3,112 research outputs found

    Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks

    Get PDF
    Biological plastic neural networks are systems of extraordinary computational capabilities shaped by evolution, development, and lifetime learning. The interplay of these elements leads to the emergence of adaptive behavior and intelligence. Inspired by such intricate natural phenomena, Evolved Plastic Artificial Neural Networks (EPANNs) use simulated evolution in-silico to breed plastic neural networks with a large variety of dynamics, architectures, and plasticity rules: these artificial systems are composed of inputs, outputs, and plastic components that change in response to experiences in an environment. These systems may autonomously discover novel adaptive algorithms, and lead to hypotheses on the emergence of biological adaptation. EPANNs have seen considerable progress over the last two decades. Current scientific and technological advances in artificial neural networks are now setting the conditions for radically new approaches and results. In particular, the limitations of hand-designed networks could be overcome by more flexible and innovative solutions. This paper brings together a variety of inspiring ideas that define the field of EPANNs. The main methods and results are reviewed. Finally, new opportunities and developments are presented

    Worldwide Infrastructure for Neuroevolution: A Modular Library to Turn Any Evolutionary Domain into an Online Interactive Platform

    Get PDF
    Across many scientific disciplines, there has emerged an open opportunity to utilize the scale and reach of the Internet to collect scientific contributions from scientists and non-scientists alike. This process, called citizen science, has already shown great promise in the fields of biology and astronomy. Within the fields of artificial life (ALife) and evolutionary computation (EC) experiments in collaborative interactive evolution (CIE) have demonstrated the ability to collect thousands of experimental contributions from hundreds of users across the glob. However, such collaborative evolutionary systems can take nearly a year to build with a small team of researchers. This dissertation introduces a new developer framework enabling researchers to easily build fully persistent online collaborative experiments around almost any evolutionary domain, thereby reducing the time to create such systems to weeks for a single researcher. To add collaborative functionality to any potential domain, this framework, called Worldwide Infrastructure for Neuroevolution (WIN), exploits an important unifying principle among all evolutionary algorithms: regardless of the overall methods and parameters of the evolutionary experiment, every individual created has an explicit parent-child relationship, wherein one individual is considered the direct descendant of another. This principle alone is enough to capture and preserve the relationships and results for a wide variety of evolutionary experiments, while allowing multiple human users to meaningfully contribute. The WIN framework is first validated through two experimental domains, image evolution and a new two-dimensional virtual creature domain, Indirectly Encoded SodaRace (IESoR), that is shown to produce a visually diverse variety of ambulatory creatures. Finally, an Android application built with WIN, filters, allows users to interactively evolve custom image effects to apply to personalized photographs, thereby introducing the first CIE application available for any mobile device. Together, these collaborative experiments and new mobile application establish a comprehensive new platform for evolutionary computation that can change how researchers design and conduct citizen science online

    The Challenge of Machine Learning in Space Weather Nowcasting and Forecasting

    Get PDF
    The numerous recent breakthroughs in machine learning (ML) make imperative to carefully ponder how the scientific community can benefit from a technology that, although not necessarily new, is today living its golden age. This Grand Challenge review paper is focused on the present and future role of machine learning in space weather. The purpose is twofold. On one hand, we will discuss previous works that use ML for space weather forecasting, focusing in particular on the few areas that have seen most activity: the forecasting of geomagnetic indices, of relativistic electrons at geosynchronous orbits, of solar flares occurrence, of coronal mass ejection propagation time, and of solar wind speed. On the other hand, this paper serves as a gentle introduction to the field of machine learning tailored to the space weather community and as a pointer to a number of open challenges that we believe the community should undertake in the next decade. The recurring themes throughout the review are the need to shift our forecasting paradigm to a probabilistic approach focused on the reliable assessment of uncertainties, and the combination of physics-based and machine learning approaches, known as gray-box.Comment: under revie

    Feature Selection For The Fuzzy Artmap Neural Network Using A Hybrid Genetic Algorithm And Tabu Search

    Get PDF
    Prestasi pengelas rangkaian neural amat bergantung kepada set data yang digunakan dalam process pembelajaran. The performance of Neural-Network (NN)-based classifiers is strongly dependent on the data set used for learning

    Semantic Segmentation Network Stacking with Genetic Programming

    Get PDF
    Bakurov, I., Buzzelli, M., Schettini, R., Castelli, M., & Vanneschi, L. (2023). Semantic Segmentation Network Stacking with Genetic Programming. Genetic Programming And Evolvable Machines, 24(2 — Special Issue on Highlights of Genetic Programming 2022 Events), 1-37. [15]. https://doi.org/10.1007/s10710-023-09464-0---Open access funding provided by FCT|FCCN (b-on). This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018), AICE (DSAIPA/DS/0113/2019), UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS, and by the grant SFRH/BD/137277/2018.Semantic segmentation consists of classifying each pixel of an image and constitutes an essential step towards scene recognition and understanding. Deep convolutional encoder–decoder neural networks now constitute state-of-the-art methods in the field of semantic segmentation. The problem of street scenes’ segmentation for automotive applications constitutes an important application field of such networks and introduces a set of imperative exigencies. Since the models need to be executed on self-driving vehicles to make fast decisions in response to a constantly changing environment, they are not only expected to operate reliably but also to process the input images rapidly. In this paper, we explore genetic programming (GP) as a meta-model that combines four different efficiency-oriented networks for the analysis of urban scenes. Notably, we present and examine two approaches. In the first approach, we represent solutions as GP trees that combine networks’ outputs such that each output class’s prediction is obtained through the same meta-model. In the second approach, we propose representing solutions as lists of GP trees, each designed to provide a unique meta-model for a given target class. The main objective is to develop efficient and accurate combination models that could be easily interpreted, therefore allowing gathering some hints on how to improve the existing networks. The experiments performed on the Cityscapes dataset of urban scene images with semantic pixel-wise annotations confirm the effectiveness of the proposed approach. Specifically, our best-performing models improve systems’ generalization ability by approximately 5% compared to traditional ensembles, 30% for the less performing state-of-the-art CNN and show competitive results with respect to state-of-the-art ensembles. Additionally, they are small in size, allow interpretability, and use fewer features due to GP’s automatic feature selection.publishersversionepub_ahead_of_prin

    An efficient of estimation stages for segmentation skin lesions based optimization algorithm

    Get PDF
    Modern dermatology distinguishes premature diagnosis for example an important part in reducing the death percentage and promising less aggressive treatment for patients. The classifications comprise various stages that must be selected suitably using the characteristics of the filter pointing to get a dependable analysis. The dermoscopic images hold challenges to be faced and overcome to enhance the automatic diagnosis of hazardous lesions. It is calculated to survey a different metaheuristic and evolutionary computing working for filter design systems. Approximately general computing techniques are observed to improve features of infect design method. Nevertheless, the median filter (MF) is normally multimodal with respect to the filter factors and so, reliable approaches that can provide optimal solutions are required. The design of MF depends on modern artificial swarm intelligence technique (MASIT) optimization algorithm which has proven to be more effective than other population-based algorithms to improve of estimation stages for segmentation skin lesions. A controlled artificial bee colony (ABC) algorithm is advanced for solving factors optimization problems and, also the physical-programming-depend on ABC way is applied to proposal median filter, and the outcomes are compared to another approaches

    Feature Selection For The Fuzzy Artmap Neural Network Using A Hybrid Genetic Algorithm And Tabu Search [QA76.87. T164 2007 f rb].

    Get PDF
    Prestasi pengelas rangkaian neural amat bergantung kepada set data yang digunakan dalam process pembelajaran. Secara praktik, set data berkemungkinan mengandungi maklumat yang tidak diperlukan. Dengan itu, pencarian ciri merupakan suatu langkah yang penting dalam pembinaan suatu pengelas berdasarkan rangkaian neural yang efektif. The performance of Neural-Network (NN)-based classifiers is strongly dependent on the data set used for learning. In practice, a data set may contain noisy or redundant data items. Thus, feature selection is an important step in building an effective and efficient NN-based classifier

    Training Neural Networks Through the Integration of Evolution and Gradient Descent

    Get PDF
    Neural networks have achieved widespread adoption due to both their applicability to a wide range of problems and their success relative to other machine learning algorithms. The training of neural networks is achieved through any of several paradigms, most prominently gradient-based approaches (including deep learning), but also through up-and-coming approaches like neuroevolution. However, while both of these neural network training paradigms have seen major improvements over the past decade, little work has been invested in developing algorithms that incorporate the advances from both deep learning and neuroevolution. This dissertation introduces two new algorithms that are steps towards the integration of gradient descent and neuroevolution for training neural networks. The first is (1) the Limited Evaluation Evolutionary Algorithm (LEEA), which implements a novel form of evolution where individuals are partially evaluated, allowing rapid learning and enabling the evolutionary algorithm to behave more like gradient descent. This conception provides a critical stepping stone to future algorithms that more tightly couple evolutionary and gradient descent components. The second major algorithm (2) is Divergent Discriminative Feature Accumulation (DDFA), which combines a neuroevolution phase, where features are collected in an unsupervised manner, with a gradient descent phase for fine tuning of the neural network weights. The neuroevolution phase of DDFA utilizes an indirect encoding and novelty search, which are sophisticated neuroevolution components rarely incorporated into gradient descent-based systems. Further contributions of this work that build on DDFA include (3) an empirical analysis to identify an effective distance function for novelty search in high dimensions and (4) the extension of DDFA for the purpose of discovering convolutional features. The results of these DDFA experiments together show that DDFA discovers features that are effective as a starting point for gradient descent, with significant improvement over gradient descent alone. Additionally, the method of collecting features in an unsupervised manner allows DDFA to be applied to domains with abundant unlabeled data and relatively sparse labeled data. This ability is highlighted in the STL-10 domain, where DDFA is shown to make effective use of unlabeled data
    corecore