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Abstract

Invasive alien plant species can adversely affect ecosystems by altering native plant communi-
ties and ecosystem functioning. Such ecosystem impacts have been studied extensively using
small-scale experiments or field surveys. However, there is a lack of studies investigating the
severity of invasion impacts across larger scale, for example at the habitat or landscape level.
Remote sensing techniques have high potential to provide insight on large-scale impacts by
delivering spatially explicit information on species distribution and ecosystem properties.
So far, remote sensing has frequently been used to map occurrences of invasive plant species,
but only rarely to assess their impacts. This thesis aims to evaluate the benefit of remote
sensing for assessing ecosystem impacts of invasive plant species. Based on three research
papers this thesis is evaluating different aspects of this potential. These aspects include the
retrieval of vegetation properties from invaded ecosystems, the detection of invasion impacts
at different spatial scales, and a spatially explicit assessment of ecosystem impact of invasive
plant species.
Paper 1 focused on mapping canopy nitrogen (N) and phosphorus (P) in a temperate

forest invaded by the American black cherry (Prunus serotina Ehrh.) using a combination
of imaging spectroscopy and airborne Laserscanning (LiDAR) data. This study revealed
that high structural canopy heterogeneity hampers remote sensing of canopy chemistry, but
also co-variation between canopy chemistry and structure. Thus, LiDAR-derived structural
information can improve predictions of canopy chemistry from imaging spectroscopy in
structurally heterogeneous ecosystems. Paper 2 compared differences in remotely sensed
ecosystem properties between invaded and non-invaded parts of the same temperate forest.
These properties included canopy N and P, the N:P ratio, timber volume and leaf area index
(LAI). The study revealed differences in canopy chemical and forest structural properties
indicating causes and effects of P. serotina occurrence. Differences were also detectable at
the level of forest stands, albeit to a minor degree. Paper 3 focused on mapping fractional
covers of the heath star moss (Campylopus introflexus (Hedw.) Brid.) in a dune ecosystem.
Predicted covers were used as an indicator of impact magnitude in different habitat types.
Paper 3 further assessed the relationship between C. introflexus cover and plant alpha
diversity based on field data. These results were combined to highlight potential high impact
areas.
This thesis identified and applied two basic approaches to assess ecosystem impacts of

invasive plant species using advanced Earth observation techniques. One approach is using
maps of ecosystem properties derived from remote sensing to compare characteristics of
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invaded and non-invaded areas. As demonstrated, this approach allows to study ecosystem
impacts of invasive plant species across large areas, for example at the habitat or landscape
level, and contribute to a better understanding of invasion impacts. The second approach is
based on mapping abundances of invasive species and using these abundances as an indicator
of ecosystem impact. An ideal abundance measure, from a remote sensing perspective is the
fractional cover of a species in a reference area. Cover maps can then be used to identify
high impact areas. Moreover, this approach compares the impact severity of different species
or one species in different habitats, therefore delivering valuable information for management
decisions.

Since the retrieval of many ecosystem properties is still challenging, future research should
aim at understanding the linkages between vegetation attributes and reflectance. This is a
prerequisite for reliable prediction of these properties from remote sensing. Future studies
should focus on the retrieval of quantitative information when mapping invasive species
distributions. More research is also necessary to ensure a successful identification of species
in different ecological contexts. Finally, this thesis should encourage invasion ecologists to
use remote sensing products when assessing large scale ecosystem impacts of invasive alien
plant species.
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Zusammenfassung

Invasive Pflanzenarten können Ökosysteme durch Beeinflussung von einheimischen Pflanzen-
gesellschaften und Ökosystemprozessen verändern. Solche Ökosystemauswirkungen wurden
mit Hilfe von Experimenten oder Feldaufnahmen umfassend untersucht. Großflächige Aus-
wirkungen, zum Beispiel auf Habitat- oder Landschaftsebene wurden bisher jedoch kaum
untersucht. Mit Hilfe von Fernerkundung können räumlich explizite Informationen über die
Verteilung von Arten und Ökosystemeigenschaften erfasst werden und somit die Lücke in
der Erforschung der großflächigen Auswirkungen invasiver Arten geschlossen werden. Bisher
wurde Fernerkundung vor allem zur Kartierung von Vorkommen invasiver Pflanzenarten
eingesetzt, jedoch nur selten zur Abschätzung ihrer Auswirkungen. Diese Arbeit zielt dar-
auf ab, das Potential der Fernerkundung für die Bewertung von Ökosystemauswirkungen
invasiver Pflanzenarten zu analysieren. Zu diesem Zweck wurden drei Forschungsarbeiten
angefertigt, die verschiedene Aspekte dieses Potenzials beleuchten: (1) Die Ermittlung von
Vegetationseigenschaften in von Invasionen betroffenen Ökosystemen, (2) die Analyse von
Auswirkungen invasiver Arten auf unterschiedlichen räumlichen Skalen und (3) eine räumlich
explizite Darstellung von Ökosystemauswirkungen invasiver Pflanzenarten.

Die erste Studie beschäftigt sich mit der Kartierung von Blattstickstoff (N) und - phosphor-
gehalten (P) in einem Laubmischwald mit Vorkommen der frühblühenden Traubenkirsche
(Prunus serotina Ehrh.). Für die Kartierung wurden hyperspektrale und Laserscanning
(LiDAR) Daten kombiniert. Die Studie ergab, dass die Bestimmung von N und P aus
hyperspektalen Fernerkundungdaten in Baumkronen mit hoher struktureller Heterogenität
erschwert wird. Allerdings konnte auch ein Zusammenhang zwischen chemischer Zusam-
mensetzung und der Struktur des Kronendaches festgestellt werden. So konnten die von
LiDAR-Daten abgeleiteten Strukturinformationen genutzt werden, um die Vorhersagen von
N und P zu verbessern. In der zweiten Studie wurden aus Fernerkundungsdaten erstellte
Karten von Ökosystemeigenschaften genutzt, um Gebiete mit und ohne P. serotina zu
vergleichen. Die Karten umfassten N und P, sowie das N:P-Verhältnis von Blättern, das
Holzvolumen und den Blattflächenindex (LAI). Es wurden sowohl Unterschiede in den
Werten von Blattinhaltsstoffen als auch in der Waldstruktur für Standorte mit und ohne
P. serotina festgestellt. Diese Unterschiede waren auch auf Bestandsebene erkennbar, wenn
auch in geringem Maße. In der dritten Studie wurden hyperspektrale Luftbilder verwendet
um die prozentuale Deckung des Kaktusmooses (Campylopus introflexus (Hedw.) Brid.) in
einem Dünenökosystem großflächig zu kartieren. Darüber hinaus wurde der Zusammenhang
zwischen dem Deckungsgrad von C. introflexus und der Artenvielfalt von Pflanzen untersucht.
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In Kombination wurden diese Ergebnisse verwendet, um potenzielle Bereiche mit hohen
Auswirkungen zu kennzeichnen.

Basierend auf diesen drei Studien wurden in dieser Arbeit zwei grundlegende methodische
Ansätze zur Analyse von Ökosystemauswirkungen invasiver Pflanzenarten per Fernerkundung
identifiziert und angewandt. Der erste Ansatz besteht darin, mit Hilfe von Fernerkundung
erstellte Karten von Ökosystemeigenschaften zu verwenden, um diese Eigenschaften in
Abhängigkeit des Vorkommens invasiver Arten auszuwerten. Wie gezeigt werden konnte,
ist dies auch für große Flächen, beispielsweise auf der Habitat- oder Landschaftsebene,
möglich. Somit kann Fernerkundung zu einem besseren Verständnis der Auswirkungen von
invasiven Arten beitragen. Der zweite Ansatz basiert auf der Kartierung von Abundanzen
invasiver Pflanzenarten. Diese können als Indikator für die Stärke der Auswirkungen genutzt
werden. Die resultierenden Karten können verwendet werden, um Bereiche mit hohen
Auswirkungen zu identifizieren. Darüber hinaus ermöglicht dieser zweite Ansatz den Vergleich
der Auswirkungen zwischen verschiedenen Arten oder Lebensraumtypen und kann somit
wertvolle Informationen für Managemententscheidungen liefern.

Da die Ableitung vieler Ökosystemeigenschaften aus Fernerkundungsdaten nach wie vor
eine Herausforderung darstellt, sollte die zukünftige Forschung darauf abzielen, die Zusam-
menhänge zwischen den Eigenschaften und der Reflektanz der Vegetation besser zu verstehen.
Dies ist eine wesentliche Voraussetzung für eine zuverlässige Vorhersage über verschiedene
Lebensräume hinweg. Zukünftige Fernerkundungsstudien, mit dem Ziel invasive Arten zu
kartieren, sollten sich auf die Vorhersage von Deckungsgraden konzentrieren. Darüber hin-
aus sind generalisierte Verfahren wünschenswert, die eine erfolgreiche Identifizierung von
Arten unter verschiedenen ökologischen Gegebenheiten gewährleisten. Nicht zuletzt sollte
diese Arbeit Invasionsökologen ermutigen, existierende Fernerkundungsprodukte häufiger zu
verwenden, um großflächige Auswirkungen von invasiven Pflanzenarten auf Ökosysteme zu
analysieren.
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1 Introduction

1.1 Invasion Ecology

1.1.1 Definitions

The research field of invasion ecology deals with questions related to organisms occurring
outside their natural distribution range, as determined by their natural dispersal mechanism
(Richardson and Pyšek, 2008). While introduced species were reported by ecologists in the
19th century already, the field of invasion ecology evolved slowly during the 20th century,
with the book “The ecology of invasions by animals and plant” by Charles Elton (1958) as
milestone (Richardson and Pyšek, 2008). However, it took until the 1980s that introduced
species were widely recognized as problematic and the modern field of invasion ecology was
shaped (Simberloff, 2011).
The frequently used synonyms “introduced” or “alien species” refer to species whose

presence can be attributed to human activity (Pyšek et al., 2004). They can be grouped
into casual, naturalized, and invasive species (Richardson et al., 2000). Casual species are
alien species that occur only occasionally outside their native range, are not able to sustain
self-reproducing populations and therefore rely on repeated introductions. Naturalized
species represent established alien species that are able sustain self-reproducing populations
over long time periods. Naturalized alien species that have high potential to distribute over
large areas and often occur in very large numbers are regarded as invasive species (Pyšek
et al., 2004). In this thesis I will use the term invasive species following Richardson et al.
(2011) as

“alien species that sustain self-replacing populations over several life cycles,
produce reproductive offspring, often in very large numbers at considerable
distances from the parent and/or site of introduction, and have the potential to
spread over long distances.”

This definition is solely based ecological and biogeographical criteria and does not imply
any impact. In contrast, definitions used in legislation often imply an adverse impact on
ecosystems or human health. For example, the European Union (EU, 2014) defines invasive
species as

“alien species whose introduction or spread has been found to threaten or
adversely impact upon biodiversity and related ecosystem services.”
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1 Introduction

Similarly the United States legislation (USDA, 1999) defines invasive species as

“alien species whose introduction does or is likely to cause economic or environ-
mental harm or harm to human health.”

Species regarded as invasive are determined at the level of individual countries based on
local risk assessments (e. g. Baker et al., 2008; Branquart, 2009; Nehring et al., 2013).

1.1.2 Invasive plants

Vascular plants make up the largest group of known alien species. In Europe, there are
almost 6000 terrestrial alien plant species listed (Vilà et al., 2010). About half of them have
an extra-European origin, making up more than 20% of the present flora (Pyšek and Hulme,
2010). More than 4000 species are listed as naturalized in at least one European country
(van Kleunen et al., 2015). At the level of individual countries the highest proportion of
invasive plant species is only occurring casually (Richardson and Pyšek, 2012) and usually
only a small proportion will become invasive (Mack et al., 2000). In Germany, for example,
about 3% of the alien flora is regarded as invasive or potentially invasive (Nehring et al.,
2013). Large numbers of invasive species are generally observed in highly developed countries
(Seebens et al., 2015). Relative to their area, Australia and the pacific islands are most
affected by invasive plant species (van Kleunen et al., 2015). Temperate Asia and Europe are
regarded as biggest donors of invasive plant species (van Kleunen et al., 2015). Important
to note is that most invasive species are introduced intentionally (Turbelin et al., 2017).
The presence of invasive plants and the level of invasion depends on two major factors:

resource availability defining the susceptibility of ecosystem for invasions, and propagule
pressure of potential invaders (Pyšek and Richardson, 2010). Resource availability is closely
linked to disturbances that facilitate plant invasions (Catford et al., 2012). Both factors
strongly affect the local and global distribution patterns of alien species. Highly developed
countries, where large numbers of alien species are recorded are characterized by both; a
high frequency of human disturbances and high propagule pressure through the exchange of
trade goods (Seebens et al., 2015).
In general, the highest number of alien plant species can be expected in areas with high

human activity. Several studies found high probabilities for alien species occurrence near
major cities, in areas with high population density or land use intensity, and along main
traffic routes (Vicente et al., 2010; Gallardo et al., 2015, 2017; Ronk et al., 2017; Fuentes
et al., 2015). There is also evidence that invasive plants are promoted by environmental
change like elevated temperature and nutrient enrichment (Liu et al., 2017; Seabloom et al.,
2015).

The number of worldwide newly introduced plant species remained high during the 20th
century (Seebens et al., 2017), illustrating the high relevance for research on causes and
effects of plant invasions.

2



1.1 Invasion Ecology

1.1.3 Ecosystem impact

In this thesis I refer to ecosystem impact following Ricciardi et al. (2013) as

“a measurable change to the properties of an ecosystem by a non-native species.”

Such impact can vary in magnitude and direction, and can be regarded as positive or
negative. The definition includes both ecological and socio-economic changes, as both
may be caused by the presence of an invasive species. Invasive plants can have a wide
range of possible ecosystem impacts affecting native species communities, abiotic ecosystem
properties, ecological interactions, and natural disturbance regimes. These impacts vary
among species and are further strongly dependent on the affected habitat and its biotic and
abiotic conditions (Ehrenfeld, 2010; Vilà et al., 2011).
Due to the high relevance of biodiversity conservation, potential impacts of invasive

plant species on native plant communities received most attention of scientific research by
far (Strayer, 2012; Stricker et al., 2015). In many cases, the presence of invasive plants
is associated with reduced species numbers of vascular plants compared to non-invaded
reference sites (Vilà et al., 2011; Pyšek et al., 2012; Gaertner et al., 2009). There is also
evidence that the presence of invaders is associated with reduced phylogenetic and functional
diversity of native plant communities (Loiola et al., 2018). Effects on diversity can be
attributed to the high competitiveness of many invasive plant species, due to higher resource
use efficiency and better growth performance, compared to co-occurring native species
(Vitousek, 1990; van Kleunen et al., 2010; Vilà et al., 2011). The presence of invasive plants
therefore often has an negative effect on the productivity of resident species (Pyšek et al.,
2012). In extreme cases this invasion process can lead to the persistent dominance of a
single plant species.

Impacts of invasive plants on abiotic ecosystem properties refer to alterations of chemical
or physical conditions. Chemical conditions can be affected by alterations of nutrient or
carbon cycling. Nutrient cycles are most directly affected by the introduction of legume
species that contribute to nitrogen enrichment through the symbiosis with nitrogen fixing
microbes (Castro-Díez et al., 2014). Non-legume invaders can influence nutrient distributions
by relocating nutrients from soil to plant biomass (Pyšek et al., 2012), or by enriching
nutrients in the topsoil (Dassonville et al., 2008). Plant invasions are often found to influence
carbon cycling by accelerating process rates, mainly due to increased primary production
(Liao et al., 2008). Moreover, the presence of invasive plant species is related to high
decomposition rates, which can be regarded as a joint effect of increased litter biomass
and leaf nutrient contents (Liao et al., 2008; Castro-Díez et al., 2014). Changes of physical
ecosystem conditions most commonly refer to increased vegetation height or density, affecting
the light penetration through the canopy (Ehrenfeld, 2010). Moreover, introduced plants
species can influence water cycling by altering rainfall interception or evapotranspiration
(Takahashi et al., 2011; Cavaleri et al., 2014).
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1 Introduction

Biological interactions can be influenced by invasive plants in various ways, including
both negative and positive feedbacks. For example, the presence of invasive plant species
can increase the availability of flowers, while decreasing the visitation and pollination rate
of native plant species (Gibson et al., 2013; Albrecht et al., 2016). On the other hand, the
higher availability of exotic flowers attracted pollinators and increased their total numbers
(Albrecht et al., 2016). Pollinator diversity can be affected positively or negatively by
the presence of invasive plant species (Moroń et al., 2009; Davis et al., 2018). Similarly,
species numbers of herbivore insects can be influenced in both directions (Sunny et al.,
2015). Besides interaction with pollinators and herbivores, plant invasions can furthermore
affect the mutualism between native plant species and mycorrhizal fungi (Hale et al., 2016;
Birnbaum et al., 2018).
How an invasive species is affects its environment strongly depends on local biotic and

abiotic conditions (Ehrenfeld, 2010; Kumschick et al., 2015). The magnitude and even the
direction of impact may differ between ecosystems (Vilà et al., 2006; Scharfy et al., 2009;
Koutika et al., 2007). The impact magnitude depends on the interplay between traits of
the introduced plant and the specific properties of the invaded habitat. Ecosystem impact
is more likely to be observed when trait differences exist between introduced species and
the invaded plant community (Lee et al., 2017; Castro-Díez et al., 2014). Growth form and
height are examples of traits that strongly determine the ecosystem impact of an introduced
species with grasses and trees being associated with higher impact strengths (Pyšek et al.,
2012). Islands isolated from the main continents tend to be most susceptible to the impact
of invasive species (Pyšek et al., 2012; Castro-Díez et al., 2014; Celesti-Grapow et al., 2016).
This high sensitivity is probably due to the incompletely filled niche space on islands, leading
to the availability of unused resources, that is promoting the growth of introduced species
(Denslow, 2003). Moreover, islands often contain rare endemic species, so that extinctions
are more likely than on continents (Celesti-Grapow et al., 2016; Bellard et al., 2016).

The overall impact of a species is primarily determined by its local abundance and spatial
distribution (Parker et al., 1999). Species forming dense and widespread populations are
more likely to cause changes than species with a low and restricted abundance. Most
crucial impacts can be expected, when an invader becomes the dominant species of a plant
community. Understanding the relationship between the abundance of an invader and
its impact is a main issue in the evaluation of biological invasions (Yokomizo et al., 2009;
Thiele et al., 2009). However, such relationships have been studied only for few species (e. g.
Elgersma and Ehrenfeld, 2010; Staska et al., 2014; Fried and Panetta, 2016). Most studies
indicate non-linear relationships between ecosystem impact and the abundance of an invader
with moderate impact at low abundances (Panetta and Gooden, 2017).
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1.2 Remote sensing

1.1.4 Management

Since it is costly to eradicate an established invasive species (Rejmanek and J. Pitcairn,
2002), management of plant invasions focuses on the prevention of new introductions and
eradication at early stage of invasion (Pyšek and Richardson, 2010; Courchamp et al.,
2017). Risk assessments are needed to identify potentially new invaders, for example by
evaluating the floras of neighboring countries. Such assessments are usually conducted at
the country level and constitute the legal basis for management actions (e. g. Baker et al.,
2008; Branquart, 2009; Nehring et al., 2013). Some transnational assessments were carried
out in the past. For example, the European Union maintains a list of introduced species
of Union concern, currently including 23 terrestrial plant species (European Commission,
2017). These species are subject to restrictions, particularly concerning keeping and trade,
in order to prevent further spread in the European Union. Furthermore, member states are
requested to establish early detection and rapid eradication of these particular species (EU,
2014).

The management of established species is usually focused on invaders with the most severe
impacts. Since resources are limited, management actions require a strong prioritization
(Alberternst and Nawrath, 2018), focusing on the most harmful species and on valuable,
susceptible habitats (McGeoch et al., 2016; Blackburn et al., 2014; Kumschick et al., 2012).
In Germany management primarily focuses on introduced species occurring in protected
areas with a high abundance. Still, management actions with a low cost-benefit ratio should
be implemented with higher priority (Alberternst and Nawrath, 2018). According to an
estimation of the European environmental agency, the costs of invasive species is amounting
to e 12 billion per year (Sundseth, 2014). To manage invasive species, information on the
distribution and abundance of introduced species, and information on the ecosystem impact
of present and potential invaders is essential (Latombe et al., 2016).

1.2 Remote sensing

1.2.1 Basics

Remote sensing refers to collecting information about an object without touching it. Here,
I refer to remote sensing to describe the study of the Earth’s surface characteristics from
above. Remote sensing is usually based on intensity measurements of electromagnetic
radiation, giving the density of radiation energy in W

m2 . This intensity is usually specified
relative to intensity of simultaneously measured solar irradiance, describing the reflectance
percentage of the Earth’s surface. These measurements cover one or more sections of the
electromagnetic spectrum. For example, an color photograph displays the reflectance in
the red, green, and blue part of the visible wavelength region (VIS, 400 nm — 700 nm)
(Jones and Vaughan, 2010). Apart from VIS, remote sensing can cover several regions of
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1 Introduction

the electromagnetic spectrum, including the infrared region separated into near-infrared
(NIR, 700 nm — 1000 nm), shortwave-infrared (SWIR, 1µm nm 3µm) and thermal-infrared
(TIR, 3µm — 1000µm), and the microwave region (≈ 1mm — 1m) (Turner et al., 2003).
Remote sensing can be used to differentiate objects or materials based on their character-
istic optical properties. These optical properties are characterized by its interaction with
incoming electromagnetic radiation, that can be either absorption, reflectance, scattering or
transmission (Jones and Vaughan, 2010).

Remote sensing instruments can be grouped into passive and active instruments. Passive
remote sensing instruments capture the reflectance of solar radiation. Most commonly, the
output is an image consisting of layers that represent information from various parts of
the electromagnetic spectrum. Such part of the spectrum is referred to as a spectral band,
and can vary in band width, depending on the covered wavelength range. Every layer is
represented by pixels of a specific size which defines the spatial resolution of the image. The
spatial resolution of images can strongly vary depending on the instrument and its distance
from the object. Apart from the spatial resolution of data, imaging instruments can also
differ in spectral resolution. A high spectral resolution is associated with a larger number of
bands and narrower band widths.

In contrast to passive instruments, active instruments record the returned energy of radia-
tion that was beforehand actively emitted. Examples are Radar or LiDAR instruments, both
taking point-wise measurements from a moving platform. Recordings of active instruments
usually cover one wavelength only. Apart from the used instrument, data properties are
dependent on the platform they were recorded from. Remote sensing data is acquired either
from ground-based platforms, airborne platforms like aircrafts and unmanned aerial vehicles
(UAV), or satellites. Airborne platforms usually cover small spatial extents in high spatial
resolution compared to satellite platforms (Turner et al., 2003; Jones and Vaughan, 2010).
For this thesis two different remote sensing techniques were used: Imaging spectroscopy and
Airborne Laserscanning. Both techniques will be described in more detail in sections 1.2.2
and 1.2.3.

1.2.2 Imaging spectroscopy

Imaging spectroscopy (also referred to as hyperspectral remote sensing) is a remote sensing
technique recording high numbers (usually > 100) of spectral bands with very narrow band
widths. Although still covering discrete wavelength sections, the spectral resolution is
sufficiently high to approximate the recordings in each band as a continuous reflectance
spectrum (Fig. 1.1). Due to its high spectral resolution imaging spectroscopy is very
useful to distinguish objects or materials, that differ in spectral signature. So far, imaging
spectroscopy data has been most commonly recorded from airborne platforms. Frequently
used sensors usually cover the spectral wavelength regions from the VIS to the SWIR (Jones
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and Vaughan, 2010; Wang et al., 2010; Ortenberg, 2011). There are also examples of imaging
spectrometers operated from satellite platforms (e. g., Hyperion imaging spectrometer on
board of the earth observing-1 (EO-1) 2000 — 2017). However, the use of satellite imaging
spectroscopy data is still limited by technical issues, and much potential is expected from
recently started or future planned hyperspectral satellite missions (e. g., EnMAP, PRISMA,
HISUI) (Ortenberg, 2011; Transon et al., 2018).
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Figure 1.1 Soil spectrum and canopy spectra of selected plant species (Quercus robur, Pinus sylvestris,
Rosa rugosa, Ammophila arenaria, Calluna vulgaris).

1.2.3 Airborne Laserscanning

Laserscanning (Light detection and ranging, LiDAR) is an active remote sensing technique,
that is frequently used to measure distances. Distance measurements are based on the
elapsed time between the emission of a laser pulse and the return of its reflection. With
knowledge of the position and orientation of the LiDAR instrument it is possible to determine
the accurate position of the object that reflected the beam. Depending on the device used,
LiDAR can detect multiple returns from one emitted pulse. Repeated measurements from a
moving platform can thus be used to create a three dimensional point cloud that represent
the return points (Fig. 1.2). Used platforms usually include aircrafts or helicopters. For
terrestrial application, airborne LiDAR instruments used usually cover discrete wavelengths
between 900 nm and 1064 nm (Wehr and Lohr, 1999; Lefsky et al., 2002).

1.2.4 Remote sensing of vegetation

Compared to non-living surfaces, remote sensing of vegetation is complicated by its high
spatio-temporal variability. In general, the spectral reflectance of vegetation is characterized
by strong absorbance in the VIS and relatively high reflection in the NIR (Fig. 1.1). In the
transition zone from VIS to NIR, vegetation spectra are characterized by a stong increase of
reflectance, which is referred to as red edge. Depending on the vegetation type, reflectance
can differ considerably (Fig. 1.1). Differences between vegetation types can be usually
detected in the wavelength region ranging from 300 nm to 15 µm (Jones and Vaughan, 2010).
These differences are determined by the interactions of incoming radiation and components
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Figure 1.2 Visualization of a LiDAR point cloud, displaying the invasive tree species Prunus serotina in
the mid-canopy of an oak forest.

of the canopy. The reflectance of canopies is strongly influenced by leaf properties and the
spatial arrangement of the leaves (Ollinger, 2011).

Leaf-level spectral reflectance is influenced by chemical properties and anatomical structure
(Ollinger, 2011). Chemical properties that influence reflectance patterns include leaf pigments,
water content, and other leaf compounds such as fibers and proteins (Kokaly et al., 2009).
Pigments such as chlorophyll, carotenoides and anthocynins are characterized by strong
absorbance in the VIS (Ustin et al., 2009). Leaf water content has a substantial influence
on reflectance patters in the SWIR region also due to high absorbance (Kokaly et al., 2009;
Ollinger, 2011). In contrast, the influence of proteins and fibers such as cellulose or lignin
on the reflectance of leaves is less strongly developed (Kokaly et al., 2009). Their influence
is based on absorbance of radiation by molecular bonds such as the C-H bond in cellulose
and the C-N bond in proteins (Curran, 1989). In addition, the radiative properties of leaves
strongly depend on their anatomical structure. Here, reflectance patterns are influenced
by the arrangement of cells within the mesophyll, but also by the leaf form. For example,
flat and thin leaves are characterized by a higher reflection in the NIR region, compared to
thicker cylindrical leaves. Most commonly, the specific leaf area (SLA), defined by the ratio
of leaf area to leaf mass, or its reciprocal leaf mass per area (LMA) is used as descriptor for
leaf structure (Ollinger, 2011).

At the level of entire plants or plant communities, spectral reflectance is furthermore
substantially influenced by the canopy structure (Asner, 1998; Knyazikhin et al., 2013;
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Kattenborn et al., 2018). This includes canopy depth, density, and leaf arrangement
(Ollinger, 2011). Canopy depth and density, also characterized by the leaf area index
(LAI), affect reflectance patterns ranging from the VIS to SWIR (Jacquemoud et al., 2009)
Variations in leaf arrangements are mainly visible in the NIR. Here, the effect of canopy
structure can be explained by the scattering of incoming radiation by leaves before it is either
reflected or absorbed by other surfaces such as branches, stems or the ground (Ollinger,
2011; Knyazikhin et al., 2013).

Based on differences in spectral properties it is possible to differentiate single vegetation
types (Ustin and Gamon, 2010) or plant species (e. g. Fassnacht et al., 2014; Lopatin et al.,
2017). Examples include discrete classifications of dominant vegetation types at the global
scale (Bonan et al., 2002), to the delineation of single habitats at a local scale (Mack
et al., 2016; Stenzel et al., 2017). Species classifications have most prominently been used
to map tree species (Fassnacht et al., 2016), but were also used to identify smaller plant
individuals (Singh and Glenn, 2009; Skowronek et al., 2017a). Moreover, remote sensing also
proved useful to map plant functional types (Schmidtlein et al., 2012; Schmidt et al., 2017a).
These maps can for example be used to asses vegetation change related to alterations of
environmental conditions or in land use (Ustin and Gamon, 2010). Remote sensing can also
be used to assess a gradual change in vegetation types, and to evaluate habitat degradation
(Fassnacht et al., 2015; Schmidt et al., 2017b).

Moreover, imaging remote sensing can be used to derive a multitude of other vegeta-
tion attributes. Examples mainly refer to characteristics directly influencing the canopy
reflectance, such as leaf pigment (e. g. Curran et al., 1997; Schlerf et al., 2010) or water
contents (e. g. Huber et al., 2008; Dahlin et al., 2013), SLA (e. g. Asner et al., 2015; Singh
et al., 2015) and LAI (e. g. Fernandes et al., 2004; Lu et al., 2018). In addition, vegetation
properties with only minor influence on canopy reflectance have been successfully mapped
using optical remote sensing, such as canopy nitrogen (e. g. Curran et al., 1997; Serrano
et al., 2002; Huber et al., 2008; Schlerf et al., 2010; Dahlin et al., 2013), phosphorus (e. g.
Porder et al., 2005; Asner et al., 2015; Pullanagari et al., 2016), and cellulose or lignin
content (e. g. Curran et al., 1997; Singh et al., 2015; Asner et al., 2015).

Information from LiDAR point clouds can be used to derive structure-related vegetation
characteristics across large areas. Particularly, vegetation height can be derived with high
accuracy (van Leeuwen and Nieuwenhuis, 2010). In contrast to passive remote sensing
techniques, LiDAR can penetrate through plant canopies. LiDAR can therefore be used to
measure the vegetation density in different canopy strata (Morsdorf et al., 2010; Ewald et al.,
2014), and to measure LAI (Sasaki et al., 2008; Korhonen et al., 2011). Due to the high
correlation of tree growth height and biomass, LiDAR is frequently used to map standing
wood biomass or volume of forests (Lefsky et al., 2005; Næsset and Gobakken, 2008).

Usually the acquisition of detailed information on leaf traits requires images of high
spectral and spatial resolution. However, some vegetation attributes, such as LAI can also
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be mapped at courser resolutions using multi-spectral data. To identify species based on
spectral reflectance, typically hyperspectral data is used (Bradley, 2014). Depending on the
species, data with a lower spectral resolution may be sufficient. The optimal pixel size to
map species depends on the size of the species and can vary between several centimeters
and meters. LiDAR data to map vegetation characteristics usually include several discrete
measurements per square meter.
The success for mapping these vegetation characteristics relies on the co-variation with

traits that influence reflectance patterns (Ustin and Gamon, 2010; Ollinger, 2011). Such
co-variation was, for example, observed between canopy structure and nitrogen content
(Knyazikhin et al., 2013). These indirect links between vegetation characteristics and spectral
reflectance are, however, not well understood. One aim of current research is dedicated
to understanding indirect links and eventually identify the ones that are more universally
applicable. Of particular interest are approaches to map biochemical leaf traits, because
they are fundamental for our understanding of ecological processes related to carbon or
nutrient cycling (Melillo et al., 1982; Ollinger et al., 2002; Reich, 2012).
Reflectance is commonly linked to vegetation properties using empirical models. As

hyperspectral data contain lots of information with a high level of collinearity they require
the use of machine learning to establish relationships between single bands and vegetation
properties derived from field surveys. A major advantage of empirical approaches is that
they can also find indirect links between vegetation characteristics and reflectance. One
major drawback is that empirical approaches are contributing only little to understanding
of ecological mechanisms underlying these links. Furthermore, linkages established using
empirical models can not easily be transferred to different study areas or points in time
(Verrelst et al., 2015; Skowronek et al., 2018). Alternatively, radiative transfer models
(RTMs) can be used. RTMs are physical-based models that predict the spectral reflectance of
vegetation using a set of properties based on tested cause-effect relationships. Through model
inversion, radiative transfer models can also be used to predict vegetation characteristics
from measured canopy spectra (Jacquemoud et al., 2009; Verrelst et al., 2015).

1.2.5 Remote sensing of plant invasions

Previous remote sensing studies on plant invasions so far have mainly focused on the
detection and the mapping of invasive species distribution (Vaz et al., 2018). This has been
shown to work properly for growth forms such as cryptogams (Skowronek et al., 2017a),
grasses and herbs (Singh and Glenn, 2009; Skowronek et al., 2018) or shrubs and trees
(Somers and Asner, 2013; Kattenborn et al., 2019). Moreover, remote sensing has been used
as information basis to model potential distributions by highlighting areas susceptible to
future invasions (Andrew and Ustin, 2009; Rocchini et al., 2015; Hattab et al., 2017).

In contrast, remote sensing studies that focus on ecosystem impact or change attributed
to the presence of invasive plants are still rare. Asner and Vitousek (2005), for example,
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Figure 1.3 Color infrared representation the coastal dunes of the island Sylt, Germany. Patches in light
red display presences of the invasive shrub Rosa rugosa.

used airborne imaging spectroscopy to map the influence of Myrica faya on canopy N and
water content in a mountain rain forest ecosystem. Dzikiti et al. (2016) used satellite remote
sensing to estimate the area-based effect of the invasive tree Eucalyptus camaldulensis on
evapotranspiration in a river catchment. Vicente et al. (2013) used a spatially explicit ap-
proach to connect the richness of alien invasive alien plant species to remotely sensed primary
productivity and the provision of other ecosystem services. Barbosa et al. (2017) related
changes in gross primary production, derived from high resolution imaging spectroscopy,
to the canopy cover of the invasive tree species Psidium cattleianum in a tropical forest.
Similarly, Große-Stoltenberg et al. (2018) used imaging spectroscopy data in combination
with a spectral index to link gross primary production to the cover of Acacia longifolia in a
dune ecosystem.

1.3 Research needs

The ecosystem impact of invasive plant species has been the subject of many research papers,
comprising hundreds of case studies (Stricker et al., 2015), several review papers (e. g. Parker
et al., 1999; Weidenhamer and Callaway, 2010; Stricker et al., 2015), and a multitude of
meta-analyses (e. g. Vilà et al., 2011; Powell et al., 2011; Pyšek et al., 2012). Still, there is a
high demand for ongoing research, because the potential influence of each species has to
be evaluated separately, and fundamental ecological information is lacking even for species
that are considered as the worst invaders (McLaughlan et al., 2014). Moreover, a research
gap remains on many aspects of impact research. While impacts on plant communities are
generally well studied, impacts on ecosystem processes such as nutrient, carbon, and water
cycling or on related ecosystem properties received less attention (Ehrenfeld, 2010; Strayer,
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2012; Stricker et al., 2015). At this point remote sensing can deliver valuable insights,
offering a non-destructive way to predict vegetation properties at the community level, and
thus provide valuable information to evaluate carbon- or nutrient cycling (Andrew et al.,
2014; de Araujo Barbosa et al., 2015). However, so far only few studies used remote sensing
techniques to distinguish between invaded and non-invaded parts of affected habitats. To
my knowledge no other study uses the high potential to evaluate plant invasion impacts
across different spatial scales.
Most research on plant invasions is based on experiments or field studies with a limited

spatial extent. Stricker et al. (2015) found that in 50% of the studies on invasion impacts
the sampling units covered 1m2 or less. Less than one third of the studies used sampling
units larger than 4m2. In most cases it is unclear whether observed small scale changes
of ecosystem conditions can also be detected when larger extents are considered, at which
the target plants occur less frequently (Parker et al., 1999; Pauchard and Shea, 2006).
Information acquired over large spatial extents is particularly relevant for the evaluation of
nutrient and carbon cycles. Imaging remote sensing can deliver spatially explicit information
on ecosystem properties across large areas and thus has potential to study invasion impact
at multiple spatial scales.
Moreover, remote sensing techniques are well suited to map the spatial distributions of

individual plant species, which is important information to evaluate large scale impacts.
Indeed, most studies so far focused on mapping presence or absence of individual species.
Remote sensing offers the additional opportunity to map species abundances (e. g. Peterson,
2005; Andrew and Ustin, 2008; Guo et al., 2018). Most of these studies focused on large
conspicuous species, and methods need to be tested also for small species. Such maps can
be used to identify high-impact areas, particularly when they are combined with abundance-
impact relationships, depicting the impact magnitude of a particular species in dependence of
its abundance. Although this possibly represents the easiest approach to evaluate landscape
level impact of invasive species, to my knowledge this has not been done before.

Remote sensing is regarded to have high potential to assess ecosystem changes related to
invasion processes (Vaz et al., 2018). However, only few studies address this topic, so that
research in this field is still in an early stage of development. One major task at this point
is to demonstrate and evaluate potential approaches, in order to develop applications that
increase the understanding of invasion-related processes and furthermore provide valuable
information as basis for management decisions.
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1.4 Thesis outline and research questions

The overarching aim of this thesis is to evaluate the benefit of remote sensing to assess
ecosystem impact caused by invasive plant species. For this purpose, this thesis presents
and examines different applications of remote sensing that hold promise to improve our
understanding of invasion impacts, or are beneficial for the management of invasive species.
The applications that I used are presented in three research papers as included in this
thesis. Paper 1 focuses on mapping the canopy nitrogen and phosphorus content of a forest
affected by the presence of an invasive tree species. This paper specifically addresses the
potential of remote sensing to map leaf chemical properties of canopies in invaded ecosystems
characterized by a high structural complexity. In paper 2, the same maps are combined with
remotely sensed maps of structural forest properties, to compare invaded and non-invaded
forest stands at different spatial scales. This paper addresses the potential of remote sensing
to detect invasion-related changes of ecosystem properties across large areas. Finally, paper 3
aims to map the abundance of an invasive plant species as an indicator of ecosystem impact
using imaging spectroscopy data. It addresses the potential of remote sensing to provide
a spatially-explicit evaluation of the impact of invasive species. Based on these research
papers this thesis aims to answer the following research questions:

1. Can remote sensing be used to map nitrogen and phosphorus contents of canopies
characterized by high structural complexity to analyze plant invasion impact? (Paper 1)

2. How do remotely sensed structural and chemical canopy properties differ between
invaded and non-invaded sites? (Paper 2)

3. How accurately can we map fractional covers of invasive plant species using imaging
spectroscopy data? (Paper 3)

The studies for paper 1 and 2 were located in a temperate deciduous forest using the tree
black cherry (Prunus serotina Ehrh.) as study species. Paper 3 focuses on occurrences of
the heath star moss (Campylopus introflexus (Hedw.) Brid.) in a dune ecosystem. Both
species are listed among the most invasive alien species in Europe (Pyšek et al., 2009; Essl
and Lambdon, 2009). The remote sensing data comprised very high-resolution airborne
imaging spectroscopy data with a pixel size of 3ṁ × 3ṁ and airborne LiDAR data with an
average point density of 23 points/m2.

1.5 List of papers

The research papers included in this thesis are listed below. Papers 1 and 2 are published in
international peer-reviewed scientific journals. Paper 3 is currently submitted.

1. Ewald, M., Aerts, R., Lenoir, J., Fassnacht, F. E., Nicolas, M., Skowronek, S., Piat, J.,
Honnay, O., Garzón-López, C. X., Feilhauer, H., Van de Kerchove, R., Somers, B.,
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Hattab, T., Rocchini, D., Schmidtlein, S. (2018): LIDAR derived forest structure data
improves predictions of canopy N and P concentrations from imaging spectroscopy.
Remote Sensing of Environment 211, 13–25. 10.1016/j.rse.2018.03.038

2. Ewald, M., Skowronek, S., Aerts, R., Dolos, K., Lenoir, J., Nicolas, M., Warrie, J.,
Hattab, T., Feilhauer, H., Honnay, O., Garzón-López, C. X., Decocq, G., Van de
Kerchove, R., Somers, B., Rocchini, D., Schmidtlein, S. (2018): Analyzing remotely
sensed structural and chemical canopy traits of a forest invaded by Prunus serotina
over multiple spatial scales. Biological Invasions 20 (8), 2257–2271. 10.1007/s10530-
018-1700-9

3. Ewald, M., Skowronek, S., Aerts, R., Lenoir, J., Feilhauer, H., Van de Kerchove, R.,
Honnay, O., Somers, B., Garzón-López, C., Rocchini, D., Schmidtlein, S. (submitted)
Evaluating the ecosystem impact of an invasive moss using high resolution imaging
spectroscopy.

1.6 Summary of the authors contribution

The research papers were prepared in collaboration with several co-authors within the scope
of the project DIARS (Detection of invasive plant species and assessment of their impact on
ecosystem properties through remote sensing) funded by the ERA-Net BiodivERsA network.
All manuscripts were originally drafted by me and subsequently revised by the co-authors.
Apart of writing I was involved in the study design and conducted the field work with the
help of several co-authors (and others). Remote sensing data was provided by the Flemish
Institute of Technological Research (VITO) and the French Office of Forestry (ONF). I
performed the data processing and analysis, stimulated by the ideas of the co-authors.
Finally, the results were discussed and interpreted in collaboration with the co-authors.
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2.1 LiDAR derived forest structure data improves predictions of
canopy N and P concentrations from imaging spectroscopy

Michael Ewald, Raf Aerts, Jonathan Lenoir, Fabian Ewald Fassnacht, Manuel Nicolas,
Sandra Skowronek, Jérôme Piat, Olivier Honnay, Carol Ximena Garzón-López, Hannes
Feilhauer, Ruben Van De Kerchove, Ben Somers, Tarek Hattab, Duccio Rocchini, Sebastian
Schmidtlein

Abstract

Imaging spectroscopy is a powerful tool for mapping chemical leaf traits at the canopy
level. However, covariance with structural canopy properties is hampering the ability to
predict leaf biochemical traits in structurally heterogeneous forests. Here, we used imaging
spectroscopy data to map canopy level leaf nitrogen (Nmass) and phosphorus concentrations
(Pmass) of a temperate mixed forest. By integrating predictor variables derived from airborne
laser scanning (LiDAR), capturing the biophysical complexity of the canopy, we aimed at
improving predictions of Nmass and Pmass. We used partial least squared regression (PLSR)
models to link community weighted means of both leaf constituents with 245 hyperspectral
bands (450 - 2450 nm) and 38 LiDAR-derived variables. LiDAR-derived variables improved
the model’s explained variances for Nmass (R2

cv 0.31 vs. 0.41, % RMSEcv 3.3 vs. 3.0) and
Pmass (R2

cv 0.45 vs. 0.63, % RMSEcv 15.3 vs. 12.5). The predictive performances of Nmass

models using hyperspectral bands only, decreased with increasing structural heterogeneity
included in the calibration dataset. To test the independent contribution of canopy structure
we additionally fit the models using only LiDAR-derived variables as predictors. Resulting
R2

cv values ranged from 0.26 for Nmass to 0.54 for Pmass indicating considerable covariation
between these biochemical traits and forest structural properties. Nmass was negatively
related to the spatial heterogeneity of canopy density, whereas Pmass was negatively related
to canopy height and to the total cover of tree canopies. In the specific setting of this study,
the importance of structural variables can be attributed to the presence of two tree species,
featuring structural and biochemical properties different from co-occurring species. Still,
existing functional linkages between structure and biochemistry at the leaf and canopy level
suggest that canopy structure, used as proxy, can in general support the mapping of leaf
biochemistry over broad spatial extents.

This is an Open Access version of an article published in Remote Sensing of Environment licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND
4.0). The original article is available online at: https://doi.org/10.1016/j.rse.2018.03.038
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2.1.1 Introduction

Plant traits are important indicators of ecosystem functioning and are widely used in
ecological research to detect responses to environmental change (Chapin, 2003; Garnier
et al., 2007; Kimberley et al., 2014) or to quantify ecosystem services (Lamarque et al.,
2014; Lavorel et al., 2011). Biochemical traits like leaf nitrogen and phosphorus content
respond to changing environmental conditions, such as soil nutrients or climate (Di Palo
and Fornara, 2015; Sardans et al., 2015) and are key factors related to important ecological
processes including net primary production and litter deiosition (Melillo et al., 1982; Ollinger
et al., 2002; Reich, 2012). Temporal trends, like increasing N:P ratios caused by nitrogen
deposition can serve as indicators for ecosystem health and sustainability (Jonard et al.,
2015; Talkner et al., 2015). Using leaf traits to answer questions related to ecosystem
functioning often requires scaling from the leaf to the plant community or ecosystem level
(Masek et al., 2015; Suding et al., 2008). Due to the fact that certain leaf biochemical
traits are closely linked to the reflectance signature of leaves (Kokaly et al., 2009) the use of
imaging spectroscopy has proved to be an efficient method for scaling and the prediction of
these traits across large spatial scales (Homolová et al., 2013). By far, most studies relating
foliage biochemistry to airborne imaging spectroscopy data focused on leaf nitrogen (e.g.
Dahlin et al., 2013; Huber et al., 2008; Martin and Aber, 1997; Wang et al., 2016). But also
other biochemical leaf ingredients like chlorophyll, cellulose and lignin (Curran et al., 1997;
Schlerf et al., 2010; Serrano et al., 2002) and even micronutrients like iron and copper (Asner
et al., 2015; Pullanagari et al., 2016) have been successfully related to imaging spectroscopy
data. Compared to leaf nitrogen, mapping of leaf phosphorus concentrations received less
attention (but see Asner et al., 2015; Porder et al., 2005; Pullanagari et al., 2016).
The link between leaf biochemistry and reflectance established in optical remote sens-

ing applications strongly depends on the observational level. At the leaf level, nitrogen
concentrations, for example, are directly expressed in the spectral signal. For dried and
ground samples, characteristic absorption features can be found in the shortwave infrared
(SWIR) region of the electromagnetic spectrum. The absorption of radiation in the SWIR
can be attributed to nitrogen bonds in organic compounds primarily of leaf proteins (Kokaly
et al., 2009). In fresh leaves the nitrogen concentration is additionally strongly related to
absorption in the visible part of the spectrum (VIS) (Asner and Martin, 2008), which can
be attributed to the correlation between chlorophyll and leaf nitrogen (Homolová et al.,
2013; Ollinger, 2011). At the canopy level, spectral reflectance is strongly influenced by
canopy structure (Asner, 1998; Gerard and North, 1997; Rautiainen et al., 2004). Thus, the
estimation of leaf traits from canopy reflectance is more complex due to the confounding
effects of structural properties like crown morphology, leaf area index (LAI), leaf clumping or
stand height (Ali et al., 2016; Simic et al., 2011; Xiao et al., 2014). Consequently, variability
in canopy structure can strongly influence the accuracy of nitrogen estimations from remote
sensing (Asner and Martin, 2008). On the other hand, canopy structure has been found
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to explain part of the relation between reflectance and canopy nitrogen. This relation is
revealed by a strong importance of reflectance in the near infrared (NIR) for mapping canopy
nitrogen reported by previous studies (Martin et al., 2008; Ollinger et al., 2008). Reflection
in the NIR region is dominated by multiple scattering between leaves of the canopy, and
thus very sensitive to variation in canopy structure (Knyazikhin et al., 2013; Ollinger, 2011).
Covariation between canopy structure and nitrogen was found across different types of forest
ecosystems and hence points at the existence of a functional link between canopy structure
and biochemical composition. However, the foundation of this functional link has not been
fully understood.

In this study, we aim at scaling leaf level measurements of mass based leaf nitrogen (Nmass)
and phosphorus content (Pmass) to the canopy scale for a temperate mixed forest. To capture
the forest’s diversity in terms of tree species, age distribution and canopy structure we
propose to explicitly integrate information on forest structure derived from airborne laser
scanning (Light Detection And Ranging, LiDAR) into the empirical models. Airborne
LiDAR data can depict the 3D structure of the vegetation and has been successfully used
to map forest attributes like the leaf area index and standing biomass (Fassnacht et al.,
2014; Korhonen et al., 2011; Zolkos et al., 2013). The benefit of LiDAR-derived information
on forest structure for mapping of canopy biochemistry has not been assessed yet. We
argue that the integration of structural properties allows for a better acquisition of leaf
chemical traits in heterogeneous forests canopies. We furthermore expect that LiDAR data
can help to understand expected covariation between canopy structural properties and
biochemical leaf traits. Specifically, we aim at: (1.) improving predictions of Nmass and
Pmass using imaging spectroscopy through the integration of LiDAR-derived information
on forest structure and (2.) finding out which structural canopy properties correlate with
Nmass and Pmass in canopies of mixed forests.

2.1.2 Materials and Methods

2.1.2.1 Study area

The study area is the forest of Compiègne (northern France, 49.370◦ N, 2.886◦ E), covering
an area of 144.2 km2. This lowland forest is located in the humid temperate climate zone
with a mean annual temperature of 10.3◦Cand mean annual precipitation of 677mm. The
soils cover a range from acidic nutrient-poor sandy soils to basic and hydromorphic soils
(Closset-Kopp et al., 2010). The forest mainly consists of even-aged managed stands of
beech (Fagus sylvatica), oaks (Quercus robur, Quercus petraea) and pine (Pinus sylvestris)
growing in mono-culture as well as in mixed stands, frequently intermingled with European
hornbeam (Carpinus betulus) and ash (Fraxinius excelsior) (Chabrerie et al., 2008). Stands
are covering a range from early pioneer stages to more than 200-year-old mature forests. As
a result of thinning activities and windthrow the forest is characterized by frequent canopy
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gaps which are often filled by the American black cherry (Prunus serotina), an alien invasive
tree species in central Europe. Prunus serotina is in some parts also highly abundant in the
upper canopy of earlier pioneer stages.

2.1.2.2 Field data

Field data were acquired from 50 north-facing field plots (25m × 25m) established in July
2014. Of those plots, 44 plots were randomly selected from an initial set of 64 field plots
established in 2004 during a previous field study by Chabrerie et al. (2008). Six additional
plots were selected to include stands in earlier stages of forest succession, aiming to cover
the entire range of structural canopy complexity. The plots covered all main forest stand
types including mixed tree species stands in different age classes (supplementary material,
Tab. 2.3). In each plot we recorded the diameter at breast height for all trees and shrubs
higher than 2m.

In July 2015, we sampled leaves from the most abundant tree species making up at least
80% of the basal area in one plot. This resulted in up to five sampled species per plot.
For each species in each plot, we took three independent samples, if possible from different
individuals. Taller trees were sampled by shooting branches using shotguns (Marlin Model
55 Goose, Marlin Firearms Co, Madison, USA and Winchester Select Sporting II 12M,
Winchester, Morgan, USA) with Buckshot 27 ammunition (27 × 6.2mm pellets), aiming
at single branches (Aerts et al., 2017). Samples from smaller trees were taken using a pole
clipper. In both cases leaves from the upper part of the crown were preferably chosen. Trees
growing in canopy gaps were sampled in the center of these gaps, in order to collect the most
sunlit leaves from these individuals. For broadleaved trees, each sample consisted of 10 to 15
undamaged leaves, depending on leaf size. The samples of the only coniferous tree species P.
sylvestris consisted of at least 20 needles from both the current and the last growing season.
In total, we collected 328 leaf samples from nine different tree species. Leaves were put in
sealed plastic bags and stored in cooling boxes. At the end of each field day samples were
weighed, and then dried at 80◦C for 48 hours.

Back from the field, leaves were milled prior to the analysis. Nmass was measured applying
the Dumas method using a vario MACRO element analyzer (Elementar Analysensysteme,
Hanau, Germany). Pmass was measured using an inductively coupled plasma-optical emission
spectrometer (ICP-OES) (Varian 725ES, Varian Inc., Palo Alto, CA, USA). For each field
plot, we calculated community weighted mean values for Nmass and Pmass, taking the basal
area of each species in the corresponding plot as the weight. The relative basal area is a good
approximation for relative canopy cover of the tree species co-occurring in a forest stand
(Cade, 1997; Gill et al., 2000). The relative canopy cover corresponds to the contribution
of each species to the reflectance signal of a mixed forest canopy. Although field samples
were collected one year after the acquisition of remote sensing data, we consider our field
data set as a solid basis for the prediction of Nmass and Pmass. Previous studies indicate

20



2.1 LiDAR derived forest structure data improves predictions of canopy N and P
concentrations from imaging spectroscopy

that in temperate tree species there are no remarkable differences in leaf chemical contents
between two consecutive years (Reich et al., 1991; Smith et al., 2003). Furthermore, Nmass

in deciduous broadleaved species typically shows only little variation during the mid-growing
season (McKown et al., 2013; Niinemets, 2016; Reich et al., 1991) and remains stable under
drought conditions (Grassi et al., 2005; Wilson et al., 2000). The latter point is noteworthy,
because the early summer of 2015 was dryer compared to the year 2014.

2.1.2.3 Remote sensing data

We used airborne imaging spectroscopy data (284 bands, 380 nm – 2500 nm) acquired by the
Airborne Prism Experiment (APEX) spectrometer with a spatial resolution of 3m × 3m,
and airborne discrete return LiDAR data with an average point density of 23 points per
m2, both covering the entire study area. APEX data were acquired on July 24, 2014 (9:56 –
11:25 UTC + 2h) at a flight height of 5400m by the Flemish Institute of Technology (VITO,
Mol, Belgium). The data, consisting of 12 flight lines, were delivered geometrically and
atmospherically corrected using the standard processing chain applied to APEX recorded
images (Sterckx et al., 2016; Vreys et al., 2016). Bands from both ends of the spectra
and bands disturbed by water absorption were deleted prior to the analysis. In total, we
included 245 spectral bands between 426 nm and 2425 nm for subsequent analyses. We
applied a Normalized Differenced Vegetation Index (NDVI) mask in order to exclude values
from pixels with bare soil and ground vegetation (Asner et al., 2015). For this purpose, we
calculated NDVI values for each pixel and excluded pixels with a NDVI below 0.75. For all
remaining pixels we applied a brightness normalization to reduce the influence of canopy
shades on the spectral signal (Feilhauer et al., 2010).

LiDAR points were recorded in February 2014 at leaf-off conditions by Aerodata (Lille,
France) using a Riegl LMS-680i with a maximum scan angle of 30◦and a lateral overlap
of neighboring flight lines of 65%. Average flight height during LiDAR data acquisition
was 530m resulting in a beam diameter of about 0.265m. The LiDAR data were delivered
including a classification of ground and vegetation returns and a digital terrain model (DTM).
Height values of LiDAR points were normalized, by subtracting values of the underlying
DTM. Vegetation returns were then aggregated into a grid with a cell size of 3m × 3m,
taking the grid matrix of the imaging spectroscopy data as reference. For each pixel we
calculated 19 different LiDAR-derived variables based on point statistics resulting in 19
raster layers. Calculated LiDAR-derived variables included basic summary statistics (e.g.
maximum height) based on the height values of LiDAR points in each grid cell and inverse
penetration ratios representing the fractional vegetation cover within given height thresholds
(Tab. 2.1) (Ewald et al., 2014). Penetration ratios were calculated using the following
formula:

vch12 = (nh2 − nh1)/nh2 (2.1)
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where vch12 is representing the vegetation cover within the height thresholds h1 and h2 (h1
< h2) within one grid cell. nh1 and nh2 represent the sum of all LiDAR points below the
given height thresholds h1 and h2, respectively.

Table 2.1 Variables calculated from LiDAR point clouds in 3m × 3m resolution. For the use in partial
least squares regression models, variables were aggregated into a grid with a cell size of 24m × 24m, by
calculating mean and standard deviation.

LiDAR Metric Abbreviation Description
Minimum min_h_mean; min_h_sd Basic statistics
Maximum max_h_mean; max_h_sd based on the
Mean mean_h_mean; mean_h_sd height values of
Standard deviation sd_h_mean; sd_h_sd vegetation LiDAR
Variance var_h_mean; var_h_sd points
Coefficient of variation cov_h_mean; cov_h_sd
10th percentile perc10_h_mean; perc10_h_sd
25th percentile perc25_h_mean; perc25_h_sd
50th percentile perc50_h_mean; perc50_h_sd
75th percentile perc75_h_mean; perc75_h_sd
90th percentile perc90_h_mean; perc90_h_sd
Fractional cover 0.5m – 2m fcover_05_2_mean; fcover_05_2_sd Inverse penetration
Fractional cover 0.5m – 60m fcover_05_60_mean; fcover_05_60_sd ratios representing
Fractional cover 2m – 6m fcover_2_6_mean; fcover_2_6_sd an estimate for
Fractional cover 2m – 60m fcover_2_60_mean; fcover_2_60_sd fractional cover of
Fractional cover 6m – 10m fcover_6_10_mean; fcover_6_10_sd the vegetation
Fractional cover 6m – 60m fcover_6_60_mean; fcover_6_60_sd within given height
Fractional cover 10m – 20m fcover_10_20_mean; fcover_10_20_sd thresholds
Fractional cover 20m – 60m fcover_20_60_mean; fcover_20_60_sd

From both imaging spectroscopy and LiDAR raster layers, we extracted values from
all pixels overlapping with the 50 field plots to be used as input to the statistical models.
For each plot, we calculated the weighted mean values of 245 hyperspectral bands and 19
LiDAR-variables (Tab. 2.1) from the extracted cell values, using the percent overlap of each
cell with the plot area as weight. Similarly, we calculated the weighted standard deviation
for LiDAR-derived variables which represent a measure of spatial heterogeneity of these
variables.

For prediction we aggregated the pixels of the imaging spectroscopy and LiDAR raster
layers to a grid with a pixel size of 24m × 24m, calculating the mean and the standard
deviation (for LiDAR-derived variables only) of all aggregated cells. This finally resulted
in a dataset containing 245 spectral bands and 38 LiDAR-derived variables (mean and
standard deviation).

2.1.2.4 Model calibration and validation

For both response variables, Nmass and Pmass, we built predictive models using the extracted
values from the raster layers at plot locations as predictors. We calculated partial least
squares regression (PLSR) models with a step-wise backward model selection procedure
implemented in the R package autopls (R Core Team, 2016; Schmidtlein et al., 2012). The
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number of latent variables was chosen based on the lowest root mean squared error (RMSE)
in leave-one-out cross-validation. Before model calibration predictors were normalized,
dividing each predictor variable by its standard deviation.

To test the benefit of LiDAR-derived data for the prediction of community weighted means
of Nmass and Pmass at the canopy level we fit two sets of models for each response variable,
one incorporating the hyperspectral bands only and a second one using a combination of
hyperspectral bands and LiDAR-derived variables as predictors. To test the independent
contribution of LiDAR data on the predictions, we additionally fit a third set of models for
both Nmass and Pmass including only LiDAR-derived variables as predictors. Nmass values
were natural log transformed prior to the model calculations.

The model calculations and predictions were embedded in a resampling procedure with
200 permutations, in order to reduce the bias in model predictions, yielding to a better
comparison between the three sets of models. In each permutation, a subsample of 40 out of
the 50 field plots was randomly drawn without replacement and used for model calibration
and validation. Each model was used to generate a prediction map with a grid size of
24m × 24m, resulting in 200 prediction maps for each response variable and each of the
three predictor combinations used, respectively. From these maps we calculated a median
prediction map and the associated coefficient of variation (CV), representing the spatial
uncertainty of model predictions (Singh et al., 2015).

For the assessment of the predictive performance of the models, we calculated the mean
Pearson r-squared as well as the absolute and normalized root mean squared error (RMSE)
between predicted and observed values of each data subset. The same performance measures
were calculated for each data subset in leave-one-out cross-validation data. For Nmass,
r-squared values and RMSE were calculated based on the log-transformed dataset. The
normalized RMSE was calculated by dividing the RMSE by the mean value in the response
dataset. r-squared and RMSE values were used to compare the performances of models
using only hyperspectral bands or a combination of hyperspectral bands and LiDAR-derived
variables as predictors, for Nmass and Pmass respectively. Model performance is affected
by the number of variables included, in the case of a PLSR the number of latent variables.
To check for such an effect we grouped the corresponding models according to the number
of latent variables included and compared the r-squared values for each group separately
(supplementary material, Fig. 2.12).

2.1.3 Results

Field plots were located in forest stands with heights ranging from 3 to 40m and LAI
values ranging from 1.7 to 5.9 (supplementary material, Tab. 2.4). Plot-wise community
weighted mean values for Nmass and Pmass ranged from 13.8 to 25.4 g·kg−1 and from 0.82 to
1.93 g·kg−1, respectively. Nmass of P. serotina and P. sylvestris were significantly different
from all other species (supplementary material, Fig. 2.13 and, Tab. 2.5). Contrary, we
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observed no differences in measured Nmass between. F. sylvatica, Q. robur and C. betulus.
Pmass differed significantly between all species except between C. betulus and Q. robur
(supplementary material, Fig. 2.13). Models combining structural vegetation attributes,
derived from airborne LiDAR, with imaging spectroscopy improved predictions of community
weighted mean values for Nmass and Pmass compared to models using imaging spectroscopy
data solely (Tab. 2.2, Fig. 2.2). In the combined Nmass models, hyperspectral bands
had a significantly higher contribution (p < 0.001) to the variance explained, compared to
LiDAR-derived variables (Fig. 1). By contrast, in Pmass models, LiDAR-derived variables
showed a significantly higher contribution (p < 0.001). With respect to the selected spectral
bands we observed only marginal differences between models including LiDAR-derived
variables and models not including them (Figs. 2.3, 2.4, 2.5, 2.6).

Table 2.2 Results of PLSR models for Nmass and Pmass from 200 bootstraps. Predictors: used predictor
variables being either, hyperspectral bands (HS) or LiDAR-derived variables; # LV: mean number of latent
variables; # Var: mean number of selected predictor variables; R2

cal: mean coefficient of determination in
calibration; R2

cv: mean coefficient of determination in validation; RMSEcal: average root mean squared
error in calibration; RMSEcv: average root mean squared error in leave-one-out cross-validation

Response Predictors #LV #Var R2
cal R2

cv RMSEcal RMSEcv RMSEcal RMSEcv
[%] [%]

Nmass∗ HS 5.8 98 0.47 0.31 0.09 0.09 2.9 3.3
± 0.10 ± 0.14 ± 0.01 ± 0.01

HS & LiDAR 5.7 43 0.55 0.41 0.08 0.09 2.7 3.0
± 0.12 ± 0.16 ± 0.01 ± 0.01

LiDAR 3.5 8 0.39 0.26 0.09 0.10 3.1 3.4
± 0.08 ± 0.09 ± 0.01 ± 0.01

Pmass HS 6.3 42 0.59 0.45 0.15 0.18 13.1 15.3
± 0.15 ± 0.16 ± 0.02 ± 0.02

HS & LiDAR 6.9 38 0.73 0.63 0.13 0.14 10.8 12.5
± 0.08 ± 0.10 ± 0.02 ± 0.02

LiDAR 3.7 9 0.62 0.54 0.15 0.17 12.6 14.0
± 0.08 ± 0.10 ± 0.01 ± 0.01

∗natural log-transformed
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Figure 2.1 Relative contribution of hyperspectral bands (HS) and LiDAR variables to the variance
explained in PLSR models for Nmass and Pmass expressed as proportion of the total VIP (Variable
Importance in Projection) score.
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Figure 2.2 Mean predicted values resulting from 200 model predictions displayed against observed values
for Nmass and Pmass of 50 field plots. Error bars represent lower and upper quantiles of the predictions.
The figures show results from models using hyperspectral bands (HS, top), LiDAR-derived predictors
(LiDAR, bottom) and a combination of both (HS & LiDAR, middle). The coloring highlights different forest
types represented by dominant tree species.

For Nmass the average R2
cv values resulting from leave-one-out cross-validation for each

bootstrap model increased from 0.31 to 0.41 whereas the mean relative RSME decreased
only moderately (see Tab. 2.2) when adding LiDAR-derived variables. Models fitted by
LiDAR-derived predictors solely resulted in a mean R2

val value of 0.25. The most important
LiDAR-derived variables in the models predicting of Nmass were, according to VIP values,
related to the horizontal variation of canopy cover (fcover_05_60_sd, fcover_2_6_sd,
fcover_6_10_sd, fcover_6_60_sd) (Figs. 2.7, 2.8). The most important spectral bands
were located in the VIS and the SWIR between 2000 and 2400 nm, irrespective of whether
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Figure 2.3 Mean VIP (Variable Importance in Projection) values of hyperspectral bands and
LiDAR-derived variables resulting from 200 PLSR models for the prediction of Nmass. The top panel is
showing the results from models using hyperspectral bands only, bottom panels display results from models
using a combination of hyperspectral bands and LiDAR-derived predictors. Gray areas indicate the range
between the 10th and the 90th percentiles. The bottom right panel is displaying mean VIP values of used
LIDAR variables. For simplification LIDAR variables were grouped into four classes representing the
vegetation cover (Fractional cover), the horizontal variability of vegetation cover (Fractional cover SD),
LiDAR height metrics (Height), and the horizontal variability of LiDAR height metrics (Height SD).
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Figure 2.4 Mean VIP (Variable Importance in Projection) values of hyperspectral bands and
LiDAR-derived variables resulting from 200 PLSR models for the prediction of Pmass. The top panel is
showing the results from models using hyperspectral bands only, bottom panels display results from models
using a combination of hyperspectral bands and LiDAR-derived predictors. Gray areas indicate the range
between the 10th and the 90th percentiles. The bottom right panel is displaying mean VIP values of used
LIDAR variables. For simplification LIDAR-derived variables were grouped into four classes representing the
vegetation cover (Fractional cover), the horizontal variability of vegetation cover (Fractional cover SD),
LiDAR height metrics (Height), and the horizontal variability of LiDAR height metrics (Height SD).

only imaging spectroscopy or a combination of imaging spectroscopy and LiDAR data was
used (Fig. 2.3).

For Pmass, average R2
cv values resulting from leave-one-out cross-validation for each

bootstrap model increased from 0.45 to 0.63 and the mean relative RSME decreased from
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Figure 2.6 Mean PLSR Coefficients of hyperspectral bands and LiDAR-derived variables resulting from
200 model calculations for predicting Pmass. The top panel is showing the results from models using
hyperspectral bands only, bottom panels display the results from models using a combination of
hyperspectral bands and LiDAR-derived variables. Gray areas indicate the range between the 10 th and the
90 th percentile. The bottom right panel is displaying mean PLSR Coefficients of used LiDAR-derived
variables. For simplification LiDAR-derived variables were grouped into four classes representing the
vegetation cover (Fractional cover), the horizontal variability of vegetation cover (Fractional cover SD),
LiDAR height metrics (Height), and the horizontal variability of LiDAR height metrics (Height SD). LiDAR
variables are displayed in ascending order by variable importance.

15.3 to 12.5 (see Tab. 2.2), when LiDAR-derived predictors were included. Models fitted
by LiDAR-derived predictors solely resulted in a mean R2

cv value of 0.54. Regression
coefficients for the most important LiDAR-derived predictors, according to the relative VIP,
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Figure 2.7 Mean VIP values (left) and mean PLSR coefficients (right) resulting from 200 PLSR models
for the prediction of Nmass (top) and Pmass (bottom) for the ten most important LiDAR-derived variables
in models using a combination of hyperspectral bands and LiDAR-derived as predictors. Error bars indicate
the range between the 10th and 90th percentile.

indicated a negative relation between Pmass and the fractional cover of trees larger than
6m (fcover_6_60_mean) (Figs. 2.7, 2.8). Moreover, important LiDAR-derived variables
indicated a negative relation of Pmass to the stand height (max_h_mean, perc90_h_mean,
mean_h_mean) (Figs. 2.7, 2.8). Additionally, fcover_2_6_mean, related to the cover of
shrubs, was the most important variable in Pmass models using LiDAR-derived variables
solely (Fig. 2.8). Important hyperspectral bands were distributed across the whole spectrum
with a pronounced peak around 730 nm (Fig. 2.4). The permutation of the calibration
data according to the main forest types revealed that the success of Nmass and Pmass

models was strongly dependent on two forest types being included (Fig. 2.9). Nmass models
showed poor predictive performances when P. sylvestris stands were not included in the
calibration dataset. Similarly, the absence of P. serotina dominated stands resulted in
poor predictive performance of Pmass models. This observation was consistent regardless
of whether hyperspectral or LiDAR data were used as predictors. Additionally, model
performances were strongly influenced by the variance in canopy height and gap fraction of
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field plots included in each data permutation (Fig. 2.10). Pmass models performed better
with increasing variance in both structural properties. This contrasted with Nmass where the
performance of imaging spectroscopy models decreased with increasing variation in canopy
height and gap fraction. The performance of Nmass models was less affected by structural
variation, when including LiDAR-derived variables (Fig. 2.10).

2.1.4 Discussion

In this study we showed that LiDAR-derived information on canopy structure improved
predictions of Nmass and Pmass based imaging spectroscopy instructurally heterogeneous
forest stands. This finding is in accordance with previous studies using optical remote
sensing data, which report a strong contribution of NIR reflectance for the prediction of
Nmass in forest canopies (e.g. Martin et al., 2008; Ollinger et al., 2008; Wang et al., 2016)),
that can be attributed to canopy structural properties (Knyazikhin et al., 2013; Ollinger,
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Figure 2.10 Predictive performances of Nmass and Pmass models depending on the variance of canopy
gap fraction and canopy height included in the calibration dataset, Points represent the results from 200
model repetitions using permuted calibration data. Lines and values in each panel represent results from
univariate linear regression between displayed variables. Top panels are showing the results from models
using imaging spectroscopy data (HS) only, bottom panels the results from models using a combination of
imaging spectroscopy and LiDAR data.

2011). Similarly, Badgley et al. (2017) found gross primary production on a global level
to be strongly related to structure-sensitive NIR reflectance. These results point at the
existence of functional links between the biochemical and structural composition of forest
canopies.

An ecological explanation of such linkages follows from the economic theory (Bloom et al.,
1985). The economic theory states that investments in the photosynthetic machinery of
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Figure 2.11 Map sections showing forest types represented by their dominant tree species, a canopy
height model (both in the middle) and median predictions of canopy level Nmass (top) and Pmass (bottom)
from models using hyperspectral bands (HS), LiDAR-derived predictors (LiDAR) or a combination of both
(HS+LiDAR).

plants will be realized only when the benefit of these investments exceeds the anticipated
costs. As a result, plant traits with small cost-to-benefit relationship are favored under
resource limitation, leading to a functional convergence of structural and physiological traits.
At the leaf level, for example, the negative correlation between leaf mass per area and leaf
nitrogen or phosphorus concentration can be attributed to functional convergence (Díaz
et al., 2016; Shipley et al., 2006; Wright et al., 2004). Ecological theory suggests that, similar
to the leaf level, functional convergence can also be expected at the canopy level (Field, 1991)
leading to linkages between structural and biochemical canopy properties. In temperate
and boreal forest ecosystems, links between structure and biochemistry are expressed at
both the leaf and the canopy level. For example, broadleaved and coniferous trees show
notable structural differences at the canopy level which are expressed in different crown
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geometry, branching architecture and leaf angle distribution (Ollinger, 2011). Both, leaf and
canopy structural properties have shown to influence spectral reflectance in similar ways,
resulting in higher reflectance of broadleaved canopies (Knyazikhin et al., 2013; Ollinger,
2011). At the same time, broadleaved trees are characterized by higher Nmass compared to
coniferous tree species (Güsewell, 2004; Han et al., 2005; McNeil et al., 2008; Serbin et al.,
2014). Furthermore, case studies show that forest canopy Nmass or Pmass can be also related
to other structural properties, such as stand density, above ground biomass or crown-closure
(Craven et al., 2015; Gökkaya et al., 2015; Sardans and Peñuelas, 2015; Vilà-Cabrera et al.,
2015).

In the specific context of this study, the success of Nmass and Pmass predictions was
strongly dependent on the presence of two forest types that exhibited biochemical and
structural differences compared to the co-occuring forest types. Nmass predictions depended
on the presence of P. sylvestris stands in the calibration dataset. Pinus sylvestris was the
only coniferous species in our study and was characterized by significantly lower Nmass than
all other species. In contrast, Pmass predictions were mainly driven by P. serotina, which was
the species characterized by the highest Pmass concentrations in our study area. Structural
differences between P. serotina and the other tree species in our study area mainly arise from
its growth strategy and habitat preferences. Prunus serotina is an early successional tree
species with significantly smaller growth heights compared to other tree species predominant
in our study area. Prunus serotina is often a dominant species in young stands and often
occurs in mature stands with sparse canopies or in canopy gaps. Our results suggest that
species differences in structural and/or optical properties can serve as a surrogate to predict
canopy chemistry using remote sensing, at least across small study extents, where differences
in leaf nutrient concentrations can often be explained by differences between species (Craven
et al., 2015; McNeil et al., 2008). For larger environmental gradients, differences between
species are often superimposed by the high intra-specific variability of leaf biochemicals
(Asner et al., 2012; Mellert and Göttlein, 2012; Vilà-Cabrera et al., 2015), which respond to
strong variation in climate and soil properties (Sardans et al., 2015; Sun et al., 2015). The
fact that our results were strongly dependent on the occurrence of two species is limiting
the transferability of our findings to other study areas or broader spatial extents. However,
functional differences (e.g. between broadleaved and coniferous species or between early
and late successional species) that are manifested in structural and biochemical properties
(Craven et al., 2015; Kusumoto et al., 2015; Sardans and Peñuelas, 2015; Vilà-Cabrera et al.,
2015) suggest that canopy structure can serve as a surrogate for predicting biochemical
properties also in different study contexts.

Mapping Nmass

Predicting forest canopy Nmass using imaging spectroscopy has a long history. Compared to
previous studies, which often report good (e.g. Smith et al., 2003; Townsend et al., 2003;
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Wang et al., 2016) or even excellent (e.g. Martin et al., 2008; Singh et al., 2015) predictive
performances, our models performed poorly. We attribute this mainly to the high structural
diversity of the forest stands used for model calibration. This high structural diversity
was, for example, expressed by strong variation of LAI values even within stands of the
same forest type (i.e. ranging from 1.8 to 6.1 for F. sylvatica stands). Canopy structure
strongly affects reflectance (Gerard and North, 1997; Rautiainen et al., 2004) and a high
variability in LAI has been found to hamper predictions of leaf biochemistry at the canopy
level (Asner and Martin, 2008). Furthermore, we included stands of different age classes,
with canopy heights ranging between 2 and 40 meters, which also increases variation in
canopy reflectance, especially in the VIS (Roberts et al., 2004). Our results suggest, that
including LiDAR data can help to diminish these effects of structural heterogeneity, when
mapping Nmass (see Fig. 2.10).

In part, the weak predictive performance of our Nmass models can be attributed to
the relatively low data range of Nmass in our study area (cf. Asner et al., 2015; Huber
et al., 2008; Martin et al., 2008; Singh et al., 2015; Smith et al., 2003; Wang et al., 2016).
The range was especially low for all broadleaved species, with no significant differences
between the two main species (F. sylvatica, Q. robur), which were predominant in 36 of
50 field plots (including mixed broadleaf). Furthermore, the weak model performance can,
presumably, also be attributed to the usage of mass related nitrogen measures, because
spectral reflectance is more closely linked to leaf biochemistry on an area basis (Grossman
et al., 1996; Roelofsen et al., 2014).

Furthermore, the performance of the Nmass models may also be explained by the fact that
image acquisition and leaf sampling were from different years. Although previous studies
suggest, that there is only low variation of Nmass in temperate forest species between two
consecutive years and during one growing season (McKown et al., 2013; Niinemets, 2016;
Reich et al., 1991; Smith et al., 2003), we cannot be 100% sure that relative differences
between the species in our study area were stable between the years. Fajardo and Siefert
(2016) found different patterns in Nmass between coniferous and broad leaf species in the
course of one growing season. However, they also found that overall species rankings
concerning Nmass were stable throughout a growing season.

The most important spectral bands selected in our Nmass models were situated in the
visible part of the spectrum. A high contribution of the VIS region for Nmass prediction,
using imaging spectroscopy, was also observed by Asner et al. (2015) and Singh et al.
(2015). In our study the importance of bands in the VIS can be attributed to differences in
reflectance between coniferous and broadleaved forest stands in this spectral region. (see
supplementary material Fig. S4). These differences may arise from light absorption of
chlorophyll but may also be due to other leaf pigments, like carotenoids and anthocyanins,
that also have absorption characteristics in the VIS (Ollinger, 2011; Ustin et al., 2009).
Moreover, structural canopy properties such as LAI or leaf angle distribution also influence
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reflectance in the VIS, albeit to a lower extent than leaf pigments (Jacquemoud et al., 2009).
This is in accordance to previous studies that report the importance of the VIS region to
discriminate between species (Fassnacht et al., 2016; Roberts et al., 2004).

VIP values indicated only a minor contribution of spectral bands located in the NIR and
SWIR, which is contrary to results of previous studies using image spectroscopy (Homolová
et al., 2013). According to Ollinger (2011) NIR reflectance is especially important in datasets
with only little variance in the VIS reflectance. The high variance in the VIS reflectance
(see supplementary material Fig. S3) observed in this study may thus be an explanation for
the minor contribution of NIR and SWIR bands. Additionally, any signal in the infrared
reflectance may be strongly disturbed, by the high variability of canopy gaps in the field
plots used for this study (Ollinger, 2011).
For mapping Nmass, important LiDAR-derived variables were mainly connected to the

horizontal variation of canopy cover (fcover_6_10_sd, fcover_6_60_sd, fcover_2_6_sd).
These three variables represent the variation of the fractional vegetation cover between
different height thresholds, in one 24m × 24m pixel. They can thus be interpreted as
indicators for spatial heterogeneity of the canopy. The most important LiDAR-derived
variable for predicting canopy level Nmass was the spatial variation of fractional vegetation
cover between 6 and 10m height (fcover_6_10_sd), which is related to the occurrence of
shrubs or small trees in the understory. Low values either indicate little vegetation present
between 6 and 10m height, as it can be observed in mature forest stands with closed canopies,
or very dense homogeneous vegetation, as it can be observed in earlier successional stages.
High values indicate heterogeneous, typically old-grown forest stands with gaps that are
filled by young trees. Similarly, fcover_6_60_sd is related to the horizontal heterogeneity
of the tree canopy cover, that was highest in P. sylvestris stands (supplementary material,
Fig. S5). Moreover fcover_2_6 also was highest in P. sylvestris stands, indicating that
LiDAR-derived variables helped to accentuate differences in Nmass between P. sylvestris
and broadleaved species.
In summary, Nmass predictions were strongly dependent on the presence of the only

coniferous tree species, P. sylvestris. Stands of P. sylvestris were characterized by lower
Nmass and higher spatial variation of canopy cover compared to broadleaved forest stands.
These structural differences could be well captured by LiDAR data (supplementary material,
Fig. S5). Hence, integrating LiDAR-derived information improved models based on imaging
spectroscopy data solely. The poor performance of models, using hyperspectral data solely,
can be attributed to the high structural heterogeneity in the study area, in terms of LAI
and stand ages. Our results suggest, that LiDAR data can help to diminish the effect of
canopy heterogeneity when mapping forest Nmass using imaging spectroscopy.
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Mapping Pmass

Mapping leaf phosphorus with remote sensing has received much less attention compared to
Nmass. Earlier mapping attempts were based on hyperspectral indices (Mirik et al., 2005),
radiative transfer models (Porder et al., 2005) and empirical models (Asner et al., 2015;
Gökkaya et al., 2015). Gökkaya et al. (2015) achieved excellent predictive performances
mapping Pmass in a boreal mixed forest using Hyperion imaging spectroscopy data. Asner
et al. (2015) successfully mapped Pmass along a broad environmental gradient using airborne
hyperspectral data and partial least squares regression. Contrary to Nmass, Pmass has no
characteristic absorption features in the used wavelength range and thus the success of
mapping Pmass can be rather attributed to correlations to other canopy properties. For
many plant species, Pmass is positively correlated with Nmass (Elser et al., 2010; Güsewell,
2004) or leaf mass per area (Wright et al., 2004). For temperate tree species, Sardans et al.
(2015) found a negative correlation between above ground biomass and leaf N:P ratio, due
to higher P retention with increasing age.

Important bands for the prediction of Pmass were located throughout the whole range of the
spectra. Asner et al. (2015) and Gökkaya et al. (2015) found similar results with important
bands located in the VIS, SWIR and NIR regions. The most important selected LiDAR-
derived variables were related to the cover of shrubs and the cover of trees (fcover_2_6_mean,
fcover_6_60_mean). While the shrub cover was positively related to Pmass, tree canopy
cover had an negative relationship, both indicating higher Pmass in very young and very open
stands. We furthermore observed a negative relation between Pmass and LiDAR-derived
variables related to vegetation height (e.g. max_h_mean, perc90_h_mean, mean_h_mean).
These variables are correlated to the mean height of all LiDAR vegetation points and indicate
that taller stands are related to lower Pmass. The observation of higher Pmass in younger
stands reflects the observation that earlier successional stages are often characterized by
higher Pmass (Chai et al., 2015; Eichenberg et al., 2015). Relations between important
LiDAR-derived variables and Pmass can also be well explained by species-specific differences
within the study area. Prunus serotina, for which we observed highest Pmass values, is a
characteristic species of young and early-succesional stands in the forest of Compiègne. The
observed negative relation between canopy cover and Pmass can also be explained by species
-specific differences, particularly between P. serotina, P. sylvestris and F. sylvatica (see
supplementary material, Fig. S5). Fagus sylvatica, for which we observed smallest Pmass, is
forming most dense canopies in Mid-Europe, while P. sylvestris, characterized by higher
Pmass than most of the native broadleaved species, is forming very sparse canopies. Prunus
serotina most frequently occurred in forest stands with sparse canopy cover and good light
conditions (Starfinger et al., 2003).

In summary, Pmass predictions were driven by one tree species occurring in young or open
forest stands. Existing covariation between canopy structure and Pmass was better captured
by LiDAR data than by imaging spectroscopy. The relative importance of structural
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properties for mapping Pmass is not surprising, as phosphorus is not expected to be directly
represented in the spectral signal of plant canopies.

2.1.5 Conclusion

In this study we used a combination of imaging spectroscopy and airborne LiDAR data for
mapping canopy Nmass and Pmass in a forest characterized by a high structural heterogeneity.
For both, Nmass and Pmass, LiDAR-derived variables improved predictions based on imaging
spectroscopy solely. This highlights the importance of structural properties for remote
sensing of biochemical variation in forest canopies. For Nmass the poor performance of
hyperspectral data alone can be attributed to the high structural heterogeneity in the study
area, in terms of LAI and stand ages. LiDAR data helped to capture this heterogeneity and
hence improve model performances. Both, Nmass and Pmass results were strongly influenced
by the presence of only two tree species featuring structural and biochemical properties
different from their co-occurring tree species. This limits the transferability of identified
linkages between canopy structure and biochemistry to other study settings. However, in
the case of Nmass, the known covariation with structural properties existing at the leaf
and canopy level suggests that canopy structure used as proxy, can support the mapping
of Nmass also for different study settings. Information on canopy structure derived from
airborne LiDAR can help to understand existing functional links.
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2.1.6 Supplementary material

Table 2.3 Characteristics of the field plots. LAI: leaf area index measured at 1m height above ground;
Canopy gaps: estimated percentage of canopy gaps; Stand height: Dominant canopy height; Forest type:
forest type represented by the dominant tree species covering at least half of the total basal area; # tree
species: number of tree species in the overstory; # sampled species: number of species considered for leaf
sampling

Plot ID LAI Canopy Stand Forest type # tree # sampled
gaps [%] height [m] species species

I1082W 4.7 40 22 P. sylvestris 3 3
I1091E 4.7 15 22 Mixed broadleaf 4 4
I1112E. 5.4 5 29 F. sylvatica 4 3
I1262NE. 5.5 10 32 F. sylvatica 3 2
I1313SE 2.7 35 23 F. sylvatica 4 3
I1323E 4.6 35 34 F. sylvatica 2 2
I1451NE. 2.5 55 21 P. sylvestris 7 3
I1481E 2.1 65 13 P. serotina 4 1
I1510E 5.3 5 18 C. betulus 3 2
I1520S 4.7 20 33 Mixed broadleaf 5 5
I2041S NA 15 22 C. betulus 7 3
I2151S 3.8 35 18 C. betulus 4 2
I2152S 3.4 50 24 Q. robur 4 3
I2161C 5 20 13 F. sylvatica 5 3
I3221S 4.9 5 29 Mixed broadleaf 4 3
I3282SE. 3.8 50 3 P. serotina 3 1
I3291SE 1.7 50 25 Q. robur 4 2
I3431NW 5.1 15 40 Mixed broadleaf 5 5
I3481E 5.9 40 21 Mixed broadleaf 6 4
I3482SE 5.2 45 25 Mixed broadleaf 6 2
I4021M 4 25 36 Q. robur 4 1
I4031W 4.8 10 20 F. sylvatica 4 2
I4050W 2.6 20 23 F. sylvatica 2 2
I7042E 3.6 20 27 Q. robur 5 3
I7061SE. 4.1 0 9 P. sylvestris 2 2
I7081SE 2.1 35 27 P. sylvestris 4 2
I7162W 2.9 10 28 P. serotina 2 2
I7193NW 3.7 40 28 F. sylvatica 6 2
I9012SW 2.1 40 28 Q. robur 5 3
I9012W 2.2 20 29 Q. robur 5 2
I9032SE. 3 30 2 P. serotina 3 1
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Plot ID LAI Canopy Stand Forest type # tree # sampled
gaps [%] height [m] species species

N1452SW 5.2 0 19 F. sylvatica 2 1
N5171W 3.5 20 33 Q. robur 3 2
N5182S 3.5 15 34 F. sylvatica 1 1
N5191S 1.8 75 36 F. sylvatica 1 1
N6021S 4.6 30 34 F. sylvatica 3 2
N6152W 1.3 70 25 Q. robur 1 1
N6192N 1.1 60 26 Q. robur 2 1
N7301E NA 25 28 Mixed broadleaf 5 3
N7301SE 4.7 5 22 F. sylvatica 3 1
N7391NE 5.8 20 26 F. sylvatica 1 1
N7392NW 3.8 10 25 F. sylvatica 2 2
N7392W 5.7 15 22 Mixed broadleaf 4 3
N7403W 6.1 30 28 F. sylvatica 4 3
N8092S 2.6 40 24 P. sylvestris 5 1
N8113S 5.8 5 18 F. sylvatica 5 2
N9161C 2.7 35 22 P. sylvestris 5 2
N9191SE 3.6 10 32 Q. robur 3 3
N9192SE 4.5 15 29 Mixed broadleaf 4 3
N9222E 4.6 10 31 Q. robur 3 2
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Figure 2.12 R2 in leave-one-out cross-validation depending on the selected number of latent variables
(displayed above) for Nmass (upper row) and Pmass (lower row) for PLSR models including hyperspectral
bands (HS) or a combination of hyperspectral bands and LiDAR derived variables as predictors.
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Table 2.4 Ranges of Nmass and Pmass of sampled tree species

Species Nmass [g/kg] Pmass [g/kg]
Acer pseudoplatanus 16.2 - 27.3 1.69 - 1.94
Carpinus betulus 22.9 - 26.9 0.75 - 1.46
Fagus sylvatica 15.4 - 27.7 0.61 - 1.33
Fraxinius excelsior 21.0 - 30.6 0.81 - 1.43
Pinus sylvestris 12.5 - 19.8 1.02 - 1.52
Prunus serotina 17.4 - 29.9 0.82 - 3.05
Quercus petrea 17.9 - 21.8 0.88 - 1.47
Quercus robur 12.5 - 25.4 0.72 - 1.68
Salix caprea 23.4 - 25.2 1.18 - 1.25

Table 2.5 Results of pairwise Kruskal-Wallis tests to compare Nmass and Pmass between most dominant
tree species. Significant differences are displayed in bold.

Nmass Pmass
Species pair Chi-squared p Chi-squared p
Carpinus betulus - Fagus sylvatica 2.847 0.091 26.808 < 0.001
Carpinus betulus - Pinus sylvestris 38.297 < 0.001 7.5924 0.006
Carpinus betulus - Prunus serotina 24.679 < 0.001 51.909 < 0.001
Carpinus betulus - Quercus robur 0.43495 0.51 1.2066 0.272
Fagus sylvatica - Pinus sylvestris 37.285 < 0.001 29.574 < 0.001
Fagus sylvatica - Prunus serotina 33.156 < 0.001 80.598 < 0.001
Fagus sylvatica - Quercus robur 0.11386 0.736 18.343 < 0.001
Pinus sylvestris - Prunus serotina 40.074 < 0.001 15.29 < 0.001
Pinus sylvestris - Quercus robur 30.51 < 0.001 11.252 < 0.001
Prunus serotina - Quercus robur 25.035 < 0.001 56.801 < 0.001
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Figure 2.13 Measured leaf Nmass and Pmass of the most dominant tree species. Characters show
significant differences between the species resulting from pairwise Kruskal-Wallis tests.
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Figure 2.14 Coefficient of variation (CV) of 50 canopy spectra used for model calibration. Values display
the canopy spectra after brightness normalization.

Figure 2.15 Canopy spectra after brightness normalization of field plots in the visible wavelength range.
Colors indicate different forest types represented by the dominant tree species.
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Figure 2.16 Differences of selected LiDAR-variables between forest types. Values are shown for used field
plots. fcover_2_6_sd: standard deviation of fractional vegetation cover between 2m and 6m above ground;
fcover_above6_mean: mean fractional vegetation cover above 6 m; fcover_above6_sd; standard deviation of
fractional vegetation cover above 6m

Figure 2.17 Selection frequency of 245 hyperspectral bands used in models for the prediction of canopy
Nmass in 200 variable selection procedures. Frequencies are displayed for models using hyperspectral bands
only (HS) and for models using a combination of hyperspectral bands and LiDAR-variables (HS & LiDAR).
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Figure 2.18 Selection frequency of 245 hyperspectral bands used in models for the prediction of canopy
Pmass in 200 variable selection procedures. Frequencies are displayed for models using hyperspectral bands
only (HS) and for models using a combination of hyperspectral bands and LiDAR-variables (HS & LiDAR).
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Abstract

Non-native invasive plant species can influence ecosystem functioning over broad spatial
scales, but most research on ecosystem impacts has focused on the plot level covering
sampling units of only a few square meters or less.

We used a multi-scale approach to analyze structural and leaf chemical vegetation traits
depending on the presence of non-native American black cherry (P. serotina) in a mixed
deciduous forest at the plot level and at the forest stand level. Trait data were derived from
remotely sensed maps of leaf area index (LAI), wood volume as well as canopy leaf nitrogen
content (Nmass), phosphorus content (Pmass), and N:P ratio. Differences in these traits were
compared between invaded and non-invaded areas at the plot level using 264 sampling units
with a size of 25m × 25m and in 4119 forest management units (mean area: 7.6 ± 5.1 ha).

Observed patterns between invaded and non-invaded areas were similar at both spatial
scales. Invaded areas were characterized by less wood volume, indicating that lower standing
biomass promotes the occurrence of P. serotina. In contrast, LAI did not differ between
invaded and non-invaded areas. Furthermore, the presence of P. serotina trees had an
impact on the chemical composition of the forest canopy by decreasing leaf N:P. While
for Pmass, we found no differences between invaded and non-invaded areas, for Nmass we
observed an invasion effect, though only at the plot level. Using remotely sensed trait data
proved valuable to evaluate the relevance of invasion impacts at broader scales.

This is a post-peer-review, pre-copyedit version of an article published in Biological Invasions. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s10530-018-1700-9
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2.2.1 Introduction

Non-native invasive plant species can have manifold impacts on ecosystems, by changing
biotic or abiotic conditions through many different pathways (Ehrenfeld, 2010; Weidenhamer
and Callaway, 2010; Gaertner et al., 2014). Due to effective spreading and fast growth they
are often found to build up dense populations and can thus change the composition of native
plant communities and locally decrease biodiversity (Powell et al., 2011; Vilà et al., 2011;
Pyšek et al., 2012). Besides altering community composition, invasive plant species can
also influence ecosystem properties or processes (Stricker et al., 2015). For instance, the
presence of non-native invasive plant species has often been associated with an increase in
above-ground biomass, above ground nutrient stocks, and nutrient concentrations in the
topsoil (Liao et al., 2008; Dassonville et al., 2008; Weidenhamer and Callaway, 2010; Vilà
et al., 2011).

Changes in ecosystem properties are often related to increased primary production (Vilà
et al., 2011) that can be attributed to the fast growing character of many invasive plant
species (van Kleunen et al., 2010). Fast growth is generally related to low investments of
carbon in leafs associated with higher leaf N and P concentrations (Wright et al., 2004).
Hence, many invasive plant species are characterized by higher leaf N and P concentrations
(e.g. Thorpe et al., 2006; Kurokawa et al., 2010; Jäger et al., 2013) or increased total N and
P uptake (e.g. Windham and Ehrenfeld, 2003; Chapuis-Lardy et al., 2006; Aguilera et al.,
2010) compared to co-occurring native species. Changes in community level above-ground
nutrient contents can be caused by direct or indirect effects. An direct effect can be for
example an increase of community level above-ground nitrogen, due to high uptake by an
invasive species. Indirect effects can include increased nitrogen or phosphorus concentrations
in the leaves of co-occurring native species due to nutrient mobilization (Fisher et al., 2006;
Kurten et al., 2008). However, invasive plants can also reduce nutrient concentrations in
the leaves of co-occurring species (Aerts et al., 2017), presumably as an effect of resource
competition (Vilà and Weiner, 2004).

The majority of studies dealing with ecosystem impacts of invasive plants have been
limited to plot based observations or experiments, in which each sampling unit is covering
areas of only few square meters (Parker et al., 1999; Stricker et al., 2015). While this is
a valid approach to understand effects of invasion processes it provides little information
about the spatial relevance of such impacts. Besides the per capita or per biomass impact
of an invasive species, its broad scale ecosystem impact depends on its range size and its
occurrence prevalence within the area of interest (Parker et al., 1999; Thiele et al., 2009).
Moreover, the spatial distribution patters of invasive plant species can differ across spatial
scales, and similarly also their ecological effects (Pauchard and Shea, 2006). Plot level
studies of invasion effects thus provide only part of the information needed to evaluate its
overall ecosystem impact. Evaluating the impact of an invader at multiple spatial scales
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will provide a more comprehensive picture of its impact (Parker et al., 1999; Pauchard and
Shea, 2006), and therefore also valuable information for prioritizing management actions.
Remote sensing offers great opportunities to support ecological research addressing

multiple spatial scales by providing spatial explicit projections of vegetation traits. Such
projections include structural vegetation traits such as biomass or LAI (Zheng and Moskal,
2009; Fassnacht et al., 2014; Kumar et al., 2015), chemical leaf traits such as chlorophyll or
nitrogen content (Asner et al., 2015; Singh et al., 2015) and plant functional types (Ustin
and Gamon, 2010; Kattenborn et al., 2017). Applications of remote sensing in invasion
ecology have mainly focused on mapping and monitoring the distribution of invasive plant
species (Bradley, 2014) holding potential to detect early invasion stages (Rocchini et al.,
2015; Skowronek et al., 2017b). However, remote sensing data can also be used to detect
invasion impacts on ecosystem functioning over large areas in a spatially continuous manner
(Asner and Vitousek, 2005; Vicente et al., 2013).

In this study, we applied a multi-scale approach to investigate the impact of an invasive
tree species on structural and chemical vegetation traits in a mixed deciduous forest using
sampling units of different size. Impacts were analyzed at the plot level and at the level of
forest management units, hereafter referred to as stand level. Our target species was Prunus
serotina, an alien invasive tree species in Western and Central Europe. In its non-native
range P. serotina mainly occurs on nutrient poor acidic soils within oak and pine forests
(Starfinger et al., 2003; Closset-Kopp et al., 2010) and is promoted by high light availability
in canopy gaps or in forests characterized by sparse canopies (Vanhellemont et al., 2008;
Terwei et al., 2013). Reported impacts of P. serotina outside of its native range include
changes of soil conditions and understory plant communities in forest ecosystems (Halarewicz
and Pruchniewicz, 2015). Especially as a shrub, P. serotina can form very dense populations
and dramatically reduce understory light availability (Starfinger et al., 2003). P. serotina is
characterized by higher leaf nitrogen and phosphorus contents than most of the co-occurring
native tree species (Aerts et al., 2017), thereby showing potential to alter nutrient cycling in
forest ecosystems. At the plot level, P. serotina has been found to decrease leaf nitrogen
content of co-occurring European beech (Fagus sylvatica) and to increase leaf phosphorus
contents of co-occurring Scots pine (Pinus sylvestris) (Aerts et al., 2017). Differences in
structural and chemical traits were analyzed dependent on stand type, stand age, soil pH
and the presence of P. serotina in the tree layer at the plot level and at the forest stand
level. Using this multi scale approach we aimed to get a more comprehensive picture of
ecosystem changes caused by P. serotina.
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2.2.2 Materials and methods

2.2.2.1 Study area

The forest of Compiégne (northern France, coordinates: N 49.370, W 2.886), covering an
area of 144.2 km2, is located in the oceanic climate zone with a mean annual temperature of
10.3◦Cand a mean annual precipitation of 677 mm. Soils are formed of nutrient-poor sandy
substrate in the northern part of the forest and nutrient rich calcareous substrate in the
southern part (Chabrerie et al., 2008). The forest is mainly managed as even-aged stands of
beech (Fagus sylvatica), oaks (Quercus robur, Quercus petrea) and pine (Pinus sylvestris),
which often also occur in mixed stands. These stands are frequently intermingled with
European hornbeam (Carpinus betulus) and ash (Fraxinius excelsior). Stands can reach
ages of more than 200 years (Chabrerie et al., 2008). P. serotina was introduced to the area
around 1850 and has since then spread across a substantial part of the forest (Fig. 2.19)
(Chabrerie et al., 2008). Although P. serotina is affected by frequent thinning, it is often
highly abundant in the shrub layer and can locally become the dominant tree species within
the forest canopy.
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Figure 2.19 Study area with forest management units and presence-absence locations used for analyses at
the stand and plot level respectively. Colors indicate estimated frequency of P. serotina trees within the
management units (Data from Chabrerie et al. (2007))
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2.2.2.2 Data

Spatial forest stand information

We used forest inventory maps from the year 2009, providing polygons with information
on stand age (9 different classes ranging from “0-20 years” to “older than 200 years”) and
up to four dominant tree species for each of the 2846 forest management units (Tab. 2.6,
supplementary material Fig. 2.26). We classified stand types according to the most dominant
tree species of each forest stand. Stands consisting of three or more tree species exceeding
20 % of total canopy cover were classified as mixed stands.

Table 2.6 Overview of data used as basis for response and predictor variables.

Variable Data type Variable type Data source
Response LAI raster continuous Combination of remote sensing

and field data
Wood volume raster continuous Combination of remote sensing

and field data
Nmass raster continuous Combination of remote sensing

and field data
Pmass raster continuous Combination of remote sensing

and field data
N:P ratio raster continuous Combination of remote sensing

and field data
Predictors Soil pH raster continuous (Hattab et al., 2017)

P. serotina presence ∗ point factor (2 levels) Field acquisition
P. serotina presence ∗∗ polygon factor (5 levels) (Chabrerie et al., 2007)
Stand type polygon factor (4 levels) Forest inventory data
Stand age polygon factor (9 levels) Forest inventory data

∗ only used for analyses at the plot level
∗∗ only used for analyses at the stand level

Soil pH map

Information on soil pH was obtained from a soil pH map at 25m × 25m resolution covering
the entire study area (Tab. 2.6, supplementary material Fig. 2.26). This map was generated
through regression-kriging using 161 point measurements of topsoil pH and including soil
type, elevation, slope, bedrock geology and a litter quality index as predictors (for more
information see Hattab et al. (2017)).

Data on P. serotina presence

For the analysis of differences between invaded and non-invaded parts of the forest at the
plot level we sampled information on presence-absence of P. serotina in the tree canopy
within 336 field plots with a size of 25m × 25m (Tab. 2.6, Fig. 2.19). Presence-absence data
were recorded between July and October 2015 throughout the whole forest area combining
random sampling with an environmental systematic mapping (Hattab et al., 2017).
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For the stand level we used 6432 polygons with information on the occurrence of P.
serotina in the tree layer in 6 discrete classes ranging from 0 to 5 (0: no P. serotina, 1:
isolated individuals, 2: scattered aggregates of individuals, 3: fragmented populations, 4:
large, continuous population, 5: dominant canopy tree species over the entire stand) based
on field sampling between the years 2003 and 2004 (Chabrerie et al., 2007). Because of its
low sample size, class 5 was merged with class 4. In order to join information on stand
type/age and occurrence of P. serotina trees we calculated a spatial overlay of the two
polygon maps.

Remotely sensed maps of structural and chemical traits

To compare structural and chemical vegetation traits within invaded and non-invaded parts
of the forests we used maps for leaf area index (LAI), wood volume, canopy nitrogen content
(Nmass), canopy phosphorus content (Pmass), and canopy N:P ratio, based on a combination
of field derived trait and remote sensing data (Tab. 2.6). Remote sensing data consisted
of airborne imaging spectroscopy data (248 bands, 380 — 2500 nm) acquired in July 2014
by the Airborne Prism Experiment (APEX) spectrometer (Schaepman et al., 2015) with a
spatial resolution of 3m × 3 m, and airborne discrete return LiDAR data with an average
point density of 23 points m−2. (for detailed information on remote sensing data, and its
processing see supplementary material Data S1). For mapping LAI, wood volume, Nmass,
Pmass and N:P, we used partial least squares regression models that were calibrated by
field-derived trait data (Fig. 2.20, for more information see supplementary material Data S2).
In order to get more robust predictions, model calculations were embedded in a repeated
data splitting procedure with 200 repetitions. For each iteration a random set of 10 out of
50 field plots was not included in model calibration. Predictive models resulted in mean
Pearson r2 values of 0.48, 0.72, 0.41, 0.63 and 0.61 in leave-one-out cross-validation for
LAI, wood volume, Nmass, Pmass and N:P respectively. Spectral bands and LiDAR-derived
variables were used to predict 200 maps for LAI, wood volume, Nmass, Pmass and N:P from
the resulting models of each data split. Finally, for each trait, we calculated median maps
representing the median value for each pixel from those 200 prediction maps (supplementary
material Fig. 2.27).

2.2.2.3 Data processing

We created two different datasets: one for the analysis of impacts by P. serotina at the
plot level and one for the analyses at the stand level (Fig. 2.20). For both datasets we
extracted information on stand type, stand age, soil pH, LAI, wood volume, Nmass, Pmass

and N:P from the available set of maps. Information from raster maps (pH, LAI, wood
volume, Nmass, Pmass, N:P) was extracted for all pixels intersecting with an square of 25 m
× 25 m around the presence-absence locations and all pixels intersecting with the polygons
representing forest stands, respectively. For soil pH we calculated median values for each
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Figure 2.20 Work-flow illustrating the retrieval of response and predictor datasets at the plot and at the
stand level (for more information on used variables see Tab. 2.6). Trait maps were generated using
predictions from partial least squares regression (PLSR) models.

location and forest stand. Extracted pixel values of the remaining variables were averaged.
For LAI, wood volume, Nmass, Pmass and N:P this procedure was repeated for each of the
200 predicted maps and the median map. We only considered mixed stands and stands
dominated by F. sylvatica, Q. robur or P. sylvestris for the subsequent analyses. Mixed
stands were usually only represented by broadleaved tree species. Other stand types were
excluded from the analyses because of their small sample size. Furthermore, for the analyses
at the stand level polygons smaller than 0.5 ha were not considered as stands and thus
discarded from the data set. This resulted in 264 samples for analyses at the plot level and
4119 polygons (mean area: 7.6 ha, maximum area: 34.5 ha, standard error: ± 5.1 ha) for
analyses at the stand level.

2.2.2.4 Statistical analyses

We aimed to analyze the four vegetation traits (LAI, wood volume, Nmass, Pmass, N:P)
depending on P. serotina presence (plot level) or invasion degree (stand level) and stand
type (Tab. 2.6), considering the confounding effects of soil pH and stand age. Both plot
and stand level data were analyzed using the same procedure (Fig. 2.21). We ran mixed
effects models using each of the four studied vegetation traits as response variables, whereas
stand type, soil pH and invasion by P. serotina were used as fixed effects and stand age
class was integrated as a grouping factor. In a first step we built preliminary models for
each response variable using values extracted from the median prediction maps. These
models were used to select an appropriate model type (model family) and link function by
visual examination of quantile-quantile plots. Additionally, preliminary models were used to
test for spatial autocorrelation (SAC) in the residuals. For this purpose we calculated the
centroids of polygons representing forest stands. SAC was tested calculating the Moran’s I
value between residuals ordered by distance in uniformly distributed distance classes. Class
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width was 200 m for plot level models and 50 m for stand level models. For all response
variables we observed considerable SAC.

Response variables
LAI, wood volume,

Nmass, Pmass, N:P
(200 x each)

Predictors
invasion, stand type,

soil pH, stand age

Median values Decision

Preliminary models:
selection of model family,

correlation function
accounting for SAC

Candidate models:
5 response variables,

5 predictor
combinations

AIC based

selection

Final models:
5 response
variables

200 x

Figure 2.21 Work-flow illustrating the steps of statistical analyses of structural and chemical canopy
traits depending on the presence of P. serotina, stand type and soil pH and stand age (for more information
on response and predictor variables see Tab. 2.6). The presented procedure was used for analyses at both
the plot and stand level. SAC: Spatial autocorrelation.

We chose linear mixed effects models with identity link and a Gaussian error distribution
(LMM) as quantile-quantile plots suggested this for all variables at the plot level as well as
for LAI, wood volume, Nmass and N:P ratio at the stand level. We accounted for SAC by
integrating a correlation function into the model (Dormann et al., 2007). For all response
variables an exponential correlation function was chosen based on visual examination of the
residual’s correlogram (Dormann et al., 2007).
To select the best set of predictors we successively calculated five candidate models.

Each candidate model included different predictor variable combinations (see Tab. 2.7, Fig.
2.21) for each of the four response variables. This procedure was repeated 200 times for
each dataset resulting from the 200 prediction maps respectively. For each of the response
variables, we selected the final conceptual model according to lowest median AIC values
resulting from 200 model repetitions (Tab. 2.7).

To test for differences between included fixed effects we extracted parameter coefficients
and calculated the differences between the coefficients of all possible factor combinations
for each of the 200 calculated models. In a second step we checked if these differences were
significantly different from zero by calculating the 95 % confidence intervals.

Data processing and statistical analyses were performed using R 3.3.1 (R Core Team, 2016).
SAC was tested using the package ncf 1.1 (Bjornstad, 2016) and LMMs were calculated
using the package nlme 3.1 (Pinheiro et al., 2016).

2.2.3 Results

In all LMMs stand type was included as predictor variable, irrespective of the response
variable for both plot and stand level (Tab. 2.7). This indicated a high influence of species-
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Table 2.7 Median AIC and Pearson r2 values of the five candidate linear mixed effect models for LAI,
wood volume, Nmass, Pmass and N:P. Results are presented for analyses at the plot level and the forest
stand level. Bold values indicate lowest AIC values. pH: soil pH, stand type: forest stand.type defined by
dominating tree species, stand.age: stand age comprising 9 age classes, invasion.tree: Invasion of P. serotina
in the tree layer (presence-absence for plot level data and five classes for stand level data)

Response Model Fixed effects Grouping r2 r2 AIC AIC
factor plot stand plot stand

LAI M1 pH stand.age 0.41 0.24 711.2 6843
M2 invasion.tree + pH stand.age 0.41 0.24 714.7 6845
M3 stand.type + pH stand.age 0.52 0.39 675.4 6430
M4 invasion.tree + stand.type + pH stand.age 0.52 0.40 679.3 6447
M5 invasion.tree + stand.type + inva-

sion.tree:stand.type + pH
stand.age 0.53 0.40 681.1 6479

Wood M1 pH stand.age 0.22 0.27 2159 29314
volume M2 invasion.tree + pH stand.age 0.23 0.29 2155 29286

M3 stand.type + pH stand.age 0.23 0.30 2150 29257
M4 invasion.tree + stand.type + pH stand.age 0.24 0.32 2145 29226
M5 invasion.tree + stand.type + inva-

sion.tree:stand.type + pH
stand.age 0.26 0.32 2131 29187

Nmass M1 pH stand.age 0.18 0.04 1132 13223
M2 invasion.tree + pH stand.age 0.19 0.08 1129 13225
M3 stand.type + pH stand.age 0.32 0.33 1088 12534
M4 invasion.tree + stand.type + pH stand.age 0.33 0.34 1088 12543
M5 invasion.tree + stand.type + inva-

sion.tree:stand.type + pH
stand.age 0.35 0.34 1082 12569

Pmass M1 pH stand.age 0.22 0.22 -122 -6349
M2 invasion.tree + pH stand.age 0.23 0.24 -119.3 -6343
M3 stand.type + pH stand.age 0.33 0.29 -139.4 -6499
M4 invasion.tree + stand.type + pH stand.age 0.34 0.30 -132.8 -6477
M5 invasion.tree + stand.type + inva-

sion.tree:stand.type + pH
stand.age 0.34 0.29 -121 -6414

N:P M1 pH stand.age 0.12 0.03 1388 17335
M2 invasion.tree + pH stand.age 0.15 0.07 1380 17351
M3 stand.type + pH stand.age 0.37 0.33 1306 16751
M4 invasion.tree + stand.type + pH stand.age 0.39 0.34 1302 16751
M5 invasion.tree + stand.type + inva-

sion.tree:stand.type + pH
stand.age 0.40 0.33 1296 16760

specific differences in the variation of observed canopy traits, LAI, wood volume, Nmass,
Pmass and N:P ratio. Best models after AIC-based model selection also included invasion by
P. serotina for wood volume, N:P and Nmass (Tab. 2.7). However, for Nmass an influence
of P. serotina was only apparent at plot level and not at the stand level. Furthermore,
for N:P models at the stand level integration of P. serotina invasion reduced AIC values
only moderately (16751.1 vs. 16750.7). LAI and Pmass did not differ between invaded and
non-invaded parts of the forest, irrespective of the spatial scale. Final models resulted in
mean Pearson r2 values between 0.26 and 0.52 at the plot level and between 0.29 and 0.39
at the stand level (Tab. 2.7).

While the presence of P. serotina in the tree layer was connected to lower wood volume
at the stand level for all forest types, we observed no clear trend at the plot level (Figs.
2.22 and 2.23). Here, wood volume was higher at sites with P. serotina trees in Q. robur
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and mixed stands, whereas it was lower in F. sylvatica and P. sylvestris stands, though
not significant for the latter two. At the plot level, presence of textitP. serotina trees was
connected to significantly lower Nmass in mixed deciduous stands and higher Nmass in P.
sylvestris stands (Figs. 2.22 and 2.23). Canopy N:P ratios observed at the plot level were
lower in F. sylvatica and mixed deciduous stands when P. serotina trees were present. When
looking at the stand level, P. serotina presence was related to decreased N:P ratios for
all stand types, but only for invasion classes 3 and 4, representing large fragmented up to
continuous populations of P. serotina trees (Figs. 2.22 and 2.23).

Figure 2.22 Predicted values of 200 repeated model calculations for wood volume and canopy N:P
depending on the occurrence of P. serotina trees at the stand level for different stand types characterized by
the dominant tree species. P. serotina occurrence is grouped into 5 classes (0: no P. serotina, 1: isolated
individuals, 2: scattered aggregates of individuals, 3: fragmented populations, 4: large, continuous
population). Asterisks indicate significant differences from areas without presence of P. serotina trees
resulting from a comparison of model coefficients from 200 model repetitions. Results are displayed for
stands with an age of 90-100 years and a soil pH value of 5.96.

Stand type specific differences of canopy traits were similar across fine and broad spatial
scales for LAI, Nmass, Pmass and N:P ratio (Fig. 2.24 and 2.25). Most apparent was a
lower LAI and lower Nmass in pine stands, depicting the functional differences between
broadleaved tree species and the coniferous P. sylvestris. Despite the observation of lowest
Pmass and highest N:P values in beech dominated stands, differences between broadleaved
forest stands were low. For wood volume we observed no consistent pattern between the
stand types, when comparing plant and stand level results (Fig. 2.24).

2.2.4 Discussion

Influences of P. serotina on canopy chemical traits

Regarding leaf N:P, our results suggest that P. serotina has the potential to alter forest
canopy chemical stoichiometry across scales. While previous field studies found evidence
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Figure 2.23 Predicted values of 200 repeated model calculations for Wood volume, Nmass and N:P
depending on the presence of P. serotina trees at the plot level (based on presence-absence locations) for
different stand types characterized by the dominant tree species. Soil pH was kept constant. Asterisks
indicate significant differences between invaded and non-invaded sites resulting from a comparison of model
coefficients from 200 model repetitions. Results are displayed for stands with an age of 90-100 years and a
soil pH value of 5.96.

for ecosystem impacts of P. serotina at the plot level (Halarewicz and Pruchniewicz, 2015;
Aerts et al., 2017) we could now demonstrate the relevance of impacts on forest ecosystems
also at larger scales. Observed differences in leaf chemical composition between invaded and
non invaded areas can be explained by direct and indirect effects of P. serotina. We can
assume that P. serotina directly influenced canopy N:P due to its leaf chemical stoichiometry
differing from the resident species (Aerts et al., 2017). This also conforms to the results
of a recent meta-study by Lee et al. (2017), which showed that impacts of invasive plant
species on N cycling were mainly driven by trait differences between invaders and native
plant communities.

An indirect way of altering canopy chemistry would presuppose that P. serotina was able
to influence leaf chemical traits of the co-occurring resident tree species. In fact, Aerts et al.
(2017) observed that P. serotina increased Pmass of co-occuring P. sylvestris and decreased
Nmass of co-occuring F. sylvatica. One possible driver is resource competition causing
reduced soil nutrient availability for the resident species and consequently also reduced leaf
nutrient contents. This is one possible reason for the reduced Nmass in invaded areas at the
plot level and for reduced N:P ratios observed at the stand level. Another possible pathway
is improved soil nutrient availability through alterations of litter chemical composition.
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Figure 2.24 Predicted values of 200 repeated model calculations for LAI, wood volume, canopy Nmass,
Pmass and N:P depending on stand types characterized by the dominant tree species. Predictions from plot
level models are displayed on the left, predictions from stand level models on the right. Characters indicate
significant differences between stand types resulting from a comparison of model coefficients from 200 model
repetitions. Results are displayed for non-invaded stands with an age of 90-100 years and a soil pH value of
5.96.

Early successional fast-growing tree species like P. serotina are often characterized by
lower resorption rates of leaf nutrients from senescent leaves (Sardans et al., 2015) that
are also depicted in higher litter nutrient contents (Richardson et al., 2005) accelerating
litter decomposition. Likewise, P. serotina has been found to accelerate litter decomposition
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Figure 2.25 Map segments showing trait values derived from remote sensing at the original resolution
with 24 m pixel size (above) and aggregated to the single forest management units as used for the analyses
at the stand level (center). Polygon maps at the bottom display stand-level information on stand type, stand
age and P. serotina occurrence.

(Aerts et al., 2017) which may have increased nutrient availability in the topsoil resulting in
higher Nmass of the co-occurring trees species, like observed in invaded P. sylvestris stands.

The leaf N:P ratio can be used as an indicator for plant nutrient status giving information
on productivity and tree vitality (Güsewell, 2004). In the last decades leaf N:P ratios
have increased across European forests presumably resulting from high nitrogen deposition
(Jonard et al., 2015; Talkner et al., 2015; Sardans et al., 2016). Mean observed N:P ratios in
our study area (20.5, 18.3 and 11.7 in the leaves of F. sylvatica, Q. robur and P. sylvestris
respectively), already exceeded the tolerable ranges suggested by (Mellert and Göttlein,
2012), indicating P deficiency. In that respect, a potential reduction of leaf N:P ratios by P.
serotina can be rather considered positive.
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Structural differences between invaded an non-invaded areas

Invaded mixed deciduous and Q. robur stands were characterized by less wood volume than
non-invaded ones. In contrast, invaded P. sylvestris stands showed slightly higher wood
volume at the plot level, though not significant. This pattern can be attributed to the strong
demand for light of P. serotina (Vanhellemont et al., 2008; Terwei et al., 2013) and different
light conditions in broad-leaved and pine stands. Broad-leaved stands in our study area
were characterized by lower light availability at the forest floor compared to pine stands
(see Fig. 2.24). Therefore, in broadleaved stands P. serotina establishment is constrained
to canopy gaps caused by natural and anthropogenic disturbances (Chabrerie et al., 2008;
Closset-Kopp et al., 2010). As a result, stands with less wood volume were characterized
by a higher infestation of P. serotina. In pine stands, light availability at forest floor is
usually sufficient for P. serotina establishment and therefore we did not observe significant
differences between invaded and non-invaded stands.

Contrary to differences in wood volume, we found no differences in LAI between invaded
and non-invaded areas. As discussed above, P. serotina establishment is promoted by high
light availability which is related to lower LAI values. Our finding suggests that P. serotina
is able to quickly compensate lower LAI needed for its establishment by its own biomass.
This agrees with previous studies reporting dense cover of P. serotina in the shrub layer
and reduced light availability at the forest floor. The latter is regarded as most influential
factor for inhibiting natural forest regeneration (Starfinger et al., 2003; Halarewicz and
Pruchniewicz, 2015).

Evaluating invasion impacts across scales

We found general agreement between patterns observed at the plot and the stand level. Most
important, we found evidence for invasion effects on canopy nutrient-contents caused by P.
serotina also when taking larger areas into account. Due to the fact, that in many cases it is
unknown how invasion effects on biogeochemical cycles scale up (Weidenhamer and Callaway,
2010), such information is very valuable to evaluate invasion impacts. Additionally it may
be important for evaluation of invasion effects on ecosystem services, which are usually
accounted for at larger spatial scales (Eviner et al., 2012). Previous studies assessing plant
invasion impacts over multiple scales almost solely focused on effects on plant community
composition. The results of these studies underline the importance of mulit-scale assessments
(Fridley et al., 2007). While plant invasions generally tend to decrease local biodiversity
when looking at the fine scale, this effect is smaller or even opposed at broader spatial scales
(Gaertner et al., 2009; Powell et al., 2011, 2013). Besides the evidence for spatial relevance,
also the observation that invasion impacts were dependent from the occurrence frequency
of P. serotina delivered valuable information. This result suggests that P. serotina can
influence leaf nutrient stoichiometry already when forest stands are affected by fragmented
populations of individuals present in the tree layer. Interpreting this result, it is important
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to consider that at the moment single individuals reach the tree layer in many cases there is
already subsequent recruitment present in the shrub layer, that may also influence canopy
nutrient stoichiometry indirectly. Our results confirm that consideration of the spatial
distribution patterns of species abundances or prevalences are an important aspect for
evaluating invasion impacts (Thiele et al., 2009).

Contrary to leaf N:P ratio, for Nmass we found an invasion effect only at the plot, but not
at the forest stand level. This finding indicates, that the influence of P. serotina on canopy
leaf N contents alone is less substantial than its influence on N:P rations. The interpretation
of observed differences between scales is strongly limited due to the high temporal mismatch
between P. serotina occurrence data used for the plot and the stand level analysis. Since
2004 P. serotina further spread within the forest area, but was also partly removed in some
management units in the course of thinning activities. Apart from the temporal mismatch
in used data, differences between the two scales, may be also caused by strongly decreased
variability at the stand level, by calculation mean values. This may have lead to smaller
differences between invaded and non invaded areas compared to the plot level (Wiens, 1989).
This effect at least can be observed when comparing differences between stand types at the
plot and the stand level (see Fig. 2.24).

Remote sensing data proved useful to characterize differences between invaded and non
invaded areas beyond the plot level, thereby highlighting its potential for quantification of
invasion impacts across scales. This includes impacts on vegetation or ecosystem properties
that otherwise are only hard to obtain across large areas. It is important to note that many
plant functional traits, like Nmass and Pmass are not directly represented in the spectral
signal of plant canopies (Ollinger, 2011). Thus, relationships between such traits and canopy
reflectance can be established only via empirical models, which have to be calibrated with
field data (Verrelst et al., 2015). Limitations of empirical relationships arise from their
strong site specificity making predictions of traits under novel environmental conditions
difficult (Ollinger, 2011).

Apart from providing maps of vegetation traits, applications of remote sensing in invasion
ecology most commonly relate to mapping distributions of invasive plant species (Huang and
Asner, 2009). Resulting maps can be used to study spatial distribution patterns of invasive
plant species across scales and thus provide valuable information for the management of
invasive species. Similar to traits, transferring models for mapping species distributions
to other study areas is challenging, but feasible when focusing on distinct habitat types
(Skowronek et al., 2018). Such model transfer is an important prerequisite for efficient early
detection of invasive plant species. One major limitation for the use of remote sensing in
invasion ecology evolves from the trade-off between resolution and coverage. Depending
on the size of the target species, monitoring plant invasions requires fine resolution remote
sensing particularly for the purpose of early detection (Bradley, 2014). Such fine resolution
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data have become readily available by the use of sensors mounted on unmanned areal vehicles
(UAV), but usually only over limited spatial extents.

2.2.5 Conclusion

We assessed differences in structural and chemical forest canopy traits between invaded and
non-invaded areas at the plot and the stand level. Using this multi scale approach provided
a more comprehensive picture on patterns and impacts of P. serotina invasions. Particularly,
the assessment of invasion impacts over larger areas beyond the plot level provided valuable
additional information on the spatial relevance of invasion impacts. Such information can
help to prioritize management actions, by focusing on species that affect ecosystems over
large areas. For the evaluation of potential impacts of plant invasions we thus recommend
observations at a coarser spatial grain to supplement plot-level observations. Remotely
sensed vegetation trait maps proved useful for this kind of multi-scale assessments.
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2.2.6 Supplementary material

Figure 2.26 Maps displaying stand type, stand age (source: Office National des Forêts) and pH (Hattab
et al., 2017) in the forest of Compiégne (France).
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Figure 2.26 Maps displaying stand type, stand age (source: Office National des Forêts) and pH (Hattab
et al., 2017) in the forest of Compiégne (France).

Figure 2.27 Vegetation trait maps derived from a combination of airborne imaging spectroscopy and
LiDAR data for the forest of Compiégne (France).
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Figure 2.27 Vegetation trait maps derived from a combination of airborne imaging spectroscopy and
LiDAR data for the forest of Compiégne (France).
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Figure 2.27 Vegetation trait maps derived from a combination of airborne imaging spectroscopy and
LiDAR data for the forest of Compiégne (France).

Data S1: Acquisition and processing of remote sensing data

Airborne Imaging spectroscopy data of 3m × 3m resolution was acquired in July 24, 2014
(9:56 – 11:25 UTC + 2h) at a flight height of 5400 m using the Airborne Prism EXperiment
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(APEX) sensor (Schaepman et al., 2015). The data consisted of 284 bands in the wavelength
range between 380 nm and 2500 nm and were recorded in 12 flight lines covering the whole
study area. Recorded images were geometrically and atmospherically corrected according to
the standard precessing chain applied to APEX recorded images (Sterckx et al., 2016; Vreys
et al., 2016). Spectral bands affected by atmospheric water absorption and noisy bands at
the beginning and end of the spectral range were removed. The final dataset consisted of
245 spectral bands between 426 nm and 2425 nm. From the resulting images we calculated
the normalized difference vegetation index (NDVI) for the entire study area. Pixels with an
NDVI value below 0.7 were excluded from subsequent analyses to remove information from
non-vegetated areas. In order to reduce effects caused by different illumination we applied a
brightness normalization (Feilhauer et al., 2010).
Airborne discrete-return LiDAR data was acquired in February 2014 during the leaf-off

period at a flight height of 530 m using a RIEGL LMS-680i Lasersccanner (RIEGL Laser
Measurement Systems GmbH, Horn, Austria). Point clouds were recorded with an maximum
scan angle of 30◦and a 65% lateral overlap of neighboring flight lines resulting in an average
point density of 23 points/m2. The data were acquired and delivered by Aeredata (Lille,
France) including a classification in ground and vegetation returns and a digital terrain
model (DTM). Vegetation returns were normalized by subtracting them from the underlying
DTM and then aggregated into a 3m × 3m grid using the imaging spectroscopy data as
reference grid. For each grid cell we calculated 18 LiDAR metricss representing the vertical
canopy structure (Tab. 2.8, see Ewald et al. (2014) for more information).

For the subsequent modelling we extracted data from hyperspectral images and maps of
LiDAR derived variables at 50 plot locations. Values from pixels overlapping the plot area,
were extracted for each plot. From extracted values we calculated weighted mean values
for each plot, using the percentage overlap of each pixel with the plot area as weight. For
all LiDAR derived variables we repeated this procedure calculating the weighted standard
deviation as a measure for the horizontal heterogeneity of the forest canopy. This resulted
in a dataset consisting of 281 predictor variables, 245 derived from imaging spectroscopy
and 36 from airborne LiDAR.
For the calculation of prediction maps we aggregated hyperspectral images and LiDAR

derived maps to a resolution of 24m × 24m to fit the size of used calibration plots. Resulting
pixel values were derived by calculating mean values. LiDAR derived maps were additionally
aggregated to the same resolution by calculating the standard deviation. This resulted in
281 raster-layers used for calculation of prediction maps.
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Table 2.8 Predictor variables calculated from LiDAR point clouds.

LiDAR Metric Description
Minimum Basic statistics based on the height values of
Maximum vegetation LiDAR points
Mean
Standard deviation
Variance
Coefficient of variation
10th percentile
25th percentile
50th percentile
75th percentile
90th percentile
Fractional cover 0.5 m – 2 m Inverse penetration ratios representing an estimate
Fractional cover 0.5 m – 60 m for fractional cover of the vegetation within given
Fractional cover 2 m – 6 m height thresholds
Fractional cover 2 m – 60 m
Fractional cover 6 m – 10 m
Fractional cover 6 m – 60 m
Fractional cover 10 m – 20 m
Fractional cover 20 m – 60 m

Data S2: Generation of trait maps from remote sensing data

For mapping LAI, wood volume, Nmass, Pmass and N:P ratio, we used partial least squares
regression models that were calibrated by field-derived trait data. For this purpose we
collected trait data in a subset of the 336 field plots described above, consisting of 50 plots
covering the range of invasion from non-invaded to fully invaded sites as well as all main
forest types. Plot level LAI values were averaged from five measurements taken in each
plot using a LAI-2200C Plant Canopy Analyzer (LI-COR Inc., Lincoln, USA). Reference
measurements of light conditions were taken simultaneously at the nearest available clearing.
Wood volume representing the total volume of woody standing biomass was calculated for
each tree via the following allometric equation (Deleuze et al., 2014):

V ol = a · h · c2

4 · pi · 1−1.3
h

(2.2)

where h is the tree height, c the stem circumference at breast height and a represents a
constant factor depending on the tree species. Constants determined using models calibrated
within France were available for the most dominant of the 15 present tree species. For the
seven remaining species we used constants from the same genus or one of the two universal
constants available for broadleaved and coniferous trees (Tab. 2.9). Plot level values were
calculated by summing up wood volumes of each tree and shrub including P. serotina
individuals. Nmass and Pmass representing the community weighted mean of mass based
leaf nitrogen and phosphorus content respectively was derived from analysis of canopy leaf
samples. Leaf sampling included the most dominant tree species making up at least 80 % of
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the total basal area in each plot. For each species and plot we sampled leaves from three
different locations from the sunlit part of the canopy, if possible from different individuals.
Depending on the species each sample consisted of 10 to 15 undamaged and healthy leaves.
Sampled leaves were stored in sealed plastic bags and dried at 80◦Cfor 48 h at the end of
each field work day. Dried leaves were milled for subsequent analyses. Mass-based nitrogen
was measured using a vario MACRO element analyzer (Elementar Analysensysteme, Hanau,
Germany). Mass-based phosphorus content was measured using an inductively coupled
plasma-optical emission spectrometer (ICP-OES) (Varian 725ES, Varian Inc., Palo Alto,
CA, USA). For calculating community weighted mean values we used the relative basal
areas of the occurring tree species as weights. To calculate N:P ratios, Nmass was divided
by Pmass for each plot respectively.

For the prediction of vegetation traits maps we calculated partial least squares regression
(PLSR) models using remote sensing data extracted at plot locations as predictors. Field-
measured LAI, wood volume, Nmass, Pmass and N:P were used as response variables. We
used a stepwise-backward model selection procedure to reduce the number of predictor
variables in our models. Best models in each step were selected on the basis of the lowest
root mean squared error (RMSE) in leave one out cross validation (Schmidtlein et al., 2012).
Prior to model calculations predictors were standardized and centered. The modelling was
embedded in a repeated data splitting procedure with 200 repetitions. In each repetition we
randomly selected data from a subset of 40 out of 50 plots for model calibrations. From
each of the 200 resulting models a prediction map was calculated for each response variable.
From the resulting 200 maps we calculated median values for all pixels resulting in one
median prediction map for each vegetation trait. Mean Pearson r-squared and RMSE in
LOO validation were used to assess the predictive performance of each model set.
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Table 2.9 Tree species, number of individuals, mean diameter at breast height (DBH) and species-specific
constants used in the allometric equation for the calculation of wood volume in 50 calibration plots (Deleuze
et al., 2014). For seven tree species no reference constants were available. In these cases we selected constants
from species of the same genus or universal constants, available for broadleaved and deciduous tree species.

Species # Individuals Mean DBH [cm] Constant
Acer campestre 1 12.1 0.509
Acer platanoides ∗ 1 31.8 0.486
Acer pseudoplatanus 34 13.0 ± 9.1 0.486
Betula pendula 4 34.2 ± 8.3 0.472
Carpinus betulus 407 18.4 ± 9.2 0.503
Crataegus monogyna ∗∗ 11 16.6 ± 4.0 0.496
Fagus sylvatica 498 23.8 ± 17.4 0.515
Fraxinus excelsior 20 32.9 ± 10.5 0.497
Malus sylvestris ∗∗ 1 31.5 0.496
Picea abies 3 26.7 ± 11.0 0.486
Pinus sylvestris 56 41.3 ± 15.5 0.473
Prunus avium 4 32.1 ± 8.4 0.497
Prunus serotina ∗∗∗ 483 9.4 ± 4.9 0.497
Quercus robur 121 53.9 ± 21.2 0.512
Salix caprea ∗∗ 5 24.3 ± 4.7 0.496
Sorbus aucuparia ∗∗ 1 11.8 0.496

∗ Constant for A. pseudoplatanus
∗∗ Universal constant for broadleaved tree species

∗∗∗ Constant for P. avium

Table 2.10 Evaluation results of Partial least squares regression models from 200 repeated model
calculations based on permutations of the calibration dataset for LAI, Wood volume, Nmass, Pmass, and
N:P ratio. Each calibration dataset permutation consisted of 40 observations. # LV: mean number of latent
variables, # Var: mean number of selected predictor variables, R2

cal : mean coefficient of determination in
calibration, R2

cv : mean coefficient of determination in leave-one-out cross-validation, RMSEcal : mean root
mean squared error in calibration, RMSEcv : mean average root mean squared error in leave-one-out
cross-validation

Response # LV # Var R2
cal R2

cv RMSEcal RMSEcv

LAI 7.5 20 0.57 ± 0.08 0.48 ± 0.09 0.87 ± 0.07 0.96 ± 0.07
Wood volume [m3/plot] * 4.7 22 0.85 ± 0.09 0.72 ± 0.07 0.32 ± 0.10 0.45 ± 1.16
Nmass [g/kg] * 5.7 43 0.55 ± 0.12 0.41 ± 0.16 0.08 ± 0.01 0.09 ± 0.01
Pmass [g/kg] 6.9 38 0.73 ± 0.08 0.63 ± 0.10 0.13 ± 0.02 0.14 ± 0.02
N:P ratio 5.9 99 0.72 ± 0.08 0.61 ± 0.10 1.91± 0.31 2.29 ± 0.32

natural log transformed
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Table 2.11 Median values and interquartile ranges of regression coefficients resulting from 200 repeated
calculations of final plot level models. Stand type: Stand type represented by dominant tree species (factor
with four levels: Q. robur, F. sylvatica, P. sylvestris and mixed broadleaved stands); pH: soil pH; Invasion:
Presence/absence of P. serotina trees

Predictors Response variables
LAI Wood volume Nmass Pmass N:P

Intercept 2.88 (0.42) 27.94 (6.89) 19.43 (0.85) 1.17 (0.07) 17.87 (1.49)
Stand type (F. sylvatica) -0.01 (0.26) -3.16 (5.41) -0.46 (0.70) -0.13 (0.08) 2.54 (1.20)
Stand type (Mixed) 0.00 (0.11) -2.79 (3.73) -0.31 (0.30) -0.04 (0.05) 0.99 (0.57)
Stand type (P. sylvestris) -1.53 (0.38) -8.25 (5.55) -4.14 (0.83) 0.07 (0.09) -4.74 (1.21)
pH 0.23 (0.06) -0.57 (1.59) 0.22 (0.14) 0.02 (0.01) -0.13 (0.25)
Invasion - -6.33 (2.90) -0.45 (0.75) - 0.06 (0.81)
Invasion : Stand type (F.
sylvatica)

- 7.63 (3.41) 0.50 (0.59) - -1.40 (0.90)

Invasion : Stand type
(Mixed)

- -1.78 (2.15) -0.53 (0.70) - -2.01 (0.70)

Invasion : Stand type (P.
sylvestris)

- 9.77 (3.82) 1.60 (0.70) - 0.64 (1.07)
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Table 2.12 Median values and interquartile ranges of regression coefficients resulting from 200 repeated
calculations of final plot level models. Stand type: Stand type represented by dominant tree species (factor
with four levels: Q. robur, F. sylvatica, P. sylvestris and mixed broadleaved stands); pH: soil pH; Invasion:
Occurrence of P. serotina trees (factor with five levels ranging from no invasion in the tree layer (0) to
continuous populations)

Predictors Response variables
LAI Wood volume Nmass Pmass N:P

Intercept 3.54 (0.16) 24.17 (3.99) 19.56 (0.44) 1.20 (0.05) 17.67 (0.49)
Stand type (F. sylvatica) 0.02 (0.10) -5.65 (2.34) -0.01 (0.18) -0.02 (0.03) 0.83 (0.56)
Stand type (Mixed) -0.19 (0.05) -3.09 (1.73) -0.44 (0.11) 0.02 (0.02) -0.50 (0.18)
Stand type (P. sylvestris) -0.95 (0.31) -4.77 (5.15) -2.82 (0.61) 0.07 (0.07) -3.86 (0.77)
pH 0.12 (0.03) -0.18 (0.77) 0.08 (0.09) 0.00 (0.01) -0.04 (0.11)
Invasion (1) - -2.02 (1.28) - - 0.03 (0.05)
Invasion (2) - -2.89 (1.45) - - -0.13 (0.11)
Invasion (3) - -4.46 (1.93) - - -0.22 (0.13)
Invasion (4) - -4.63 (1.97) - - -0.55 (0.15)
Invasion (1) : Stand type
(F. sylvatica)

- 2.04 (1.15) - - -

Invasion (2) : Stand type
(F. sylvatica)

- 4.32 (5.35) - - -

Invasion (3) : Stand type
(F. sylvatica)

- 3.09 (1.52) - - -

Invasion (4) : Stand type
(F. sylvatica)

- 3.16 (1.31) - - -

Invasion (1) : Stand type
(Mixed)

- 0.61 (0.75) - - -

Invasion (2) : Stand type
(Mixed)

- -0.30 (0.81) - - -

Invasion (3) : Stand type
(Mixed)

- 1.46 (1.00) - - -

Invasion (4) : Stand type
(Mixed)

- 0.34 (1.03) - - -

Invasion (1) : Stand type
(P. sylvestris)

- 1.53 (1.84) - - -

Invasion (2) : Stand type
(P. sylvestris)

- 1.49 (1.59) - - -

Invasion (3) : Stand type
(P. sylvestris)

- 3.13 (3.28) - - -

Invasion (4) : Stand type
(P. sylvestris)

- 4.09 (2.07) - - -
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Figure 2.28 Predicted values of 200 repeated model calculations for LAI, wood volume, Nmass, Pmass,
and leaf N:P shown for different age classes. Predictions from plot level models are displayed on the left,
predictions from stand level models on the right. Displayed value ranges include all stand types included in
the models.

69



2 Research papers

70



2.3 Evaluating the ecosystem impact of an invasive moss using high resolution imaging
spectroscopy

2.3 Evaluating the ecosystem impact of an invasive moss using
high resolution imaging spectroscopy

Michael Ewald, Sandra Skowronek, Raf Aerts, Jonathan Lenoir, Hannes Feilhauer, Ruben
Van De Kerchove, Olivier Honnay, Ben Somers, Carol X. Garzón-López, Duccio Rocchini,
Sebastian Schmidtlein

Abstract

Remote sensing has frequently been used to map the presences of alien invasive plant species.
While most of these studies target the presence-absence of such species, remote sensing has
an underutilized potential to predict fractional covers across large areas, which are more
closely linked to the ecosystem impact of invasive plant species.

Here, we aimed at mapping the fractional cover of the invasive Heath Star Moss (Campy-
lopus introflexus) using high resolution imaging spectroscopy (233 bands, 490 nm - 2430 nm,
3m × 3m pixel size). Combining cover maps with field investigations, we further aimed to
evaluate the impact of C. introflexus on plant diversity in different habitat types within a
coastal dune ecosystem. Using cover information from 266 field plots we ran generalized
partial least squares (gPLS) regression models to estimate the cover of C. introflexus from
imaging spectroscopy. Models were calibrated using different training datasets, following a
spatially blocked subsampling design. Additionally, the influence of C. introflexus fractional
cover on the plant α-diversity was evaluated based on field data.
Fractional cover estimates from gPLS models resulted in R2

cv values of 0.64 ± 0.17 and
a RMSE of 0.14 ± 0.02 in independent validation. Results from our field investigations
suggested a negative relationship between C. introflexus fractional cover and plant species
α-diversity when the covers exceeded 44% in one pixel. According to the remotely sensed
cover maps this threshold was exceeded in 4.3% to 7.1% of the area in the studied habitats.
Grey dunes were the most seriously affected habitat.

Our study demonstrates that apart from mapping occurrences, remote sensing can also be
used to map fractional covers of alien invasive plant species indicating the impact magnitude.
Cover maps can be used to highlight high impact areas or evaluate the susceptibility of
different habitat types to invasion impacts and thus can help to prioritize management of
established non-native invaders.
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2.3.1 Introduction

Invasive alien plant species can have various unwanted consequences, including adverse
effects on human health (Shackleton et al., 2019) and ecosystem functioning (Pyšek et al.,
2012; Vilà et al., 2011). Impacts on ecosystems include alterations of species richness and
composition (Powell et al., 2013), changes in disturbance regimes (Pauchard et al., 2008), or
in ecological processes like carbon and nutrient cycling (Aerts et al., 2017; Liao et al., 2008).
Once an invasive plant species has established within a new range, it is often extremely
difficult to eradicate (Rejmanek and J. Pitcairn, 2002). Therefore, the management of
established alien species focuses on limiting the most adverse effects (Kumschick et al., 2012).
This requires prioritizing management efforts towards the most harmful species and the
most valuable habitats (Gaertner et al., 2014; McGeoch et al., 2016). One prerequisite to
prioritize these management efforts is the detection and monitoring of invasive plant species
(Latombe et al., 2016).

Remote sensing techniques have high potential for monitoring invasive plants across vast
areas (Rocchini et al., 2015). Many studies have demonstrated the capability of remote
sensing approaches to detect invasive plant species and to map their distribution (Vaz
et al., 2018). These studies covered a variety of growth forms including trees and shrubs
(Lopatin et al., 2019; Somers and Asner, 2013) herbs or grasses (Müllerová et al., 2016;
Skowronek et al., 2017a) and even cryptogams (Skowronek et al., 2018). Most commonly,
these mapping approaches use classifiers, delivering maps with information on the target
species presence and absence. Yet, remote sensing can also be used to acquire quantitative
information on abundance measures such as the fractional cover of a plant species (e.g.
Falkowski et al., 2017; Huang and Geiger, 2008; Miao et al., 2006; Peerbhay et al., 2016).
As the ecosystem impact of an invasive plant species is considerably influenced by its local
abundance (Parker et al., 1999), remote sensing is offering high potential not only to map
invasive plant species, but also to indicate impact magnitudes across large areas (section
2.2. However, the potential to link abundance maps with potential invasion impacts has
not been fully explored, yet. For, example abundance information can be used to compare
the susceptibility of different habitat types to invasion impacts. Furthermore, abundance
maps can be used in combination with abundance-impact relationships, displaying linkages
between the abundance of an invader and specific ecosystem properties. This combination
can be used as spatially explicit indicator for invasion impacts. Here, we aim to explore this
potential.
The ability to retrieve plant species covers using imaging remote sensing techniques

depends on the size of plant individuals or populations and the pixel-size of the images.
Broadly speaking, two scenarios are possible. First, the outline of the target individual
or population is exceeding the pixel size of the image. This is often the case, when using
very high resolution remote sensing data in combination with large target individuals, such
as shrubs and trees, or large monospecific stands (Gil et al., 2013; Guirado et al., 2017;
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Kattenborn et al., 2019). Suitable mapping approaches for this scenario include classification
approaches, delivering pixel-wise presence-absence information, and object or texture based
approaches (Bradley, 2014). These approaches allow species covers to be calculated from
resulting maps across larger areas (Falkowski et al., 2017). In the second scenario, the
outline of the target individuals or stands are smaller than the pixel size of the used image.
In this case spectral unmixing approaches and regression techniques can be used to predict
plant species covers for single pixels (Asner and Martin, 2008; Miao et al., 2006; Peterson,
2005).

Here, we used airborne imaging spectroscopy to map the fractional cover of the invasive
bryophyte Campylopus introflexus. We used generalized partial least squares (gPLS) regres-
sion, addressing a case with cover variation at the subpixel level. Using the fractional cover
as a proxy for local abundance, we aimed to evaluate the ecosystem impact of C. introflexus
within a dune habitat. The specific research questions were:

1. How accurate can the fractional cover of the invasive moss C. introflexus be mapped
in different habitats using airborne imaging spectroscopy data?

2. Which are the most important wavelength bands for predicting fractional cover?

3. Which habitat type is most susceptible to invasion impacts?

4. At which fractional cover can we expect impacts on plant species diversity?

2.3.2 Materials and Methods

2.3.2.1 Study area

The study area covers the coastal dune ecosystem in the western part of the island of
Sylt (54◦55’00” N, 8◦20’00” E) located in Northern Germany (Fig. 2.29). The climate is
temperate oceanic with a mean annual temperature of 9◦ C and annual precipitation of
715mm. The western coastline of Sylt has a north-to-south distance of approximately 35 km
with protected dunes covering an area of 27.7 km2. Habitats are characterized by a narrow
belt of shifting dunes along the shoreline and vast areas of decalcified fixed dunes with
herbaceous or dwarf shrub vegetation. In the northern part of the island, dunes are grazed
by sheep. The predominant soil types are sandy loose immature soils and podsolized regosols
both characterized by low organic matter content. The vegetation in the shifting dunes is
characterized by grassland dominated by Ammophila arenaria (European Habitat Directive
number 2120, Shifting dunes along the shoreline with Ammophila arenaria; further referred
to as white dunes). Decalcified fixed dunes are characterized by heath vegetation dominated
by Empetrum nigrum (2140, Decalcified fixed dunes with Empetrum nigrum; further referred
to as crowberry heath), or by herbaceous vegetation with Carex arenaria, Corynephorus
canescens and Hypochoeris radicata as the characteristic species (2130, Fixed dunes with
herbaceous vegetation; further regarded as grey dunes). Frequently occurring dune slacks
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which are periodically flooded by precipitation water floristically present the most valuable
habitats (2190, Humid dune slacks). The vegetation in dune slacks is characterized by Erica
tetralix and Vaccinium uliginosum with frequent occurrences of red listed plant species like
Drosera rotundifolia, Drosera intermedia and Pedicularis sylvatica. Campylopus introflexus
is present across the entire island, mainly occurring in the fixed dunes with little windblown
sand intake. The species is locally forming huge and dense populations with growth heights
up to 8 cm.

Figure 2.29 Location of the study area (a), outline of the island of Sylt (b) and habitat maps including
plot locations for the northern (c) and southern part of the island (d).

Study species

Campylopus introflexus was first observed in Europe in 1941 and has by now spread across
major parts of the continent (Hassel and Soderstrom, 2005). On the neighboring island
of Römö it was first noticed in 1970 (Frahm, 1971), and probably also introduced on the
island of Sylt around the same time. Growing on bare sand C. introflexus is predominately
present in coastal dunes (Essl et al., 2014). When present, C. introflexus can form dense
mats and may suppress native plant species (Biermann and Daniels, 1997; Hasse, 2007).
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Vegetation data

Field data were acquired between June and November 2014 across 287 plots of 3m × 3m
surface area. Ninety of these plots were selected in-situ in order to cover sites with no
presence (n = 30), low (≤ 30%, n = 31) and medium to high fractional cover (> 30%,
n = 29) of C. introflexus. Hundred sixty additional plots were randomly sampled to cover
all relevant habitat types in the study area. For each of the 287 plots we recorded the center
coordinates and estimated the percentage cover of C. introflexus. In 90 plots we acquired
additional field data including estimations of the percentage cover of all occurring vascular
plant and moss species. In addition to the field data, for each plot, habitat types according
to the Habitats Directive of the European union were derived from biotope maps of the year
2012 (Fig. 2.29, Tab. 2.13) (Leguan, 2012).

Table 2.13 Habitat types included in this study and total coverage across the Island of Sylt. # Training
plots: number of plots included in the dataset used for model calibration. The remaining plots covered other
habitat types.

Used Acronym Description Area (km2) # Training plots
Grey dunes Fixed coastal dunes with herbaceous vegetation 3.3 44
Crowberry dunes Decalcified fixed dunes with Empetrum nigrum 15.1 167
Dune slacks Humid dune slacks 1.6 13

Remote sensing data

Airborne imaging spectroscopy data were acquired on July 16th 2014, between 12:21 and
13:13 local time (UTC+2), using the APEX (Airborne Prism EXperiment) sensor at a flight
height of 2270m with flight lines in north-to-south direction. The data included images of
285 spectral bands covering the spectral range between 412 nm and 2432 nm with a pixel
size of 1.8m × 1.8m. Imaging spectroscopy data was geometrically and atmospherically
corrected using the standard procedures applied to APEX data (Sterckx et al., 2016; Vreys
et al., 2016). For atmospheric correction ground reference samples were taken in September
2014 at 15 different locations at the beach and at large parking lots respectively using a full
range field spectrometer (FieldSpec 4JR, ASD Inc., Longmont, USA).
Noisy bands between 410 nm and 480 nm, and bands in the range between 1320 nm and

1450 nm and between 1670 nm and 1990 nm, being affected by atmospheric water absorption
were excluded from subsequent analyses. This resulted in a total of 233 predictor variables.
To minimize the influence of shadows, we subjected the spectra to brightness normalization
(Feilhauer et al., 2010). To meet the size of the field plots, the spatial resolution of spectral
images was resampled to a pixel size of 3m × 3m.

For each of the 287 plots, we extracted the brightness normalized reflectance values from
all pixels overlapping with the plot area. This resulted in up to four spectra originating
from different neighboring pixels per plot. From these values we calculated the weighted
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mean for each band using the percentage overlap of each pixel with the respective plot area
as weight.

Generalized partial least squares regression

To model C. introflexus fractional covers we ran generalized partial least squares (gPLS)
regression models using a logit link function. Models were calculated using the package
plsRglm 1.1.1 (Bertrand et al., 2014) in R 3.4.4 (R Core Team, 2018). The northern end
of the island was excluded from modeling because the specific vegetation community was
underrepresented in the dataset. We therefore also dropped data from 21 field plots located
in that area. This resulted in a total of 266 plots including 162 absence plots used in the final
training dataset. All predictor variables were scaled to a mean value of 0 and a standard
deviation of 1 to allow direct comparisons among estimated coefficients.

To prevent a possible underestimation of the prediction errors, model calculations were
ran repeatedly using 10 different data subsets resulting from a spatially blocked subsampling
procedure (Roberts et al., 2017). Based on their coordinates, field plots were divided into
ten clusters using k-means clustering. For each dataset 20% of the field plots were held out
for independent validation, each time selecting the plots closest to the center coordinates of
the respective clusters.

For the selection of relevant spectral bands, model calculations were additionally embedded
in a 10-fold cross validation procedure. Bands were selected based on a stepwise backward
variable selection procedure using the standardized coefficients as selection criteria. In each
step we dropped ten percent of the predictor variables using the following procedure: We
implemented a non-parametric bootstrap with 250 bootstrap replicates. For each bootstrap
sample we recalculated gPLS regression models. Standardized coefficients for each predictor
variable resulting from the 250 bootstraps were then tested for significant difference from
zero using a confidence interval of p < 0.05. Using the test results we dropped predictor
variables with insignificant standardized coefficient starting with those having the smallest
mean absolute value.

For all models calculated in each step the optimal number of latent variables was selected
based on the lowest AIC (Akaike Information Criterion) value. To prevent overfitting,
we additionally limited the maximum number of latent variables to five. The procedure
stopped when less than 10 percent of the remaining predictor variables showed insignificant
standardized coefficients. From all steps the model associated with the lowest RMSE in
10-fold cross validation was selected as final model.

For each model calculated with different data subsets, we calculated prediction maps
representing covers of C. introflexus in each pixel. From these maps we calculated median
maps representing pixel-wise medians of predicted values.
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Model evaluation

The model’s predictive performances were evaluated by calculating two sets of Pearson R2

values and root mean square error (RMSE) values based on the training and the independent
validation dataset for each model respectively. To obtain the overall predictive performance
we calculated the mean and standard error for both, R2 and RMSE values.

The relative importance of each spectral band was derived by calculating model predictions
with permuted predictor datasets. For each model, permuted datasets were created by suc-
cessively randomizing the values of each predictor variable. For each permuted dataset, we
re-calculated model predictions based on the original response data. Predicted values calcu-
lated from permuted datasets were then compared to the predictions from the non-permuted
dataset, calculating the Pearson correlation coefficient. A high correlation coefficient here
indicates that a band is not better than a random variable to predict fractional covers of C.
introflexus. In contrast, a small coefficient indicates high relevance. Accordingly, the inverse
correlation coefficient was then used as variable importance for each predictor variable.

Model residuals were used to compare prediction errors for different habitat types. To get
a picture from all model residuals, we ran a linear mixed model (LMM) using the residuals
from all models as response variable and habitat type as fixed effect. The used data subsets
were numbered from 1 to 10 and included as random intercepts. We ran LMMs using the
nlme 3.1 (Pinheiro et al., 2018) package in R.

Evaluating the impact of C. introflexus

To evaluate the abundance of C. introflexus in different habitat types, we calculated mean
fractional covers and the total coverage for each type. First, average covers were calculated
from each of the 10 prediction maps for each habitat type. As a second step, we calculated
the mean and standard error from these values. Total coverages were derived by multiplying
mean fractional covers with the total area of each habitat type, respectively.
To assess the impact of C. introflexus on native plant communities, we evaluated the
relationship between its fractional cover and the plant α-diversity given by the Simpson
diversity index (Simpson, 1949) calculated for 90 field plots. This cover-impact relationship
was analyzed by fitting a linear model. The plot level α-diversity was used as response and
the percentage cover of C. introflexus and its quadratic term as explaining variable. To
identify existing break points in this relationship we ran a piecewise regression using the
segmented 3.0 package in R (Muggeo, 2008, 2003).

2.3.3 Results

Using generalized partial least squares regression we were able to predict the fractional cover
of C. introflexus at the subpixel level (Fig. 2.30). Models resulted in mean R2 values of
0.71 (standard error: ± 0.03), and 0.64 ± 0.17 as well as mean RMSE values of 0.12 ±
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0.01 and 0.14 ± 0.02 based on the training and independent validation datasets respectively
(Supplementary material Tab. 2.15).
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Figure 2.30 Median predicted values retrieved from generalized partial least squares regression models vs.
observed values for the fractional cover of C. introflexus in 3m × 3m plots from 10 training datasets. Error
bars represent ranges between the 25% quantile and the 75% quantile of model predictions.

The ten final models included a range of 7 to 183 selected bands after variable selection. All
models included bands situated in the shortwave-infrared region (SWIR) between 2150 nm
and 2160 nm as well as between 2240 nm and 2250 nm (Fig. 2.31). The bands located around
2242 nm and 2248 nm had highest mean variable importances. Prediction errors differed
between the habitat types, indicating highest prediction accuracy for crowberry heath and
lowest accuracy for dune slacks (Fig. 2.32).
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Figure 2.31 Relative importances of spectral bands included in 10 gPLS models using different training
dataset.

Based on the median predictions C. introflexus total coverage across the island of Sylt
reached 2.08 km2. Mean covers of C. introflexus estimated for the three habitat types ranged
from 10.2 ± 0.9% in crowberry heath and 11.1 ± 1.0% in grey dunes (Tab. 2.14).

The linear model relating fractional cover of C. introflexus to plot level α-diversity resulted
in a R2 value of 0.10. The predicted curve peaks at medium cover of C. introflexus (Fig.
2.33). Piecewise regression resulted in a break point at a fractional cover of 44%. Above
this break point increasing cover of C. introflexus is related to decreasing plant diversity at
the level of 3m × 3m plots. The application of this break point on the prediction maps
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Figure 2.32 Prediction error of C. introflexus fractional cover for different habitat types. Displayed values
represent absolute deviations of predicted covers from observed covers calculated using a linear mixed effects
model including all deviations resulting from repeated gPLS model calculations.

Table 2.14 Fractional covers of C. introflexus for different habitat types based on predicted maps. Mean
cover represents mean pixel values for each habitat type averaged for all calculated maps. The total coverage
is giving the total area covered by C. introflexus.

Habitat Mean cover (%) Total coverage (km2)
Grey dunes 11.1 ± 1.0 0.37
Crowberry heath 10.2 ± 0.9 1.54
Dune slacks 10.6 ± 1.9 0.17

indicated that 7.1%, 4.3% and 6.8% of the pixels were characterized by fractional covers of
44% or above, for grey dunes, crowberry heath and dune slacks respectively (Fig. 2.34).

0.2

0.4

0.6

0.8

0 25 50 75 100

C. introflexus cover (%) 

S
im

ps
on

 d
iv

er
si

ty
 in

de
x

Figure 2.33 Relationship between C. introflexus cover and the α-diversity of plant species given by the
Simpson diversity index observed for 90 field plots (3m × 3m) and predicted using a linear model.
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Figure 2.34 Map examples showing an RGB image (a), the predicted fractional cover of C. introflexus (b),
a map of habitat types (c) and potential high impact areas (in red) concerning local α-diversity (d).

2.3.4 Discussion

Mapping the fractional cover of C. introflexus

We demonstrated that imaging spectroscopy can be used to map fractional covers of an
invasive alien moss. Similar results for mapping invasive alien plant species covers have
been found by previous studies, however in different contexts. For example, Peterson (2005)
used multi-seasonal Landsat 7 images to map the cover of a grass species using different
regression approaches. Guo et al. (2018), predicted the fractional cover of an invasive grass
species using hyperspectral data derived from field spectroscopy using partial least squares
regression. As alternative to regression approaches spectral mixture analyses can be used
in scenarios where pixel size is exceeding the size of target species individuals or stands
(Andrew and Ustin, 2008; Somers et al., 2011). This approach models reflectance spectra
dependent on the fractional covers of different endmembers in one pixel. By inversion of
such a model spectral mixture analyses can predict the covers of included endmembers, for
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example dominant plant species occurring in a specific study area. This way, Asner and
Martin (2008) predicted the covers of several non-native tree species in a rainforest using
imaging spectroscopy.

Similar to presence-absence mapping one major requirement for the success of mapping
species covers is that the spectral signal of the target species differs from that of the
background vegetation (Bradley, 2014). In our study, plots with high C. introflexus covers
were spectrally different from those without presence (Supplementary material Fig. 2.35).
C. introflexus reflectance spectra are characterized by higher reflectance in the short wave
infrared (SWIR) and lower reflectance in the near infrared (NIR) compared to the dominating
species of the included habitat types. In contrast, differences in the visible region were far less
pronounced. Although differences were present across large parts of the spectrum, variable
importances indicated that only distinct sections were important for modeling fractional
covers. The high importance of bands in the SWIR for the prediction of C. introflexus cover
can be attributed to differences in leaf structural properties or water content (Jacquemoud
et al., 2009; Kokaly et al., 2009). It is important to note that Skowronek et al. (2018)
found different bands to be important for predicting presence and absence of C. introflexus.
This study located important bands in the 1700 nm - 1750 nm region and around 2000 nm.
This suggests that discriminating abundances of one species may require different spectral
information than discriminating presences and absences.

Prediction accuracies differed for the habitat types included in this study, indicating
less accurate cover predictions for dune slacks and grey dunes in comparison to crowberry
heath. Lower accuracies for dune slacks can probably be attributed to the small sample size.
For grey dunes lower accuracies can presumably be attributed to the spectral variability,
that was highest in this habitat type (Supplementary material Fig. 2.36). Previous studies
showed that the mapping accuracy of species is influenced by the spectral variability of the
studied habitat (Andrew and Ustin, 2008; Somers et al., 2011). Besides the high variability,
grey dune and C. introflexus canopy spectra seem to be less different compared to the
other habitat types (Supplementary material Fig. 2.36). This may also influence prediction
accuracies negatively (Andrew and Ustin, 2008). Apart from found differences in prediction
accuracies, our results indicate that imaging spectroscopy is suited for cover predictions in
different habitat types and hence also for comparing impacts of invasive plant species in
these habitat types.

Evaluating the impact of C. introflexus

This study demonstrates the potential of remote sensing data to evaluate the susceptibility
different habitat types to invasion impacts. Our results indicate that C. introflexus is most
abundant in grey dunes which agrees with the findings of Klinck (2009). As the impact of a
species is strongly related to its local abundance our cover maps can directly be used as
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indicator for the impact magnitude of C. introflexus. Such information covering different
habitat types can be used to prioritize limited management resources.
In our specific case, average fractional covers for C. introflexus were in the same order

of magnitude for the three habitat types. Cover values derived from prediction maps were
slightly higher than observed in the 160 randomly placed field plots (mean fractional covers
of 9 %, 5 % and 6% for crowberry heath, grey dunes and dune slacks, respectively). This
may be because the discrete field sampling missed relevant spatial variation of C. introflexus
fractional covers. Furthermore, differences may be caused by uncertainties of the used
mapping approach. Potential difficulties may arise from its unreliability to detect low cover
occurrences at the sub-pixel level (Bradley, 2014). For example Skowronek et al. (2017b)
found, that the detection of C. introflexus becomes unreliable, when the species is covering
less than one third of the pixel size. We therefore do not expect, that the used approach can
be used to differentiate between low covers and absences. However, it has high potential
to discriminate between low, medium or high abundance areas, and thus can indicate the
magnitude of invasion effects.

In combination with abundance-impact relationships cover maps can be used to highlight
high impact areas. Our results suggest a cover threshold of 44 % above which increasing
cover of C. introflexus is related to decreasing α-diversity of vascular species. So far there
exist only few studies that link ecosystem properties based with invasive alien plant species
abundances (Panetta and Gooden, 2017). Those who did, found variable relationships
strongly depending on the target species and studied variables (e.g. Fried and Panetta,
2016; Gooden et al., 2009; McAlpine et al., 2015). Deriving thresholds is only possible for
non-linear relationships. Such thresholds should be applied with caution because they not
necessary imply a causal link between invasive species abundances and a specific ecosystem
property. For our case study it should also be considered that invasive species may affect
sensitive species or functional types already, when occurring with lower abundances, than
indicated by the threshold (Panetta and Gooden, 2017). In our case, particularly, interactions
of C. introflexus with other mosses and lichens are not displayed in the threshold defined in
this study and should be subject to further studies. Still abundance or cover threshold are
meaningful particularly to prioritize the control of established invaders in valuable habitats
(Panetta and Gooden, 2017).

2.3.5 Conclusion

In this study, we successfully mapped the fractional cover of an invasive alien moss species
at the using imaging spectroscopy. Important spectral bands for the prediction of covers
were situated in the SWIR, suggesting that variation in covers was related to differences in
leaf and canopy structural properties. Resulting maps can be used to indicate ecosystem
impacts, because the impact magnitude of alien species is strongly determined by their local
abundances. We showed that cover maps can be used to evaluate the susceptibility of different
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habitat types to potential invasion impacts. Furthermore, cover maps in combination with
thresholds derived from cover-impact relationships might be useful to highlight areas of
particular concern. Both outputs represent valuable information to prioritize management
of established invasive alien species.
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2.3.6 Supplementary material

Table 2.15 Results of generalized partial least squares models for predicting the fractional cover of C.
introflexus using different training data subsets (sample size always n=212). RMSEcal: root mean squared
error in calibration, R2

cal: coefficient of determination in calibration, RMSEval: root mean squared error in
independent validation; R2

val: coefficient of determination in independent validation; # LV: number of latent
variables; # Var: number of predictor variables.

Model RMSEcal R2
cal RMSEval R2

val # LV # Var
1 0.14 0.66 0.12 0.69 3 7
2 0.12 0.75 0.17 0.43 5 56
3 0.13 0.70 0.11 0.85 5 118
4 0.13 0.69 0.13 0.65 4 8
5 0.12 0.71 0.17 0.62 5 69
6 0.11 0.77 0.18 0.44 4 15
7 0.12 0.73 0.15 0.68 5 34
8 0.12 0.74 0.16 0.38 5 41
9 0.13 0.69 0.13 0.81 5 121
10 0.13 0.70 0.13 0.80 5 183
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Figure 2.35 Mean spectra after brightness normalization for field plots located in the included habitat
types (vegetation cover ≥ 90%, up to 1% C. introflexus presence), plots with high C. introflexus covers (≥
80%) and plots with high fractions of bare soil (≥ 85%).
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Figure 2.37 Histograms representing the relative frequency of predicted pixel values for different habitat
types.
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Figure 2.38 Map example showing median, minimum, maximum and the range of predicted values for the
fractional cover C. introflexus including different habitat types within the dunes of the island Sylt. Median,
minimum and maximum prediction as well as prediction ranges were derived from 10 repeated model
calculation using different training datasets.
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3.1 Synthesis

Invasive plant species can affect ecosystems in many ways. Detailed knowledge on the
distribution and potential impacts of present species is a prerequisite to avoid undesired
consequences. One way for remote sensing to contribute to a better understanding of
invasive species habitat preference and impact is by delivering spatially explicit information.
On this topic, remote sensing techniques have been mainly used to map distributions of
invasive plant species, but rarely to assess impact. This thesis is breaking new ground by
demonstrating and evaluating methods to assess invasive plant species impact using remote
sensing.
The first research paper tested the potential of imaging spectroscopy to map chemical

leaf constituents related to important ecosystem processes. Such maps can be used to
display large-scale ecosystem changes caused by invasive plants. However, the retrieval of
chemical canopy properties is difficult for structurally complex canopies. To tackle this
problem canopy structure information, derived from airborne LiDAR data, was included
in empirical models to link mass-based canopy N and P with imaging spectroscopy data.
The results from paper 1 confirmed that a heterogeneous canopy structure is hampering the
ability to map canopy N. One the other hand, a considerable part of variation in canopy
P was explained by LiDAR-derived structural information. Paper 1 demonstrates that
leaf chemical traits can also be mapped for structurally complex canopies. In such a case,
successful mapping is achieved through the co-variation between structure and chemistry,
rather than by a direct influence of N and P on canopy reflectance.
In paper 2, maps from paper 1 were combined with maps of the canopy N:P ratio, leaf

area index (LAI), and wood volume. This set of maps was used to asses canopy traits in
a temperate forest ecosystem and how they were related to the presence of black cherry
(Prunus serotina). Here, canopy N and N:P ratio for invaded and non-invaded sites indicated
that the presence of P. serotina affected canopy chemical composition. This result agrees
with findings of a previous field study (Aerts et al., 2017), and thus highlights the potential
of remote sensing to assess impact of invasive plant species. Moreover, paper 2 revealed that
forest structural properties differed for invaded and non-invaded sites, providing insight into
the site preference of P. serotina. These differences were detected for discrete locations and
at the forest stand level. At the stand level, however, differences in canopy chemistry were
only detected for the N:P ratio, and only when P. serotina was abundant. This highlights
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the importance of the observational scale when assessing the ecosystem impact of invasive
plant species. These results further underline the high potential of remote sensing to assess
large scale ecosystem changes caused by invasive plant species. Remote sensing can thus be
used to evaluate the relevance of invasion impacts for large areas.
Paper 3 demonstrates the use of imaging spectroscopy to map fractional cover of the

invasive heath star moss Campylopus introflexus in an dune ecosystem. It represents the
first study using remote sensing data to map the abundance of a bryophyte. By using
local abundance as an indicator of impact magnitude the resulting maps provided a basis
to evaluate the potential impact of C. introflexus in various habitat types. Additionally,
plot-level plant diversity was analyzed in relation fractional cover of C. introflexus. From
this cover-impact relationship we identified a threshold, above which increasing cover C.
introflexus was negatively related to plant species diversity. This threshold was subsequently
used to identify potential high impact areas. Although studies using remote sensing to
map plant species abundances and studies evaluating the abundance-impact relationships of
selected invasive plant species exist both, these approaches have never been combined.

In summary, this thesis identified and applied two major approaches to assess ecosystem
impacts of invasive plant species using remote sensing techniques.

1. The first approach links remotely sensed information on ecosystem properties to
invasive species occurrences (paper 2). This approach can be used to assess impacts at
multiple spatial scales and, perhaps most important, can prove the relevance of impacts
detected in small scale studies also for larger areas (paper 2). Here, remote sensing can
deliver valuable information on vegetation properties which are related to ecosystem
functioning such as biochemical leaf constituents or aboveground biomass (paper 1 & 2).
Moreover, it is possible to identify also indirect links between vegetation properties and
canopy reflectance using empirical models (paper 1). Remote sensing can therefore also
be used to map vegetation attributes that do not influence canopy reflectance directly.
One major drawback is that deriving information on many ecosystem properties using
remote sensing is still far from being straight forward. This is particularly true for
canopy chemical properties like demonstrated in paper 1.

2. The second approach refers to mapping the abundance, such as the fractional cover, of
a particular species within a defined area, and using the abundance as an indicator of
impact. Since the overall ecosystem impact of an invasive species strongly depends on
its spatial distribution and local abundance (Parker et al., 1999), this approach allows
to quantify impact magnitude across large areas. As shown in paper 3, abundance can
also be directly linked to impact, regarding selected ecosystem properties, using the
abundance-impact relationship. This allows to identify high impact areas concerning
these ecosystem properties. Paper 3 demonstrates that mapping the abundance of
a single species is feasible using very high resolution imaging spectroscopy. The
importance of distinct bands in the SWIR, as observed in paper 3, indicates that it
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is recommended to use hyperspectral remote sensing for this purpose. One major
advantage of this approach is that it can be easily adapted for different species and
habitats. It thus provides a means to compare impact severity between habitats.

3.2 Outlook

This thesis identified and applied two major approaches to assess ecosystem impacts of
invasive plant species using remote sensing. The first approach— relating remotely sensed
maps of ecosystem properties to the presence of invasive species—can substantially increase
the understanding of biological invasions, particularly by evaluating the relevance of invasion
impact over large areas. Despite the promising outcome of numerous previous studies, the
retrieval of information on ecosystem properties from remote sensing remains difficult due
to the complexity of natural ecosystems, and is still a topic under basic research. Therefore,
giving reliable forecasts on which particular properties can be mapped successfully for a
given study area is hardly possible. This makes it difficult to design studies to answer
specific research questions related to invasion impact. Mapping accuracy is expected to be
highest for vegetation attributes directly influencing the canopy reflectance. These include
in particular structure-related variables such as the LAI, but also leaf pigments such as
chlorophyll. To deliver reliable predictions of traits for different points in time and across
different vegetation types, future research needs to improve the understanding of linkages
between important functional vegetation traits and reflectance patters. Moreover, time
series of ecosystem properties are highly suitable to detect and monitor changes related to
plant invasions, particularly to disentangle cause and effect relationships between invasive
species and environmental change. Invasion ecology research should use existing remote
sensing products more often to study the broad scale relevance of various invasion impacts.
The second approach—mapping the abundance of invasive species as an indicator of

ecological impact—is easier to implement and thus more promising to deliver information
relevant for management practice. It can be used to highlight hotspot areas in which
management is necessary, and to monitor occurrence over time. Furthermore, maps can be
linked with the outcomes of risk assessments, providing information on a invasive species
local impact related to its fractional cover. Field studies therefore need to consider recording
invasion impacts in relation to the abundance of the target species; ideally its fractional cover.
Future remote sensing studies should focus on mapping invasive plant fractional covers.
To ensure a broad application, there is a need to develop approaches that are universally
applicable and do not require sampling of new training data when moving to another study
area. New machine-learning pattern-recognition algorithms hold promise to be capable of
detecting species in multiple contexts (Wäldchen and Mäder, 2018). Such approaches can
map fractional covers from RGB-images which can be acquired with little effort. Despite
various methods for pattern recognition are readily available, only few have been applied
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to detect vegetation characteristics from remote sensing data (Wagner et al., 2019). Here,
further research is essential. Independent from the used method, future applications will
strongly depend on the availability of very high resolution imaging data. Images acquired
from UAV platforms represent a very flexible and cost-efficient alternative to cover smaller
areas, as compared to images captured from an aircraft. Such data can, for example, be
used to monitor invasion impact in conservation areas where invasive species are causing
significant undesirable ecological impact.
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Abbreviations and acronyms

AIC Akaike information criterion
APEX Airborne prism experiment
gPLS Generalized partial least squares
LAI Leaf area index
LiDAR Light detection and ranging
LMA Leaf mass per area
LMM Linear mixed model
N:P Leaf nitrogen to phosphorus ratio
NDVI Normalized difference vegetation index
NIR Near-infrared (700 nm - 1µm)
Nmass Mass based leaf nitrogen content
PLSR Partial least squares regression
Pmass Mass based leaf phosphorus content
r Person or Spearman correlation coefficient
R Coefficient of determination
RMSE Root mean squared error
RTM Radiative transfer model
SAC Spatial autocorrelation
SLA Specific leaf area
SWIR Shortwave-infrared (1µm - 3µm)
TIR Termal-infrared (1µm - 3µm)
UAV Unmanned areal vehicle
VIS Visible region of the electromagnetic spectrum (400 nm - 700 nm)

Additional abbreviations used for LiDAR-derived variables are listed in table 2.1.
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