-38 2862, 3095, 3328 

069 34-38 2498, 2731, 2964, 3430 

070 34-38 2833, 3299 

071 33-38 2469, 2702, 2935, 3168 

072 33-38 3037, 3270, 3503 

073 33-38 2906, 3139 

074 33-38 2542, 2775, 3008, 3241 

075 33-38 n/a 

076 33-38 2513, 2746, 2979, 3212 

077 33-38 2615, 2848, 3314 

078 33-38 2717, 2950 

079 33-38 2819, 3052 

080 32-38 2688, 2921, 3154 

081 32-38 2557, 3023, 3256 

082 32-38 2659, 2892, 3125 

083 32-38 2528, 2761, 2994, 3227 

084 32-38 3096 

085 33-35 2499, 2732, 2965 

086 33-35 2834 
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D.2. List of paths, orbits, and blocks of MISR imagery, downloaded for the period June 1 

- August 15 for the year 2001, used for construction of the 2000 fractional cover map. 

 

Path Block Orbits (Good imagery available out of five potential orbits) 

065 35-38 8148, 8381, 8614 

066 34-38 8017, 8250, 8483, 8716 

067 34-38 7886, 8119, 8352, 8585 

068 34-38 7755, 8221, 8687 

069 34-38 7857, 8090, 8323, 8556, 8789 

070 34-38 7959, 8192, 8425, 8658 

071 33-38 7828, 8061, 8294, 8527 

072 33-38 8163, 8396, 8629 

073 33-38 7799, 8032, 8265, 8498, 8731 

074 33-38 7901, 8134, 8367, 8600 

075 33-38 7770, 8469, 8702 

076 33-38 7872, 8105, 8338 

077 33-38 7741, 8207, 8673 

078 33-38 7813, 8076, 8309, 8542 

079 33-38 7945, 8178, 8411, 8644 

080 32-38 7814, 8047, 8280, 8513, 8746 

081 32-38 7916, 8149 

082 32-38 8018, 8484, 8717 

083 32-38 7887, 8120, 8353, 8586, 8819 

084 32-38 7756, 8455, 8688 

085 33-35 7858, 8324 

086 33-35 7727, 8426 
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D.3. List of paths, orbits, and blocks of MISR imagery, downloaded for the period June 1 

- August 15 for the year 2002, used for construction of the 2000 fractional cover map. 

 

Path Block Orbits (Good imagery available out of five potential orbits) 

065 35-38 13274, 13507, 13740, 13973 

066 34-38 13143, 13376, 13609, 13842, 14075 

067 34-38 13245, 13478, 13711, 13944 

068 34-38 13114, 13347, 13580, 13813, 14046 

069 34-38 13216, 13682, 13915 

070 34-38 13318, 13551, 13784, 14017 

071 33-38 13187, 13420, 13653, 13886, 14119 

072 33-38 13056, 13289, 13522, 13755, 13988 

073 33-38 13158, 13391, 13624, 14090 

074 33-38 13260, 13493, 13726, 13959 

075 33-38 13129, 13362, 13828 

076 33-38 13231, 13464, 13697, 13930 

077 33-38 13100, 13333, 14032 

078 33-38 13202, 13668, 13901, 14134 

079 33-38 13071, 13304, 13770, 14003 

080 32-38 13173, 13406, 13639, 13872, 14105 

081 32-38 13275, 13508, 13741, 13974 

082 32-38 13377, 13610, 13843, 14076 

083 32-38 13246, 13479, 13712, 13945 

084 32-38 13115, 13348, 13581, 13814 

085 33-35 13683, 13916 

086 33-35 13086, 13319 
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Appendix E 

 

E.1. List of paths, orbits, and blocks of MISR imagery, downloaded for the period June 1 

- August 15 for the year 2010, used for construction of the 2010 fractional cover map. 

 

Path Block Orbits (Good imagery available out of five potential orbits) 

065 35-38 55680, 55913, 56146, 56612 

066 34-38 55782, 56015, 56481 

067 34-38 55651, 55884, 56117, 56350 

068 34-38 55753, 55986, 56685 

069 34-38 55622, 55855, 56088 

070 34-38 55724, 55957, 56190, 56423 

071 33-38 56059, 56525 

072 33-38 55695, 55928, 56161, 56394 

073 33-38 55797, 56030, 56496 

074 33-38 55666, 55899, 56365 

075 33-38 55768, 56001 

076 33-38 55637, 55870, 56336 

077 33-38 55739, 55972, 56205 

078 33-38 55608, 55841, 56074 

079 33-38 55710, 55943, 56176, 56409 

080 32-38 55812, 56045, 56511 

081 32-38 55681, 55914, 56147, 56380, 56613 

082 32-38 55783, 56016, 56249, 56482 

083 32-38 55652, 55885, 56118 

084 32-38 55754, 55987, 56220 

085 33-35 55623, 55856, 56322 

086 33-35 None  
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E.2. List of paths, orbits, and blocks of MISR imagery, downloaded for the period June 1 

- August 15 for the year 2011, used for construction of the 2010 fractional cover map. 

 

Path Block Orbits (Good imagery available out of five potential orbits) 

065 35-38 61039, 61272, 61505, 61971 

066 34-38 61141, 61374, 61607, 61840 

067 34-38 61010, 61243, 61476 

068 34-38 61112 

069 34-38 60981, 61447, 61680 

070 34-38 61316, 61549 

071 33-38 60952, 61185, 61418, 61651, 61884 

072 33-38 61054, 61287, 61753 

073 33-38 60923, 61156, 61389, 61622, 61855 

074 33-38 61025, 61258, 61491, 61724, 61957 

075 33-38 61127 

076 33-38 60996, 61229, 61462, 61695, 61928 

077 33-38 61098, 61331, 61564 

078 33-38 60967, 61200, 61433, 61666 

079 33-38 61069, 61302, 62001 

080 32-38 60938, 61171, 61404, 61637 

081 32-38 61040, 61273, 61506, 61739 

082 32-38 61142, 61608 

083 32-38 61011, 61477, 61710 

084 32-38 61113, 61346 

085 33-35 60982, 61448, 61681 

086 33-35 61084, 61317, 61783 
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APPENDIX F 

PREFACE 

“This Doctoral Dissertation was produced in accordance with guidelines which permit 

the inclusion as part of the Doctoral Dissertation the text of an original paper, or papers, 

submitted for publication. Doctoral Dissertation must still conform to all other 

requirements explained in the “Guide for the Preparation of the Doctoral Dissertation at 

The Montclair State University.” It must include a comprehensive abstract, a full 

introduction and literature review, and a final overall conclusion. Additional material 

(procedural and design data as well as descriptions of equipment) must be provided in 

sufficient detail to allow a clear and precise judgment to be made of the importance and 

originality of the research reported. 

 

It is acceptable for this Doctoral Dissertation to include as chapters authentic copies of 

papers already published, provided these meet type size, margin, and legibility 

requirements. In such cases, connecting texts, which provide logical bridges between 

different manuscripts, are mandatory. Where the student is not the sole author of a 

manuscript, the student is required to make an explicit statement in the introductory 

material to that manuscript describing the student’s contribution to the work and 

acknowledging the contribution of the other author(s). The signatures of the Supervising 

Committee which precede all other material in the Doctoral Dissertation attest to the 

accuracy of this statement.” 
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characteristics of 1,039 sites across the North Slope, Alaska. Data set. Available 

online [http://daac/ornl.gov/] from Oak Ridge National Laboratory Distributed 

Active Archive Center, Oak Ridge, Tennessee, USA. 

 

Duchesne, R.R., Chopping, M.J., & Tape,, K.D. (2015). Capability of the CANAPI 

algorithm to derive shrub structural parameters from satellite imagery in the Alaskan 

Arctic. Polar Record. [Accepted]. 
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