48 research outputs found

    Edge Video Analytics: A Survey on Applications, Systems and Enabling Techniques

    Full text link
    Video, as a key driver in the global explosion of digital information, can create tremendous benefits for human society. Governments and enterprises are deploying innumerable cameras for a variety of applications, e.g., law enforcement, emergency management, traffic control, and security surveillance, all facilitated by video analytics (VA). This trend is spurred by the rapid advancement of deep learning (DL), which enables more precise models for object classification, detection, and tracking. Meanwhile, with the proliferation of Internet-connected devices, massive amounts of data are generated daily, overwhelming the cloud. Edge computing, an emerging paradigm that moves workloads and services from the network core to the network edge, has been widely recognized as a promising solution. The resulting new intersection, edge video analytics (EVA), begins to attract widespread attention. Nevertheless, only a few loosely-related surveys exist on this topic. The basic concepts of EVA (e.g., definition, architectures) were not fully elucidated due to the rapid development of this domain. To fill these gaps, we provide a comprehensive survey of the recent efforts on EVA. In this paper, we first review the fundamentals of edge computing, followed by an overview of VA. The EVA system and its enabling techniques are discussed next. In addition, we introduce prevalent frameworks and datasets to aid future researchers in the development of EVA systems. Finally, we discuss existing challenges and foresee future research directions. We believe this survey will help readers comprehend the relationship between VA and edge computing, and spark new ideas on EVA.Comment: 31 pages, 13 figure

    Multilayer Architecture Model for Mobile Cloud Computing Paradigm

    Get PDF
    Mobile Cloud Computing is one of today's more disruptive paradigms of computation due to its effects on the performance of mobile computing and the development of Internet of Things. It is able to enhance the capabilities of devices by outsourcing the workload to external computing platforms deployed along the network, such as cloud servers, cloudlets, or other edge platforms. The research described in this work presents a computational model of a multilayer architecture for increasing the performance of devices using the Mobile Cloud Computing paradigm. The main novelty of this work lies in defining a comprehensive model where all the available computing platforms along the network layers are involved to perform the outsourcing of the application workload. This proposal provides a generalization of the Mobile Cloud Computing paradigm which allows handling the complexity of scheduling tasks in such complex scenarios. The behaviour of the model and its ability of generalization of the paradigm are exemplified through simulations. The results show higher flexibility for making offloading decisions.This work was supported by the Spanish Research Agency (AEI) and the European Regional Development Fund (ERDF), under Project CloudDriver4Industry TIN2017-89266-R, and by the Conselleria de Educación, Investigación, Cultura y Deporte, of the Community of Valencia, Spain, within the program of support for research under Project AICO/2017/134

    Transformative Effects of IoT, Blockchain and Artificial Intelligence on Cloud Computing: Evolution, Vision, Trends and Open Challenges

    Get PDF
    Cloud computing plays a critical role in modern society and enables a range of applications from infrastructure to social media. Such system must cope with varying load and evolving usage reflecting societies’ interaction and dependency on automated computing systems whilst satisfying Quality of Service (QoS) guarantees. Enabling these systems are a cohort of conceptual technologies, synthesised to meet demand of evolving computing applications. In order to understand current and future challenges of such system, there is a need to identify key technologies enabling future applications. In this study, we aim to explore how three emerging paradigms (Blockchain, IoT and Artificial Intelligence) will influence future cloud computing systems. Further, we identify several technologies driving these paradigms and invite international experts to discuss the current status and future directions of cloud computing. Finally, we proposed a conceptual model for cloud futurology to explore the influence of emerging paradigms and technologies on evolution of cloud computing

    Fog based intelligent transportation big data analytics in the internet of vehicles environment: motivations, architecture, challenges, and critical issues

    Get PDF
    The intelligent transportation system (ITS) concept was introduced to increase road safety, manage traffic efficiently, and preserve our green environment. Nowadays, ITS applications are becoming more data-intensive and their data are described using the '5Vs of Big Data'. Thus, to fully utilize such data, big data analytics need to be applied. The Internet of vehicles (IoV) connects the ITS devices to cloud computing centres, where data processing is performed. However, transferring huge amount of data from geographically distributed devices creates network overhead and bottlenecks, and it consumes the network resources. In addition, following the centralized approach to process the ITS big data results in high latency which cannot be tolerated by the delay-sensitive ITS applications. Fog computing is considered a promising technology for real-time big data analytics. Basically, the fog technology complements the role of cloud computing and distributes the data processing at the edge of the network, which provides faster responses to ITS application queries and saves the network resources. However, implementing fog computing and the lambda architecture for real-time big data processing is challenging in the IoV dynamic environment. In this regard, a novel architecture for real-time ITS big data analytics in the IoV environment is proposed in this paper. The proposed architecture merges three dimensions including intelligent computing (i.e. cloud and fog computing) dimension, real-time big data analytics dimension, and IoV dimension. Moreover, this paper gives a comprehensive description of the IoV environment, the ITS big data characteristics, the lambda architecture for real-time big data analytics, several intelligent computing technologies. More importantly, this paper discusses the opportunities and challenges that face the implementation of fog computing and real-time big data analytics in the IoV environment. Finally, the critical issues and future research directions section discusses some issues that should be considered in order to efficiently implement the proposed architecture

    Processamento de eventos complexos como serviço em ambientes multi-nuvem

    Get PDF
    Orientadores: Luiz Fernando Bittencourt, Miriam Akemi Manabe CapretzTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O surgimento das tecnologias de dispositivos móveis e da Internet das Coisas, combinada com avanços das tecnologias Web, criou um novo mundo de Big Data em que o volume e a velocidade da geração de dados atingiu uma escala sem precedentes. Por ser uma tecnologia criada para processar fluxos contínuos de dados, o Processamento de Eventos Complexos (CEP, do inglês Complex Event Processing) tem sido frequentemente associado a Big Data e aplicado como uma ferramenta para obter informações em tempo real. Todavia, apesar desta onda de interesse, o mercado de CEP ainda é dominado por soluções proprietárias que requerem grandes investimentos para sua aquisição e não proveem a flexibilidade que os usuários necessitam. Como alternativa, algumas empresas adotam soluções de baixo nível que demandam intenso treinamento técnico e possuem alto custo operacional. A fim de solucionar esses problemas, esta pesquisa propõe a criação de um sistema de CEP que pode ser oferecido como serviço e usado através da Internet. Um sistema de CEP como Serviço (CEPaaS, do inglês CEP as a Service) oferece aos usuários as funcionalidades de CEP aliadas às vantagens do modelo de serviços, tais como redução do investimento inicial e baixo custo de manutenção. No entanto, a criação de tal serviço envolve inúmeros desafios que não são abordados no atual estado da arte de CEP. Em especial, esta pesquisa propõe soluções para três problemas em aberto que existem neste contexto. Em primeiro lugar, para o problema de entender e reusar a enorme variedade de procedimentos para gerência de sistemas CEP, esta pesquisa propõe o formalismo Reescrita de Grafos com Atributos para Gerência de Processamento de Eventos Complexos (AGeCEP, do inglês Attributed Graph Rewriting for Complex Event Processing Management). Este formalismo inclui modelos para consultas CEP e transformações de consultas que são independentes de tecnologia e linguagem. Em segundo lugar, para o problema de avaliar estratégias de gerência e processamento de consultas CEP, esta pesquisa apresenta CEPSim, um simulador de sistemas CEP baseado em nuvem. Por fim, esta pesquisa também descreve um sistema CEPaaS fundamentado em ambientes multi-nuvem, sistemas de gerência de contêineres e um design multiusuário baseado em AGeCEP. Para demonstrar sua viabilidade, o formalismo AGeCEP foi usado para projetar um gerente autônomo e um conjunto de políticas de auto-gerenciamento para sistemas CEP. Além disso, o simulador CEPSim foi minuciosamente avaliado através de experimentos que demonstram sua capacidade de simular sistemas CEP com acurácia e baixo custo adicional de processamento. Por fim, experimentos adicionais validaram o sistema CEPaaS e demonstraram que o objetivo de oferecer funcionalidades CEP como um serviço escalável e tolerante a falhas foi atingido. Em conjunto, esses resultados confirmam que esta pesquisa avança significantemente o estado da arte e também oferece novas ferramentas e metodologias que podem ser aplicadas à pesquisa em CEPAbstract: The rise of mobile technologies and the Internet of Things, combined with advances in Web technologies, have created a new Big Data world in which the volume and velocity of data generation have achieved an unprecedented scale. As a technology created to process continuous streams of data, Complex Event Processing (CEP) has been often related to Big Data and used as a tool to obtain real-time insights. However, despite this recent surge of interest, the CEP market is still dominated by solutions that are costly and inflexible or too low-level and hard to operate. To address these problems, this research proposes the creation of a CEP system that can be offered as a service and used over the Internet. Such a CEP as a Service (CEPaaS) system would give its users CEP functionalities associated with the advantages of the services model, such as no up-front investment and low maintenance cost. Nevertheless, creating such a service involves challenges that are not addressed by current CEP systems. This research proposes solutions for three open problems that exist in this context. First, to address the problem of understanding and reusing existing CEP management procedures, this research introduces the Attributed Graph Rewriting for Complex Event Processing Management (AGeCEP) formalism as a technology- and language-agnostic representation of queries and their reconfigurations. Second, to address the problem of evaluating CEP query management and processing strategies, this research introduces CEPSim, a simulator of cloud-based CEP systems. Finally, this research also introduces a CEPaaS system based on a multi-cloud architecture, container management systems, and an AGeCEP-based multi-tenant design. To demonstrate its feasibility, AGeCEP was used to design an autonomic manager and a selected set of self-management policies. Moreover, CEPSim was thoroughly evaluated by experiments that showed it can simulate existing systems with accuracy and low execution overhead. Finally, additional experiments validated the CEPaaS system and demonstrated it achieves the goal of offering CEP functionalities as a scalable and fault-tolerant service. In tandem, these results confirm this research significantly advances the CEP state of the art and provides novel tools and methodologies that can be applied to CEP researchDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação140920/2012-9CNP

    Integrating Edge Computing and Software Defined Networking in Internet of Things: A Systematic Review

    Get PDF
    The Internet of Things (IoT) has transformed our interaction with the world by connecting devices, sensors, and systems to the Internet, enabling real-time monitoring, control, and automation in various applications such as smart cities, healthcare, transportation, homes, and grids. However, challenges related to latency, privacy, and bandwidth have arisen due to the massive influx of data generated by IoT devices and the limitations of traditional cloud-based architectures. Moreover, network management, interoperability, security, and scalability issues have emerged due to the rapid growth and heterogeneous nature of IoT devices. To overcome such problems, researchers proposed a new architecture called Software Defined Networking for Edge Computing in the Internet of Things (SDN-EC-IoT), which combines Edge Computing for the Internet of Things (EC-IoT) and Software Defined Internet of Things (SDIoT). Although researchers have studied EC-IoT and SDIoT as individual architectures, they have not yet addressed the combination of both, creating a significant gap in our understanding of SDN-EC-IoT. This paper aims to fill this gap by presenting a comprehensive review of how the SDN-EC-IoT paradigm can solve IoT challenges. To achieve this goal, this study conducted a literature review covering 74 articles published between 2019 and 2023. Finally, this paper identifies future research directions for SDN-EC-IoT, including the development of interoperability platforms, scalable architectures, low latency and Quality of Service (QoS) guarantees, efficient handling of big data, enhanced security and privacy, optimized energy consumption, resource-aware task offloading, and incorporation of machine learnin
    corecore