7,217 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    A deep learning-based hybrid model for recommendation generation and ranking

    Get PDF
    A recommender system plays a vital role in information filtering and retrieval, and its application is omnipresent in many domains. There are some drawbacks such as the cold-start and the data sparsity problems which affect the performance of the recommender model. Various studies help with drastically improving the performance of recommender systems via unique methods, such as the traditional way of performing matrix factorization (MF) and also applying deep learning (DL) techniques in recent years. By using DL in the recommender system, we can overcome the difficulties of collaborative filtering. DL now focuses mainly on modeling content descriptions, but those models ignore the main factor of user–item interaction. In the proposed hybrid Bayesian stacked auto-denoising encoder (HBSADE) model, it recognizes the latent interests of the user and analyzes contextual reviews that are performed through the MF method. The objective of the model is to identify the user’s point of interest, recommending products/services based on the user’s latent interests. The proposed two-stage novel hybrid deep learning-based collaborative filtering method explores the user’s point of interest, captures the communications between items and users and provides better recommendations in a personalized way. We used a multilayer neural network to manipulate the nonlinearities between the user and item communication from data. Experiments were to prove that our HBSADE outperforms existing methodologies over Amazon-b and Book-Crossing datasets

    Personalised video retrieval: application of implicit feedback and semantic user profiles

    Get PDF
    A challenging problem in the user profiling domain is to create profiles of users of retrieval systems. This problem even exacerbates in the multimedia domain. Due to the Semantic Gap, the difference between low-level data representation of videos and the higher concepts users associate with videos, it is not trivial to understand the content of multimedia documents and to find other documents that the users might be interested in. A promising approach to ease this problem is to set multimedia documents into their semantic contexts. The semantic context can lead to a better understanding of the personal interests. Knowing the context of a video is useful for recommending users videos that match their information need. By exploiting these contexts, videos can also be linked to other, contextually related videos. From a user profiling point of view, these links can be of high value to recommend semantically related videos, hence creating a semantic-based user profile. This thesis introduces a semantic user profiling approach for news video retrieval, which exploits a generic ontology to put news stories into its context. Major challenges which inhibit the creation of such semantic user profiles are the identification of user's long-term interests and the adaptation of retrieval results based on these personal interests. Most personalisation services rely on users explicitly specifying preferences, a common approach in the text retrieval domain. By giving explicit feedback, users are forced to update their need, which can be problematic when their information need is vague. Furthermore, users tend not to provide enough feedback on which to base an adaptive retrieval algorithm. Deviating from the method of explicitly asking the user to rate the relevance of retrieval results, the use of implicit feedback techniques helps by learning user interests unobtrusively. The main advantage is that users are relieved from providing feedback. A disadvantage is that information gathered using implicit techniques is less accurate than information based on explicit feedback. In this thesis, we focus on three main research questions. First of all, we study whether implicit relevance feedback, which is provided while interacting with a video retrieval system, can be employed to bridge the Semantic Gap. We therefore first identify implicit indicators of relevance by analysing representative video retrieval interfaces. Studying whether these indicators can be exploited as implicit feedback within short retrieval sessions, we recommend video documents based on implicit actions performed by a community of users. Secondly, implicit relevance feedback is studied as potential source to build user profiles and hence to identify users' long-term interests in specific topics. This includes studying the identification of different aspects of interests and storing these interests in dynamic user profiles. Finally, we study how this feedback can be exploited to adapt retrieval results or to recommend related videos that match the users' interests. We analyse our research questions by performing both simulation-based and user-centred evaluation studies. The results suggest that implicit relevance feedback can be employed in the video domain and that semantic-based user profiles have the potential to improve video exploration

    Streamlining Knowledge Graph Construction with a fa\c{c}ade: The SPARQL Anything project

    Full text link
    What should a data integration framework for knowledge engineers look like? Recent research on Knowledge Graph construction proposes the design of a fa\c{c}ade, a notion borrowed from object-oriented software engineering. This idea is applied to SPARQL Anything, a system that allows querying heterogeneous resources as-if they were in RDF, in plain SPARQL 1.1, by overloading the SERVICE clause. SPARQL Anything supports a wide variety of file formats, from popular ones (CSV, JSON, XML, Spreadsheets) to others that are not supported by alternative solutions (Markdown, YAML, DOCx, Bibtex). Features include querying Web APIs with high flexibility, parametrised queries, and chaining multiple transformations into complex pipelines. In this paper, we describe the design rationale and software architecture of the SPARQL Anything system. We provide references to an extensive set of reusable, real-world scenarios from various application domains. We report on the value-to-users of the founding assumptions of its design, compared to alternative solutions through a community survey and a field report from the industry.Comment: 15 page
    • …
    corecore