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ABSTRACT

Across many scientific disciplines, there has emerged an open opportunity to utilize the scale and

reach of the Internet to collect scientific contributions from scientists and non-scientists alike. This

process, called citizen science, has already shown great promise in the fields of biology and astron-

omy. Within the fields of artificial life (ALife) and evolutionary computation (EC) experiments

in collaborative interactive evolution (CIE) have demonstrated the ability to collect thousands of

experimental contributions from hundreds of users across the glob. However, such collaborative

evolutionary systems can take nearly a year to build with a small team of researchers. This disser-

tation introduces a new developer framework enabling researchers to easily build fully persistent

online collaborative experiments around almost any evolutionary domain, thereby reducing the

time to create such systems to weeks for a single researcher. To add collaborative functional-

ity to any potential domain, this framework, called Worldwide Infrastructure for Neuroevolution

(WIN), exploits an important unifying principle among all evolutionary algorithms: regardless of

the overall methods and parameters of the evolutionary experiment, every individual created has

an explicit parent-child relationship, wherein one individual is considered the direct descendant of

another. This principle alone is enough to capture and preserve the relationships and results for a

wide variety of evolutionary experiments, while allowing multiple human users to meaningfully

contribute. The WIN framework is first validated through two experimental domains, image evo-

lution and a new two-dimensional virtual creature domain, Indirectly Encoded SodaRace (IESoR),

that is shown to produce a visually diverse variety of ambulatory creatures. Finally, an Android

application built with WIN, #filters, allows users to interactively evolve custom image effects to

apply to personalized photographs, thereby introducing the first CIE application available for any

mobile device. Together, these collaborative experiments and new mobile application establish a

comprehensive new platform for evolutionary computation that can change how researchers design

iii



and conduct citizen science online.
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CHAPTER 1: INTRODUCTION

The fields of evolutionary computation (EC) and artificial life (ALife) are inspired by the products

of natural evolution. Researchers in these fields hope to reproduce or one day exceed natural evo-

lution’s prodigious discoveries. Many experiments have focused on replicating specific influential

aspects of natural evolution, e.g. open-ended evolution [8, 60] or evolving a diverse collection of

virtual morphologies [2, 47, 56, 76, 83]. Excitingly, a new frontier has opened up at the intersection

of ALife and the Internet, wherein researchers are no longer constrained by running experiments

on a single computer [88].

Notably, with the abundance of cheap computational resources now available through cloud com-

puting services, researchers can even provide a shared community platform for conducting hun-

dreds of asynchronous ALife simulations, as demonstrated by the ALife Zoo [39]. Such a platform

reflects recent community efforts towards “archiving, sharing, reproduction, and reuse of scientific

experiments and platforms, for collaborative open science [88].”

As in other disciplines, to achieve this goal of collaborative open science, one promising research

direction for evolutionary computation is citizen science, i.e. the act of aggregating scientific results

from amateur or non-professional participants [74]. In fact, the idea that casual human users can

aid serious scientific endeavors has gained credibility in recent years with a number of online

citizen science projects in which users who often are not scientific experts are crowd-sourced to

yield results that in some cases would be impossible to achieve in another way [20, 22, 74].

One particularly successful example is Fold It, a protein-folding game where players accurately

predicted folded protein structures that even led to scientific publications crediting the 57,000

users [20]. Others include Phylo, an experimental game where players try to align nucleotide

sequences [52], and Galaxy Zoo, where players help to classify the morphologies of large numbers
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of galaxies [58]. Such citizen science projects often present scientific challenges to the user in a

relatable “gamified” mechanic allowing non-scientists to contribute and even experience reciprocal

educational benefits [40].

Interestingly, the evolutionary computation community already has an effective research tool for

crowd-sourcing contributions from laypeople: interactive evolutionary computation (IEC; 24). In

interactive evolution, the human user is repeatedly presented with a collection of potential choices

within the given scientific domain and asked to iteratively select the choice that most appeals

to him or her. In a similar way that human-driven dog breeding only requires aesthetic selections,

experiments built with interactive evolution allow users to make scientific contributions through the

simple act of iteratively choosing options that appeal to their own aesthetic or objective interests.

Previously, researchers have revealed the potential for IEC to aid in large-scale citizen science

projects, successfully combining the power of IEC with the extensive reach of the Internet in a

process called collaborative interactive evolution (CIE; 86). In such CIE experiments, potentially

thousands of users from across the globe can implicitly contribute and collaborate through in-

teractive evolution [11, 69, 72, 73, 86]. Note that such CIE experiments resonate with a strong

community interest in simultaneously disseminating scientific results while promoting “public en-

gagement and participation with A-Life research [88].”

Beyond the community goal of public engagement in science, crowd-sourcing human intuition

has the added benefit of potentially improving algorithmic performance. Evidence in evolution-

ary robotics has already shown that amateur users operating a robot simulator can be harnessed

for crowd-sourcing intricate robot controllers Bongard [6]. Similarly, recent experiments suggest

that individual humans are capable of interleaving their own intuition with automated algorithms,

yielding better results than the automated algorithms can alone [4, 92].

Demonstrating the scale of CIE experiments, one such application, Picbreeder (a genetic art pro-
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gram for breeding pictures), empowers users to discover and collect a wide variety of images

in a single browsable archive available at http://picbreeder.org [73]. Furthermore, the

contributions of Picbreeder extend beyond scientific research as the largest repository of evolved

content available online, collected from hundreds of users producing over 10,000 images in the

last seven years. Most importantly, while the algorithms responsible for generating and modifying

the images inside Picbreeder originate from artificial intelligence research [79, 82], the intuitive

breeding process of interactive evolution frees users from the need for any scientific training or

understanding to meaningfully extend existing results.

Fundamentally, Picbreeder is an evolutionary experiment that efficiently combines the efforts of

multiple users, both academics and non-academic alike, to exploit the immense scale of the Internet

to discover interesting solutions within a massive and complex search space. In fact, results gener-

ated within Picbreeder, a genetic art program, contributed to the creation of several new artificial

intelligence algorithms including HyperNEAT and Novelty Search [32, 56] that have demonstrated

strong performance in dozens of experimental domains [1, 3, 7, 12, 13, 15, 16, 27, 28, 32, 36, 50,

51, 83, 89].

Unfortunately, while CIE could be a significant source of scientific progress for the community,

the process by which EC researchers can build and execute a system capable of conducting IEC

across many simultaneous users is extremely resource intensive. That is, the construction of new

CIE applications is dramatically limited by excessive resource and time investments. Even with a

well-studied domain like genetic art, Picbreeder took a small team of six researchers over a year to

construct [73].

Though web hosting technology has progressed in the years since Picbreeder was built, it would

still take considerable effort to construct the same level of collaboration for any given experiment.

Worse, due to a lack of community tools and resources, researchers are required to repeatedly

3
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construct the same basic software structure for each CIE application. For example. at the time of

writing, there are no open-source CIE experiments available. Thus, there is a significant untapped

opportunity to crowd-source scientific results across a variety of evolutionary domains.

To unlock the potential of such evolutionary systems and enable an entirely new way to conduct

research in EC, this dissertation introduces a framework for the EC and ALife community called

Worldwide Infrastructure for Neuroevolution (WIN). WIN is a developer framework that signif-

icantly reduces the complexity of creating fully persistent, online, and interactive or automated

evolutionary platforms around any evolutionary domain. Established from a body of published

work [45, 83, 84], WIN enables researchers to create or effectively extend experimental domains

with collaborative multi-user features even if the domain was not originally designed to be persis-

tent or part of a CIE application.

The overarching hypothesis of this work is that the WIN framework is an effective platform-

building tool for aiding evolutionary researchers in creating large-scale CIE experiments across a

wide range of evolutionary domains. The hypothesis is supported through several major contribu-

tions.

First (1), the WIN framework emerged from extending work on an evolutionary music program

I co-created with Amy K. Hoover called MaestroGenesis (http://maestrogenesis.org;

43, 44, 45, 46). Through the IEC framework I co-built in MaestroGenesis, the software enables

novice musicians with little or no musical expertise to generate and discover musical voices to

accompany existing musical compositions. Results from human studies conducted with Maestro-

Genesis validate that the IEC framework helps hide the domain complexity from non-scientific

users, while the software represents a substantial experimental basis upon which the more ambi-

tious WIN framework is built.

Though the domain of music generation is both creative and expressive, a new domain can help to

4
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extend the ideas first explored in MaestroGenesis to a wider and more objective investigation of

search in general. To aid this inquiry, a new artificial life domain was built to search and discover

an extensive range of ambulating two-dimensional virtual creatures built from simples masses

and springs, called sodaracers [62]. This new domain (2), named Indirectly Encoded SodaRace

(IESoR), is both lightweight to simulate and can consistently produce distinct virtual creatures

with visually diverse ambulation strategies [83]. In contrast to the creative domain of music, IESoR

represents an experimental domain with measurable scientific objectives (distance traveled) based

on a virtual world in which thousands of users previously showed interest through the Sodarace

constructor [62].

Thus IESoR represents a viable candidate for a new collaborative interactive evolution experiment

despite the domain not originally being constructed to handle collaboration. Through a prototype

WIN framework (3), two CIE experiments built with WIN, win-Picbreeder and win-IESoR, simul-

taneously demonstrate the ability for the WIN library to replicate the functionality of existing CIE

applications like Picbreeder and augment more objective-driven evolutionary domains like IESoR

with collaborative features. The results show that the WIN framework can even handle interleaving

human selections with automated evolutionary algorithms, a technique previously constrained to a

single user on a single computer [92]. Such experimental results validate that WIN is a functional

platform-building tool for multiple evolutionary domains.

To support the claim that WIN can help proliferate CIE experiments, a developer survey (4) was

conducted in which participants were given the existing win-Picbreeder source code and asked

to create a variant service. In support of the hypothesis, all survey participants were capable

of creating win-Picbreeder experiments with small variations (now available online at http://

winark.org/variants) in about four hours or less. In effect, each CIE experiment built with

WIN and open-sourced to the community serves as a new building block for an entire collection

of CIE applications.

5
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To further facilitate WIN’s effectiveness as a CIE platform-builder, the final contribution (5) of this

work is a fully functional mobile application #filters built for the Android platform1. #filters en-

ables users to take photos from their mobile device and apply aesthetically pleasing image effects,

i.e. similar to the popular mobile application Instagram2. In contrast to the limited set of effects

found in Instagram, #filters enables users to interactively discover and search for a near limit-less

number of image filtering effects through collaborative interactive evolution. Excitingly, in addi-

tion to being the very first CIE application available on Android devices, the open-source #filters

application serves as an instructional pillar for the community on how to build a CIE application

for mobile devices with the WIN framework.

The aggregated results of the domains built with WIN for this dissertation are available to browse

at http://winark.org.

The next chapter provides relevant background while chapters 3 and 4 review work in the evolu-

tionary domains of music generation and two-dimensional creatures, respectively. The construc-

tion of the core WIN library and experimental results are discussed in chapter 5. From there,

chapter 6 examines a human study exploring how developers create variant WIN services, while

chapter 7 demonstrates a fully functioning Android application built with WIN. The resulting im-

plications are discussed in chapter 8, and the dissertation concludes in chapter 9.

1Copyright Google 2015.

2Copyright Facebook 2015.
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CHAPTER 2: BACKGROUND

Notably, WIN has the potential to augment the existing efforts and impact of individual research

projects by adding collaborative features to new or existing evolutionary domains. Thus this chap-

ter reviews previous efforts in both artificial evolution as well as domains relevant to the later

demonstrations of WIN.

2.1 Evolutionary Computation

The field of evolutionary computation encompasses a range of search algorithms inspired by evo-

lution and Darwinian natural selection [25]. Like in nature, evolutionary algorithms operate on a

population of candidates where the most fit individuals selected to continue and reproduce have

offspring that are slight variations of those individuals. As such, each evolutionary method must

determine a number of important parameters including how to measure the level of fitness of an

individual, called a fitness function, and what an individual is composed of genetically, called the

representation. Figure 2.1 gives an intuitive sense of the process of artificial evolution.

An important distinction exists between methods for deciding how individuals are selected and

ranked among the population: Predominantly, automated evolution is when the evolutionary algo-

rithm employs a predefined fitness function, e.g. distance traveled by a robot in a maze, to assess

and rank individuals for selection. In contrast, interactive evolutionary computation (IEC; [24])

refers to algorithms where a human, rather than an automated algorithm, rates individuals in the

population for selection.
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How To Survive:
Closest to Background Color

Reproduce
and 

Mutate
(3)

Selection
(2)

Initial 
Population

(1)

Figure 2.1: Evolutionary Algorithm Example. In this example, a simple domain illustrates how

the process of artificial evolution progresses in practice. In this environment, all individuals are

grayscale circles where those more closely matching the background color are more fit for selec-

tion. (1) Evolution is seeded with an initial population of circle individuals. (2) Traditionally, at

each generation in evolution, the least fit individuals are removed from the population. (3) Finally,

the remaining individuals are then allowed to reproduce individually or in pairs to produce off-

spring that are slightly mutated (indicated by the directional arrows from the parent circle to the

child circle). Here it is evident that some offspring closely match the background while others are

less fit than their parents. From there, the evolutionary algorithm returns to step (2), removing the

least fit individuals and selecting parents for the next batch of offspring.
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In practice, the process of interactive evolution is similar to how humans breed animals. For

example, when generating music through IEC, a user is presented with a small collection (the

population) of musical pieces created by the program. The user then selects his or her favorite song

from the collection that serve as the parents for the next batch of musical pieces (the offspring),

where each new child is a slight mutation of the parent. The process repeats until the user find a

satisfactory musical piece. Much like the variety found from dog breeding, users experience small

variations from parent to child, but over a large number of generations the differences between the

current children and the initial population can be dramatic.

Deciding whether to include a human in the evolutionary loop depends on the goals of the re-

searcher. IEC is a popular approach to facilitating creativity in non-experts in a variety of subjec-

tive domains, e.g. music or art generation [19, 45, 48, 75, 86, 87], where it can be difficult to define

the exact fitness of an individual. Intuitively, it would be hard to numerically estimate how much

one song is more fit than another. In contrast, automated evolution is traditionally employed in

domains where the end-goal of evolution is well defined mathematically, e.g. a navigator needs to

reach the end of a maze or a biped walker need to maximize its distance traveled [38, 55, 71].

In contrast to automated evolutionary searches, IEC experiments rely on sourcing human insight

and intuition from users to drive the search process incrementally. While human insight is a pow-

erful resource, it is also limited by the onset of user fatigue (when a given user grows tired during

the search) [87]. In IEC, unlike automated evolution, each human contributing to the search will

eventually experience user fatigue, though differences in individual dispositions will vary when

user fatigue occurs.
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2.2 Collaborative Interactive Evolution

Interestingly, there are existing evolutionary systems called collaborative interactive evolution

(CIE) that try to minimize the negative impacts of user fatigue by allowing contributions from

many simultaneous users over the course of an experiment [86]. This section explores such exper-

imental systems.

2.2.1 Picbreeder

To specifically address user fatigue, one such CIE application, Picbreeder (a genetic art program

for breeding pictures), empowers users through the processes of branching and publishing [73],

which serve as a form of global checkpointing for the experiment. Through publishing, when users

of Picbreeder discover an image that interests them, they can publish the image publicly. Later, the

same user or another user can then select that published image as the starting point for his or her

own interactive evolutionary search, in a process called branching.

As a result, every image discovered in Picbreeder is either a direct descendant of the efforts of

another user or originates from a simple starting image. In effect, while any single user may fa-

tigue at different rates across multiple sessions, the ability to publish any appealing image serves

as a checkpoint recognizing every user’s incremental progress for themselves and crucially to the

public. Notably, these checkpoints mark a continually expanding frontier of images that, like nat-

ural evolution, can all be traced to common genetic origin and are preserved as potential stepping

stones for future exploration by other users.

Importantly, CIE systems with branching, like Picbreeder (http://picbreeder.org/; [73])

for evolving pictures and Endless Forms (http://endlessforms.org/; [11]) for evolving

three dimensional objects, have been available online for contribution for over four and seven years,
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respectively. They continue to offer every picture or object ever discovered for further branching.

Figure 2.2 shows a small sample of images found through Picbreeder over the lifetime of the

ongoing experiment.

Figure 2.2: Picbreeder Examples. A small cross-section of images evolved by users of the

Picbreeder service is shown [73]. Because users can branch from previously discovered images,

each picture potentially represents the collective efforts of multiple users.

2.2.2 Tools for Collaboration

Though CIE systems like Picbreeder have produced a number of interesting results, engineering

such a system is still complex and laborious. Before WIN, a library for assisting researchers in

creating collaborative systems from scratch did not exist, but there are many existing tools enabling

researchers to build their own experimental domains. Software packages like the Java-based ECJ

suite [59] or the C++ framework SFERES [65] provide a collection of classes and data structures to

solve common problems typically encountered when constructing new experiments (e.g. building
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a user interface and visualizing results). ECJ and SFERES both represent significant contributions

to the community, helping to proliferate new domains and advanced simulations.

Moreover, WIN is not the first attempt at collaboration within the evolutionary computation com-

munity. Within evolutionary robotics, Bongard [6] created a simulator, called Ludobots, that sets

precedent for harnessing amateur users for crowd-sourcing intricate robot controllers (http://

www.uvm.edu/˜ludobots/). This work inspires the idea of exploiting advances in web tech-

nology to create distributed EC platforms. WIN builds on the same philosophy with the goal of

bringing the benefits of crowd-sourcing to any evolutionary domain.

2.3 The Sodarace Domain

The key to enticing a community to develop for a platform like WIN is to show that new domains

can be added easily and systematically. As such, WIN builds upon work across several different

experimental domains to demonstrate the versatility of the platform. This section reviews previous

such efforts in the artificial life world of Sodarace.

The Sodarace project is a simple two-dimensional physics world consisting entirely of masses,

springs, and basic oscillatory muscles [63]. The goal in Sodarace is to create virtual robots and

race them in different environments. Both the robots and the environments are usually hand-crafted

by users. However, to aid in creating robots, a construction kit is provided to allow discovery

and exploration by the community [62, 63]. Figure 2.3 shows a small collection of user-created

sodaracers.

12

http://www.uvm.edu/~ludobots/
http://www.uvm.edu/~ludobots/


Figure 2.3: Sodarace Example Creatures. A collection of human-designed sodaracers [62] that

are reproduced from the Sodarace homepage http://sodaplay.com/.

SodaRace serves as the chief inspiration for the work in chapter 4 in part because the variety of

creature types found with the Sodaconstructor indicates the space of creatures is rich. Moreover,

Sodarace is compelling in the variety of creatures users can create, yet lightweight overall, consist-

ing of simple masses, springs, and muscles [63].

The Sodarace project was originally conceived as a type of online Olympics meant to test humans

against machine intelligence at the task of designing robot racers. In fact, one redesign of the

software includes an evolutionary algorithm that optimizes morphologies for racing. Reflecting

the software’s educational aspirations, an online repository of creatures and all relevant software

packages are accessible in a centralized location [62]. At the peak of popularity, Sodaconstructor,

the tool for creating the creatures, was played by about a million active users [63], suggesting its

potential as a platform for exploration and discovery. Chapter 4 extends the Sodarace domain by

creating a new domain for exploring new creature morphologies automatically called Indirectly

Encoded SodaRace (IESoR), then chapter 5 details how WIN goes a step further to allow humans
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to collaborate with this automated search process.

2.4 CPPNs, NEAT, and HyperNEAT

Though this dissertation discusses the WIN framework in relation to several distinct experimental

domains (detailed in chapters 3, 4, 5, and 7), all the domains utilize a special type of function

representation called a compositional pattern-producing network (CPPN; [82]). Notably, CPPNs

have been employed as the underlying function representation within a variety of existing evolu-

tionary domains [1, 3, 7, 12, 13, 15, 16, 27, 28, 36, 50, 72, 94], including music generation in

NEAT Drummer [41] and MaestroGenesis (chapter 3), picture evolution in Picbreeder [73], and

three-dimensional object evolution in Endless Forms [11].

In practice, a CPPN is a connected weighted graph similar to a neural network [82]. In contrast to

a traditional neural network, internal nodes within a CPPN are not limited to the same activation

function, e.g. a sigmoid function. That is the internal structure of a CPPN is a weighted network

that denotes which functions are composed and in what order. The idea behind CPPNs is that

sophisticated geometric patterns can be encoded as a composition of functions chosen to represent

common regularities [32, 82]. CPPNs can effectively produce patterns in space (such as images

or bodies) just as they can produce patterns in time (such as music), which contributes to their

effectiveness in multiple domains discussed later in this dissertation.

To understand how a composition of functions could represent fundamental regularities even in

multiple domains, consider the composition of internal nodes. Activation functions that are sym-

metric, e.g. Gaussian, enable the CPPN to create symmetric output, while periodic functions, e.g.

sine, impart repetition and segmentation. Crucially, composing symmetric, periodic, and asym-

metric functions can yield patterns of repetition with variation much like the motifs found within
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nature, e.g. fingers of the human hand. Similar to neural networks, the topology of the network is

critical in determining the properties of the pattern produced by the CPPN.

Typically, CPPNs are evolved through an algorithm called NeuroEvolution of Augmenting Topolo-

gies (NEAT; [81]), an evolutionary method for maintaining and evolving a population of neural

networks over time. Importantly, NEAT begins the evolutionary search with minimal function

compositions, and evolves additional complexity during the search, which means networks dis-

covered by NEAT are not limited to a fixed size.

While MaestroGenesis employs NEAT to generate and modify the CPPNs responsible for creating

musical accompaniment, IESoR employs a different method extending NEAT, called Hypercube-

based NEAT (HyperNEAT) [32, 80], to build creature morphologies. Traditionally, HyperNEAT

utilizes CPPNs to encode large neural network connectivity patterns with natural regularities, e.g.

symmetry and repetition of structure. While such regularities are useful for neural networks, as

chapter 4 demonstrates, they also benefit bodies made of connections and joints in a similar way.

Similarly, Auerbach and Bongard [2] encoded the bodies of three-dimensional ambulating crea-

tures with CPPNs. The versatility of CPPNs explains why the same underlying representation is

chosen across four different domains in chapters 3 through 7.

The next chapter introduces MaestroGenesis [45], an interactive evolution program for novice mu-

sicians to evolve full harmonic musical accompaniments encoded by CPPNs. This chapter forms

a foundation in IEC research and was a first step on the path to building the broader evolutionary

framework of WIN.
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CHAPTER 3: MAESTROGENESIS SOFTWARE

Co-created by myself and Amy K. Hoover, MaestroGenesis helps users create complete poly-

phonic songs through interactive evolution from as little as a single monophonic melody. Impor-

tantly, MaestroGenesis is a mature IEC application and a solid experimental basis upon which the

larger evolutionary framework detailed in chapter 5 was built.

The capabilities of MaestroGensis are validated through several user studies, whereby Maestro-

Genesis is shown to create musical accompaniments that aesthetically improve over the course of

interactive evolution. Furthermore, some compositions containing accompaniments generated by

MaestroGenesis were indistinguishable from fully human-composed compositions, indicating the

software can generate musical accompaniment that is human-plausible. A final self-assessment by

users of MaestroGenesis reveals the software’s potential for helping even experienced musicians

explore new creative compositions by providing musical inspiration from evolution. Together,

these assessments confirm MaestroGenesis potential as a foundation for the broader evolutionary

framework of WIN.

This chapter gives an overview of the MaestroGenesis software and reviews the experimental re-

sults from three user studies conducted at the University of Central Florida (UCF).

3.1 MaestroGenesis Software

To assist users in creating musical accompaniments, MaestroGenesis starts by establishing a start-

ing melody provided by the user that will form the rhythmic and harmonic seed of the final accom-

paniment. This initial melodic input, called a scaffold, provides a rhythmic and harmonic seed to

the program. To encourage users to develop new potential compositions, MaestroGenesis employs

16



interactive evolution to guide search through the space of musical accompaniments. After provid-

ing the melodic scaffold, MaestroGenesis then generates ten candidate musical accompaniments

for the user to choose from. Through IEC, as the user selects his or her favorite accompaniments,

MaestroGenesis will continue creating new batches of candidates from user selections until a final

accompaniment is chosen.

Recall from Section 2.4 that MaestroGenesis utilizes compositional pattern producing networks

(CPPNs; [82]) to represent musical accompaniments as a composition of functions, and the Neu-

roEvolution of Augmenting Topologies (NEAT; [79]) method to evolve the CPPNs. Importantly,

because each accompaniment is represented internally as a CPPN and the NEAT algorithm will

increase CPPN complexity over time, user selections can meaningfully impact the musical com-

plexity of the accompaniments over the course of evolution (as shown by user studies in the next

section).

Specifically, my contribution to the MaestroGenesis project was a significant overhaul of the pro-

gram structure, including an entirely new user interface (UI), to facilitate human-computer collab-

oration in exploring the musical search space. To help appreciate the magnitude of the change for

the end user, figure 3.1 depicts a side-by-side comparison of the original software (NEAT Drum-

mer; [42]) and the final interface for MaestroGenesis. Note that to reduce the learning curve for

MaestroGenesis users, hard to read and complex interface elements were removed or hidden and

instead replaced with larger and less cluttered buttons and sliders. Additionally, the musical nota-

tion was altered to reflect a more intuitive understanding of musical compositions without requiring

the user to specifically know how to read staff notation.
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NEAT Drummer

(1)

MaestroGenesis

(2)

Figure 3.1: NEAT Drummer to MaestroGenesis. Built upon NEAT Drummer (1; [42]), the Mae-

stroGenesis (2; [45]) software overhaul focused on improving how the user experienced musical

evolution by removing unnecessary user interface complexity and creating a more intuitive musical

notation.

3.1.1 Interactive Evolution Framework

Because there can be many appealing musical voices to accompany the original musical inputs,

MaestroGenesis encourages users to develop accompaniments through interactive evolution. Once

the melodic scaffold is provided to MaestroGenesis and a population of ten accompaniments is

displayed, the user rates each candidate as good or bad by pressing the “thumbs-up” button (see

figure 3.1). By rating favorable accompaniments higher than less appealing voices, the next batch

of candidates tends to possess similar qualities to the well-liked parents. Through interactively

evolving these accompaniments, the musical voices increasingly reflect the personal inclinations

of the user. That is, interactive evolution enabled MaestroGenesis to better reflect the intent of the

user while providing a variety of plausible new accompaniments to continually select. Importantly,
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MaestroGenesis provides a strong interactive evolutionary foundation, which inspires both the

design and construction of a more ambitious WIN prototype described in Chapter 5.

3.2 MaestroGenesis Experimental Results

With software contributions from both Amy K. Hoover and myself, the overhauled MaestroGenesis

program allowed users to create new types of accompaniments. To assess the overall ability of the

IEC software to assist in human composition, three primary human studies were conducted with

the MaestroGenesis software. In effect, the studies address three questions in particular. What was

the impact of interactive evolution on the quality of the accompaniment, can average listeners dis-

tinguish between musical pieces that are fully human-composed or partially computer-composed

by MaestroGenesis, and can the software empower users to create multi-voice compositions from

as little as a single starting melody? The experiments show that resulting accompaniments from

MaestroGenesis are indeed musically plausible, improve from human selections during evolution,

and can be constructed from as little as a single monophonic input.

To measure the effects of evolution on the resulting accompaniments, the first experiment explores

the musical quality of several accompaniments over the course of evolution. Independent listeners

sample the generated works and assign a rating to the quality of the accompaniments from the

start, middle, and end of evolution. Similarly, to address the level of quality of completed accom-

paniments, the second experiment tests whether listeners can distinguish between two partially

computer-composed and fully human-composed pieces. Finally, the third experiment examines if

there is enough information in a single monophonic melody to scaffold an entire multipart piece.

An additional study of user self-assessment provides a perspective on the users’ own perceptions

of their experience with MaestroGenesis.
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3.2.1 Investigating Accompaniment Evolution

In this first experiment, the focus is on the evolution of the accompaniment. Therefore, the scaffold,

i.e. music for which the accompaniment will be evolved, is chosen to meet an established level

of quality. That way, it is possible to determine whether the accompaniment can maintain and

complement the original quality in the scaffold. For this purpose, the well-known folk song Bad

Girl’s Lament is chosen, which was sequenced and provided with permission by musician Barry

Taylor.

To explore the resulting space created by the MaestroGenesis software, an evolutionary progression

of an instrumental accompaniment for Bad Girl’s Lament between generations 1 and 12 is studied

by highlighting important milestones at generations 1, 6, and 12. This 12-generation progression

took about thirty minutes in total for the user to complete. Audio of the results is available at

http://cs.ucf.edu/˜pszerlip/maestrogenesis.

To demonstrate the musical changes user selection in MaestroGenesis can impart during evolution,

figure 3.2 shows evolved accompaniment for measures 13 and 14 of Bad Girl’s Lament in gener-

ations 1, 6, and 12. The pitches in measures 13 and 14 of the first generation differ significantly

from those created for generations 6 and 12. Pitches in generation 1 ascend across notes A, B, and

C#, followed by B, C#, and D in the next measure. However, in generations 6 and 12, the pattern

more closely follows the harpsichord input from the scaffold, demonstrating the influence of the

functional relationship on the evolved progressions. For example, they all travel from B to D and

back to B in the first measure. However, in the second measure, generation 12 falls back to a C#

rather than the B selected for generation 6. This variation imparts a progressive resolution that is

missing in the thirteenth and fourteenth measures of generations 1 and 6.
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Figure 3.2: Evolutionary Accompaniment Sequence for Bad Girl’s Lament. Evolved steel

guitar accompaniment for generations 1, 6, and 12 of Bad Girl’s Lament is shown at top, followed

by the pitch and rhythm inputs to the CPPN from the scaffold.

Most importantly, while the three generations of Bad Girl’s Lament have similar characteristics,

a clear progression is observed over evolutionary time. For example, while generations 6 and

12 are rhythmically similar, generation 1 sounds significantly shorter notes. The pitch evolution

progresses similarly to rhythm. From generation 1 to 6 many pitches change, but generations 6

and 12 differ in pitch by only a few choice notes.

To understand the effect of evolution on subjective appreciation, a total of 60 listeners, all of whom

are students in a diversity of majors at the University of Central Florida, participated in a survey
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after listening to the evolved variants of Bad Girl’s Lament. In particular, without knowing which

is which, they listened to (1) an intentionally poor-quality control with inappropriate accompani-

ment (which helps to establish that participants indeed generally agree on something subjective),

(2) the original Bad Girl’s Lament without accompaniment, (3) the song with accompaniment se-

lected from the first generation of IEC, (4) the song with accompaniment selected from the sixth

generation of IEC, and (5) the final selected song with accompaniment from generation 12. For

each of the variants, the listener was asked: Rate MIDI i on a scale of one to ten. (1 is the worst

and 10 is the best), where i refers to one of the five variants, which are available for listening online

at http://cs.ucf.edu/˜pszerlip/maestrogenesis/.

By establishing the perceived quality of a respected composition, e.g. Bad Girls Lament, it becomes

possible to estimate how well evolution compares to professional standards even though Maestro-

Genesis incorporates no prior musical knowledge or expertise. The results from the 60-person

listener study, which focused on the same IEC-evolved accompaniments for Bad Girl’s Lament

from the previous section, are shown in table 3.1. As expected, the control is rated significantly

worse than every other example in the survey (at least p < 0.05 for all pair-wise comparisons with

Student’s t-test). This result establishes that listeners likely understood the questions in the survey.
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Table 3.1: Perceived Quality by Survey Participants. This table shows the average ratings and

the mean and standard deviation for the control and four Bad Girl’s Lament (BGL) MIDIs.

MIDI Name Mean Std. Dev.

Poor Control 4.35 1.93

BGL without Accompaniment 7.30 1.85

BGL, Generation 1 5.15 2.20

BGL, Generation 6 6.07 1.96

BGL, Generation 12 6.83 1.98

Importantly, generation 6 is judged significantly higher quality than generation 1 (p < 0.05) and

generation 12 is judged significantly better than generation 6 (p < 0.05). Furthermore, although the

original MIDI without accompaniment is judged significantly better than generation 6 (p < 0.001),

it is not judged significantly better than generation 12. Thus evolution guided by the human user

eventually achieves in a short number of generations a level of quality indistinguishable from that

of the original, hinting that MaestroGenesis-generated parts can meet an acceptable level of quality.

3.2.2 Comparing MaestroGenesis to Fully Human Compositions

The aim of the second experiment is to explore whether accompaniments generated by Maestro-

Genesis can sound human. To explore this question, an additional accompaniment is generated

for the folk song Nancy Whiskey, also originally arranged in MIDI format by Barry Taylor and

redistributed with his permission. Then, the accompaniments for Nancy Whiskey and the final

generation of Bad Girl’s Lament from the previous section are included in a “musical Turing Test”

to determine whether they are distinguishable from other completely human-composed pieces.
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It is important to note that these pieces are chosen for this experiment because they exemplify

entirely human compositions that meet a minimum standard of recognizable quality. That way, it

is possible to discern whether the generated accompaniments reduce the human plausibility of the

work, or whether they complement it successfully, as would be hoped for such an approach.

The main result, which is from only two generations of evolving accompaniment, can be seen and

heard at http://cs.ucf.edu/˜pszerlip/maestrogenesis/. Like the experiment in

Section 3.2.1, the interactive evolutionary process was guided by the authors with the same exper-

imental settings as in the previous section.

In the second listener study, anonymous participants were asked to rate examples with and without

MaestroGenesis-created accompaniments. The focus in the study is if listeners can discern whether

or not a computer is involved in generating the example compositions. Thus the survey is a kind

of musical Turing Test.

For this study, a total of 66 listeners, all of whom were students in a diversity of majors at the Uni-

versity of Central Florida, participated in the study. The full survey, including the human composi-

tions, is provided at http://cs.ucf.edu/˜pszerlip/maestrogenesis/. Participants

are asked to rate five different MIDIs by answering the following question:

Based on your impression, how likely is it that any of the instrumental parts in the

musical piece found at the following link, <link>, were composed by a computer?

“Composed” means that the computer actually came up with the notes, i.e. both their

pitch and duration, on its own. (1 means very unlikely and 10 means very likely).

The participants rated a total of five MIDIs: (1) an obviously computer-generated control1 (which

helps to establish that participants understand the question), (2) the version of Nancy Whiskey with

computer-generated accompaniment, (3) fully human-composed Chief Douglas’ Daughter, (4)

1Like in the previous experiment, the control also benefits from notes in the correct key.
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fully human-composed Kilgary Mountain, and (5) the version of Bad Girl’s Lament with computer-

generated accompaniment from generation 12. Thus the main issue is whether participants judge

piece 2 and piece 5, which have accompaniments evolved with FSMC, as distinguishable from

piece 3 and piece 4, which are entirely composed by humans.

The complete results of this study are shown in table 3.2. On average, the 66 participants judge

the intentionally-poor example as significantly more likely to be computer-generated than any

other song in the survey (p < 0.001 according to Student’s t-test). This difference indicates that

participants understand the survey.

Table 3.2:Survey Results (lower means more human-like).

MIDI Name Mean Std. Dev.

Control 7.82 2.15

Nancy Whiskey with Accomp. 5.45 2.65

Chief Douglas’ Daughter 4.32 2.61

Kilgary Mountain 4.86 2.39

Bad Girl’s Lament with Accomp. 4.82 2.44

Although the accompanied Nancy Whiskey is judged significantly more likely (p < 0.05) to be

computerized than the human song Chief Douglas’ Daughter, it is not judged significantly more

likely than Kilgary Mountain to be computerized. This result indicates that the accompanied Nancy

Whiskey can pass the musical Turing test, i.e. people cannot distinguish it from a song that is

entirely human-generated.

The Bad Girl’s Lament accompaniment is even more difficult for participants to differentiate. It is

not judged significantly more likely to be computer-assisted than either of the human pieces, i.e.
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Chief Douglas’ Daughter or Kilgary Mountain. In fact, on average, MaestroGenesis-accompanied

Bad Girl’s Lament scored slightly less likely to be computerized than the entirely human song

Kilgary Mountain.

These results validate that evolved accompaniments through MaestroGenesis are at least plausible

enough to fool human listeners into confusing partly computer-generated compositions with fully

human-composed ones, even though the software requires almost no a priori musical knowledge

to operate it.

3.2.3 Generating Polyphonic Accompaniment

The final experiment in this section is designed to show how users can generate multipart pieces

from just a single monophonic melody with MaestroGenesis. A creative self-assessment from users

of the program studies their experience of the process. This experiment explores an important issue

in establishing the breadth of potential applications of MaestroGenesis, not simply adding a single

additional accompaniment.

For this experiment, three undergraduate independent study students, (Marie E. Norton, Trevor A.

Brindle, and Zachary Merritt) composed in total three monophonic melodies. From each of these

user-composed melodies, a multipart accompaniment was generated through MaestroGenesis by

the author of the originating melody. Two other multipart accompaniments were generated by one

of the students for the folk song Early One Morning. The most important point is that no musical

expertise was necessary to apply to the final creations beyond that needed to compose the initial

monophonic melody in MIDI format. Thus, although results may sound consciously arranged it is

important to bear in mind that all the polyphony you hear is entirely the output of MaestroGenesis.

The original melodies, accompaniments, and CPPNs are available at http://cs.ucf.edu/

˜pszerlip/maestrogenesis/.
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MaestroGenesis provides significant freedom to the user in how to accumulate the layers of a mul-

tipart piece. In general, the user has the ability to decide from which parts to generate other parts.

For example, from the original melody, five additional parts could be generated at once. Or, in-

stead, the user might accumulate layers incrementally, feeding each new part back into the software

to evolve yet another layer. Some layers might depend on one previous layer, while others might

depend on multiple previous layers. In effect, such decisions shape the subtle structural relation-

ships and hence aesthetic of the final composition. For example, evolving all of the new parts from

just the melody gives the melody a commanding influence over all of the accompaniment, while

incrementally training each layer from the last induces a more delicate and complex set of harmo-

nious partnerships. Overall, the student composers took advantage of this latitude in a variety of

ways. Scores, audio, and the full details of the procedures followed in each case are at http://

cs.ucf.edu/˜pszerlip/maestrogenesis/.

Interestingly, despite inputting the same initial monophonic melody, Early One Morning (Song 1),

a single user generated multiple accompaniments through MaestroGenesis that resulted in entirely

different rhythmic and harmonic influences. Overall, the arrangements appear composed even

though they are all evolved through distinct interactive breeding processes.

A key motivation for these polyphonic experiments is that they reflect a likely usage case for novice

musicians whereby they input a single melodic line to MaestroGenesis and the software then helps

generate a full multipart musical piece. Most importantly, in a self-assessment of the MaestroGen-

esis users responsible for creating the multipart compositions in this third experiment, participants

indicated that MaestroGenesis provided satisfying ideas for composing creatively. For instance,

when asked if “FSMC [MaestroGenesis] helped me explore a broader range of creative possibili-

ties than I could before,” each respondent indicated that MaestroGenesis helped them explore new

areas of their creative search space. Surprisingly, one student noted that “FSMC [MaestroGenesis]

freed me from my normal stylistic tendencies,” while another stated that “I typically follow a sort
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of pattern when I compose, but FSMC [MaestroGenesis] expanded my thinking.”

Thus drawing from the polyphonic experimental results and user self-assessment, MaestroGenesis

is shown to be an effective creative tool for composing full multi-part musical compositions.

3.3 Implications

Through experimental evidence, MaestroGenesis is capable of assisting users in creating musical

accompaniments that sound plausible to other humans. More importantly, the MaestroGenesis

software has the ability to facilitate the creativity of its users even in the absence of musical knowl-

edge.

Despite the underlying complexity of the CPPN-based representation for each musical component,

both the design of the software and the IEC framework play a critical role in enabling novice users

to interact with a complex search space. That is, any user can grasp the intuitive process of selecting

accompaniments they prefer while discarding the rest. The UI further enables the user to direct

their search through the musical space with simplified interactive buttons and sliders. The result is

an effective creativity enhancing tool.

An important implication is that the MaestroGenesis software represents a solid and validated ex-

perimental basis for extending such an IEC system into a more ambitious evolutionary platform.

With similar functionality, this broader platform could enable almost any domain of interest to be

situated within the same framework while allowing users with little domain knowledge to mean-

ingfully explore within sophisticated design spaces.
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CHAPTER 4: INDIRECTLY ENCODED SODARACE

While the last chapter discussed the MaestroGenesis software and successfully generating appeal-

ing accompaniments evolved by users, the domain of musical accompaniments presents significant

challenges for assessing the final products of evolution. Importantly, though the user can discover

musical accompaniments through interactive evolution, validating the quality of the results is an

arduous process that often requires subjective human studies.

To more effectively build and test a broader evolutionary framework, a new domain can help to

extend the ideas first investigated in MaestroGenesis to a wider and more objective investigation of

collaborative search in general. Recall from Chapter 1 that there is an interest in the artificial life

(ALife) community to conduct and promote open science [88], which serves as a guiding principle

for the framework detailed in Chapter 5.

Notably, a considerable amount of research in ALife has investigated the evolution of artificial

creatures. For example, visually compelling research in artificial creature evolution by Karl Sims

[76] inspired many efforts to reproduce and extend such work, including experiments in open-

ended evolution [8, 9, 60, 77, 78, 93], morphological innovation [5, 51, 54], and locomotion [14,

56, 64].

The work in this chapter addresses the need for a visually compelling domain for the WIN frame-

work and builds upon previous work in ALife by introducing a new lightweight two-dimensional

creature evolution domain called Indirectly Encoded SodaRace (IESoR). This new domain, IESoR,

is inspired by a previously-existing project called Sodarace [62, 63] in which two-dimensional

simulated creatures made of masses, springs, and muscles ambulate according to their particular

morphological configuration. In the initial realization of Sodarace, humans designed the body

morphologies by hand and then raced them together competitively. The program attracted nearly
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one million contributions from users across the world [62]. The result was a broad collection of

diverse human-designed morphologies (figure 4.1a) that resemble to some extent the output one

might expect from an artificial life world.

However, IESoR is not the first attempt at automatically evolving Sodarace creature morphology.

Later versions of the Sodarace software added an evolutionary module that could in fact evolve

new morphologies without human assistance, but because the evolutionary component is relatively

simple, these evolved morphologies capture only a small subset (figure 4.1b) of the diverse possi-

bilities suggested by the many known human designs.

(a) (b)

Figure 4.1: Sodarace Examples. Human-designed racers (a) exhibit diverse strategies and mor-

phologies for ambulation while those produced through the evolutionary optimizer (b) share an

amoeba-like morphology and similar ambulation (reproduced from [62]).

In contrast, the key insight behind IESoR is utilizing compositional pattern producing networks

(CPPNs; [82]) to encode regularities and symmetries within the morphological connectivity of

Sodaracer bodies. For more background, see Section 2.4 for an overview of CPPNs.

The potential of this system is first demonstrated by successfully finding a collection of virtual

creatures all proficient in walking that exhibit a large variety of morphological traits, e.g. short
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and wide or tall and skinny. Further experiments with IESoR reveal that with small adjustments

to the underlying search objectives, an entirely new set of morphologically-diverse creatures can

be uncovered that are instead proficient in jumping. Such variety is achieved in both tasks through

the novelty search with local competition [57] approach, which is designed to collect a diversity of

solutions within a single evolutionary run.

The resulting variety establishes IESoR as a visually rich evolutionary domain, motivating its in-

clusion as an initial domain for collaborative evolution in the prototype WIN framework described

in Chapter 5.

4.1 IESoR Approach

This section describes the implementation details of IESoR, and explains the variant of Hyper-

NEAT that enables the creation and evolution of Sodarace body morphology.

4.1.1 IESoR

IESoR implements three primary properties derived from Sodarace (figure 4.2):

1. The environment is two-dimensional and creatures consist solely of masses, springs, physical

joints, and muscles.

2. In creature bodies, masses are implemented by nodes and springs are connections attached

at the joints.

3. Muscles manipulate the length of connections, leading to motion.
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Figure 4.2: Creating a Sodarace-like body using a HyperNEAT CPPN. In regular HyperNEAT,

the CPPN (left) would query the substrate (right) to determine the weights and presence (deter-

mined by the LEO output; [90]) of its connections. However, in IESoR the CPPN outputs the

muscle, amplitude, and phase parameters for each queried connection instead of a connection

weight. That way, the CPPN in effect describes the properties of a Sodarace body instead of a

neural network, yet still with the same benefits of HyperNEAT as usual. The resultant creature is

placed into a two-dimensional world where it attempts to ambulate.

In contrast to more complicated three-dimensional domains [2, 54, 57, 76], to support robust ALife

evolution IESoR is designed to be simple to modify and inexpensive to simulate. In the spirit of

accessibility and extensibility of the Sodarace project, IESoR implements a Sodarace-like simula-

tor in JavaScript built on top of Box2D (box2d.org), an open-source two-dimensional rigid body

physics engine. There is a small performance hit for programming in a scripting language, but

JavaScript allows the domain to be accessible through the browser for most modern computing

devices, from phones to tablets to more traditional PCs. In addition, Box2D physics enables rich

environments for testing creature morphologies. Finally, Box2D has been ported to most popular
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programming languages, which means IESoR could be ported without significant effort.

4.1.2 Encoding Morphologies with HyperNEAT

Bodies inside of IESoR consist of masses with variable or fixed length constraints. Each constraint,

or connection, is represented by a distance joint in Box2D (i.e. a constraint on the length between

two masses) and has three distinct properties:

1. The joint is either variable or fixed length (i.e. a muscle or a bone).

2. The change in distance during muscle contraction is the muscle amplitude.

3. The phase shift of the sinusoidal function controlling muscle length is the muscle phase.

Fixed length connections, or bones, do not receive a magnitude or phase from the CPPN.

Recall from Section 2.4, that HyperNEAT traditionally utilizes compositional pattern producing

networks (CPPNs) to encode large connectivity patterns for neural networks, where each CPPN is

simply a composition of mathematical functions. Formally, CPPNs in HyperNEAT are functions

of geometry (i.e. locations in space) that output connectivity patterns whose nodes are situated in

n dimensions, where n is the number of dimensions in a Cartesian space.

Consider a CPPN that takes four inputs labeled x1, y1, x2, and y2. This point in four-dimensional

space also denotes the connection between the two-dimensional points (x1, y1) and (x2, y2), and

the output of the CPPN for that input thereby represents the weight of that connection (figure 4.2).

By querying every possible connection among a pre-chosen set of points in this manner, a CPPN

can produce a connectivity pattern, wherein each queried point is a node position. Because the

connections are produced by a function of their endpoints, the final structure is produced with

knowledge of its geometry. In effect, the CPPN paints a pattern on the inside of a four-dimensional
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hypercube that is interpreted as the isomorphic connectivity pattern, which is the origin of the

name hypercube-based NEAT (HyperNEAT). Connectivity patterns produced by a CPPN in this

way are called substrates so that they can be verbally distinguished from the CPPN itself, which

has its own topology. While the substrate in the original HyperNEAT is interpreted as an ANN, in

IESoR the substrate is a creature’s body.

Note that HyperNEAT paints a four-dimensional pattern across the weights of a network by query-

ing the CPPN for every pair of nodes in the substrate. The insight is to take this concept of a

substrate and extend it to two-dimensional morphologies. Instead of painting a pattern of weights

across the substrate, the CPPN encodes both what joint constraints should exist between masses

on a two-dimensional plane and their three virtual properties (i.e. bone or muscle, amplitude, and

phase). For this purpose, the CPPN requires four outputs (as shown in figure 4.2).

Before clarifying how a HyperNEAT substrate can be used to represent a morphology, it is impor-

tant to consider the placement of bones and muscles in natural body plans. The skeletal system is

crucial to mobility at a fundamental level. Equally important to where bones are placed in a body

plan is the concept of where bones are not placed. If a rough representation of the human body

was drawn on a small grid of dots, the principle of symmetry is as important as the fact that there

is no bone connecting the tip of the foot to the top of the skull. Morphologies generated in IESoR

ideally also should usually respect this simple principle of locality.

Conveniently for this purpose, HyperNEAT can be expanded with a special Link Expression Out-

put (LEO) [90] to generate an expression pattern that controls whether connections are expressed

at different locations independently of other CPPN outputs. In Verbancsics and Stanley [90], Hy-

perNEAT with LEO was seeded with a bias towards favoring locality although evolution could

adjust this bias during search.
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To generate a morphology using an n-by-n grid of nodes as the substrate, for each node location

in the substrate (figure 4.2), the CPPN queries all other node positions. The (x, y) coordinate

of nodes i and j are denoted as (xi, yi) and (xj , yj), respectively. The input into the CPPN is

thus xi, yi, xj , yj , and there are four outputs. First, the LEO output (which is a step function)

is checked for a positive value. If LEO is positive, a connection is placed between nodes i and

j from (xi, yi) to (xj , yj). Then the output that determines whether the connection is a bone or

a muscle is queried. If the output value is below a pre-defined muscle threshold, the connection

becomes a fixed-length constraint. Otherwise, the constraint is a muscle, and the amplitude and

phase of the muscle contraction are read from the remaining two CPPN outputs. Finally, to further

reduce complexity in the resultant morphologies and keep computational costs low, pairs of points

greater than a third of the diagonal length of the substrate are not queried while constructing the

two-dimensional creatures. An example of a fully constructed morphology is shown in the lower

right of figure 4.2.

After assembling the masses and joints, the bodies are placed in a simple Box2D environment

consisting of the ground, gravity, and friction. As the world is simulated, muscles oscillate accord-

ing to the amplitude and phase values defined by the CPPN, while bones remain a fixed length.

Creatures occupy distinct Box2D environments, and nodes cannot collide with each other.

4.2 Experiments

Though its creatures are mainly hand-crafted, Sodarace shows that the space of possible two-

dimensional body types is likely filled with creatures capable of movement. As noted in the Back-

ground section, the Sodarace Kiosk went on to create an automated approach to generating crea-

tures, but resulted in a highly restricted space of bodies. In contrast, two experiments described in

this section are constructed with IESoR to find sodaracers capable of both walking and jumping
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behavior. These experiments are designed to show that not only is an automated approach capable

of designing two-dimensional walkers and jumpers, but the method can also produce a wide vari-

ety of different means for locomotion, thereby giving hope for further application of Sodarace-like

creatures in artificial life.

4.2.1 Novelty Search with Local Competition

To best demonstrate the morphological diversity possible in IESoR, Pareto multiobjective search

(based on NSGA II) [26] including both novelty and local competition [57] is implemented to ex-

plore the space of body types. The original experiments utilizing Pareto multiobjective search with

novelty and local competition yielded a diverse group of ambulating three-dimensional morpholo-

gies all within a single run of evolution [57]. Maintaining and exploiting diversity across evolution

is both an impressive and important part of validating the potential for future artificial life research

with IESoR and its inclusion in the larger WIN platform.

The first of the three objectives that make up novelty search plus local competition is novelty

search, which was introduced by Lehman and Stanley [55, 56] to avoid the common pitfall of

evolution prematurely converging on a deceptive objective. Novelty search aligns well with the

aims of these experiments because the hope is to find a diversity of novel creatures. Joachimczak

and Wrobel [51] have shown before that novelty search can be effective for this purpose. The

characterization of creature novelty for the novelty search component can significantly impact

evolution and strongly bias the resulting creatures discovered. In these experiments, novelty search

characterizes creatures by their width, height, and mass (as measured by the number of nodes and

the sum of the connection lengths) at the first time-step of the simulation, which should lead to a

visually diverse population. The novelty metric is the squared Euclidean distance separating two

individuals in this characterization space, and thus the novelty of a creature is proportional to how
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different its starting morphology is from that of other creatures currently in the population. Such a

characterization space especially encourages creatures with varying widths, heights, and masses.

The second objective, local competition, forces individuals to compete only with those who are

characterized as similar [57]. The idea is that within novelty search it is possible to push individuals

who are similar with respect to the behavior characterization to compete locally to be the best of

their type. That way, globally novelty search probes a wide variety of possibilities, but locally

individuals optimize to be the best they can. In IESoR, creatures who are locally close share

similar widths, heights, and masses, ideally indicating a similar morphology. Local competition

is the mechanism for pressuring individuals with related morphologies towards more effective

locomotion.

Importantly, by changing the local competition objective, the search can be heavily biased to find

morphologies capable of fundamentally different movement strategies. Therefore, the local com-

petition component is the primary source of difference between the two experiments described in

this chapter. For the first experiment, the local competition objective is the horizontal distance

traveled by an individual. The second experiment measures instead the maximum vertical distance

above the physical ground achieved during the individual’s simulation. That is, the first experiment

encourages walking, while the second experiment encourages jumping. Note that by modifying

only this second objective, these experiments allow the direct comparison between morphologies

generated by both experiments to best isolate the effects of local competition during search.

As in [57], the Pareto multi-objective search has three objectives: novelty, local fitness, and finally

genotypic diversity. The genotypic diversity objective encourages exploring innovative genotypes

by assigning higher values to more novel genotypes. That way, new genotypes created by Hyper-

NEAT are not initially penalized and thereby have a chance to optimize to reach their potential.

This genetic diversity objective is in effect a multiobjective-compatible substitute for the usual spe-
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ciation mechanism in NEAT, which serves the same purpose. Additionally, the genotypic diversity

objective is also localized within the characterization space; similar in motivation to that of local

competition, local genetic diversity ensures that genotypic diversity is not only exploited in those

characterization niches in which such diversity is incidentally most easily expressed.

In all setups, the distribution of individuals in behavioral space as well as their overall perfor-

mance is recorded. The idea is to quantify how much morphological diversity is discovered and

maintained and how well each behavioral niche is being exploited overall throughout a run.

4.2.2 Experimental Parameters

The overarching multiobjective algorithm is based on NSGA II [26]. The population size is 120

for all runs, and the walking experiment ran for 1,200 generations while the jumping experiment

went for 300 generations. The nearest-neighbor size for novelty search and local competition is 20.

The three morphology dimensions used to characterize novelty (i.e. width, height, and mass) are

rescaled so that their values fill the range between zero and three. The selection method for NSGA

II was tournament selection (with tournament size two), and other parameters followed precedent

[57], which in turn used the parameters of [54].

4.3 Results

The intent of these experiments is to demonstrate that a wide variety of walkers exists in the encod-

ing space defined by IESoR, thereby establishing the viability of IESoR for future ALife and IEC

research. Thus, as opposed to machine learning experiments aimed at demonstrating optimality, the

aim in these experiments is to show both diversity and competence. Recall also that novelty search

plus local competition is designed to return a significant coverage of possible solutions from a sin-
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gle long run. There is precedent for demonstrating the diversity that results from such a search. For

example, Lehman and Stanley [57] measured the height and mass of three-dimensional morpholo-

gies from novelty search plus local competition to show the breadth of morphologies discovered

by evolution, while Joachimczak and Wrobel [51] used principal component analysis (PCA) to

demonstrate coverage across morphological space after novelty search. Following this precedent,

to quantify IESoR’s ability to create diverse walkers, PCA is run across characterizations in both

experiments of all generated creatures during evolution to create a visualization of the resultant

diversity.

In particular, to characterize morphological diversity in IESoR for the purpose of visualization,

three dimensions that describe gross creature characteristics (i.e. width, height, and mass) are

projected into a two-dimensional space by the PCA algorithm. However, while PCA with this

information can reveal the diversity across the morphological space, the goal of this analysis is

also to give a sense of the competence of such creatures as well. That way it becomes possible

to observe the diversity of competent creatures instead of just diversity overall. Therefore, in the

visualization of the PCA output in both figures 4.3 and 4.5, to ensure each graph shows the diversity

of only competent walkers or jumpers, only points for walkers that ambulate beyond 200 units and

jumpers that launch higher than 10 units off the ground are displayed. Furthermore, the size of

each point’s radius is proportional to the absolute performance within the task, either walking or

jumping.
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Figure 4.3: PCA-based Visualization of Morphological Diversity and Movement Distance Per-

formance. The location of each point represents its respective creature morphology, while the size

indicates the absolute fitness. All points shown are for creatures able to walk at least 200 units. A

total of 28.1% of all 1,600 possible bins are filled with competent walkers, suggesting the diver-

sity of ambulation methods. Furthermore, several creatures are shown to give a sense of qualita-

tive diversity. The creatures for every point in this visualization can also be viewed in motion at

http://eplex.cs.ucf.edu/iesor/live/walk.

Because thousands of points result, the visualization is further refined to reduce clutter and ensure

that each point represents a genuinely unique individual. For this purpose, the plane is discretized

into 40 × 40 equally sized “bins.” Creatures are placed into bins according to the coordinate as-

signed by the PCA process. Conceptually, each bin thus represents a similar area in morphological
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space, and the creature assigned to a bin that performed the best among all in that bin is chosen as

the representative of that bin. That way, the circles in figure 4.3 and 4.5 show the best performance

for the morphological class represented by its respective bin, and each circle represents a distinct

morphological class. Any bin without a representative is shown as empty space in both figures.

For the ambulation experiment, of the 1,600 possible bins, 450 are filled with individuals who can

ambulate the minimum distance, covering in total 28.1% of all possible bins. Furthermore, the

visualization in figure 4.3 exhibits the breadth of coverage of competent morphologies. In effect,

IESoR with novelty search plus local competition uncovered hundreds of unique and effective

ambulation methods covering a significant breadth of conceivable strategies.

Additionally, for the jumping experiment, of the 1,600 possible bins, 500 are filled with individuals

who launch off the ground to a minimum height of 10 units, covering 31.25% of all possible bins.

Figure 4.5 depicts a range of morphologies capable of making at least one jump above 10 units.

Equally important as this quantitative perspective is a qualitative analysis of the breadth of behav-

iors. It is important to note that every behavior in figures 4.3 and 4.5 can be viewed at http://

eplex.cs.ucf.edu/iesor/live/walk/ and http://eplex.cs.ucf.edu/iesor/live/

jump/ respectively, through a special online interface where the user can click on any point and

see the corresponding creature behavior. This fast interactive visualization of hundreds of creatures

is possible in part due to the lightweight, inexpensive nature of Sodarace-like creatures, which is

one of their potential advantages for researchers in artificial life. Figures 4.3 and 4.5 both show a

sampling of morphologies, while figures 4.4 and 4.6 show a subset of those at different stages of

motion.
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(b)

(a)

Figure 4.4: Creature Motion Over Time. The motion (from left to right over time) of a small

sample of successful creatures evolved in IESoR is shown. The letters (a)–(d) correspond to those

in figure 4.3.

An additional important further qualitative observation is the significantly broader diversity seen

in IESoR compared to the original Sodarace evolver’s amoeba-like creatures shown in figure 4.1b.

Among those that can be observed are gaits based on loping (degrading into pushing) (figures

4.3a/4.4a), pogo-stick hopping (4.3b/4.4b), multiple cascading octopus legs (4.3c/4.4c), dragging

(4.3d/4.4d), complex galloping (4.3e), sliding and pumping (4.3f), and bouncing into a long dive

(4.3g). Some strategies depend on an initial burst of propulsion, while others rely and stable and

consistent ambulation. Some of the very best gaits (largest circles in figure 4.3) involve galloping

or hopping, though even among the very best the diversity of approaches is significant.
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Figure 4.5: PCA-based Visualization of Morphological Diversity and Jump Height Perfor-

mance. The location of each point represents its respective creature morphology, while the size

indicates the absolute fitness. All points shown are for creatures able to jump at least 10 units. A

total of 31.25% of all 1,600 possible bins are filled with competent jumpers. The creatures for ev-

ery point in this visualization are viewable in motion online at http://eplex.cs.ucf.edu/

iesor/live/jump/.

Note that by setting the local fitness objective to be jump height, IESoR demonstrates a capability

to find sodaracers with behaviors not originally anticipated by the Sodaconstructor. As the name

implies, sodaracers are designed for racing, but IESoR is able to discover a breadth and variety of

jumping sodaracers just as effectively as walking sodaracers. As with walking sodaracers evolved

by IESoR, creatures found during the jumping search employ a variety of behaviors to excel at the
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local fitness objective. Some jumping behaviors rely heavily on symmetric bodies and symmetric

muscle contractions (figures 4.5a/4.6a) to launch into the air, while other creatures engage multiple

muscles at a single node to spring upwards (4.5c/4.6c). As is the case with creatures from figures

4.5b and 4.5d, even if two individuals have nearly identical initial morphologies and are therefore

located in the same location of the PCA space, the method for propelling the body into the air can

be entirely distinct (4.6b and 4.6d).
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Figure 4.6: Creature Motion Over Time. The motion (from left to right over time) of a small

sample of successful jumping creatures evolved in IESoR is shown. The letters (a)–(d) correspond

to those in figure 4.5.
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4.4 Implications

Experimental results from the PCA-organized map of discovered creatures in figures 4.3 and 4.5

provide a qualitative view of the breadth and variety of creatures IESoR can collect in the space of

Sodarace bodies. Such results validate that IESoR can consistently produce a visually distinct and

morphologically-diverse collection of walking and jumping gates in a limited computational envi-

ronment. That is, IESoR is a promising new domain for artificial life research, and a lightweight

domain for exploring a potentially vast and complicated design space.

Recall that Sodarace, the domain that inspired IESoR, was well-received by the public, which led

to thousands of user-created Sodaracer contributions [62]. Given the variety of automated results

produced by IESoR in this chapter and the public interest in the Sodarace domain, the IESoR

domain provides a compelling initial domain for validating the WIN framework.
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CHAPTER 5: WORLDWIDE INFRASTRUCTURE FOR

NEUROEVOLUTION

An open problem in the fields of artificial life (ALife) and evolutionary computation (EC) is how

to effectively leverage the modern Internet’s infrastructure to facilitate and enhance research with

user contributions from across the globe [88].

Recall from Chapter 2, a promising technique for crowd-sourcing scientific results across the In-

ternet is collaborative interactive evolution (CIE). Powered by interactive evolution, CIE enables

contributions from multiple users over the course of the experiment [86]. In particular, existing

CIE systems like Picbreeder [73] and Endless Forms [11] benefit from contributions by multiple

users online through a process called branching, whereby users can seed evolution with previously

discovered results.

Yet despite the potential benefits of human-computer collaboration through CIE, engineering such

a system is still complex and laborious. Notably, Picbreeder alone took several researchers over a

year to construct [73].

While existing web technologies provide the path to enable large-scale CIE applications, there are

limited community resources or programming libraries to assist researchers in building such evo-

lutionary applications. With the rise of cloud computing and advancements in the development of

new web technologies, e.g. HTML5, JavaScript, and Node.js [23], there is an untapped opportunity

to create a new set of tools that can enhance the presence of ALife and EC communities online

while harnessing the power of humans to aid search on a massive scale.

To address the difficulty of creating online collaborative evolutionary systems, this chapter presents

a prototype library called Worldwide Infrastructure for Neuroevolution (WIN) and its accompany-
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ing site WIN Online (http://winark.org/). The WIN library is a collection of software

packages built on top of Node.js that reduce the complexity of creating fully persistent, online,

and interactive (or automated) evolutionary platforms around any domain. WIN Online is the pub-

lic interface for WIN, providing an online collection of domains built with the WIN library that

lets novice and expert users browse and meaningfully contribute to ongoing experiments. The long

term goal of WIN is to make it trivial to connect any platform to the world, providing both a stream

of online users, and archives of data and discoveries for later extension by humans or automated

algorithms.

5.1 WIN Library

There are existing efforts in the ALife and EC community aimed at enhancing a communal pool

of resources for collecting and sharing experimental results. For example, the ALife Zoo aims to

take advantage of cloud computing to host a shared platform for running ALife simulations [39].

Similarly, the Virtual Complexity Lab (VLab) is an online resource that aggregates a variety of

ALife simulations to stimulate interest in the field [35].

Together, these platforms represent a significant contribution to the community, helping to encour-

age advanced simulations and to share improved results. However, there remains an open oppor-

tunity in ALife for additional platforms geared towards enhancing the contributions of laymen as

well as academics.

There is thus a need for software that goes beyond organizing domains, simulations, or resources

in the community. Such software could explicitly minimize the developer effort required to add

collaborative interactive features and multi-user support to already existing experimental domains

or simulations.
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5.1.1 WIN Architecture

To fully address the needs of the community, WIN serves as a minimally invasive library for

storing and cataloging evolutionary artifacts to support collaborative interactive evolution. By

design, WIN is conceived as both a platform and a service. The platform is a set of libraries and

tools to assist in enabling any domain to allow access to its data online by algorithms or users,

while the service aggregates a growing collection of ongoing experiments built with the WIN

platform. To aid development, the platform is designed to significantly reduce the programming

burden of making experimental data available, and provides methods for attaching any domain to

the worldwide repository of experiments. On the other hand, the service is the public interface to

all the collected domains, allowing interested users to freely browse available experiments linked

by the WIN platform. Together, the WIN platform and service aim to amplify the collective effort

of the community by reducing the work required to open any search space to both academics and

laymen alike.

In more detail, the WIN platform is built in the model of Picbreeder but with an eye towards more

general applications. Recall that one of WIN’s goals is to integrate easily with any domain. As

such, to prevent being too unwieldy to gracefully integrate existing domains, WIN’s architecture

is highly modular. Built on top of the JavaScript library Node.js [23], WIN is a lightweight and

expandable collection of Node.js packages that are optionally included for any domain. Keeping

the core WIN library minimal but extensible, WIN avoids becoming a one-size-fits-all package.

Overall, the WIN platform is a small set of libraries for handling storage, retrieval, and cataloging

of complex chains of research artifacts similar to how genotypes are stored and presented by the

Picbreeder web service [73].
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5.1.2 Modules

It is important to note that WIN is not confined only to organizing research data. To enable more

functionality, a driving concept of the platform is the ability to create WIN modules, which are

event-driven Node.js packages that plug in to the WIN framework. For example, the two domains

demonstrated later in this paper extend WIN to include modules for user interface elements and

for managing automated evolutionary searches. A benefit of these modules is that they can be

reused by future researchers, which is later validated in the next chapter through a developer study

conducted with the WIN framework.

Borrowing from the event-driven design paradigm of Node.js, each WIN module specifies the

events to which it responds as well as any events required from other modules. The overall WIN

framework handles passing these generic messages and events between modules, and routing the

responses to the appropriate places. While the exact technical details of how WIN handles message

passing are described later in this chapter and available to study within the open-source repository

https://github.com/OptimusLime/win-backbone , it is important to understand the im-

plications of constructing the framework as a generic message passer.

There are two significant advantages to building WIN as a collection of event-driven modules. Pri-

marily, any researcher in the community can bootstrap their own experimental work by extending

any relevant WIN modules. For example, researchers may be interested in modifying the module

responsible for handling the genetic encoding for a given experiment. Because each module only

responds to a select set of events, augmenting a module does not require understanding the imple-

mentation details, but rather a higher level understanding of how to combine those events to add

new functionality.

Second, the design enables the concept of module swapping. Due to the structure of Node.js,
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modules may request an event response without knowing a priori what module will respond. Re-

searchers can take advantage of this feature by building modules that perform the same overall

function powered by entirely different algorithms.

5.1.3 Saving Data in WIN

However, simply making WIN modular and event-driven is not a panacea for integrating WIN

with any research domain. It is possible for each evolutionary experiment to have a distinct genetic

encoding sometimes paired with custom methods to mutate or cross-over genotypes. Furthermore,

special algorithms for exploring the search space can create additional domain complexity. Cre-

ating software that can support the wide range of existing domains while covering future research

directions presents a unique engineering concern.

To directly address these software challenges, the key insight behind WIN’s architecture is to

be agnostic to the processes generating the data, and instead focus on the form the experiment’s

data will take. In effect, WIN inverts the typical relationship between experiments and the data

produced. As researchers, the primary focus often revolves around what algorithms and encodings

produce the collected data. In contrast, WIN is primarily concerned with how the data is structured,

which is defined a priori by the researcher for each experiment.

Formally, to maintain data with varying attributes and sizes, WIN enlists the JSON format [21], as

well as the JSON Schema specification for data validation [31]. JSON describes a data format for

building complex data objects as the composition of a smaller set of universal data structures (e.g.

strings, numbers, arrays and dictionaries). Similarly, the JSON Schema definition specifies a tem-

plate language to describe the structure of JSON data for facilitating data validation. Essentially,

each JSON schema outlines a contract describing the format that data can take, which enables an

application to validate that incoming data objects match the same format.
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Inside WIN, the JSON schema defined by the researcher dictates the internal structure of the data

being stored. Before permanent storage, all data being saved by WIN is validated against the

expected format. Currently, WIN employs the NoSQL document-database MongoDB for long

term storage and retrieval, which is a natural fit for storing JSON data [70]. Note that because

WIN utilizes Node.js and JavaScript for its underlying functionality, it is more convenient to select

JSON for data formatting over other storage types, e.g. XML. Regardless of the specific storage

format, the key required property is the ability to represent a wide variety of data configurations,

which enhances the ease of use when integrating new domains onto the platform.

Importantly, WIN can store research artifacts while remaining encoding-agnostic. Figure 5.1

shows how different genetic encodings can be represented as simple JSON schema, all of which

can be tracked and saved by the WIN framework. By default, a JSON schema is required for saving

objects in WIN, but the schema specification is a simple and extensible template for saving any

type of data. Interestingly, by design of the JSON format, data with almost any conceivable form

can be stored by WIN, potentially opening the platform to support most genetic encodings actively

researched by the community.
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  },
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    sourceID: {type: “number”},

    targetID: {type: “number”},

    weight: {type: “number”}

  } 

}

NEAT Schema

{ nodes: [

    {nodeID: 0, nodeType: “Input”},

    {nodeID: 1, nodeType: “Input”},

    {nodeID: 2, nodeType: “Hidden”},

    {nodeID: 3, nodeType: “Ouput”}

  ],

  connections: [

    {sourceID: 0, targetID: 2, weight: -1.1},

    {sourceID: 1, targetID: 2, weight:  1.4},

    {sourceID: 2, targetID: 3, weight:  0.5},

  ] }

JSON Example

Figure 5.1: Example Schema in WIN. Shown here are examples of two potential encodings and

the corresponding JSON format for saving inside WIN. At top, a NEAT Genotype describes a

compositional pattern producing network (CPPN) with four nodes and three connections [82].

Below, a GP-Tree [53] representing the function f(x) = 3 + x2 is shown. For both figures, the

middle column describes the expected composition of the data sent to WIN for the purpose of

validation.
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5.1.4 Phylogenies

Ultimately, when collecting research artifacts from evolutionary domains, the relationships among

the data can tell an important story about how a domain solution was discovered. In evolutionary

computation, experimental data commonly has a parent-child relationship, wherein one object is

considered the direct descendant of another. By chaining a collection of objects and their relatives,

an artificial phylogeny can be constructed. Previously, Woolley and Stanley [91] investigated the

Picbreeder phylogeny to understand why fitness-based automated evolution was having significant

difficulty attempting to recreate images already evolved through interactive evolution by the users

of Picbreeder.

Crucially, the Picbreeder phylogeny is likely not the only phylogeny capable of informing scientific

research, but it is the only phylogeny available online. Of all the previous evolutionary experiments

conducted, representing thousands of published papers, the lost phylogenies of those experiments

may have contained potential treasure troves of information.

To account for this potential, WIN not only stores artifacts created by evolution, but simultane-

ously tracks the relationships among the data as well. Practically, tracking relationships in the data

thereby requires a minimal amount of additional work by the researcher. By default, WIN attaches

a unique identifier to each object saved internally. Therefore, to enable tracking connections in

the data, each research artifact being saved must provide an accompanying list of identifiers repre-

senting the object’s parents. This additional parental list is enough to create a map of the ancestry

across all artifacts.

Notably, preserving artifact lineages is an important prerequisite for augmenting any evolutionary

domain with collaborative interactive evolution support. The processes of branching and pub-

lishing, a critical underpinning of CIE experiments like Picbreeder [73] and Endless Forms [11],

54



rely on the historical relationships among artifacts. Without maintaining such relationships, there

would be no way to contextualize the progression of the search during the experiment.

5.2 WIN Technical Details

The modular scaffolding of WIN described in the last section is a core design principle of the

framework. Thus its technical details are helpful for assisting developers to utilize WIN to create

CIE applications. To understand how the modules of WIN work together, figures 5.2 to 5.5 depict

several WIN modules working together to power a generic CIE experiment in a sample domain.

This depiction illuminates how the modules of WIN can support a broader collection of experi-

mental domains, while the next section will detail two example CIE domains to demonstrate the

WIN framework in practice.

For clarity, all figures separate the local and global components of the CIE experiment because

WIN is structured as a client-server architecture. The local components (shown on the left of

each figure), i.e. the client, are executed on the end user’s computer, while the global components

of WIN (show on the right of each figure) are run on dedicated servers. Note that developers

employing WIN must host their own dedicated servers with the WIN framework installed.

Broadly, the local components of WIN enable interactive evolution on the client, while providing

the appropriate mechanics to send and receive properly structured data to the WIN server. The pri-

mary purpose of the global components of WIN are to preserve, organize, and retrieve evolutionary

artifacts.

To illustrate WIN functionality, figures 5.2 to 5.5 review the set of user-driven actions a typical

CIE experiment, e.g. Picbreeder [73] or Endless Forms [11], supports, including local interactive

evolution, publishing artifacts, a home screen of recently published artifacts, and displaying the
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genetic relationships among artifacts (phylogenies).

More specifically, figures 5.2 and 5.3 show how the WIN framework supports interactive evolution

on the client. At the heart of each CIE experiment is the interactive evolution client driving the

search for new artifacts. During interactive evolution, WIN employs three local modules to assist

in the creation of new artifacts: win-iec, win-gen, and win-NEAT.
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Figure 5.2: Generating Artifacts in WIN. Shown here is a high-level overview of how WIN

modules work together to generate new offspring within a CIE experiment. Creating offspring

happens on the local client, and there is no need for this purpose to contact the WIN server depicted

on the right of the figure.
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Figure 5.3: Publishing Artifacts in WIN. Above, the flow of data through the WIN framework

depicts how CIE experiments built with WIN can utilize the framework to publish and save artifacts

generated during interactive evolution. In this example, the user requests to publish an artifact,

which sends a message through the local win-iec and win-api modules before being handled by the

global WIN server.

The win-iec module supports basic interactive evolution with mechanisms for selecting/de-selecting

parent artifacts and triggering the creation of new offspring from the selected parents. Importantly,

the win-iec module is agnostic to the objects stored internally, and outsources the generation of
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offspring to the win-gen module. The win-gen module aids in creating new offspring matching

a predefined data schema, offloading the specifics of asexual or sexual reproduction to the rele-

vant encoding module. In the example domain within figures 5.2 to 5.5, the encoding module is

win-NEAT, which handles neural network encodings (e.g. CPPNs; [82]).

In detail, figure 5.2 shows the flow of data through the local WIN framework when the user clicks

the “Generate Offspring” button, where the green arrow indicates the forward flow of WIN mes-

sages and the red arrows indicate the return of data back to the user interface (UI). First, the win-iec

module receives a message from the UI requesting new offspring. From there, the selected parents

tracked by the win-iec module are sent to the win-gen module, which according to the schema

structure will relay the relevant genomes to the win-NEAT module for handling NEAT-specific

offspring creation.

Although the module structure may appear to add complexity to the local WIN framework, its

design confers a number of desirable benefits to WIN developers. In particular, for developers to

swap the encoding within a CIE experiment built with WIN, there is only a single module that

must be modified: win-NEAT. For example, developers interested in experiments with genetic

programming (GP) encodings would only need to create a win-GP module to handle offspring

creation, while the remaining interactive evolution structure remains unchanged.

For user-driven actions that require contacting the global server, the local win-api module handles

the logistics of formatting the server requests. As shown in figure 5.3, when the user chooses to

publish an artifact, a message is passed to the win-iec module, which in turn forwards the relevant

artifact information to the win-api module. From there, an HTTP request is sent to the global WIN

server with the attached artifact data.

Depending on the server HTTP endpoint, an internal message on the server is generated and the

data is directed to the appropriate modules. When publishing artifacts, there are four important
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modules: win-publish, win-validation, artifact-save, and the MongoDB database. Accordingly,

figure 5.3 shows the flow of data into the database with a green arrow. The only data returned to

the local client is whether the artifact is successfully published.

The win-publish module on the server receives requests for publishing, and organizes the data into

batches for processing. The batch of artifacts is then sent to the win-validation module that en-

sures the data being sent strictly matches the predefined JSON schema (Section 5.1.3 details the

schema). The win-validation module breaks each object into its constituent JSON components,

and verifies that the data matches the expected type for each individual JSON component. Ad-

ditionally, the win-validation module checks and removes any artifacts that are duplicates in the

database. After validation, the artifacts are sent to the artifact-save module that converts the JSON

information into MongoDB objects according to the JSON schema. Finally, the MongoDB objects

are asynchronously saved to the database.

The data-driven design within the WIN server means that the same publishing framework can be

utilized regardless of the schema structure. That is, the only change in program structure for the

server-side of WIN is to define the artifact schema for the evolutionary experiment. In fact, the

image breeding and creature-evolution domains built with WIN in the next section employ the

exact same server-side program despite being distinctly different evolutionary experiments.

To enable functionality similar to Picbreeder [73], the WIN framework also supports a “home

screen,” of recently published artifacts (as shown in figure 5.4). When the home screen is loaded,

a message is sent to the local win-api module to fetch recently published artifacts from the WIN

server. From there, three WIN modules work together on the server-side to load the relevant

artifacts: artifact-query, artifact-load, and the MongoDB database. The flow of data from the

local client to the global server and back is shown through the green and red arrows, where green

signifies the movement of requests and red the movement of responses through the framework.
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When the HTTP request is sent to the WIN server, the artifact-query module responds by passing

a message to the artifact-load module. The artifact-load module is responsible for formatting a

request in the proper MongoDB query language and structure, taking into account the schema

defined by the experimenter. After the artifacts are queried in the database, the JSON data is

returned to the local client and then displayed on the home screen UI.
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Figure 5.4: Example WIN Home Screen. Similar to the Picbreeder [73] experiment, CIE applica-

tions built with WIN support a “home screen” of recently discovered artifacts. To fetch the correct

information, the client sends an HTTP request through the local win-api module, which triggers a

series of messages on the global WIN server. The result is a collection of artifacts that are sorted

by date published that are then displayed on the user interface.

To help illuminate the benefits of the modular structure on the WIN server, figure 5.5 portrays

a server request to display a portion of the artificial phylogeny for the CIE experiment. These

artificial phylogenies, like the ones discovered within Picbreeder and in the two domains later in
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this chapter, represent a key functionality of CIE experiments, and are visual representations of

the connections and relationships among the artifacts. Interestingly, the flow of data to the server

to recover the artificial phylogeny is almost identical to the flow of data for retrieving recently

published artifacts. However, to recover the phylogeny, an initial artifact identifier is sent to the

WIN server, and the artifact-phylogeny module recursively requests the children of each artifact

up to a certain depth. In this way, the phylogeny is unraveled level by level through the WIN

framework. The next section demonstrates all four of these WIN mechanics in practice within

functioning CIE experiments.

63



WIN Local Library

Experiment Phylogeny

win-iec

WIN-Save Framework

artifact-

phylogeny

Local Evolution Client Global WIN Server

artifact-

validation

artifact-

publish

artifact-

query

artifact-

save

artifact-

load

MongoDB

Database

win-gen
win-

NEAT
win-api

Figure 5.5: Displaying WIN Phylogeny. The flow of data is shown through the local and global

WIN framework to return the artificial phylogenies stored within the MongoDB database powering

the CIE experiment. Similarly to figure 5.4, the artifact-query and artifact-load modules are critical

in returning properly structured artifacts, which are then organized for display to the end user.
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5.3 WIN Domains

Beyond software functionality, the key to enticing a community to develop for a platform like

WIN is to show that new domains can be added easily and systematically. By demonstrating this

point through two domains that would otherwise be highly challenging to put online without WIN,

this section (and its corresponding demonstrations online) not only shows the possibilities that

WIN creates but also provides a reference for future developers aiming to extend WIN with more

domains.

The first is an HTML/JavaScript clone of Picbreeder [73]. The second is IESoR, the Sodarace-

inspired [63] domain for evolving two-dimensional morphologies capable of ambulation [83] de-

scribed in the previous chapter. Some resulting phenotypes from both Picbreeder and IESoR are

shown in figure 5.6. To avoid confusion, the version of Picbreeder integrated with WIN will be

called win-Picbreeder, and the IESoR variant will be called win-IESoR. Both examples are cur-

rently accessible through WIN Online at http://winark.org/. Together, the Picbreeder and

IESoR domains aim to cover a broad range of interests inside the ALife community. Picbreeder is

a proxy for domains that are more suited towards Interactive Evolutionary Computation (IEC) [87]

and difficult to optimize. In contrast, IESoR is a control-based domain that runs multiobjective

search to discover new ambulatory creatures, i.e. it is designed for automated optimization.
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(a) Picbreeder (b) IESoR

Figure 5.6: Products of Evolution. Picbreeder artifacts (a) are n x n pixel images where the RGB

values are constructed from the outputs of a CPPN [82]. (b) A pair of two-dimensional ambulating

creatures are shown from the IESoR domain [83].

To accommodate the two example domains, several new WIN modules were built to augment

the features described in the WIN Architecture section. Importantly, both Picbreeder and IESoR

depend on two new modules, win-home and win-gen. Win-home is a user interface (UI) module

that mimics the web portion of Picbreeder, which is intended to provide a simple user interface

for domains hosted on WIN. The module includes a homepage template similar to Picbreeder for

displaying new or interesting artifacts published by users. The win-gen module aids in creating

new objects matching a predefined data format and in particular for generating the underlying

indirect encoding (CPPNs) powering both domains [82]. An exhaustive list of modules created so

far is available online at http://winark.org/modules, and the exact programming details

of these modules are all accessible and open-source. Developers who are new to WIN will have

the benefit of the already-included domains and modules built for both demonstrations that thereby

serve as templates for new experiments in WIN.

66

http://winark.org/modules


5.3.1 Picbreeder

Originally, the Picbreeder website was written in PHP, while the Picbreeder evolution client respon-

sible for generating the images was written in Java. For a more modern approach, win-Picbreeder

is written in HTML5 and JavaScript, which has the added benefit of running in any browser with-

out plugins. Because WIN is conceived in the mold of Picbreeder, it follows that win-Picbreeder

is among the easiest projects to integrate with WIN.

To match the major features of the original Picbreeder, win-Picbreeder needs a homepage, an IEC

user interface, and the ability to store, retrieve, and generate image artifacts. As described in section

5.1.3, WIN offers an encoding-agnostic method to store, retrieve, and generate custom schema. In

the case of Picbreeder, the schema simply contains a NEAT genotype, i.e. the CPPN, conforming

to the structure depicted in figure 5.1a, along with user tags describing the final phenotype image

in a few keywords. Therefore, the main issue for creating win-Picbreeder is how to connect the

IEC user interface to the existing WIN framework for saving artifacts.

In WIN, the solution is fairly simple. Recall that WIN’s main architecture is event-driven, and

the process of generating and saving artifacts is displayed for a generic experiment in figures 5.2

and 5.3. Similarly, as the user explores the domain through the IEC interface in win-Picbreeder,

whenever an artifact must be displayed, an event is passed to the local win-iec module to generate

a new artifact from the currently selected parents. WIN routes this message to the win-gen module

described above that is responsible for creating new artifacts, and a new win-NEAT module creates

NEAT genotypes and the corresponding CPPNs by combining the provided parent genotypes. Af-

ter the IEC interface receives the new artifact object(s), domain-specific Picbreeder code converts

the NEAT genotype in the artifact to the displayed picture in the interface through WebGL (an

HTML rendering framework found within most modern browsers).
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The majority of complexity in Picbreeder is in the storage and retrieval of evolutionary data.

Because WIN is designed specifically to handle the data management task, the rest of the win-

Picbreeder application is lightweight compared to the original Picbreeder’s code. Altogether,

win-Picbreeder effectively demonstrates a simple WIN application; the code is available online

at https://github.com/OptimusLime/win-Picbreeder .

The exciting point about adding this domain is that numerous IEC-based domains can easily be

constructed and put online simply by deriving them from the win-Picbreeder code. That is, with

minimal effort researchers can create services like Genetic-Programming-Picbreeder, L-Systems-

Picbreeder, or any such conceivable variant. In fact, in a developer study detailed in Chapter

6, participants managed to create and launch several win-Picbreeder variant services within four

hours.

5.3.2 IESoR

Recall from Chapter 4 that in the original IESoR, an automated NSGA-II multiobjective search [26]

evolved functional two-dimensional ambulating morphologies similar to the creatures depicted in

figure 5.6b. In the win-IESoR application, the same multiobjective search algorithm operates with

one important difference: the human user is included in the loop. Instead of running an automated

algorithm for a fixed period of time and collecting the results, win-IESoR interleaves occasional

choices by the user with shortened multiobjective searches and returns the most promising individ-

uals from which the user can further evolve. Woolley and Stanley [92] demonstrated recently the

ability of human choices interleaved with search to outperform even automated algorithms. WIN

is uniquely positioned to make this kind of interleaved search easy to integrate into any domain.

Because interactive evolution was not part of the original IESoR domain, it was not necessary to

build win-IESoR with user interaction. However, explicitly including user interaction with win-
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IESoR helps to highlight a deeper purpose behind the infrastructure of WIN. If humans have the

ability to add insight and utility to search and WIN makes the process of including a human in the

loop relatively painless, then the hope is that researchers in the future will not need to hesitate to

take advantage of human insight and collaborative functionality whenever it is appropriate.

To enable user interaction with an automated search, a new local WIN module named win-NSGA

was created to handle the complexity of this interleaving search. Note that the win-NSGA module

replaces the win-iec module displayed in figures 5.2 to 5.5, and handles automated evolution.

Following precedent in Woolley and Stanley [92], after a certain number of viable candidates are

found through automated evolution, the search returns the results to the user interface for human

selection. The main takeaway is that win-IESoR demonstrates that the WIN platform is capable of

executing a search process that involves both an automated algorithm and a human.

In win-IESoR, the data saved by WIN includes additional components beyond those saved by win-

Picbreeder. The data contains both a NEAT genotype to define the creature morphology as well as

the parameters and objects inside of the two-dimensional physics engine (e.g. the ground, gravity,

and friction). Along with the win-home user interface templates, a new UI module for interleaving

search was created inspired by the user interface elements from Woolley and Stanley [92]. While

the interface for interactive evolution in win-IESoR is still under construction, the results of an

initial set of evolutionary experiments within win-IESoR are browsable through the WIN Online

service.

A major benefit of WIN is that there is no need to write and re-write the same code when someone

in the community has already written it. Thus all the infrastructure written for win-IESoR that

allows integrating multiobjective searches with interleaved human selection can now be applied to

any other ALife domain, which should help to accelerate research in such systems significantly.
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5.4 Artificial Life Community: WIN Online

While the WIN platform is designed to be minimally intrusive, WIN as a service, or WIN Online,

aims for a larger role in the ALife and EC community. Accordingly, WIN Online is the public

face to a worldwide repository of ongoing experiments for any evolutionary or ALife domain

integrated with the WIN platform. Recall that the data saved by WIN represents potential starting

points for new interactive or automated searches. Thus WIN Online becomes a place where users

who are interested in the ALife and EC communities can participate in academic domains without

prerequisite domain knowledge and immediately start a fresh evolutionary branch from existing

results. The two examples demonstrated in the next section provide an example of what the WIN

Online user experience is like for domains that operate both in and out of the browser.

For researchers, WIN Online acts as a potential resource for attracting users and crowd-sourcing

new domain solutions. Note that researchers who prefer not to allow WIN Online to host their

research data may host data on their own servers and supply an external link for WIN Online. To

assist in creating an online collection of experiments, any domain built with WIN can integrate into

the online repository with minimal additional effort. As discussed in 5.1.3, internally, WIN utilizes

the MongoDB database for storage. Taking advantage of a MongoDB feature, domains linked to

WIN Online are given a separate database within the global MongoDB database hosted by WIN

Online. Additionally, WIN Online handles configuration of the REST API required to access the

newly created domain database and its contents.

Utilizing these features, WIN Online can provide a catalog of cutting edge ALife research with

the potential to provide a steady stream of users to new research domains. A prototype for WIN

Online that includes links to the two domains described next is accessible at http://winark.

org/.
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5.4.1 WIN Phylogenies

An important functionality included within win-Picbreeder and win-IESoR is the ability for the

user to decide when an artifact should be saved for the public record, i.e. published. Recall that

WIN always tracks parent-child relationships among published artifacts. As users interact with

a domain, each published object adds a single branch to the tree of artifacts maintained within

the database. The exact publishing process via the WIN framework is depicted in figure 5.3,

the same flow of data that occurs within win-Picbreeder and win-IESoR. At any point during the

ongoing experiment, researchers may compile part or all of the published objects into an artificial

phylogeny. With the help of the artifact-phylogeny module on the WIN server (shown in figure

5.5), WIN assists in constructing phylogenies by providing methods for retrieving the full parent

and children database elements for any artifact within the database. Researchers can repeatedly

query these methods to unravel a chain of research artifacts and construct a phylogeny of any

depth.

To highlight this WIN feature, phylogenies generated with the artifact-phylogeny module for win-

Picbreeder and win-IESoR are shown in figure 5.7a and 5.7b, respectively. For both applications,

the data represent a cross-section of artifacts generated by a single researcher. It is important to

note that these artificial phylogenies do not represent static aggregated results, but rather collec-

tions of potential stepping stones that are all available to branch from currently in the ongoing

experiments. Both win-Picbreeder and win-IESoR are open for browsing artifacts through WIN

Online at http://winark.org/. Win-Picbreeder already supports contributing new artifacts,

while win-IESoR is a prototype that allows browsing artifacts generated during initial experiments.
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(a) win-Picbreeder (b) win-IESoR

Figure 5.7: WIN Phylogenies. The tree of artifacts in (a) and (b) represent artificial phylogenies

resulting from the efforts of a single researcher. In (a), each square represents a published image

inside win-Picbreeder, while each connection represents a direct relationship between the images.

Each image in (b) illustrates the starting morphology of a two-dimensional ambulating creature

evolved by win-IESoR. Though images are linked by a single connection, there may have been

multiple human selections and potentially hundreds or thousands of automated evaluations in each

branch of the tree. Both phylogenies contain artifacts that are currently available for browsing in

win-Picbreeder and win-IESoR by visiting WIN Online at http://winark.org/.

5.5 Implications

Building a tool that can organize and unlock the data within any arbitrary evolutionary domain

is ambitious, but the WIN prototype hints at how it becomes possible. The win-Picbreeder and

win-IESoR domains represent a milestone on the path towards building an infrastructure to give
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researchers from evolutionary computation and artificial life the ability to quickly make their re-

search available to users online, who can then genuinely contribute.

Moreover, this initial WIN prototype forms one part of the larger framework constructed within

this dissertation that includes support for both web browsers and mobile devices (e.g. smart phones

and tablets). To help achieve goals for collaborative open science set forth by the ALife commu-

nity [88], the lightweight design of the WIN framework aspires to create a new type of research

collection full of accessible domains assembled together for easy and perpetual access across the

world via WIN Online.
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CHAPTER 6: WIN HUMAN STUDY

The previous chapter demonstrated the technological feasibility of WIN as a platform creation tool

for multiple evolutionary domains, win-Picbreeder and win-IESoR. However, a key motivation for

WIN is to enable researchers to build rapidly upon previous efforts in the community to create new

collaborative interactive evolution (CIE) systems. Thus to evaluate WIN’s ability to facilitate the

creation of new CIE systems from old ones, this chapter describes a survey of three developers

who each utilized WIN to construct new win-Picbreeder variations (available online at http://

winark.org/variants). The results reveal strengths in WIN’s ease of use and quick deploy-

ment, while also uncovering weaker elements of WIN such as gaps in the documentation, which

have been addressed directly with improvements in the library.

6.1 Survey Design

To begin to study the capabilities of WIN as a platform builder, it is helpful to analyze how devel-

opers interact with the library in practice. Recall from chapter 5 that the WIN design emphasizes a

lightweight implementation for minimal burden on potential developers. Thus the aim of this study

is to validate that the WIN library enables quick creation of CIE variants while also providing a

qualitative understanding of how the library is most naturally utilized by developers.

The study was conducted with three researchers from the Evolutionary Complexity Research

Group at University of Central Florida (UCF) that all had prior exposure to both neuroevolution

techniques and the original Picbreeder service. Each participant was instructed to download the

open-source win-Picreeder repository from GitHub (https://github.com/OptimusLime/

win-Picbreeder) and make a change to the win-Picbreeder code to create a new variant ser-
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vice. A small tutorial for installing and launching win-Picbreeder was also provided. Participants

were asked several quantitative questions to numerically assess WIN on its ease of setup, modifi-

cation, and deployment, including the clarity of the code and the tutorials. The survey concluded

with several more open-ended questions about strengths and weaknesses of the experience building

with WIN.

6.2 Results

Quantitative results suggest that the WIN framework is rated highly for the software’s ability to

be easily set up, modified, and deployed for the purpose of building CIE variations from existing

application code. Though one participant ran into some difficulty initializing WIN and another had

an issue with documentation clarity, both participant concerns are addressed through modifications

to the framework detailed in the next section. The full set of quantitative survey questions and

answers are shown in table 6.1.
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Table 6.1: Perceived Quality of WIN by Survey Participants. This table shows the average

ratings for five quantitative assessments of the WIN library from ease of use to quality of the

documentation, where each score is out of 10 and higher values indicate a better experience with

the WIN library.

Survey Questions Dev 1 Dev 2 Dev 3 Mean

Rate ease of initial setup of the WIN in-

teractive evolution system

6 8 9 7.67

Rate ease of modification of your WIN in-

teractive evolution system

9 7 8 8.00

Rate ease of local deployment of your

WIN interactive evolution system

7 10 9 8.67

Rate the clarity of the existing WIN code

in helping you build your service

8 7 9 8.00

Rate the quality of the WIN tutorials in

helping you get started

10 5 9 8.00

Participant responses to the qualitative questions indicate that all three participants could create

win-Picbreeder variations in less than four hours even without having any previous exposure to the

WIN library or the win-Picbreeder code. One participant chose to adjust how the win-Picbreeder

service performs selection and crossover during interactive evolution. The other study participants

created win-Picbreeder variations that altered the activation functions inside the compositional

pattern producing networks (CPPNs) generating the win-Picbreeder images. One such participant-

created variant replaced almost all the traditional activation functions found within CPPNs with

“triangle wave, square wave, and two sizes of sawtooth waves in order to produce psychedelic
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art.” Figure 6.1 depicts the phylogenies tracked by WIN for both win-Picbreeder and the variant

with the altered activation functions. The resulting images discovered in the variant service are

distinctly different than the original win-Picbreeder discoveries described in chapter 5.

(a) win-Picbreeder (b) win-Picbreeder-variant

Figure 6.1: Dual WIN Phylogenies. The tree of artifacts in (a) and (b) represent artificial phylo-

genies resulting from the efforts of a single researcher. In (a), each square represents a published

image inside win-Picbreeder, while each connection represents a direct relationship between the

images. Each image in (b) illustrates a published image inside a win-Picbreeder variant with al-

tered activation functions developed by a survey participant. Both phylogenies contain artifacts

that are currently available for evolving in win-Picbreeder at http://winark.org/apps/

win-Picbreeder/ and the win-Picbreeder variant at http://winark.org/apps/win-

Picbreeder-g/.

Note that while the sample size of the survey is small, these results highlight an essential design

goal of WIN wherein developers do not need to understand the more complex server-side elements
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of WIN to still gain the benefits of being able to create online interactive experiments. That is,

the survey confirms that future practitioners of WIN need not be concerned with all aspects of the

platform, but instead only the particular pieces that are directly relevant to their research. As one

participant notes, “With WIN, it is not necessary to have a working knowledge of all components

of such a system. Evolutionary researchers, for example, could answer evolution-related questions

without having to know much about working with databases or interfacing with users through web

pages.”

Notably, while two participants estimated that creating the same variant service from scratch could

take anywhere from “at least 40-80 hours” to “several hundred hours,” one participants suggests

that the experience with WIN had positively impacted the participant’s thoughts about creating CIE

experiments, remarking “While I have not previously considered using interactive evolution in any

projects previously, the ease that WIN offers for implementing such a system may encourage me

to consider that option in the future.”

Importantly, the results validate the idea that a single open-source domain built with WIN can

proliferate many new variations that are all valid CIE experiments. Specifically, the survey demon-

strates the ability of three researchers with little exposure to the original program to create three

win-Picbreeder variants in several hours each. Interestingly, to put this result in perspective, de-

spite the seemingly small number of participants involved in this experiment, the new services

created in this experiment increase the number of available CIE experiments online by 60%, from

five to eight at the time of writing including Picbreeder [73], win-Picbreeder (chapter 5), Endless

Forms [11], Petalz [72], and BrainCrafter [69]).
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6.3 Modifications

The survey responses also reveal areas for improving the usability of the WIN library. Examining

table 6.1, while the average rating for the ease of initial setup and quality of documentation for WIN

is high, in each category there is a developer who rated the service lower than other participants,

likely indicating a specific issue encountered with WIN. For example, one developer noted that

only a small portion of time was required to make the win-Picbreeder changes, yet the initial

setup involved “additional hours spent working through dependency issues that were eventually

corrected by the software’s developer [Paul Szerlip].” Though the library was designed to be cross

platform, this developer uncovered support issues for Windows that have since been corrected.

Another developer did not understand how the WIN platform was initialized and required assis-

tance refreshing the database elements of WIN after making changes. This frustration with the

documentation is likely reflected in the lowest score given to the quality rating of the WIN docu-

mentation. Both issues yielded practical and clarifying add-ons to the documentation of the WIN

library as well as fixes for the build tools of WIN.

6.4 Discussion

Notably, traditional scientific libraries like ECJ [59] and SFERES [65] allow researchers to create

multiple experiments with small algorithmic differences to produce a set of publishable scien-

tific results, e.g. comparing different search algorithms like novelty search and MAP-Elites [66].

Similarly, the survey conducted with WIN demonstrates the ability to quickly produce multiple

win-Picbreeder variants all with small algorithmic modifications, yielding significant differences

in the artificial phylogeny of images observed in figure 6.1. In effect, WIN enables the fundamen-

tal building blocks for scientific exploration even for CIE experiments that have previously taken
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multiple researchers considerable effort to construct. With WIN, each open-source CIE application

published represents a new stepping stone to an entire collection of easily created variant services.

Fundamentally, WIN’s support for multiple evolutionary domains demonstrated in chapter 5 and

the successful construction of several win-Picbreeder variations revealed in this chapter validate

the WIN library as an effective research tool to aid developers in significantly expanding scientific

crowd-sourcing efforts within the field of evolutionary computation.
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CHAPTER 7: WIN FOR ANDROID

In both chapters 5 and 6, prototypical domains and extensions based on WIN successfully demon-

strated the promise of the platform in the web browser. Designing for the browser enabled anyone

with a computer and an Internet connection to potentially access WIN Online. However, a valid

question remains about how the WIN platform can handle domains not programmed in JavaScript,

and how well the platform is suited for more comprehensive applications that go beyond research

prototypes.

To directly address these concerns, this chapter discusses the development of #filters, a complete

WIN application built for Android, the largest mobile operating system in the world [49]. The

application, #filters, allows users to take photos and apply custom image filters discovered during

interactive evolution, much like the filters provided in the popular mobile application Instagram1.

Surprisingly, #filters represents the very first collaborative interactive evolution (CIE) application

available on any mobile platform (Android, iOS, or Windows), which collectively represent mil-

lions of mobile applications. Without WIN, constructing such a unique CIE platform would be

prohibitively complex for a single programmer.

The next section reviews previous evolutionary (non-CIE) efforts on mobile devices. Then, the

following section addresses the image filtering domain and corresponding encoding within #filters.

An overview of the adjustments required to make WIN effective in a mobile environment are briefly

examined. Finally, the chapter ends by discussing the aggregated results from the #filters, as well

as the impact and potential future work for #filters.

1Copyright Facebook 2015
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7.1 Background: Evolution on Mobile

Excitingly, shifting WIN to mobile opens up entirely new paradigms for both interactive evolution

and artifact discovery. Previously, win-Picbreeder and win-IESoR were designed principally for

desktops, which allowed the experiments to take advantage of much larger screen resolutions. For

example, both the original Picbreeder and win-Picbreeder could rely on large screen spaces to

display grids of images from which the user can select quickly. In contrast, the limited screen

resolutions present a significant problem for search and discovery on mobile.

Notably, the constraints imposed by mobile are not simply a software engineering problem, but

more deeply a research question for the field. Across the world smartphones are becoming in-

creasingly common, in both developed and developing countries [34]. In 2014, three in four people

in the US owned a smartphone, and the trend is towards even higher ownership percentages [18].

Moreover, a majority of the top applications across all mobile operating systems were social media

applications, implying mobile users are concerned about applications structured around their social

networks. At the time of writing, there are only a small handful of mobile applications that employ

evolutionary computation (EC) or artificial life (ALife) at all, none of which were integrated with

any social network support [19, 30, 48]. Worse, there is a distinct lack of automated or interactive

evolutionary research being conducted on any mobile operating system.

Given both the trend of smartphone proliferation and the dearth of such research, there is a signif-

icant risk to the future relevance of both EC and ALife on an increasingly important and popular

computing platform. In direct contrast, as noted in chapter 3, interactive evolutionary computation

(IEC) can reduce complex domains to a simple process of selecting the user’s favorite choices.

That is, the simplicity and personalization of IEC makes it a natural fit for a mobile environment

where most users engage with personalized applications for shorter time frames [18]. Despite the

potential of IEC applications, with little to no community infrastructure that can support multiple
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users across many devices, EC and ALife have a significant uphill battle to stay relevant on mobile

devices.

Fortunately, the WIN framework presents a unique opportunity to address the very core of this re-

search problem on Android. Unlike other EC libraries, WIN is built to asynchronously aggregate

and amplify the efforts of multiple users by default, a necessity for any connected mobile appli-

cation. Thus, by building the fully functional Android WIN application #filters, the WIN library

simultaneously demonstrates the robustness of the WIN platform across multiple programming

languages and provides a pathway for other researchers to create a similar caliber of connected

evolutionary applications on Android. In effect, #filters helps unlock new low hanging fruit in an

underdeveloped research direction.

7.2 Evolution of Image Filters

To capture a mobile audience, a research domain with public appeal is helpful for demonstrating

the potential of CIE on mobile. One such domain is image filtering. Digital image processing has

taken many forms in both the scientific community and the wider consumer culture over the last few

decades. Traditionally, the computer vision community has employed image processing techniques

to aid in manipulating image or video streams for the purposes of e.g. edge detection or other

high-level feature decomposition [33]. More recently, the success of consumer technologies like

Instagram have demonstrated significant public interest in image filtering for aesthetic purposes.

Within Instagram, users can capture an image with their mobile device’s camera and apply a series

of photo effects, or filters, to adjust the original image before sharing the altered image on their

preferred social network. In contrast to academic research, the image effects produced within

Instagram must satisfy the personal tastes of users instead of solving a broader computer vision
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task. Instagram thus faces the challenge of defining a finite set of image filters that can appeal to a

wide variety of user preferences, a difficult obstacle for a service with over three hundred million

users [29].

Interestingly, evolution may be a more effective tool for collecting diverse image filters. Previous

experiments in EC (both automated and interactive) have demonstrated that the creation of a mul-

titude of image filters is indeed feasible [17, 37, 61]. However, these experiments all employed

evolution to reach a specific type of filter that solved an underlying computer vision task, e.g. noise

reduction [37], image enhancement [17], or removing facial blemishes [61]. Importantly, as is the

case for user preferences, there is no definitive optimal image filter, i.e. it is difficult or impossible

to define the concrete value of an image filter in the highly subjective domain of aesthetic tastes.

Yet Picbreeder’s effectiveness in generating thousands of varied two-dimensional images with CIE

suggests that image filtering may be an attractive test case for the WIN library. Curiously, the orig-

inal Picbreeder revealed that while there was a core of committed users, a majority of visitors to the

site were not dedicated to evolving content [73]. However, if the content being produced had been

more personal, e.g. a filter applied to a user’s favorite image, Picbreeder may have drawn an audi-

ence more interested in evolution. Thus, an image filtering application for Android simultaneously

demonstrates the potential value of CIE to the general public, while addressing the robustness of

the WIN platform in a domain that is valuable to a broader consumer community. That is, image

filtering on mobile can serve as a killer application for WIN.

Therefore, in an effort to maximally engage users of #filters, the application focuses on personaliz-

ing evolutionary content by encoding plausible image effects with compositional pattern producing

networks (CPPNs; [82]) and more fine-grained evolutionary control via filter effect combinations.
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7.2.1 CPPN Filters

To most effectively generate a variety of filters relevant to users, it is possible to draw on existing

image processing efforts to guide CIE. Within the field of Digital Image Processing, there are

many techniques for filtering images [33]. One such technique, convolution filtering, is achieved

by dragging a small n×n pixel window across an image and performing a weighted sum of pixels

within the window to generate a new color value for the pixel in the center [33]. A small matrix of

weights within the convolution kernel determines how to calculate the weighted sum that influences

the final effect on the image, e.g. blur or image sharpening effects. Figure 7.1 depicts example

convolution filter weights and the final images produced, highlighting the importance of the relative

values within a convolution filter. Convolution kernels are capable of many different effects with a

small adjustment to the matrix of weights, and thereby serve as a good starting place for creating a

potential encoding within the #filters application.
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Figure 7.1: Convolution Filters. The effects are shown of applying multiple 3×3 convolution

filters to alter the original image (1). The convolution grid is dragged across every pixel of the

original input (1) producing the final images (2), (3), and (4). Note that the 3×3 grid next to

images (2), (3), and (4) indicates the values of the convolution matrix for the three filter variants.

Importantly, varying the relative values within the convolution matrix can result in a variety of

filters with different overall effects and magnitudes.

Given the variety of effects produced by simple modifications to the convolution matrix, one way

to encode image filters is by selecting convolution matrix values via CPPN outputs. To understand

how this approach works, figure 7.2 examines how the CPPN-based encoding constructs the con-
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volution matrix for each pixel region. The key insight is that the 3×3 convolution filter can be

represented by a CPPN queried at the nine corresponding pixel coordinates required to generate

the full matrix of convolution values.

In effect, by inputing a region of pixels into the CPPN and encoding the convolution matrix as

outputs of the CPPN, each convolution matrix applied to the original image is unique. As the filter

is dragged across the original image, the CPPN can decide how to adjust the convolution matrix

at each pixel region. Such an encoding potentially allows for selective effects, wherein the CPPN

only applies an effect for a specific input region combination (e.g. blurring certain pixel regions).
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Figure 7.2: CPPN Filters.

Depicted above, an image filter is applied to the original image on the left to produce a filtered

image on the right. Each filter evolved within #filters is encoded with a compositional pattern

producing networks (CPPN; [82]). To filter an image, the CPPN is fed a 3×3 region of pixels, and

outputs a corresponding convolution matrix for that region (for more details on CPPNs, see Section

2.4). The convolution matrix is then convolved with the original pixels to produce the color value

for the center pixel. This grid-based filter is then dragged across the entire image on the left, region

by region to produce the final image seen on the right.
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7.2.2 Filter Combinations

Crucially, though CPPNs are capable of producing a wide variety of filters, users may wish to have

more than one effect applied to different parts of a single image. That is, because there are multiple

potential subjects within a given photograph, users may wish to apply different filters for distinctly

different subjects, e.g. a dedicated filter to enhance the blue hues of the sky and another to subtly

mute the skin tone of any person in the image. Similarly, users may desire fine-grained control

over a whole set of filters applied in succession to produce the final filtered image within #filters,

resulting in nearly limitless user customization for any given image.

Allowing an arbitrary number of CPPN-based image effects to be contained within a single evo-

lutionary artifact presents a complicated encoding challenge. Fortunately, as described in chapter

5, the generic design of WIN already supports the storage and cataloging of artifacts containing

an arbitrary-length array of inner encodings. In fact, for this reason, no additional changes to the

WIN library are required to enable artifacts in #filters with multiple CPPN-based image effects.

Interestingly, once the #filters artifact is designed as a collection of filter effects instead of a single

effect, including non-evolutionary filters within the application is a natural extension. One inves-

tigation into constructing common filter effects similar to those found within Instagram revealed

the important and deceptively simple technique of overlaying a predefined background image on

top of an existing image to produce basic vignette (darkening towards the edges of the image) or

grainy texturing effects [10]. While not technically sophisticated, overlaying static images under-

pins a common set of desired effects within the Instagram community. As such, #filters permits the

addition of image overlay effects, which blend user images with a predefined background image

selected from a small set provided within #filters.

To avoid confusion, it is important to note that a single filter artifact in #filters may actually contain
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an entire array of statically defined or CPPN-encoded filter effects. Consequently, the final product

of #filters is the image produced by applying all filter effects defined by the artifact in succession

to the original user-supplied image. Importantly, the ability to include complex artifacts in #filters

without modification to the underlying WIN infrastructure is a non-trivial feature of the WIN

library, reinforcing the value of the framework for future potential experimental domains not yet

conceived.

Similarly to win-Picbreeder and win-IESoR, when a user in #filters decides the final filtered image

matches his or her aesthetic preferences, the user can caption and publish the filtered image to

the user’s preferred social network while both the unfiltered image and the entire filter artifact

containing possibly many filter effects are stored to the #filters database powered by WIN. Other

users can then explore images published on #filters and see both the filtered and unfiltered versions

to isolate the changes made by any given filter artifact. The following section analyzes how the

image filter evolutionary search progresses and the way users discover new filters within #filters.

7.3 Search and Discovery on Mobile

To help address future EC and ALife research with WIN on mobile, there are several additions

to WIN required to be more effective across a range of experimental domains beyond the image

filtering domain of #filters. Specifically, the primary problem posed by mobile is the search and

discovery of artifacts produced by evolution. That is, constrained by mobile, how do users effec-

tively find artifacts within a domain aided by interactive evolution, and what common mechanic

allows one user to discover artifacts that were produced by other users within the application?

At heart, both issues revolve around circumventing the impact of user fatigue in IEC [87]. First, the

problem of evolutionary search with limited screen real estate critically impacts the effectiveness
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of the mobile user, and without a new IEC mobile paradigm users may fatigue quickly. Second,

user discovery of new artifacts and innovations within the mobile application is critical to encour-

aging and facilitating user branching, the primary functionality underlying CIE applications like

Picbreeder, which can thereby exploit the efforts of all users despite individual fatigue.

To solve these fundamental problems at the heart of mobile, #filters employs infinite feed IEC and

hashtag discovery to reorganize both search and discovery around common paradigms with which

mobile users are already familiar.

7.3.1 Infinite Feed IEC

Within any IEC experiment, evolution can generate as many offspring as can be reasonably fit

into the existing screen resolution. For instance, Picbreeder generates fifteen options for every

user selection by displaying all offspring in a 5 × 3 grid of images. Practically, the same grid

design would be difficult to replicate on a mobile device without severely restricting the size of

each image. Instead, an alternate method is required to expose the user to an uncountably large set

of possible offspring within a constrained screen size.

Fortunately, Internet users are already accustomed to a number of existing design paradigms for

scrolling through a large collection of content. Particularly relevant to mobile applications is the

concept of an infinite feed, which works as follows: First, the user is shown a small set of existing

content, e.g. social media posts or news headlines. As the user scrolls down the list and approaches

the bottom of the content displayed on screen, the application fetches more data in the background

and appends the new content to the bottom of the list. Effectively, as the user consumes content,

it is continually replenished and appended by the application giving the illusion of a screen that

never ends, i.e. an infinite feed.
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By harnessing the same design principles, users within #filters can similarly scroll through an

endless set of image filters generated by interactive evolution. Figure 7.3 visually depicts this

process of IEC within #filters. Note that #filters modifies the traditional infinite feed to instead

focus on one user-selected image at a time, while providing an infinite horizontal feed of image

filter previews created through evolution that the user can then investigate one by one. In practice,

the key insight is that #filters exemplifies one potential solution to the problem of IEC for restricted

screen sizes by employing well-known mobile design paradigms.

Selected Filter 

Applied to Image

Infinite Feed of Options

Selected Filter

Long Press

to Select Filter

for Next Generation

New Options

(a) (b) (c)

Figure 7.3: IEC Design Pattern in #filters. To handle interactive evolution on limited screen sizes,

#filters appropriates an existing mobile design pattern infinite feed to display a limitless number of

image filters to the user. In (a), the user selects a filter from the infinite feed to see the effect at

a larger resolution displayed at the top. As a user scrolls through the options (b), he or she may

select other filters to examine in more detail. Finally, to see children of the selected filter the user

long presses on the chosen filter (c) before being shown a new stream of filters for browsing.
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7.3.2 Hashtag Discovery

Within #filters, hashtag discovery enables users to search for image filters through all existing

hashtags. Originally, hashtags were an informal way for early users of the social networking

service Twitter to categorize messages (tweets) into specific topics and themes [68]. To create a

hashtag, a user simply precedes the desired hashtag with a # symbol anywhere in the message.

There are no predefined limitations or strict rules for hashtag placement, e.g. acceptable hashtags

include #Science, #TwoWords, and #AnythingYouWant. Twitter would then aggregate hashtags

across all tweets, allowing users to search for tweets directly by hashtag. Recently, the fundamental

concept behind hashtags has spread more broadly across Internet culture as a way for users to

categorize types of content other than tweets, e.g. pictures, and express individual feelings about a

particular topic [68].

Importantly, despite being a recent social phenomena, hashtags represent a common organizing

principle that orients data within a service relative to the individuals or groups that are most inter-

ested via a decentralized user mechanic. Therefore, supporting hashtags within WIN better enables

individualization of evolutionary content by organizing generated filters around relevant user in-

terests. Hashtagging is similar in practice to keyword tags employed by other services including

Picbreeder [73]. However, unlike more traditional tagging, hashtags encourage content personal-

ization organically and can often capture higher level concepts, e.g. sentiment, irony, or emotional

expression. In particular, hashtags are meant to be naturally interspersed with descriptions or cap-

tions created by the user. For instance, an Instagram user may post an image of their current meal

accompanied by a caption that reads “This is #delicious,” where #delicious is a hashtag expressing

the user’s feelings about the image while not directly describing the content of the image.

Given the advantages of hashtagging for personalization, hashtag support is included in both #fil-

ters and the WIN framework, including support for arbitrary hashtags.
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Together, infinite feed IEC and hashtag discovery play an important role in reinforcing the utility

of user personalization with evolutionary content in familiar ways on mobile. Recall that while

Picbreeder had a core collection of enthusiastic users, a majority of visitors were not dedicated

to the evolved content [73]. Hashtag discovery aims to more directly align evolutionary content

produced by WIN towards the interests of its users. As such, #filters focuses heavily on artifact

browsing and discovery through hashtags, underscoring the derivation of the #filters hashtag name.

Building on these new mobile CIE paradigms, the next section investigates the results from the

#filters experiment.

7.4 Results

It is important to note that the #filters application is now available for public download at http://

winark.org/filters. In fact, #filters is the first CIE application available on an Android de-

vice, and represents a successful demonstration of the WIN framework’s generic tracking and

storage capabilities on mobile devices. Similar to applications previously developed for the WIN

framework, win-Picbreeder and win-IESoR (described in chapter 5), the #filters application sup-

ports user-driven branching and publishing functionality, a key feature of the framework.

7.4.1 Many-to-One Image Effects

Note that unlike win-Picbreeder and win-IESoR, the evolutionary products of the image filtering

domain can generate more than one final image. That is, #filters’ users are directly interested in the

single personalized and filtered images being produced by the application, while only indirectly

concerned with the image filters that can be utilized to generate other filtered images. Interestingly,

this generative aspect of image filter effects enables the construction of a entirely different set of
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results, wherein a single image effect discovered in #filters can be applied to many different images

without requiring further interactive evolution.

Figures 7.4 and 7.5 depict two unique image effects discovered by the #filters application being

applied to the original image that the user chose to filter, as well as several other user-contributed

images collected elsewhere within the experiment. Importantly, as described in the previous sec-

tion, #filters encourages such serendipitous application of image effects through the mechanism of

hashtag discovery.
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Pre-Filter

Post-Filter

Original

Figure 7.4: Filter application to multiple images. An example filter discovered by the #filters

application is examined in closer detail. The image without any image processing, marked “Pre-

filter”, is displayed above, while the image after a filter is applied, denoted “Post-filter”, is shown

on the bottom. The original image employed during evolutionary search is marked, while the other

images were collected elsewhere within the application. In the original image, the filter applies a

darkening effect on the horizon, while highlighting the building outlines. When applied to other

city skylines, the filter behaves similarly.
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Pre-Filter

Post-Filter

Original

Figure 7.5: Additional filter application to multiple images. As in figure 7.4, an example filter

found within the #filters application is applied to multiple images, with the pre-filter image above,

and the post-filter image below. On the far left, the filter was originally applied to a picture of dogs

in the snow at a park with the effect of highlighting the animals in the scene. Interestingly, when

applied to other animal pictures, the filter also has a highlighting effect despite the difference in

hues. On the far right, the fur coloring of a sleepy kitten is made prominent by the same filter.

7.4.2 Filter Phylogenies

Recall from chapter 5, the parent-child relationships being tracked within the WIN framework can

be composed into an artificial phylogeny, a hierarchical display of all or part of the evolutionary
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lineages found during search. Similar to the phylogenies constructed for win-Picbreeder and win-

IESoR, figure 7.6 reveals a cross-section of artifacts generated by several users of #filters. Notably,

the discovered image effects displayed in figure 7.6 are openly accessible for extension by users of

the #filters application, a direct benefit of the WIN framework.
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Figure 7.6: WIN Phylogeny for #filters. The tree of artifacts collected from the #filters Android

application resulting from the efforts of several users. Each square represents a published image

filter applied to a user-supplied photograph. The connection between squares represents the direct

genetic relationship between the image filters, though there is no implied relationship among the

images chosen by different users. This artificial phylogeny is a small cross-section of an ongoing

experiment with users of the #filters application actively expanding the discovered set of image

filters through the Android app available publicly at http://winark.org/filters.
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7.5 Implications

The #filters app serves as a capstone application for the WIN framework demonstrating what one

example of a fully realized WIN application looks like. Furthermore, #filters represents a signifi-

cant scientific contribution. Not only is #filters the first collaborative interactive evolution experi-

ment for any mobile platform, but it is also the first experiment to employ a CPPN-based encoding

for image filtering.

However, the hope for #filters extends beyond a single evolutionary domain or a one-off Android

application. Instead it aspires to illuminate a path for more researchers to follow suit and build

entirely new CIE applications for Android. The immense power of collaborative interactive evolu-

tion to conceal the complexities of sophisticated domains from end users is largely untapped across

all mobile operating systems. Where once there was a dearth of community infrastructure, #filters

now provides a non-trivial example and blueprint for what CIE assisted by WIN can accomplish

on Android.

In isolation, #filters is a scientific contribution that traditionally might have taken several re-

searchers a year of effort to construct. With WIN, the same effort took half the time with only a

single researcher. Excitingly, future researchers utilizing WIN for Android will not have to imag-

ine new mobile design paradigms for IEC or extend WIN infrastructure to support user hashtags,

instead only focusing on the underlying experimental domain and encoding development. In this

way, #filters leads the way to a generation of new CIE mobile applications with more personalized

evolutionary content.
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CHAPTER 8: DISCUSSION AND FUTURE OPPORTUNITIES

While many tools exist to assist researchers in constructing or running experimental domains in

Artificial Life (ALife) and Evolutionary Computation (EC), e.g. the Java ECJ suite [59] or the

ALife Zoo simulation platform [39], WIN represents a unique effort to explicitly enable researchers

to build or extend domains with collaborative branching and persistent storage of research artifacts

and relationships. Such effort reflects a community-wide interest in supporting open science and

public engagement through the Internet [88].

The next section discusses the importance of the WIN framework for augmenting the EC commu-

nity’s ability to contribute to citizen science. The following section then explores the significance

of the WIN framework’s support for collaborative interactive evolution (CIE) on mobile devices.

8.1 Tool for Citizen Science

Notably, previous CIE applications such as Picbreeder [73] and Endless Forms [11] established the

potential for evolutionary computation to aid in serious citizen science. In fact, Picbreeder success-

fully solicited thousands of scientific contributions from hundreds of users [73], and contributed

directly to the creation of new evolutionary search techniques, e.g. HyperNEAT [32] and Novelty

Search [56].

Demonstrated through the construction of win-Picbreeder and win-IESoR in chapter 5, WIN greatly

reduces the engineering effort required to add CIE functionality to existing evolutionary domains.

Similarly, chapter 6 reveals the same framework can enable single researchers to quickly modify

existing CIE applications and then launch variant CIE services, and the previous chapter detailed

the first CIE application on a mobile device. Most important, all of these efforts have been made
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publicly available through open-source code and documentation so that future researchers can build

upon previously completed work.

In effect, the WIN library has consistently shown promise for improving the efficiency of a single

researcher in collaborative evolution. Originally, the Picbreeder service took six people a full year

to construct [73]. In contrast, win-Picbreeder, a clone of the Picbreeder service built on WIN, took

one researcher several months, while three researchers not familiar with the program managed to

build several variations in under four hours. In fact, unlike the original Picbreeder, the source code

for win-Picbreeder is fully open-source meaning any software developer can create and launch a

replica of the win-Picbreeder service on a local computer within ten minutes [85].

The WIN platform thereby offers a substantial reduction in time required to open a domain to on-

line access and contribution, a crucial stepping stone towards proliferating citizen science projects

powered by evolution. That is, the intersection of collaborative evolution and citizen science is a

rich opportunity to draw public attention to the work being done in evolutionary computation as

well as extracting meaningful scientific contributions from crowd-sourcing infrastructure. Enabled

by the WIN framework, the fields of evolutionary computation and artificial life are uniquely po-

sitioned to proliferate experiments that can aggregate the efforts of an entire community, with the

potential to change the way in which research is conducted.

8.2 CIE on Mobile Devices

Highlighting the potential created by WIN for new scientific directions, the #filters Android ap-

plication reviewed in chapter 7 is the first CIE application constructed for any mobile device.

Interestingly, recent data suggests that consumers in the United States access the Internet more of-

ten from their smartphones than their desktop PCs, hinting at the increasing importance of mobile
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devices as a computational platform [67]. Such user statistics convey the potential value of WIN in

positioning the field of evolutionary computation to reap the rewards of the global reach of mobile

devices to further our scientific objectives.

Furthermore, #filters is open-source software and a blueprint to future researchers for proliferating

such CIE domains across the Android ecosystem. Practically, software design contributions like

the infinite feed IEC approach described in Section 7.3.1 assist researchers by providing a fully-

constructed program infrastructure for enabling IEC on the limited resources of a mobile device.

That is, #filters is a first step in personalized evolutionary content for mobile users, and, most

importantly, it lays a strong foundation for an entirely new class of experiments for an underutilized

research platform.

It is important to note that such concerns about the influence and availability of evolutionary ex-

periments on mobile devices is more than an engineering challenge for the field. It is becoming

increasingly clear from both industry analysis [34, 49] and widespread consumer behavior [18, 29]

that mobile devices will continue to play an integral part of everyday life from leisure activities

to workplace productivity. To have a limited presence on such an important platform is a signifi-

cant risk to the longterm relevance of the fields of ALife and EC. Moreover, the hallmark feature

of the most popular mobile applications with billions of active users, e.g. Facebook, Instagram,

and Snapchat, is the direct availability of deeply personal content [18]. Yet personalized content

is a well-documented and defining benefit of IEC and has been demonstrated across a variety of

complex and often subjective domains [19, 45, 48, 75, 86, 87]. Directly exploiting this open op-

portunity for the field, #filters and the WIN framework represent a significant first step in creating

a prominent presence on an important computational platform, while providing the inspiration and

concrete research tools for future research in the area.
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CHAPTER 9: CONCLUSION

This dissertation introduced Worldwide Infrastructure for Neuroevolution (WIN), a framework

that enables researchers to easily build persistent collaborative evolutionary experiments accessible

online and open for contribution from multiple users. Validated through five major contributions,

the hypothesis of this work is that the WIN framework is an effective platform-building tool for

assisting researchers in creating large-scale collaborative interactive evolution (CIE) experiments

across a wide range of evolutionary domains.

The first contribution, the MaestroGenesis software I co-created with Amy K. Hoover, demon-

strated an IEC experiment in the domain of music composition that forms the foundation upon

which the larger WIN framwork was constructed. The second, a new virtual creature domain

named Indirectly Encoded SodaRace (IESoR), established a visually compelling and objective re-

search domain for artificial life research. Both the new IESoR domain and previously constructed

picture evolution domain powering Picbreeder [73] were integrated into the third contribution, a

prototype WIN framework. Further supporting the main hypothesis, this prototype framework val-

idated the ability for the WIN library to replicate the functionality of existing CIE applications like

Picbreeder and augment more objective-driven evolutionary domains like IESoR with collabora-

tive features. The fourth contribution, a developer survey conducted with WIN, bolstered asser-

tions that WIN could enable researchers to quickly construct and launch new variations to existing

CIE experiments. The final contribution is a fully functional mobile application #filters built for

the Android platform, revealing the generic WIN framework’s support for multiple computational

platforms from the browser to mobile devices.

At the heart of the work presented in this dissertation is an open question of how the fields of

ALife and EC can most effectively take advantage of the boundless opportunities unlocked by the
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widespread adoption of both the Internet and mobile computing [34, 49, 88]. Thus the promise

of this work is to deliver a meaningful reduction in the resource and time investment required for

a single researcher to extend almost any evolutionary domain to reach hundreds or thousands of

users.

It is worthwhile to consider that the fields of ALife and EC may be at a delicate inflection point,

where the right combination of shared community resources and software infrastructure like WIN

could propel both fields to the forefront of the crowd-sourcing and open science movements.
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