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Resumo

O surgimento das tecnologias de dispositivos móveis e da Internet das Coisas, combinada
com avanços das tecnologias Web, criou um novo mundo de Big Data em que o volume
e a velocidade da geração de dados atingiu uma escala sem precedentes. Por ser uma
tecnologia criada para processar fluxos contínuos de dados, o Processamento de Eventos
Complexos (CEP, do inglês Complex Event Processing) tem sido frequentemente associado
a Big Data e aplicado como uma ferramenta para obter informações em tempo real.
Todavia, apesar desta onda de interesse, o mercado de CEP ainda é dominado por soluções
proprietárias que requerem grandes investimentos para sua aquisição e não proveem a
flexibilidade que os usuários necessitam. Como alternativa, algumas empresas adotam
soluções de baixo nível que demandam intenso treinamento técnico e possuem alto custo
operacional.

A fim de solucionar esses problemas, esta pesquisa propõe a criação de um sistema
de CEP que pode ser oferecido como serviço e usado através da Internet. Um sistema
de CEP como Serviço (CEPaaS, do inglês CEP as a Service) oferece aos usuários as
funcionalidades de CEP aliadas às vantagens do modelo de serviços, tais como redução
do investimento inicial e baixo custo de manutenção. No entanto, a criação de tal serviço
envolve inúmeros desafios que não são abordados no atual estado da arte de CEP. Em
especial, esta pesquisa propõe soluções para três problemas em aberto que existem neste
contexto.

Em primeiro lugar, para o problema de entender e reusar a enorme variedade de pro-
cedimentos para gerência de sistemas CEP, esta pesquisa propõe o formalismo Reescrita
de Grafos com Atributos para Gerência de Processamento de Eventos Complexos (AGe-
CEP, do inglês Attributed Graph Rewriting for Complex Event Processing Management).
Este formalismo inclui modelos para consultas CEP e transformações de consultas que
são independentes de tecnologia e linguagem. Em segundo lugar, para o problema de
avaliar estratégias de gerência e processamento de consultas CEP, esta pesquisa apresenta
CEPSim, um simulador de sistemas CEP baseado em nuvem. Por fim, esta pesquisa tam-
bém descreve um sistema CEPaaS fundamentado em ambientes multi-nuvem, sistemas de
gerência de contêineres e um design multiusuário baseado em AGeCEP.

Para demonstrar sua viabilidade, o formalismo AGeCEP foi usado para projetar um
gerente autônomo e um conjunto de políticas de auto-gerenciamento para sistemas CEP.
Além disso, o simulador CEPSim foi minuciosamente avaliado através de experimentos
que demonstram sua capacidade de simular sistemas CEP com acurácia e baixo custo adi-
cional de processamento. Por fim, experimentos adicionais validaram o sistema CEPaaS
e demonstraram que o objetivo de oferecer funcionalidades CEP como um serviço esca-
lável e tolerante a falhas foi atingido. Em conjunto, esses resultados confirmam que esta
pesquisa avança significantemente o estado da arte e também oferece novas ferramentas
e metodologias que podem ser aplicadas à pesquisa em CEP.



Abstract

The rise of mobile technologies and the Internet of Things, combined with advances in
Web technologies, have created a new Big Data world in which the volume and velocity
of data generation have achieved an unprecedented scale. As a technology created to
process continuous streams of data, Complex Event Processing (CEP) has been often
related to Big Data and used as a tool to obtain real-time insights. However, despite this
recent surge of interest, the CEP market is still dominated by solutions that are costly
and inflexible or too low-level and hard to operate.

To address these problems, this research proposes the creation of a CEP system that
can be offered as a service and used over the Internet. Such a CEP as a Service (CEPaaS)
system would give its users CEP functionalities associated with the advantages of the
services model, such as no up-front investment and low maintenance cost. Nevertheless,
creating such a service involves challenges that are not addressed by current CEP systems.
This research proposes solutions for three open problems that exist in this context.

First, to address the problem of understanding and reusing existing CEP management
procedures, this research introduces the Attributed Graph Rewriting for Complex Event
Processing Management (AGeCEP) formalism as a technology- and language-agnostic
representation of queries and their reconfigurations. Second, to address the problem of
evaluating CEP query management and processing strategies, this research introduces
CEPSim, a simulator of cloud-based CEP systems. Finally, this research also introduces
a CEPaaS system based on a multi-cloud architecture, container management systems,
and an AGeCEP-based multi-tenant design.

To demonstrate its feasibility, AGeCEP was used to design an autonomic manager
and a selected set of self-management policies. Moreover, CEPSim was thoroughly evalu-
ated by experiments that showed it can simulate existing systems with accuracy and low
execution overhead. Finally, additional experiments validated the CEPaaS system and
demonstrated it achieves the goal of offering CEP functionalities as a scalable and fault-
tolerant service. In tandem, these results confirm this research significantly advances the
CEP state of the art and provides novel tools and methodologies that can be applied to
CEP research.
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Chapter 1

Introduction

The emergence of Big Data has been profoundly changing the way enterprises and orga-
nizations store and process data. Clearly, the sheer amount of data created by mobile
devices, the Internet of Things (IoT), and a myriad of other sources cannot be handled by
traditional data processing approaches [64]. Simultaneously, there is also a consensus that
obtaining insights and generating knowledge from these Big Data can bring a competi-
tive advantage to organizations using them. Therefore, these organizations, along with
the research community, have been actively pursuing new ways of leveraging Big Data to
improve their businesses.

According to the most commonly accepted definition, Big Data is characterized by four
Vs [121]: volume, velocity, variety, and veracity. Volume refers to the quantity of data, and
velocity concerns the speed at which data are generated and need to be processed. Variety
refers to the diversity of data types and formats, and veracity relates to the accuracy and
reliability of the data [65]. Datasets can be “big” in any of these directions and, most
often, in more than one. For instance, volume and velocity are closely related, as fast
data generation usually results in a massive amount of data to be stored and processed.

As technologies created to process continuous streams of data with low latency, Com-
plex Event Processing (CEP) and Stream Processing (SP) have often been related to the
velocity dimension and used in the Big Data context. The processing model of CEP and
SP systems are both based on continuously running user-defined queries that dictate op-
erations to be performed on fast and often distributed input streams. The goal is usually
to obtain real-time insights and to enable prompt reaction to them. Because of the gen-
erality of this model, these systems have been applied to a variety of use cases ranging
from simple monitoring to highly complex financial applications such as fraud detection
and automated trading [65].

At about the same time, cloud computing has also emerged as a disruptive computa-
tional paradigm for on-demand network access to a shared pool of computing resources
such as servers, storage, and applications [113]. From the infrastructure point of view,
cloud computing environments are leveraged to provide the low-latency and scalability
needed by modern applications, including CEP and SP systems [69, 128]. From the busi-
ness perspective, cloud computing provides an agile way to access infrastructure resources
and services without large upfront investments and preparation time.

Despite the paradigm shift brought about by cloud computing, today the CEP and
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SP market is still dominated by a few proprietary solutions [86, 123, 139] that require
huge investments for acquisition and do not provide the flexibility that users need. Alter-
natively, on the other side of the spectrum many companies adopt open-source, low-level
systems [17, 18, 153], which demand intense technical training and have high operating
costs.

To address these problems, this research proposes the creation of a CEP system
that can be offered in the Software as a Service (SaaS ) model. This CEP as a Ser-
vice (CEPaaS ) system would enable users to access CEP functionalities on-demand, over
the Internet, and with minimal management effort. However, offering such a service in-
volves many challenges that are not addressed by current CEP state of the art. This
thesis discusses these challenges further and presents a series of contributions towards the
development of such a system.

1.1 Motivation

The use of CEP and SP solutions to analyze streaming data and obtain real-time insights
has the potential to profoundly change enterprises and make them more agile and respon-
sive. This impact has been confirmed by a recent survey, which estimated a market of
$500 million in 2015 for the so-called streaming analytics solutions, with the potential to
reach $2 billion in 20201. Nevertheless, despite this growing interest, this market is still
dominated by a few solutions that are costly and inflexible or too low-level and hard to
operate.

The offering of Software as a Service (SaaS ) is a recent paradigm shift that has been
at the core of the cloud computing revolution. In the SaaS model, software traditionally
only available as proprietary packages are now offered as services that can be consumed
on-demand and with minimal management effort. Likewise, even the computational in-
frastructure normally required by enterprise systems can now be consumed as always-
available services. This offering of Infrastructure as a Service (IaaS ), in conjunction with
SaaS, brings many benefits to enterprises, including reducing their capital investments,
mitigating risks, and focusing on innovation and differentiation.

Given this scenario, it is only natural to imagine the offering of CEPaaS as a way to
bring to CEP users the many advantages of the services model, such as:

• No up-front investment in hardware and software infrastructure.

• Low maintenance cost, as the service model reduces the need for infrastructure
monitoring and maintenance.

• Constant upgrades, mostly without interruption and at no charge.

• Ubiquitous access using the Internet.

Nevertheless, such CEP services either do not exist today or are very limited in their
nature, which can be tracked to the many challenges involved in developing them and the
lack of appropriate solutions in the current state of the art.

1http://www.researchandmarkets.com/research/mpltnp/streaming
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The first of these challenges is related to understanding current systems and reusing
results that already exist in the form of algorithms and management procedures. The
current CEP research landscape is still young and fragmented. A large variety of solutions
exist, but they often use inconsistent terminology and different query definition languages.
Consequently, most ongoing research is performed in the context of specific systems and
languages. In particular, algorithms and procedures aimed at managing the user queries
have often been developed in such a system-specific fashion that they cannot be easily
generalized and applied to other contexts.

The second challenge is related to evaluating and comparing CEP query processing
and management approaches. Today, this problem acquires even more challenging char-
acteristics because most modern CEP systems use cloud environments as their runtime
platform. In this type of environment, validating management procedures in the required
Big Data scale is a research problem per se. For example, cloud environments are subject
to variations that make it difficult to reproduce the environment and conditions of an
experiment [56]. Moreover, setting up and maintaining large cloud environments are la-
borious and error-prone, and may be associated with a high financial cost. Finally, there
are also many challenges related to generating and storing the volume of data required
by Big Data experiments.

Finally, many technical difficulties are associated with the design and implementation
of a CEPaaS system. For instance, low latency is essential to many CEP use cases,
but it is difficult to achieve in a service environment because there is no control over
the locations of event sources and consumers. Such a CEPaaS system is also inherently
multi-tenancy, which makes fault-tolerance essential because an outage can affect many
customers and damage the provider’s reputation. In addition, multi-tenancy indicates
that some sort of resource control and isolation is necessary to avoid interference between
workloads from different queries. Finally, by offering it to anyone with Internet access,
the system is expected to be highly scalable in the number of queries and to be usable by
a wide spectrum of users.

1.2 Contributions

This research provides a series of contributions aimed to solve the challenges mentioned
and, ultimately, to enable the development of a CEPaaS system.

To solve the challenge of understanding current systems and reusing existing results,
this research introduces the Attributed Graph Rewriting for Complex Event Processing
Management (AGeCEP), a formalism that provides technology- and language-agnostic
representations of queries and of reconfiguration actions that can be applied to transform
these queries.

In AGeCEP, queries are modelled as attributed graphs and described by a standard
set of attributes, whereas reconfiguration actions are expressed by graph rewriting rules.
In conjunction, these models provide a common foundation that can be used to represent
queries written in different languages and to express generic CEP management procedures.
By doing so, these procedures can be integrated into any modern cloud-based CEP system
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that uses AGeCEP as its underlying formalism. In particular, AGeCEP is especially
suitable to represent self-management policies that can be used to manage and control
autonomic CEP systems.

This research harnesses AGeCEP expressiveness by adopting it as the formal founda-
tion of the other contributions. To demonstrate its feasibility, AGeCEP is also used to
design an autonomic manager and to define a selected set of self-management policies. In
addition, AGeCEP viability is verified through performance measurement experiments,
which show that 100 queries can be processed and rewritten by graph rewriting rules in
less than one second.

The second major contribution of this research is CEPSim, a simulator for cloud-based
CEP systems. Traditionally, simulators have been used in different fields to overcome
difficulties related to the execution of repeatable and reproducible experiments [33, 34,
92, 119]. CEPSim aims to bring simulation capabilities to CEP and to solve the challenges
of evaluating and comparing different query processing and management strategies.

CEPSim uses a query model based on AGeCEP and introduces simulation algorithms
based on a novel abstraction called event sets. CEPSim can model different types of
clouds, including public, private, hybrid, and multi-cloud environments, and simulate
execution of user-defined queries on them. Moreover, it can also be customized with
various operator placement and scheduling strategies. These features enable architects
and researchers to analyze the scalability and performance of cloud-based CEP systems
and to easily compare the effects of adopting different query processing strategies.

A large set of experiments was executed to analyze CEPSim. Results show that
CEPSim can estimate the latency and throughput of CEP queries running on a real
system with less than 5% error in most cases. Moreover, results also demonstrate that
CEPSim simulates 100 queries running for 5 minutes in approximately 7 seconds and
using less than 40 MB of memory.

The last major contribution of this research is the design and implementation of a
CEPaaS system. The proposed design leverages multi-cloud environments to increase
the system availability and to explore the geographical diversity of cloud datacentres,
creating the possibility of strategic deployment in which system resources are positioned
close to event producers and consumers. Moreover, the design also explores container-
based virtualization and container management systems (CMS) to control the deployment
and execution of system components.

In the CEPaaS system, every component, including user queries, is encapsulated in
an application container that is managed and scheduled by a CMS. By doing so, it is
possible to have a fine control over the resource usage of the components and to isolate
their execution. Moreover, the CMS also handles fault-tolerance and scalability of the
containers, facilitating the implementation of these requirements at the system level and
simplifying the system operation. Finally, the proposed CEPaaS system explores the idea
of vertex and query templates as a way to define queries and to enable the definition of
custom event processing logic. In practice, queries defined in such a way are transformed
into an AGeCEP -based representation and executed by an actor-based execution engine.

By putting all contributions together, the CEPaaS system was designed over a strong
formal foundation and, at the same time, based on efficient algorithms and strategies
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that have been tested and evaluated in simulations. This approach, in tandem with the
chosen architecture, enabled the creation of a robust and scalable CEPaaS system that
successfully brings the advantages of the services model to CEP. Experiments executed
to validate the system show that the strategic deployment enabled by the multi-cloud
architecture reduces query latency up to 60%. Further experiments also indicate that
queries are properly isolated from each other and can quickly recover from failures.

Notwithstanding, note that each one of the contributions presented are valuable by
themselves and can be used separately from the others. Therefore, either by considering
these contributions in isolation or together, this research significantly advances the CEP
state of the art and provides novel tools and methodologies that can be applied in the
context of CEP research and development.

1.3 Thesis Organization

This thesis is organized as follows:

• Chapter 2 presents core background concepts that are necessary to understand the
remaining text. It starts with definitions of stream processing and complex event
processing and a discussion about how they differ from each other. Following that,
it presents the nomenclature used in this research and the query lifecycle man-
agement concept. In the second part, this chapter also discusses cloud computing
and system architectures based on multiple clouds. Finally, it concludes with a ex-
amination of container-based virtualization, application containers, and container
management systems. These are recent technological trends that are used by the
CEPaaS implementation.

• Chapter 3 presents an extensive review of research related to this thesis. It starts
with a review of traditional historical systems, which established most of the basic
concepts and terminology used by current CEP research. Next, it discusses the
plethora of modern systems, dividing them into MapReduce-based, open source, and
cloud-based systems. Each system is discussed briefly and its main contributions are
highlighted. Moreover, the chapter discusses current systems that offer CEP-related
services, or are based on multi-cloud architectures. Finally, the chapter concludes by
discussing CEP formal models and cloud computing simulators, which are related
to the AGeCEP and CEPSim contributions.

• Chapter 4 presents the main concepts of the AGeCEP formalism. First, it exam-
ines the AGeCEP assumptions and design principles. Second, it presents a novel
classification of CEP operators focused on their reconfiguration capabilities. This
classification serves as the basis for the standard set of operator attributes used
by AGeCEP and constitutes another major contribution of this research. Finally,
Chapter 4 discusses the formalism itself, including the notation used and examples
that illustrate its basic concepts.
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• Chapter 5 presents a thorough evaluation of the AGeCEP formalism. First, AGe-
CEP is used to design an autonomic manager. Based on this design, a generic proce-
dure to express operator placement procedures and a selected set of self-management
policies are discussed. Finally, the performance of graph rewriting rules is assessed
by experiments that analyze the time needed to reconfigure queries.

• Chapter 6 presents the CEPSim simulator. It starts with a discussion about the
basic CEPSim architecture and how AGeCEP is used to internally represent the
simulated queries. Following that, it explains in detail how the simulation algo-
rithms work, and how the simulator can be customized with user-defined operator
scheduling and operator placement algorithms. Finally, this chapter presents a se-
ries of experiments that validate CEPSim in different scenarios, assess the execution
time and memory consumption of simulations, and analyze the effects of various pa-
rameters in the simulator performance.

• Chapter 7 presents the design and implementation of the CEPaaS system. First,
a system overview is presented, including discussions about the main system com-
ponents and about how the system leverages CMS and multi-cloud architectures
to provide fault-tolerance and scalability. Next, this chapter discusses the con-
cept of vertex and query templates, and how they are employed by users to define
queries. Following this, implementation details are presented, including specifics of
the query execution engine. Finally, the CEPaaS system is evaluated regarding the
effects of multi-cloud placement in the end-to-end query latency and regarding the
fault-tolerance provided by the CMS.

• Chapter 8 finalizes the thesis by summarizing its contributions and discussing areas
for further research.



Chapter 2

Background

This chapter introduces background concepts used in the thesis. It starts with an overview
of complex event processing and stream processing, and how they relate with each other.
Section 2.2 introduces cloud computing concepts, with emphasis on multiple cloud archi-
tectures and how they can be used to improve the quality of services offered to users.
In the same context, container-based virtualization and container management systems
are discussed in Section 2.3. Containers are an essential part of the CEPaaS system
discussed in Chapter 7. Finally, Section 2.4 presents autonomic computing concepts and
the MAPE-K framework. This framework is used for defining an autonomic manager in
Chapter 5 and is also the basis of the CEPaaS system management module presented in
Chapter 7.

2.1 Event Processing

In recent years, many applications that require processing of high-volume continuous
streams of data have emerged. These applications range from simple alarm mechanisms
to highly complex trading systems that analyze thousands of transactions per second. For
many years, these applications have been implemented using ad-hoc solutions, which have
led to high development and maintenance costs and limited reuse opportunities.

It is in this context that Complex Event Processing (CEP) and Stream Processing
(SP) technologies have emerged. CEP and SP share similar goals, as both are concerned
with processing continuous data flows coming from distributed sources to obtain timely
responses to queries [41]. Nevertheless, they have been simultaneously developed for years
by researchers with different backgrounds [41], a situation that has resulted in duplicated
and inconsistent vocabularies as well as fuzzy distinctions among their concepts.

In order to overcome these inconsistencies, the next two subsections present conceptu-
alizations of SP and CEP. Following that, the main differences between them are discussed,
and the terminology used in this research is introduced.

2.1.1 Stream Processing

Stream Processing (SP) or Event Stream Processing is a set of techniques aimed at process-
ing continuous and potentially unbounded streams of data within strict time constraints
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through long-running and continuous (standing) queries [58]. SP systems are also known
as Stream Processing Engines or Data Stream Management Systems; their origin is often
associated with the Database Management Systems (DBMS) research community, which
created the first SP systems as a response to stream-processing requirements that could
not be satisfied by traditional relational databases.

The traditional DBMS paradigm is based on queries that are explicitly initiated by
users and applications, whereas the SP paradigm requires active update of continuous
query results. In addition, DBMSs store data before processing them, which may limit
dataset size and may incur additional latency in the processing pipeline. On the other
hand, most SP applications are not interested in persisting streams and require low-latency
response to queries.

Early research projects, such as the Aurora [1] and STREAM [19] systems, estab-
lished the basis of the discipline and have influenced most subsequent research. Later,
Stonebraker et al. [142] listed the eight main requirements of real-time stream processing
systems:

1. Process data on-the-fly, using an active query model;

2. Use a query language based on SQL, with additional constructs appropriate to
stream processing;

3. Handle data streams containing delayed, out-of-order, or lost items;

4. Generate predictable and repeatable outcomes;

5. Integrate streaming data with state and historical data;

6. Guarantee data safety and availability;

7. Partition and scale applications automatically;

8. Process data and respond instantaneously.

Most of these requirements still serve as guidelines for modern SP research and devel-
opment, yet they acquired even more challenging characteristics with the advent of Big
Data.

2.1.2 Complex Event Processing

Complex Event Processing (CEP) was originally defined as “a set of tools and techniques
for analyzing and controlling the complex series of interrelated events that drive modern
distributed information systems” [106]. CEP systems aim to detect complex patterns
of events to identify important situations and react promptly to them. These systems
normally accept user definitions of patterns that express complex relationships among
events, including the use of aggregation, correlation, and time-sequencing operators.

The term CEP was first used in 2002 in the seminal book by Luckham [106], which
justified the need for CEP by noting that existing tools and techniques could not manage
and understand the numerous flows of information (events) that were driving enterprise
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systems of that time. To enable better understanding of events generated by these sys-
tems, two main concepts were introduced:

• Event causality : some events cause others, and tracking these relationships helps to
determine the root cause of events. According to the nature of events involved in
such relationships, causality can be further classified as horizontal or vertical. The
former refers to causality between events at the same conceptual level; for example,
an email causes a response message, and a ping network packet causes a reply. The
latter refers to the fact that events generate other events at a “lower-level” layer;
for instance, a business process generates requests to many systems, which in turn
generate many network packets.

• Event aggregation: low-level events can be aggregated into higher-level business-
related events. The motivation for aggregation is twofold: first, many monitoring
tools can only observe low-level events and analyze them in isolation, providing very
little information for business-level decision making; second, many events are not
explicitly generated, and their occurrences must be inferred from other events. For
example, policy or regulation violations are very important for enterprises, but can
be detected only if lower-level events fail to satisfy specific rules.

According to Luckham, there are two main differences between CEP and SP [107]:

• SP systems process data streams, or sequences of events ordered by time, whereas
CEP can process partially ordered sets (posets) of events. These event posets, also
known as event clouds, can be simultaneously generated by many IT systems and
sources. Therefore, an event cloud can potentially include many event streams.
For example, the temperature readings of a specific weather station form an event
stream, but the whole weather forecasting system generates an event cloud composed
of readings from many stations and sensors, other systems, and analysis results.

• Most SP systems use SQL-like queries aimed at fast processing and at performing
calculations on data streams. CEP systems, on the other hand, are more focused
on detecting complex patterns of events that include the notions of causality and
aggregation.

Other researchers, such as Bass [26] and Cugola and Margara [41], have made similar
distinctions, yet they all acknowledge the similarities between CEP and SP.

2.1.3 Concepts and Terminology

This research defines CEP as the “processing of continuously flowing data from geograph-
ically distributed sources with unpredictable rate to obtain timely responses to complex
queries” [41]. This is a broad definition that encompasses both CEP and SP, and was
originally presented by Cugola and Margara to describe Information Flow Processing
systems. In addition, this research uses a terminology based on the Event Processing
Technical Society (EPTS) glossary [108] and Etzion et al. [50], which originated from the
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Figure 2.1: CEP terminology.

CEP literature. This terminology has been chosen because its terms are also broadly de-
fined and encompass most SP concepts. Moreover, it prevents the creation of new terms
for established ideas. Most terms are used as is, but some are redefined to avoid conflict
with other concepts presented in this research.

Figure 2.1 shows the main components of a system based on an event processing
architecture. Event producers, also known as sources, introduce events into the CEP
system. Conversely, event consumers, or sinks, receive events from it. Here, the term event
is used very broadly as the computational representation of something that happened in
the context of interest. For instance, an event can represent a sensor reading, the CPU
load of a server, or the creation of a new user on a website.

The CEP system is the main component of the architecture, and its goal is to act upon
input events to produce output events according to user-defined queries or processing
rules. Collectively, producers, consumers and the CEP system form an event processing
network (EPN).

Queries1 represent the processing that takes place between producers and consumers.
For instance, a query can detect anomalies in sensor readings and warn building ad-
ministrators, or refresh a dashboard with new CPU load data. Logically, queries are
implemented by a flow of query operators that receive one or more event streams as in-
put and generate other streams as output. Depending on its goals, a query operator can
represent different kinds of processing logic, such as filters, joins, or anomaly detectors.

2.1.4 Classification of CEP systems

The myriad of CEP systems currently available differ in many aspects. This section
elaborates on three classification criteria that are especially important for this thesis:
deployment model, interaction model, and query definition language. A more complete
classification can be consulted in Cugola and Margara [41].

1This research uses the term queries instead of processing rules to avoid conflict with graph rewriting
rules, presented in Chapter 4.
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Deployment Model

A CEP system deployment model refers to its runtime architecture, or how the system
components are distributed over the set of available servers at runtime. The first CEP
systems used a centralized architecture, in which all queries and system components run
in a single server. This architecture rapidly reached its limits and led to the development
of distributed CEP systems, in which user queries and system components run in more
than one server and communicate using a network.

Distributed architecture enables CEP systems to improve their scalability by running
queries on different servers. In most cases, it also implies that a larger number of events can
be processed by a single query because its operators are also distributed. Moreover, it can
also translate to better availability because distributed CEP systems usually implement
fault tolerance mechanisms, such as replication and standby components.

It is common to classify distributed CEP systems further as clustered or networked
according to the network type that connects the servers. In a clustered system, servers
are connected to the same high-speed low-latency network and are geographically close.
Conversely, in a networked system, part of the communication links are implemented
through high-latency networks such as the Internet.

Interaction Model

The term interaction model refers to the communication style used by EPN components
to interact with each other. More specifically, three types of interaction are character-
ized: from event producers to the CEP system; between query operators; and from the
CEP system to event consumers. These interactions define the system observation model,
forwarding model, and notification model respectively. For all these models, a push and
a pull style are defined. In the former, the event origin proactively sends data to their
destination, whereas in the latter, the event destination pulls data from the origin.

Query Definition Language

In most CEP systems, users use a proprietary query definition language to define queries.
Despite standardization efforts [88], a great variety of languages are still in use today.
Cugola and Margara [41] classified existing languages into three groups:

• Declarative: the expected results of the computation are declared, often using a
language similar to SQL. The Continuous Query Language (CQL) [20] is the most
prominent representative of this category. The following is a CQL query example:

Select IStream(*)
From S1 [Rows 40000]

S2 [Range 600 Seconds]
Where S1.A = S2.A

• Imperative: the computations to be performed are directly specified as a sequence of
operations, usually by an imperative programming language or visually as a graph of
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operators. The Aurora Stream Query Algebra (SQuAl) [1] inspired most languages
in this category. Figure 2.2 shows an SQuAl query.

Figure 2.2: An SQuAl query example (adapted from Abadi et al. [1]).

• Pattern-based : queries are defined by firing conditions and a set of actions that are
executed whenever these conditions are met [41]. The firing conditions contain pat-
terns of events that usually include sequence, causality, and composition operators.
The Rapide [105] and TESLA [40] languages are examples of this category. The
following is a query example written in Rapide:

(RFQId ?id, Time ?T1) (RFQ(?Id) at ?T1 ->
[* rel ~] (Time ?T2) Bid(RFQId is ?Id) at ?T2
where ?T2 <?T1 + Bnd);

2.1.5 Query Lifecycle

Query lifecycle management (QLM) can be defined as the set of tasks necessary to manage
a query from the time of its definition by a user up to its execution and subsequent
retirement.

In this thesis, the query lifecycle is defined by the five major steps illustrated in
Figure 2.3. The cycle starts when the user creates queries using a CEP query definition
language. Each query is submitted to the CEP system, where it is first analyzed and
optimized in isolation (Single-Query Optimization) and then in conjunction with other
running queries (Multi-Query Optimization).

In the Operator Placement step, the query operators are mapped to a subset of the
available computing resources and start executing. Following, during Runtime Manage-
ment, the system maintains the query execution, responding to context changes such as
hardware and software failures. This step is typically the most important and lasts the
longest because, unlike database queries, a CEP query runs continuously for a specified
period of time or until the user decides to shut it down. In addition, during runtime, the
system may need to re-optimize and re-place queries when runtime conditions change.
This dependency is represented in Figure 2.3 by dashed arrows from box 5 to boxes 2, 3,
and 4. Finally, based on the results obtained by the query, users can decide to refine it
or to create one or more new queries, which originates a new cycle.

In the following subsections, each of the QLM steps is detailed.

Query Definition

Query definition is the step in which users define the CEP queries they want to execute.
As mentioned in Section 2.1.4, each system usually has its own query language that is used
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Figure 2.3: Query lifecycle.

for this purpose. In addition, the way that users interact with the system to define and
submit queries differs enormously from system to system. For example, commercial CEP
packages such as Oracle Stream Explorer [123] and Software AG Apama [139] have full-
fledged interfaces that help define queries and monitor their execution. On the other hand,
many academic [128] and lower-level systems [18] provide only programming language
APIs that are mostly targeted to software developers.

Single-Query Optimization

Single-query optimization (SQO) is the action of modifying a query to improve its effi-
ciency while keeping its functional properties unchanged. The “efficiency” of a query is
usually measured with respect to some optimization criterion such as processing latency,
CPU usage, or network consumption. This step is essential because it reduces the need
for technical knowledge by users: non-optimized queries are corrected before they are run,
reducing their impact on the system.

SQO is executed right after a new query is created and registered. Consequently, this
step assumes no a priori knowledge about available resources or about the state of the
network and servers.

Multi-query Optimization

Multi-query optimization (MQO) consists of finding overlaps (common partial results)
between queries and merging them into a single query while maintaining their logical
separation. This step usually optimizes the same criterion as the single-query optimization
step. MQO can be executed as a separate step when a new query is created or periodically
to take into account modifications in the underlying queries. In both cases, one of the
greatest difficulties is to decide which queries should be considered in the analysis.

Operator Placement

Operator placement is the step in which a query execution is mapped into the set of avail-
able computing resources. In the context of distributed and cloud-based CEP systems,
this usually translates into determining the number and types of servers required and how
the queries should be split among multiple processors.
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This step is executed during initial system deployment, when a new query is reg-
istered, and in general whenever a reconfiguration requires a placement decision. For
instance, when an operator is duplicated to parallelize its execution, the placement rou-
tine is called to decide where the new operators should be deployed. Because of this
variety of scenarios in which placement is used, it is common to use different approaches
to deal with incremental and global placement decisions, e.g. placement of a new operator
versus placement of all running queries. For more information about operator placement
strategies, the survey by Lakshmanan et al. [97] can be consulted.

Runtime Management

Runtime management refers to the self-managed evolution of a system at runtime. During
this step, queries are reconfigured in response to context changes such as violations of
monitored parameters, hardware and software failures, and sudden bursts of events. This
step is the most commonly implemented of all the steps in query lifecycle management.

To support proper runtime management, CEP systems usually define and enforce a
number of self-management policies aiming to improve or to maintain the quality of service
for queries. For instance, this may involve duplicating a query operator to parallelize
its execution and increase query throughput [38], or moving operators to underloaded
servers [70].

The implementation of self-management policies in CEP systems requires two main
capabilities: detecting when a reconfiguration is required, and executing reconfiguration
actions. The detection step frequently involves monitoring system metrics, such as CPU
load and operator queue size, and comparing them with some threshold.

The execution of reconfiguration actions, on the other hand, can have many different
forms and implementations. One possible classification of these actions focuses on their
scope and coarsely categorizes them as behavioural or structural. Behavioural actions
change operator and system parameters, but do not modify the query or the system
structure. Common examples are load shedding [1], buffer resizing [103], and operator
prioritization. Conversely, structural actions require adapting the structure of queries and
their mapping into system resources. Splitting a query to distribute its execution between
two servers is an example of a structural action [38].

2.2 Cloud Computing

Cloud computing is at the core of two main ideas presented in this research. First, offering
CEP as a Service (CEPaaS ) is a prime example of Software as a Service (SaaS ), which
is one of the three main service types offered by cloud providers. Second, the architecture
of the CEPaaS system proposed in this research is based on the assumption that multiple
Infrastructure as a Service (IaaS ) providers exist and have publicly accessible resources
spread around the globe.

Because of the strong relationship with this research, the next subsections discuss
cloud computing concepts and describe its main benefits. In particular, it is examined
how multiple-cloud architectures can be used to improve the quality of offered services.
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As described later in Chapter 7, the CEPaaS system uses a multi-cloud architecture to
improve its availability and to reduce query latency.

2.2.1 Cloud Computing Definition

The National Institute of Standards and Technology (NIST) provides the most commonly
accepted definition for cloud computing [113]:

“Cloud Computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction.”

Despite differences in definition, most authors point out similar characteristics for the
cloud computing model [131, 146]:

• Shared pool of resources : cloud providers usually have a large number of computing
resources (CPU, storage, network) that are pooled and shared among customers.

• Virtualization: cloud providers make extensive use of virtualization to enable re-
source sharing. Virtualization is implemented by a software layer which partitions
the server hardware into many virtual servers. In practice, this usually translates
to a significant increase in the resource utilization level of a datacentre.

• Elasticity : cloud services can dynamically change how much of a resource is con-
sumed in response to how much is needed [131]. Therefore, elasticity enables cloud
users to allocate enough resources to match their real instantaneous demand instead
of overprovisioning for the worst case.

• Measured service (pay as you go): resource consumption is fine-grained metered,
enabling flexible billing models. Cloud customers pay according to the type and
quantity of resources used, e.g., a small fee per CPU per hour or per gigabyte stored
and transmitted.

• Automation: interaction with cloud providers occurs through automated APIs and
interfaces. This means that resources can be automatically managed and easily
integrated with other management software.

For many, the capacity to provision and release resources quickly (elasticity) in tan-
dem with the “pay as you” go model are the key benefits of cloud computing. Together,
they enable service providers (cloud users) essentially to eliminate capital expenditure
(CAPEX) with infrastructure. Alternatively, these expenses are transformed into op-
erational expenditure (OPEX), which facilitates experimentation with new services and
fosters innovation.
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Figure 2.4: Cloud computing architecture (adapted from Zhang et al. [154]).

2.2.2 Cloud Computing Architecture

Figure 2.4 depicts a common representation of cloud computing, in which each layer
represents different resources that can be managed by a cloud provider:

• Hardware: hardware resources such as servers, storage, and network devices.

• Infrastructure: a pool of storage and computing resources that are created by par-
titioning physical resources using virtualization technologies.

• Platform: frameworks, middleware solutions, and other tools to facilitate application
development and deployment.

• Application: applications that are deployed in the cloud infrastructure and are
consumed by the service’s customers.

This representation directly relates to the common taxonomy of cloud services known
as “X as a Service”. According to this taxonomy, cloud services are classified based
on the type of resources they offer to users. Therefore, services are typically classified
in Infrastructure as a Service (IaaS ), Platform as a Service (PaaS ), and Software as a
Service (SaaS ).

A simplified view of this model is shown in Figure 2.5, in which only two roles are
discerned: Infrastructure/Cloud Providers (IP) and Service/SaaS Providers (SP). In this
view, infrastructure refers more generically to computing and platform resources, which
are used by SPs to offer end-user applications to their customers.

Alternatively, cloud providers can also be differentiated according to their deployment
and usage model. Based on this perspective, clouds are generally classified as:

• Public clouds : clouds in which resources are offered to the general public. This is the
original concept, which has the characteristics and advantages already discussed.
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Figure 2.5: Simplified cloud computing architecture (adapted from Armbrust et al. [21]).

• Private clouds : clouds in which resources are offered and consumed by a single orga-
nization. In this type of cloud, the datacentres are usually located on the company’s
premises, a measure that enables tighter control of security and governance aspects.
The scale of private clouds is generally measured in hundreds instead of thousands
of servers, and resources sharing is limited to a company and its partners.

• Community clouds : clouds in which resources are shared among a community of
users from organizations with shared concerns [113]. For example, a cloud might be
shared among an industry vertical or a research consortium.

This taxonomy normally also includes the concept of hybrid clouds, which is discussed
in the next section.

2.2.3 Multiple Cloud Architectures

A recent research topic in the cloud computing field is the simultaneous use of multiple
clouds to provide services. The motivation for this approach is normally related to the
use of resources, which would otherwise not be available, to improve the quality of the
services offered.

The use of resources from multiple clouds can be considered from the perspectives of
the cloud (infrastructure) provider or of the cloud customer [67, 96].

A cloud customer may use multiple clouds with the following goals:

• Increase availability : this goal relates to the fact that no single provider can guar-
antee 100% availability. The recent history of outages [9, 59, 115] in some of the
largest cloud infrastructure providers highlights this issue. Therefore, using more
than one provider is a way to avoid a single point of failure [21] and to increase
infrastructure availability.

• Overcome providers’ restrictions : cloud providers may have restrictions on the ser-
vices they offer. For instance, Amazon EC2 [10] has a provisioning limit of 20 server
instances per region; if a user needs more, he or she must make an explicit request
to the company’s support department, and the request is subject to their approval.
Other examples of restrictions are the operating systems and hardware offered by a
provider, the Service Level Agreement (SLA), and others.
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• Increase application distribution: cloud providers have datacentres located in a lim-
ited number of places. This can be problematic because some regulations and poli-
cies require storage and processing of data within national boundaries. In addition,
this limited geographic range complicates the deployment of latency-sensitive appli-
cations, such as CEP systems, where geographic proximity results in lower latency
to end-users. Using more than one provider naturally increases the geographical
distribution of the available datacentres.

• Reduce vendor lock-in: this goal is related to the use of provider-specific APIs and
tools by application developers. As a result of this specificity, some applications can
become so intrinsically tied to a provider that the cost of porting them to another
provider is greater than the benefits that portability would bring. Use of multiple
clouds leads to a reduction in dependency on a single vendor.

A cloud provider, on the other hand, may use a multiple cloud approach with the
intent to:

• Expand on demand : a provider can use resources from other providers if it reaches
the limits of its own infrastructure.

• Improve the offered SLAs : a provider can improve the availability of its services by
using external resources in case its own fail. Similarly, providers can offer resources
located in places where they do not have a physical presence, or even services that
they do not implement by themselves.

As multiple cloud architectures are a recent research topic, there are some inconsisten-
cies in the nomenclature used in the field. This research uses the terminology proposed
by Grozev and Buyya [67], in which two main concepts are defined:

• Cloud Federation: is a model in which multiple cloud providers cooperate and lease
resources from each other. In this case, the cooperation initiative comes from the
providers, which form alliances to offer improved services to their customers and/or
to maximize their own benefit.

• Multi-Cloud : is a model in which the cloud customer is responsible for managing
and orchestrating multiple providers to achieve some (or all) of the goals discussed
above. Therefore, design decisions are made based on customer objectives, and the
cloud providers are not aware of each other.

Figures 2.6a and 2.6b depict the differences between the two approaches. Note that
in the cloud federation model, the service provider (SP) is not aware of the federation
and interacts with a single cloud provider (CP). Conversely, in the multi-cloud model,
the CPs do not maintain a mutual relationship among themselves. The establishment of
individual contracts with each provider and the management of the service as a whole is
the SP’s responsibility.

Ferrer et al. [54] presented similar concepts, but also described two other models:
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(a) Cloud federation model. (b) Multi-cloud model.

Figure 2.6: Multiple cloud models.

(a) Hybrid cloud model. (b) Brokering model.

Figure 2.7: Alternative multiple cloud models.

• Hybrid Clouds : in this model, a private cloud is extended to use public clouds when
on-premises resources are insufficient. Similar definitions have been proposed in
other studies, for example in Bittencourt et al. [28] and Zhang et al. [154]. Figure
2.7a presents this architecture.

• Brokering : in this model, there is a broker that acts as an intermediary in interac-
tions between CPs and SPs. The broker’s role is to negotiate and aggregate resources
from multiple CPs and offer them to SPs as needed. Theoretically, SP applications
are simplified because they no longer need to interact with multiple CPs. At the
same time, CPs do not need to manage individual contracts with customers because
all interactions are performed through the brokers. A high-level overview of this
case is depicted in Figure 2.7b.

In this research, hybrid clouds are considered a special instance of the multi-cloud
model in which the role of SP / cloud user is played by the company that owns the
private cloud. Moreover, brokering is not considered as a different model of organizing
multiple cloud providers. In fact, it can be argued that the broker’s role is to ease the
formation of cloud federations and/or multi-clouds, and the interaction with the broker
is not the goal itself. Consequently, this research considers the existence of a broker as
an implementation detail of cloud federations or multi-clouds.
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(a) Type 1 hypervisor. (b) Type 2 hypervisor.

Figure 2.8: Hypervisor architectures.

Figure 2.9: Container-based virtualization.

2.3 Container-Based Virtualization

As discussed in Section 2.2, the virtualization concept is at the core of cloud computing
and its resource sharing model. Usually, virtualization is implemented by a software
layer called hypervisor, which is responsible for partitioning the physical hardware and
presenting these partitions to virtual machines (VMs).

The two most common hypervisor architectures are illustrated in Figure 2.8. A Type 1
hypervisor runs directly on top of the hardware, whereas a Type 2 runs as an application
of a host operating system. In general, Type 1 hypervisors are more efficient and have
better performance, whereas Type 2 hypervisors are more flexible and easier to install.
Regardless of hypervisor type, the virtual machines are independent units that can install
their own guest operating system and have access to a slice of the hardware resources.

More recently, another type of virtualization started to become widespread in enter-
prise and research communities. Container-based virtualization, or operating-system-level
virtualization, is a type of virtualization that uses facilities provided by the operating
system kernel to implement isolation between containers. Figure 2.9 illustrates container-
based virtualization.

Containers and VMs can be compared based on three main aspects [141]:

• Functionality : containers share the same OS kernel, whereas VMs have their own
guest OS. Consequently, a container crashing an OS kernel may affect other contain-
ers running in the same host. Because of their maturity, hypervisors also tend to
implement functionalities, such as live migration and reconfiguration of VMs, which
are not available for containers.

• Efficiency : because each VM has its own operating system copy, VMs tend to use
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more RAM than containers.

• Performance: the overhead of running containers is smaller than that of running
VMs because containers execute directly on top of the operating system. There-
fore, the performance of applications running on containers is very similar to the
performance of running them on bare metal.

In Linux systems, the origin of container-based virtualization is related to projects
such as VServer [140] and openVZ [122]. These projects introduced most of the concepts
that were later incorporated into the kernel and into the LXC tools [100] to support native
containers in Linux. Two of these main concepts are:

• namespace: enables creation of separate namespaces for resources that are usually
global, such as filesystems, process identifiers, users and networks.

• cgroups : enables creation of groups of processes and association of resource con-
sumption constraints within these groups. For instance, cgroups can be used to
limit the amount of CPU and memory that a container can use.

2.3.1 Application Containers

Containers can be classified into two main categories according to the type of workload
they execute:

• System containers, when they execute system-level processes and behave like a full
operating system [52]. In this case, containers are used as virtual servers similarly
to the VM approach.

• Application containers, when they execute user-level applications. In this context,
containers are used to provide extra isolation between processes running on the same
host.

Despite being originally envisioned in the context of system containers, the popu-
larity of containers really took off with application containers. PaaS providers, such as
Heroku [72], use containers to pack and execute user applications in a lightweight yet
isolated environment. Moreover, companies like Google also run most of their workload
in containers [148].

Today, the use of application containers is consistently associated with the Docker
tool [114]. Docker adds many important features to LXC to enable portable execution of
containers:

• Bundling : applications and all their dependencies are bundled together in a stan-
dardized container image format, which is independent of the software stack used
to develop the application.

• Versioning : container images are versioned similarly to how source code is versioned
in software configuration management systems. Therefore, it is possible to track,
commit, and rollback changes made to an image. In addition, this mechanism also
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enables incremental download (upload) of images, in which only the differences from
previous versions need to be received (sent).

• Reuse: container images can be reused as a basis for other images. This feature fa-
cilitates development of new images and possibly reduces image transfer size because
the base image needs to be transferred only once.

• Sharing : public repositories containing images are available to facilitate their dis-
tribution and reuse.

• Tooling : tools are available to facilitate creation of images and their distribution to
image repositories.

The process isolation mechanisms provided by container-based virtualization in tan-
dem with the portability of container images are important enablers of container man-
agement systems, which are described in the next subsection.

2.3.2 Container Management Systems

The use of clusters to run computational intensive tasks has been the subject of intense
research in areas such as High Performance Computing (HPC) and Grid Computing.
Research in these areas usually focuses on systems to manage clusters and strategies to
schedule user jobs optimizing certain criteria, such as the time to complete all jobs [27,
78] and energy consumption [51]. Most of this research, however, relies on specialized
hardware and infrastructure software that are not available to everyone.

Recently, clusters of commodity servers have emerged as an important computing
platform for both Internet services and scientific applications [80]. These clusters are
cheap and fast to build, and today they power most cloud computing providers, which
use them not only to run their own workloads, but also to execute their users’ jobs and
services. It is in this context that the first Container Management Systems (CMS) have
appeared.

This research defines CMS as software systems which control clusters of commodity
servers and use application containers as the basic unit of management. The container-
based approach brings two main advantages to these systems:

• By using container-based virtualization, processes running on the same server are
controlled and isolated with very low overhead. This significantly improves system
utilization, yet maintains application performance.

• By encapsulating all dependencies in a hermetic container image, application con-
tainers abstract away details about the operating system and hardware on which
they run [32]. This facilitates distribution and deployment and also shifts the dat-
acentre perspective from machine-centric to application-centric.

Google popularized this approach with Borg [148], a CMS that has been in production
for over a decade controlling most of their workload. More recently, Google released
Kubernetes [63], an open-source CMS based on Borg. The next section presents more
details about Kubernetes.
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Kubernetes

The main goal of Kubernetes is to manage container-based applications across a cluster
of servers [63]. It builds on top of Docker a series of functionalities needed for running
applications, such as naming, interconnectivity, scheduling, scaling, and monitoring.

The main concept used by Kubernetes is a pod, which can be defined as a set of
containers that are always scheduled together. A pod is usually composed of one main
container (e.g., a Web server) plus one or more containers that provide auxiliary services
(e.g., log rotation or backup services).

In Kubernetes, a pod can also have an associated replication controller, which is re-
sponsible for guaranteeing that a certain number of pod replicas are always running.
Replication controllers monitor the health of replica pods and create new ones if they de-
tect a failure. Finally, Kubernetes also allows the definition of services, which are used to
implement a basic discovery mechanism. A service has a fixed name and IP address that
can be accessed cluster-wide. Requests sent to this name or IP address are automatically
forwarded to pods that implement that service.

Figure 2.10 shows the architecture of a Kubernetes cluster. Its main components are:

• Distributed Storage: maintains information about the cluster and all running appli-
cations.

• Main Server API : provides a REST API which is used to access cluster data. It
implements basic CRUD and validation functionalities.

• Scheduler : communicates with the API and schedules new pods in the cluster.

• Controller Manager : implements the replication controller logic.

• Kubelet : runs in every node of the cluster. It communicates with the other compo-
nents to enforce local actions and to provide monitoring information.

• Proxy : provides access to services from each node by forwarding requests to the
appropriate pods.

• kubectl : command-line tool used to manage the cluster.

Kubernetes is a project that is still in active development. In this research, Kubernetes
is used to implement the CEPaaS system described in Chapter 7.

2.4 Autonomic Computing

Autonomic computing aims to build computing systems that can manage themselves
based on high-level objectives determined by system administrators [91].

The essence of autonomic computing is self-management. Theoretically, self-
management frees system administrators from the burden of operating and maintaining
complex computing systems, while keeping their performance optimal. Self-management
is composed of four main aspects:
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Figure 2.10: Kubernetes architecture (adapted from Google [63]).

• Self-configuration: autonomic systems can configure themselves in dynamic environ-
ments, finding services and providers that they depend on and broadcasting their
capabilities.

• Self-optimization: autonomic systems can monitor their performance and workload,
searching for opportunities to fine-tune internal parameters. Moreover, they can
update these parameters, test for improvements, and rollback unsuccessful changes.

• Self-healing : autonomic systems can diagnose failures and defects and isolate prob-
lematic components. They can also update these components automatically and
execute tests to ensure that the system is working properly.

• Self-protection: autonomic systems can protect themselves from attacks and cas-
cading component failures.

In autonomic computing, a system is usually controlled by an autonomic manager,
which is responsible for enforcing the system self-management capabilities. The man-
ager implements a control loop conceptualized by the MAPE-K framework [85], which is
depicted in Figure 2.11. The framework is named after the five functions composing it:

• Monitor : monitors events from the managed systems to infer symptoms and sends
them to analysis;

• Analyze: analyzes symptoms and infers whether changes are required. If needed,
sends request for changes to the plan function;

• Plan: selects the actions that must be performed based on the analysis results;

• Execute: executes the selected actions;
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Figure 2.11: MAPE-K autonomic loop.

• Knowledge base: contains every required piece of information about the system,
including actions that may be performed, their representations, and the inference
rules used by the four other functions.

Note that the MAPE-K functions might not exist as separate entities, but logically all of
them are always present in an autonomic manager.

This research applies autonomic computing concepts in two main parts: first, the
AGeCEP formalism presented in Chapter 4 uses the MAPE-K framework as a standard
and intuitive way to describe self-management policies. Second, the CEPaaS system
described in Chapter 7 implements a simple autonomic manager to control runtime queries
and guarantee their performance.

2.5 Summary

This chapter discussed background concepts needed for the remainder of this thesis. First,
it presented an overview of complex event processing and stream processing and clarified
how they relate with each other. Next, cloud computing was discussed with special
emphasis on multiple cloud architectures and how they can be used to improve the quality
of services offered. Following, container-based virtualization and container management
systems were also examined. Finally, autonomic computing and the MAPE-K loop were
presented and discussed in the context of the CEPaaS system.

The next chapter presents an extensive review of studies related to the contributions
developed in this research, including other CEP and SP systems, CEP formal models,
and cloud computing simulators.
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Literature Review

This chapter presents research related to this thesis divided into three categories: CEP
systems, CEP formal models, and cloud computing simulators. Note that this chapter
still differentiates between CEP and SP to respect the terminology used by the original
authors of each study. Clarifications are provided whenever necessary.

3.1 Complex Event Processing

This section presents a comprehensive review of the most important CEP and SP sys-
tems and research projects related to the CEPaaS system developed in this thesis. It
starts with traditional research projects which, despite being developed over a decade
ago, established current terminology and introduced many techniques still in use today.
Following, Section 3.1.2 presents recent projects that leverage modern architectures to
improve the quality of service offered to users. Section 3.1.3 discusses projects that aim
to offer CEP or SP in the services model, and Section 3.1.4 reviews systems based on
multi-cloud architectures. These two ideas are relatively unexplored, yet are at the core
of this thesis. Next, Section 3.1.5 compares cloud-based CEP systems with CEPaaS. Fi-
nally, Section 3.1.6 discusses all these studies in the context of the contributions presented
in this research.

3.1.1 Traditional Systems

This section presents important historical projects that have shaped modern CEP and
SP research. These are highly influential studies that serve as a basis for most modern
systems.

Stream Processing

NiagaraCQ [37] is one of the earliest SP projects. The system aimed to enable continuous
queries over XML datasets distributed over the Internet. The queries are written in a
language specific to XML files and are recurrently executed based on a timer interval
or whenever the source datasets change. The main NiagaraCQ contribution is an incre-
mental group optimization algorithm that can group similar queries to reuse common
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computations.
The Aurora [1] project is probably the most influential development in this field.

Queries in Aurora are specified using a graphical language composed of boxes and arrows,
in which the former represent query operators and the latter connection points between
them. Aurora is a centralized engine in which user-specified QoS constraints drive the
behaviour of two components: the engine scheduler, which decides the operators to run at
any given time and the number of events they consume; and the load shedding mechanism,
which decides whether discarding events can improve the system processing rate. Later
on, Aurora was extended by the Aurora* [38] and Medusa [24] systems.

Aurora* [38] extended Aurora to support distributed execution in clustered environ-
ments. It introduced server load management using two main techniques: box sliding,
which migrates an operator to one of its immediate neighbours, and box splitting, which
splits an operator across many servers and parallelizes its execution. The Medusa sys-
tem, on the other hand, introduced a load management mechanism aimed at federated
distributed systems [24]. In this scenario, multiple participants in different administrative
domains establish contracts between each other to define a price range for processing a
unit of work. Generally, a unit of work is migrated to another participant if the local
execution cost is higher than the remote cost.

Later, both Aurora* and Medusa were merged into Borealis [2]. In addition to all
functionalities just mentioned, Borealis also added features for revision of query results,
dynamic query modification and a QoS-driven load management architecture that acts at
local, neighbourhood, and global levels.

Developed at about the same time as Aurora, TelegraphCQ [36] is also an important
project in the SP field. TelegraphCQ is a general purpose continuous query system that
focuses on adapting behaviour in the face of changes in data sources, network conditions,
server availability, and user needs. One of its main contributions is the Flux operator [137],
which is used to provide parallel processing through data partitioning and to implement
load balancing and fault tolerance.

Finally, the STREAM [19] project, developed at Stanford University, should also be
highlighted. Its main contribution is the Continuous Query Language (CQL) [20], a
declarative query definition language. CQL is remarkably similar to SQL and has in-
fluenced many subsequent languages. Indeed, Oracle Stream Explorer [123], which is a
commercial solution, uses CQL as one of their query definition languages.

Complex Event Processing

The origin of Complex Event Processing is attributed to Luckham [106], who explored
the need for a new technology as a response to new challenges that enterprises had been
facing with increasing automation and interconnection of IT systems. Nevertheless, the
technological underpinnings of CEP had been in development for a long time. Indeed,
Luckham’s CEP work was based on Rapide [105], a simulator that used the concepts of
event causality to model interactions among various components of a distributed system.

The GEM language [110] is another precursor of CEP, even though the field terminol-
ogy was not established at the time GEM was published. GEM is used to define queries to
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monitor distributed systems, including constructs to specify composite events, temporal
constraints, and event windows. These constructs are now part of most modern CEP
query languages.

The advancement of CEP is also often related to publish / subscribe (pub-sub) systems.
For instance, Pietzuch et al. [125] published an important study describing an architecture
that can augment existing pub-sub systems with composite event detection capabilities.
In their work, the authors presented a language for specifying composite events and a
distributed detection engine based on finite-state automata. Similarly, the PADRES
project [99] is also a pub-sub system for composite event detection with its own query
language. As important contributions, the authors presented distributed event-detection
algorithms that can share computation among multiple queries and reduce network traffic.

The Cayuga [44] project, on the other hand, was developed as a general purpose event
processing system. Cayuga uses the Cayuga Event Language (CEL) to express queries,
which are executed as non-deterministic finite-state automata. The project focused on
developing efficient data structures to provide scalability regarding both the number of
queries and the volume of events. However, Cayuga is a centralized system that is limited
to the processing capacity of a single server.

Finally, NextCEP [134] is another general purpose CEP system with an automata-
based execution model, but with an SQL-like query language. Its main results are related
to query rewriting mechanisms and distributed execution in cluster environments.

3.1.2 Modern Systems

This section reviews recent systems that propose new approaches aimed at real-time
continuous processing of datasets. These projects are coarsely classified into three major
groups. The first group is composed of systems inspired by the MapReduce [43] computing
platform. The second group is composed of open-source platforms that provide generic
CEP / SP distributed computing capabilities. All these are readily available for download
and have been maintained by open-source communities for many years. Finally, the third
group contains CEP / SP systems that leverage cloud resources to provide additional
scalability and availability.

MapReduce-Based

MapReduce is a computing paradigm aimed at processing and generating large data
sets [43]. The paradigm is based on a two-step computation: the first step is imple-
mented by a map function, which receives key-value pairs as input and generates a set of
intermediate key-value pairs as output. In the second step, a reduce function receives a
set of keys and all values generated for each of these keys in the map phase, and performs
a final computation aggregating the values received.

In the original article, Dean and Ghemawat [43] presented a platform to run programs
written using this paradigm in which the map and reduce tasks are automatically paral-
lelized and executed on a server cluster. The platform also provides fault tolerance based
on re-execution of failed tasks. Since its introduction, MapReduce has been used in diverse
scenarios and has originated different implementations, among which Apache Hadoop [16]
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is the most popular. Nevertheless, despite its success, the MapReduce paradigm is not
an appropriate solution for CEP because:

• MapReduce computations are batch processes that start and finish, whereas compu-
tations over event streams are continuous tasks that finish only upon user request.

• The inputs of MapReduce computations are snapshots of data stored in files, and the
contents of these files do not change during processing. Conversely, event streams
are continuously generated and unbounded inputs [98].

• To provide fault tolerance, most MapReduce implementations, such as Google
MapReduce [43] and Hadoop [16], write the results of the map phase to local files
before sending them to reducers. In addition, these implementations store the out-
put files in distributed and high-overhead file systems (Google File System [57] or
HDFS [16] respectively). This extensive file manipulation adds significant latency
to the processing pipelines.

• Not every computation can be efficiently expressed using the MapReduce program-
ming paradigm, and the paradigm does not natively support composition of jobs.

Despite these limitations, the prevalence and success of MapReduce have motivated
many researchers to work on systems that leverage some of its advantages while trying to
overcome its limitations when applied to low-latency processing.

One of the first projects in this direction was developed by Condie et al. [39]. In
this work, the authors proposed an online MapReduce implementation with the goal of
supporting online aggregation and continuous queries. To reduce processing latency, the
map and reduce steps are pipelined by having the map tasks send intermediate results to
the reduce tasks. The authors also introduced the idea of executing reducers on snapshots
of the data received from the mappers. This mechanism enables generation of partial
approximate results, which is particularly useful for interactive analytics scenarios. All
these changes were implemented on Apache Hadoop and demonstrated in a monitoring
system prototype.

Despite these modifications, the work by Condie et al. [39] still has limitations that
hinder its use in CEP scenarios. For instance, if the reducers are not scheduled simul-
taneously with the mappers, the mappers cannot push intermediate results to them. In
addition, the platform does not support elasticity, which is a very important requirement
for scenarios where the event input rate is subject to wide fluctuations and burst behavior.

Other researchers have also leveraged the familiar MapReduce programming model,
but focused on providing alternative runtime platforms. For instance, Logothetis and
Yocum [102] proposed a continuous MapReduce in the context of a data processing plat-
form running over a wide-area network. In their research, the execution of map and reduce
functions is managed by a stream processing platform. To improve processing latency,
the mappers are continuously fed with batches of tuples (instead of input files), and they
push their results to reducers as soon as they are available. This approach is similar to
that adopted by the StreamMapReduce [31] system, which send events (key-value pairs)
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directly from one processing stage to another without the persistence of intermediate
results.

Similarly, the M3 [8] project aimed to provide a memory-based MapReduce imple-
mentation. In this project, the execution engine transforms user queries into a sequence
of MapReduce jobs and executes them. The general idea of this transformation is to map
each query operator to a pair of map / reduce functions; the article presented examples of
transformations of filters, joins, and aggregates, but did not detail or formalize this pro-
cess. The authors also claimed that the system could provide fault tolerance and adapt to
dynamic workloads, but no implementation details or experimental results were shown.

Alternatively, the difficulty of expressing online computations using MapReduce has
also motivated the creation of alternative programming models. For instance, the Muppet
project [98] presented a new paradigm called MapUpdate, which mimics MapReduce by
specifying computations as two functions (Map and Update). The main difference is that
the update phase has access to slates, data structures that contain persistent state related
to each update key. In theory, these slates enable easier implementation of iterative and
stateful algorithms.

Open-Source Platforms

Recently, many open-source CEP / SP distributed computing platforms have emerged
to handle applications with low latency requirements and large data volume. The most
prominent examples of this category are Storm [18], Yahoo’s S4 [117], Spark Stream [153],
and Samza [17].

Storm [18] was created at Backtype, a company later acquired by Twitter. At Twitter,
Storm was used for a long time as the de facto SP platform [144] and was only recently
superseded by Heron [95]. Today, Storm is an open-source project managed by the Apache
group.

Storm is based on user-defined topologies, which are directed graphs in which the ver-
tices define computations to be performed and the edges specify event streams flowing
from one vertex to another. Events, also known as tuples, are produced by special ver-
tices named spouts and processed by vertices named bolts. The platform provides spout
implementations for connecting with different event sources such as message queues, but
it is also possible to create new ones. In addition to the processing graph, a topology
also defines the number of threads (tasks) for each bolt and how the input streams are
partitioned among the available tasks. For example, it is possible to partition an input
stream randomly or based on the hash values of specific attributes.

A Storm cluster is managed by a single master node called Nimbus, which is respon-
sible for scheduling topologies into worker servers. Each worker runs a supervisor, which
monitors local tasks and restarts them if needed. The supervisor also communicates the
local state to Nimbus. If a worker node fails, its local tasks are rescheduled into other
nodes. Storm guarantees that each tuple is processed at least once by tracking tuples
throughout the processing pipeline. Recently, a new API called Trident was created over
Storm. This API provides ready-to-use CEP operators such as joins, aggregates, and
filters. Moreover, it changes the processing model from tuple-by-tuple to small batches
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and adds new abstractions that enable exactly-once processing semantics.
Yahoo’s S4 [117] is based on similar concepts. A computation receives one or more

event streams as input and processes them using a sequence of processing elements (PE).
In S4, each PE is defined by a type, the type of events that it consumes, and the attributes
that are part of the event key. An important difference from Storm is that a new PE
instance is created for each distinct key value on its input. Therefore, S4 also implements
a garbage collector mechanism to remove old / unused PE instances from memory and to
avoid memory overflow.

An S4 cluster is formed by a set of processing nodes (PNs) that use Zookeeper [83]
to coordinate among themselves. Each PN has a PE container that manages local PEs;
events are distributed among the PNs based on a hash value derived from each event’s key
attributes. A communication layer is used by the PEs to forward events to the appropriate
PN. Furthermore, to provide fault tolerance, the S4 cluster has a (configurable) number
of standby instances, which are used if active nodes fail. In addition, an uncoordinated
checkpoint mechanism saves the PEs state based on time intervals or event counts. This
checkpoint enables faster recovery of failed processing nodes.

Spark Stream [153] is a stream processing platform built on top of Apache Spark [152]
and based on the discretized streams (D-Stream) model. In this model, events are grouped
into short-duration batches and stored in special abstractions called resilient distributed
datasets (RDD) [152]. RDDs are in-memory partitioned data structures that can be
processed only by a set of transformations. A transformation, in turn, can generate output
RDDs and maintain auxiliary state in others. A user query is defined as a sequence of such
transformations over the input events. This processing model is significantly different from
that used in other CEP systems because, at each stage, tasks are scheduled to execute
transformations and can be discarded afterwards. This is possible because all necessary
input is available as RDDs in the cluster nodes memory. Conversely, in most other
systems, the computations are continuous processes that constantly receive and generate
events.

Spark Stream’s model has three major advantages over continuous processing: first,
it unifies stream and batch programming models by expressing both as RDD transforma-
tions. Second, it enables implementation of fault tolerance. When a node fails, the lost
RDDs are reconstructed (in parallel) by reapplying the sequence of transformations that
originated them, starting at the input events. Finally, it enables speculative execution of
tasks to avoid delays caused by stragglers. However, because events must be batched be-
fore processing, Spark Stream’s processing latency tends to be higher compared to similar
platforms.

Finally, Samza [17] is a stream processing platform created by LinkedIn and the most
recent project discussed in this section. Samza differs from other platforms by defining
a strong model for event streams. In Samza’s model, event streams are seen as append-
only partitioned logs, where each partition contains a totally ordered sequence of events.
Partitions provide a natural way of consuming an event stream in parallel, yet there is
no ordering guarantee between events from different partitions. In addition, Samza’s
model requires event streams to be multi-subscriber and replayable so that an event can
be repeated if a subscriber fails. In practice, event streams are implemented by Apache
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Kafka [94], a message broker also created by LinkedIn. Kafka provides partitioned topics
that can be directly used as Samza event streams.

In Samza, users create jobs that perform transformations on a set of input streams
and write their results to an output stream. Because each event stream is a persistent
Kafka topic, jobs are totally decoupled from each other. This architecture brings two main
advantages to the system. First, the performance of slow consumers does not affect any
upstream job because events are buffered in the intermediary topics. Second, the results
of any job can be easily read from the job’s output stream, which facilitates reuse and
composition. As disadvantages, this model adds delays to system latency and complicates
the creation of multi-step processing because there is no notion of query in the system.

Samza also has unique support for implementation of stateful jobs by providing a fast
key-value store at each node of the cluster. With this approach, jobs manipulate state data
without the overhead of accessing persistent storage via the network. However, because
they are local, these data can be lost in case of server failure. To solve this problem,
Samza replicates every operation in the local store to a special Kafka topic. This way, a
job can rebuild the local store state by replaying the operations from this topic.

Cloud-Based

Recent research projects have been leveraging cloud resources to provide robust and elastic
CEP systems. This section reviews relevant projects available in the literature.

ElasticStream was developed by Ishii and Suzumura [87] and was one of the first
to use cloud resources to improve the quality of SP systems. It uses IaaS servers to
provide additional computing capabilities in the case that local resources are insufficient
to handle the input event streams. The authors formulated infrastructure allocation
as an optimization problem that aims to minimize expenses on cloud resources while
maintaining system capacity. An optimizer is executed periodically, and its output guides
the allocation of public cloud resources and the split of input streams between local and
remote servers.

Esc [133] is another distributed SP system designed to be elastic. Queries are defined
using a directed acyclic graph (DAG) of processing elements, which are executed on a
cluster of servers. Esc uses an autonomic manager to implement self-management policies
that attach new servers to the resources pool and create more instances of processing
elements. Esc has a very simple load balancing mechanism, based on killing a worker
process and expecting it to be re-allocated on a less loaded machine.

Similarly, the goal of the StreamCloud [69] project was to create a SP engine that
can handle very large input streams. To achieve this objective, the authors presented a
parallelization strategy that splits user queries into subqueries and runs each subquery on
a subset of the available machines. In addition, logical input streams are split into many
physical streams and processed in parallel. This approach was contrasted with two other
common parallelization strategies: query-cluster and operator-cluster. According to the
article results, the subquery strategy achieved better throughput and greater scalability
than the other approaches. This research also discussed two protocols to move processing
load from one server to another and developed basic elasticity capabilities based on CPU
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monitoring. The system assumes a private cloud environment in which idle servers are
always available and ready to use.

The StreamHub [25] project aimed to create a high-throughput, low-latency, and scal-
able publish/subscribe system. The StreamHub design was inspired by the distributed SP
frameworks described in Section 3.1.2 - “Open Source Platforms”. The core functionalities
are implemented by a sequence of three operators that scale independently: access point
(subscription partitioning), matching, and exit point (dispatching). One of StreamHub’s
unique characteristics is that it can use different libraries to match publications to sub-
scriptions, making the system adaptable to many situations, including CEP.

The TimeStream [128] system is another SP engine designed for deployment in clusters
and cloud environments. Its main goal is to provide reliable event processing even in
the presence of failures and reconfigurations. A rule in TimeStream is specified using a
declarative language and is converted by a compiler into a DAG. To provide fault tolerance
and enable reconfiguration actions, the system uses a concept called resilient substitution,
which depends on tracking the output and state dependency of each operator. Assuming
that an operator o is in state τ , the state dependency is the subset of the operator’s
inputs that led o to this state. Accordingly, the output dependency of a result e is the
operator’s previous state dependency plus the input i that caused the generation of e. If
an operator o fails, a new instance o′ is created and the o state dependency is repeated,
leading o′ to the same state τ . Similarly, a subgraph of the DAG can be replaced by
another (equivalent) by replaying state dependencies of the original subgraph.

Nephele [103] is an SP system that can self-adapt to satisfy user-defined QoS con-
straints. In Nephele, queries are also characterized by DAGs and distributed over many
worker servers. A distributed monitoring infrastructure detects QoS violations at runtime
and implements two reconfiguration mechanisms: output buffer resizing and task chain-
ing. The former changes the number of events that are buffered before being sent to the
next operator, whereas the latter combines multiple operators into a single one that is
logically equivalent.

Murray et al. [116], on the other hand, proposed a new computational model called
timely dataflow that can be used for data parallel cyclic dataflow programs, including
but not limited to CEP. In this model, the computations are directed graphs that can
include loops, making them especially suitable for iterative processing. Vertices of the
dataflow graph can be notified when all messages before a (logical) timestamp t have
been processed. This feature enables vertices to check for end-of-loop conditions and
to implement window-based operators. The authors presented a runtime platform for
this model called Naiad, which parallelizes and distributes dataflow graphs over a server
cluster. The graphs are executed without central coordination, yet the platform has
limited elasticity and fault tolerance mechanisms.

Fernandez et al. [53] focused on an integrated approach for scaling out and fault
tolerance in cloud-based SP systems. In their approach, stateful operators implement
callback functions that explicitly convert their internal state into a set of key-value pairs.
This state, along with the operator’s output buffer events and routing state, are backed up
into upstream operators. This backup is used whenever a new operator instance needs to
be created, which can occur in two different situations: an operator has failed and needs
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to be recreated; or an operator has become a processing bottleneck, and new instances
are needed to increase its throughput. Note that both situations might require new VMs
to be allocated. To avoid long delays in this allocation, the system maintains a pool of
pre-allocated VMs that are transferred to the application when needed.

Google’s MillWheel [4] is the SP system used internally at Google. It is based on the
familiar graph-based model, in which vertices called computations encapsulate user logic.
MillWheel provides an exactly-once delivery guarantee, which differentiates it from most
other SP systems. This guarantee is implemented as follows: upon receiving an event, the
computation checks for duplication by consulting a database. If the event is not a dupli-
cate, the computation is executed, which can result in updates to timers, internal state
changes, and generation of output events. Following the execution, the processed event
id, the new computation’s state, and all produced events are checkpointed to a backup
database in a single atomic write. Finally, the senders are acknowledged, and the pro-
duced events are sent downstream. By writing all state to persistent storage, MillWheel
guarantees that events are not processed more than once and also implements transparent
failure recovery. As another important contribution, MillWheel also provides low water-
marks for input streams. These low watermarks indicate a timestamp up to which all
events have been processed and can be used to implement window-based operators and
timers in computations.

The FUGU [70] system extended a commercial SP system based on Borealis [2] to
provide load balancing and elasticity capabilities. FUGU has a centralized monitoring
infrastructure which collects metrics from system nodes and moves operators when an
overloaded node is detected. The operators to be moved are selected so as to minimize
the latency spikes caused by their movement. To calculate this spike, the system considers
all operators that are affected by the movement and the extra delay caused by enqueued
events.

StreamMine3G [111, 112] is an evolution of the StreamMapReduce system [31]. In
StreamMine3G, operators are defined using a MapReduce-like programming interface and
assembled into a DAG. At runtime, operators are replicated and input data partitioned
among these replicas. The most distinctive features of StreamMine3G are the support
for multiple fault-tolerance schemes and a mechanism that automatically selects the most
appropriate scheme based on user-defined recovery time constraints. For instance, if long
recovery is unacceptable, then the system applies an active replication scheme in which
two operator instances located in different servers process all events (in duplication). On
the other hand, if a longer recovery can be tolerated, then passive replication is employed.
In this scheme, a new instance is created only when the first one fails. This support to
multiple schemes enables users to trade-off between recovery time and resource usage.

Finally, Heron [95] is an SP engine created at Twitter to overcome Storm [18] limi-
tations when used at very large scale. For instance, Storm runs many tasks in the same
worker process, which complicates debugging and resource isolation. In addition, Storm
assumes a homogeneous cluster, has a single point of failure (Nimbus), and does not
support backpressure. Heron, on the other hand, has a different architecture, yet is API-
compatible with Storm. Heron runs on a shared infrastructure controlled by an Aurora
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scheduler1 [15] on top of Mesos [80]. In this architecture, each topology is scheduled as
a set of application containers controlled by Linux cgroups [100]. One container runs a
Topology Master, which controls the topology lifecycle, and every other container runs a
single Stream Manager instance and a set of Heron Instances. The Stream Manager man-
ages communication between containers and implements the backpressure protocol. Each
Heron Instance, in turn, maps to a topology task. By leveraging this new architecture,
Twitter improved Storm’s throughput by 14 times and latency by 15 times. In addition,
it also increased cluster utilization and system debuggability.

3.1.3 CEP Services

Loesing et al. [101] were among the first authors to propose SP as a service. They
introduced Stormy, an SP engine that uses techniques from cloud storage systems [64]
to provide scalability and availability. Stormy distributes queries and input events using
consistent hashing and implements a gossip protocol to disseminate the mapping of queries
to nodes. To provide availability, queries are replicated, and events are processed by
all replicas. Nevertheless, the article presented no results about system performance or
scalability.

Currently, the main cloud providers also offer managed services that support CEP /
SP functionalities, but these are mostly targeted at application developers. For instance,
Amazon offers Amazon Kinesis [12] and AWS Lambda [13], whereas Google offers Cloud
Pub/Sub [62] and Cloud Dataflow [61].

AWS Lambda [13] enables users to run generic code, encapsulated in functions, in
response to triggers from other Amazon services, HTTP endpoints, or activities from
mobile applications. There is no infrastructure to be managed, and the service provides
automatic scaling. Nevertheless, the service has no notion of queries, buffering, or many
other functionalities needed for CEP systems.

Amazon Kinesis [12], on the other hand, is a suite of services aimed at real-time stream
processing. The main service of this suite is Amazon Kinesis Streams, which provides as
a managed service publish-subscribe functionalities similar to Apache Kafka [94]. To
consume data from Kinesis Streams, a developer can write programs using the Amazon
Kinesis Client Library (KCL). KCL provides a platform for running SP applications,
including automatic load balancing and input stream re-sharding. However, KCL is not a
managed service, which implies that developers must control the infrastructure in which
KCL programs run.

Similarly to Amazon Kinesis Stream, Google Cloud Pub/Sub [62] is also a publish-
subscribe messaging service. Cloud Pub/Sub is globally deployed, which ensures low
latency for data sources and consumers distributed around the world. To consume data
from Cloud Pub/Sub, developers can use Cloud Dataflow [61], which provides a fully
managed service for batch and stream processing. In fact, the Cloud Dataflow service is
an implementation of the Dataflow programming model presented by Akidau et al. [5].

The Dataflow model has been created to express programs that process unbounded
unordered data sources and generate event-time ordered results. This model provides

1Not to be confused with the Aurora SP engine [1]
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capabilities that enable users to fine-tune computations and trade off correctness, latency,
and cost. In a dataflow, data are represented by parallel collections of key-value pairs
that can be processed by two core primitives: ParDo for generic parallel processing, and
GroupByKey for processing data grouped by key. For unbounded streams, the Group-
ByKey construct is extended with a generic window concept that can group data in fixed,
sliding, and session windows. In this case, triggers determine when window results are
produced and how multiple results from the same window relate to each other. Because
it is generic, the model can be implemented by either batch or stream processing sys-
tems. For instance, at Google, a batch and a streaming version have been implemented
in FlumeJava [35] and MillWheel [4] respectively.

3.1.4 Multi-Cloud CEP

The idea of exploring multiple cloud environments to improve the quality of service pro-
vided by a CEP service is almost unexplored in the literature.

Photon [14] is a system in production at Google that is solely focused on joining two
event streams. The system operates under very specific circumstances, in which a primary
stream of events needs to be joined with a secondary stream that happens within seconds
of the primary. Both streams can be unordered because the events come from distributed
datacentres. In addition, the primary stream can be delayed relative to the secondary.
Photon maintains replicas of the processing pipeline in multiple cloud datacentres to
provide fault tolerance. These pipelines synchronize by means of a replicated, strongly
consistent global database.

JetStream [145], on the other hand, proposed a generic framework for transferring
events between geographically distributed datacentres. The proposed framework is generic
and can integrate with different CEP systems. The main idea is to decide on a batch
transfer size autonomically based on system metrics such as network latency, input event
rate, and number of destinations. The authors also introduced the idea of using multiple
routes across nodes located in different datacentres to increase the aggregated bandwidth
between them.

3.1.5 Comparison

Table 3.1 summarizes the characteristics of modern cloud-based CEP systems and of the
CEPaaS system developed in this research. The systems are compared based on the
following criteria:

• Paradigm adopted by the system: (a) SP, (b) CEP, (c) batch, (d) publish-subscribe,
or (e) function.

• Availability to be downloaded and used: (a) open source, (b) research prototype,
(c) proprietary software, or (d) managed service.

• Cluster types used by the system: (a) specific, if the system uses its own mechanism
to define a cluster; (b) shared, if the system runs in a cluster shared with other
applications and is controlled by a specialized cluster management software; or
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(c) container, if the system runs in a cluster controlled by a container management
system.

• Elasticity implementation: (a) no, if the system does not implement elasticity;
(b) not applicable, if the system runs in a shared cluster (in this case elasticity is
implemented at the cluster manager level); (c) bursting, if the system uses public
cloud resources when private resources are not sufficient; (d) pool, if the system can
attach pre-allocated servers to the cluster; or (e) regular, if the system can attach
and de-attach servers to the cluster on-demand.

• Query definition language: (a) DAG-based, (b) declarative, (c) not available, or
(d) system-specific categories, such as transformations for Spark Stream [153] and
timely dataflow for Naiad [116].

• Management implementation: (a) centralized, with or without standby replicas;
(b) hierarchical, if the management processes are organized in a hierarchical fashion;
(c) per-query, if each query has its own management process; (d) distributed, if
management is implemented by all participant nodes and there is no single point of
failure.

• Distinctive features that differentiate a system from the others.

Most current systems are based on the simpler SP paradigm rather than on CEP, and
DAG-based query languages have been almost universally adopted2. Moreover, it is possi-
ble to note a recent trend towards shared clusters runtime environments, both traditional
and container-based ones. These environments have been leveraged to increase resource
utilization and to reduce costs of datacentres. In addition, they greatly simplify CEP
system management implementations because many features, such as server monitoring
and elasticity, are now provided by the cluster manager.

3.1.6 Discussion

The CEPaaS system proposed in this thesis is obviously influenced by the CEP / SP
pioneers discussed in Section 3.1.1. Specifically, the “box-and-arrows” query definition
language proposed by Aurora [1] is a natural model for specifying event processing queries,
and therefore a similar language has been adopted by CEPaaS. In addition, Aurora’s
strategy of parallelizing an operator by splitting input event streams is also used in this
thesis.

The proposed CEPaaS system, however, offers many unique contributions which have
not been explored in the literature. Compared with existing systems offering CEP / SP
services (Section 3.1.3), CEPaaS differentiates itself by operating at a higher level of
abstraction. By offering pre-defined query templates, CEPaaS can be used by end users,
yet it can still be extended by developers whenever needed. CEPaaS also provides a
complete solution and does not need to integrate with other systems and services.

2Naiad [116] and Google Dataflow [5] languages can also be considered DAG-based.



Table 3.1: Comparison of CEPaaS and modern CEP systems.
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CEPaaS leverages multi-cloud environments to improve the system QoS, whereas most
other systems do not. Similarly to Photon [14], user queries run on multiple datacentres
to provide datacentre-level fault tolerance. In addition, CEPaaS uses multiple clouds to
increase application distribution and stay (geographically) closer to event producers and
consumers. As shown in Chapter 7, this feature considerably reduces query latency.

In terms of architecture, CEPaaS is most similar to Twitter’s Heron [95], as both
are based on application containers that are scheduled into a shared infrastructure. Nev-
ertheless, Heron is used to run Twitter workloads, whereas CEPaaS is a multi-tenancy
service. This difference is reflected in the granularity of what resides in a container: Heron
containers run many tasks belonging to a single topology, whereas CEPaaS runs all tasks
from a particular user query. This decision has been made because it facilitates resource
allocation and control according to the tenant subscription level. Apache Samza [17] also
uses containers to schedule jobs in a YARN cluster [147], but as already mentioned, Samza
does not include the concept of a query and is not designed to be multi-tenant.

CEPaaS also shares similarities with the Esc system [133] because both use an auto-
nomic manager to control queries and the execution environment. CEPaaS, however, is
based on the AGeCEP formal model (Chapter 4) of reconfiguration actions that guaran-
tee correctness of reconfigured queries. Moreover, the proposed AGeCEP formalism can
be extended with new query operators that are seamlessly integrated into the autonomic
manager.

Furthermore, it is important to emphasize how CEPaaS relates with other open-
source SP / CEP platforms such as Storm [18] and S4 [117]. In fact, CEPaaS provides
abstractions on top of these frameworks, and it is even possible to use them as a query
execution engine. Nevertheless, CEPaaS opted for an implementation based on the Akka
toolkit [6] because it does not require a central manager and is lower-level, which enables
more flexibility.

Finally, many of the fault-tolerance, scalability, and elasticity techniques used by mod-
ern cloud-based systems (Section 3.1.2) can be integrated into CEPaaS and are orthogonal
to this thesis. Indeed, the authors plan to explore query parallelization and fault tolerance
of stateful operators as future work.

3.2 CEP Formal Models

The AGeCEP formalism presented in Chapter 4 was created to provide a technology-
and language-agnostic representation of queries, and to enable creation of generic and
reusable procedures for CEP query management. On the contrary, most previous research
into CEP formal models was developed in the context of specific query languages [20, 30].
These models attach semantics to queries written using these languages yet they generally
cannot be applied to other contexts without significant adaptation.

More recent research has targeted the development of language-independent formalisms
for CEP [71, 93]. These authors recognized the importance of a generic model to enable
formal analysis of user-defined queries, including procedures such as correctness check-
ing and query equivalence determination. Nevertheless, these models differ significantly
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from AGeCEP because they focus only on defining query semantics and do not include
reconfiguration actions.

Sharon and Etzion [138] proposed the event processing network (EPN) formalism as a
way to specify event-based applications independently of the underlying implementation.
More recently, Rabinovich et al. [129] and Weidlich et al. [149] built upon Sharon and
Etzion’s research by implementing simulation, static, and dynamic analysis of EPNs.
EPNs share similarities with AGeCEP because they are also language-agnostic and use
directed graphs as their basic representation. However, the main goal of EPNs is to
represent applications that can be translated into system-specific queries, whereas the
proposed AGeCEP aims to provide a generic query representation.

Cugola et al. [42], on the other hand, proposed an approach and an accompanying
tool called CAVE that can be used to prove generic properties about user-defined queries.
They convert queries written in different languages into a pattern-based model, which is
transformed along with the properties to be proved into a constraint satisfiability problem.
If a solution to this problem exists, then the properties are proven to be true.

The REX tool [49] is similar to CAVE, as it also aims to prove generic properties
about application queries. REX, however, uses a formalism based on timed automata.
Both CAVE and REX are very specific to their purposes and are not as appropriate to
represent queries and generic management procedures as AGeCEP.

Finally, Hong et al. [82] presented the work that most closely approximates AGeCEP
objectives. In their research, queries written in both declarative and pattern-based lan-
guages are converted to a graph-based query execution plan, and a set of transformation
rules is applied to optimize them. Note, however, that their focus is solely on multi-query
optimization, whereas AGeCEP targets procedures covering the entire query lifecycle.

3.3 Cloud Computing Simulators

Simulators have been used in different fields, such as grid computing [33], to overcome diffi-
culties related to the execution of repeatable and reproducible experiments. More recently,
the usage of simulators in cloud computing has become widespread and a number of sim-
ulators has been developed such as CloudSim [34], GreenCloud [92], and iCanCloud [119].
In the context of CEP systems, however, there are no such simulators available. Because
of this limitation, this section reviews cloud computing simulators instead. As it will be
described in Chapter 6, one of these cloud simulators (CloudSim) is used as a basis for
CEPSim.

CloudSim [34] is a well-known cloud computing simulator that can represent vari-
ous types of clouds, including private, public, hybrid, and multi-cloud environments. In
CloudSim, users define workloads by creating instances of cloudlets, which are submitted
and processed by virtual machines (VMs) deployed in the cloud. Among the most inter-
esting CloudSim features is the customizability of its resource management policies, such
as:

• VM allocation (provisioning): determines how to map a user-requested VM to one of
the physical hosts available in a datacentre. Cloud providers normally use strategies
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that try to maximize the utilization of their servers without violating existing service
level agreements (SLA).

• VM scheduling : determines how the VMs deployed on a physical host share the avail-
able processing elements (PEs). Currently, CloudSim provides two VM scheduling
policies: space-shared and time-shared. In the former, each VM has exclusive access
to the PEs to which it is allocated, whereas in the latter, VMs share the host PEs
by executing on slices of the available processing time.

• Cloudlet scheduling : determines how the cloudlets running in a VM share the avail-
able VM PEs. Similarly to VM scheduling, both space-shared and time-shared
strategies are available.

The major drawback of CloudSim to simulate CEP is its simple application model,
which is more appropriate for simulation of batch jobs. Normally, a cloudlet represents an
independent finite computation with a length defined by a fixed number of instructions.
Moreover, the cloudlet ’s internal state other than its expected finish time is invisible.
CEP queries, on the other hand, are continuous computations that run indefinitely or
for a specific period of time. In addition, tracking queries’ internal state during simula-
tion is essential to the analysis of any given CEP system. For example, by monitoring
the query operators’ queue size, one can determine whether the operators are keeping
up with the incoming event rate. The work discussed in this research circumvents the
limited CloudSim application model with a new model based on AGeCEP, as discussed
in Chapter 6.

Because of its limitations, CloudSim has already originated many extensions in the
literature [56, 66, 68]. Garg and Buyya [56] created NetworkCloudSim, which extends
CloudSim with a three-tier network model and an application model that can represent
communicating processes. Grozev and Buyya [66], on the other hand, presented a model
for three-tier Web applications and incorporated it into CloudSim. Finally, Guérout et
al. [68] focused on implementing the Dynamic Voltage and Frequency Scaling (DVFS)
model on CloudSim. These extensions are orthogonal to CEPSim because they do not
focus on CEP.

Conversely, GreenCloud [92] is a cloud simulator developed as an extension of the
network simulator NS-2 [118]. Differently from CloudSim, GreenCloud focuses on packet-
level simulation and energy consumption of network equipment, but not on modelling of
complex applications.

The iCanCloud simulator [119], on the other hand, provides functionalities that are
more similar to CloudSim. In addition, it can also parallelize simulations and has a
GUI for user interaction. Its application model, however, is based on low-level primitives
and needs to be significantly customized to represent CEP applications. The choice of
CloudSim over iCanCloud in this research was motivated by CloudSim’s more mature
codebase, the authors’ previous experience, and the larger number of extensions available
for CloudSim.
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3.4 Summary

This chapter presented a comprehensive review of research related to the contributions
developed in this thesis. It started reviewing the most important CEP / SP systems,
from traditional research projects that established current terminology to modern sys-
tems that leverage cloud-based architectures to improve the quality of service offered to
users. Following, this chapter also described projects that aim to offer CEP / SP in the
services model and CEP systems based on multi-cloud architectures. Finally, this chapter
discussed CEP formal models and cloud computing simulators.

In the next chapter, the first contribution of this research is presented: the Attributed
Graph Rewriting for Complex Event Processing Management (AGeCEP) formalism.



Chapter 4

Attributed Graph Rewriting for CEP
Management - Concepts

This chapter1 introduces the Attribute Graph Rewriting for CEP Management (AGe-
CEP) formalism. It starts with a discussion about AGeCEP motivation and benefits
(Section 4.1) and with an introduction of the basic ideas on which the formalism is based
(Section 4.2).

As it will be detailed further, AGeCEP requires the characterization of CEP operators
according to their reconfiguration capabilities. To enable this characterization, a generic
classification of CEP operators is presented in Section 4.3. Finally, Section 4.4 details
how the formalism represents queries and their reconfigurations.

4.1 Motivation

Despite the recent surge of interest in CEP systems, the current CEP research landscape
is still young and fragmented. As mentioned in Section 2.1, a large variety of solutions
exist and they often use inconsistent terminology and different query definition languages.
Consequently, most ongoing research and development is performed in the context of
specific systems and languages.

Of particular interest for this research, algorithms and techniques aimed at query
lifecycle management (QLM) have often been developed in such a system-specific fashion.
For instance, Aurora* can dynamically move processing load to neighbouring servers [38],
and Nephele can dynamically resize the output buffers of query operators [103]. Both
these examples illustrate important query management techniques, in which the system
self-adapts to changing conditions. However, they were developed in the context of their
respective systems and cannot be easily generalized.

In the context of the CEPaaS system, this fragmentation is even more critical because:

• CEPaaS is a user-facing service and, therefore, it must be flexible regarding the
interface and language used to define queries. For instance, some users may prefer

1A conference paper containing preliminary results from this chapter has been published [75]. The
contents of this and the next chapter have also been submitted as a journal paper which has been accepted
for publication [79].

57
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to create queries using a visual language whereas others prefer to write SQL-like
statements.

• CEPaaS provides high availability, low-latency, and elasticity by leveraging cloud
environments. The management of large cloud deployments leads to complex algo-
rithms and reinforces the need to reuse results from related research.

• CEPaaS accepts user definition of new operators. The ability to integrate them to
the query management loop and to treat them as first-class citizens is essential to
the system.

To overcome these challenges, this research introduces Attributed Graph Rewriting
for Complex Event Processing Management (AGeCEP), a formalism that provides a
technology- and language-agnostic representation of queries and of reconfiguration actions
that act on the queries.

In AGeCEP, queries are represented as directed acyclic graphs whose vertices and
edges are augmented with a standardized set of attributes. These attributes characterize
operators according to their reconfiguration capabilities and can be used for decision mak-
ing in management procedures. Reconfiguration actions, in turn, are defined with graph
rewriting rules based on the Single-Pushout approach [104]. AGeCEP rules consider the
vertices’ characteristics, as expressed by their attributes, to decide whether a rule can
be applied. By doing so, the formalism can establish correctness guarantees for recon-
figurations: they are never applied to incompatible operators and queries. In addition,
AGeCEP rewriting rules are also associated to mutators that are executed as side-effect of
rule application. This mechanism guarantees that changes performed in the query models
are correctly reflected in the real system.

AGeCEP query model provides a common representation to which different query
definition languages can be converted, including languages that accept user-defined oper-
ators. In addition, by also providing a model for reconfigurations, AGeCEP establishes
a common ground through which most management procedures can be expressed. These
procedures, in turn, can be applied to control any CEP system that uses AGeCEP as
its underlying formalism, including the CEPaaS system. Therefore, AGeCEP facilitates
not only the understanding of procedures from existing systems, but also their reuse and
application to other contexts.

Because it is a formal model, AGeCEP also enables formal analysis of user queries
and their transformations, including procedures such as structure validation, correctness
checking, and equivalence determination. These procedures, however, are out of scope of
this research.

The following sections discuss in details the AGeCEP formalism. A complete evalua-
tion of AGeCEP is presented in Chapter 5.

4.2 Attributed Graph Rewriting for CEP Management

The Attributed Graph Rewriting for Complex Event Processing Management (AGe-
CEP) formalism has been developed to enable specification of management procedures
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and, in particular, self-management policies that can be applied to QLM in CEP systems.
To achieve this goal, two main challenges have to be overcome: the first was to find

a query representation that is language agnostic, yet can encode all information required
by the management procedures. The second was to find a way to specify unambiguous
reconfiguration actions that act on the represented queries. The following subsections
discuss these challenges further.

4.2.1 Modelling Queries

AGeCEP represents CEP queries as Attributed Directed Acyclic Graphs (ADAGs). Given
a query graph, each vertex represents a query element, and each edge represents an event
stream flowing from one element to another. In such a graph, query elements are further
classified as:

• event producers : sources of events processed by the query;

• event consumers : consumers of query results;

• query operators : any processing logic that can be applied to one or more input
streams and generates one or more output streams as a result.

Because the graphs used are attributed, it is possible to represent properties that qual-
ify the vertices and edges and enrich their representation. Here, the attributes considered
should include all pieces of information required by management procedures.

To identify these properties, a novel classification of query operators focusing on their
reconfiguration capabilities was elaborated. Integrating a new operator into AGeCEP,
therefore, is simply equivalent to classifying it properly. Details of this classification are
presented in Section 4.3.

Use of ADAG as a language agnostic representation of CEP queries is a natural choice
corroborated by many studies in the literature. For instance, most CEP systems based
on imperative languages use (non-attributed) DAGs to represent user queries [1, 18, 117].
Systems that use declarative languages, on the other hand, transform user queries into
query plans to make them “executable”, which often leads to DAG-like structures (e.g. the
STREAM system and the CQL language [20]). Finally, systems based on pattern-based
query languages may use alternative representations that cannot be directly converted to
DAGs. However, even in this case, previous research [82] has shown that these queries can
be converted to DAG structures and consequently, to the AGeCEP representation. To
demonstrate the generality of AGeCEP, conversions from all three query language groups
are further discussed in Section 4.4.1.

4.2.2 Modelling Reconfiguration Actions

In CEP systems, management procedures may act on different steps of the query lifecycle
and have various goals. In a broad sense, however, they all follow a similar structure in
which: (i) potential problems are detected; (ii) appropriate reconfiguration actions are
selected; and (iii) the selected actions are applied as a response.
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In this structure, problem detection and action selection are mostly independent of
the chosen query representation. On the other hand, the representation and enforcement
of reconfiguration actions is heavily influenced by this choice. AGeCEP, therefore, also
focuses on the definition and representation of reconfiguration actions. These actions
can be applied to reconfigure queries and can be used by any procedure, including but
not limited to self-management policies. More precisely, because this research focuses on
reconfiguration of queries modelled by ADAGs, it is natural to represent the actions under
consideration using a graph transformation formalism.

Such reconfigurations can be modelled formally, yet visually and intuitively by graph
rewriting rules. Graph rewriting is a well-studied technique [132] with multiple applica-
tions [124, 135], including self-management [47, 130]. In particular, a graph rewriting rule
formally specifies both a reconfiguration (i.e., its effect) and the context in which it can
be applied (i.e., its applicability), enabling the study and establishment of guarantees of
reconfiguration correctness [48, 81].

4.2.3 Discussion

In the context of self-management policies and autonomic computing, AGeCEP queries
and reconfiguration actions are part of the knowledge base (KB). Specifically, AGeCEP
focuses on representing “what and how it can be done” and not on the decision making
process that determines “what should be done”. The MAPE-K modules of an autonomic
manager are expected to use AGeCEP to implement their functions in conjunction with
other information available in the KB such as monitored events and inference rules.

In particular, it is expected that additional information will be present in the KB to
model the CEP system runtime environment. This information is also essential for QLM
policies, especially for the operator placement and runtime management steps.

Note that by limiting AGeCEP scope to queries and reconfiguration actions, it is
possible to integrate AGeCEP with existing models and techniques rather than forcing
the adoption of particular ones. By doing so, AGeCEP can be applied to a broader range
of scenarios.

Section 5.1 discusses how existing representations and meta-models can be coupled
with AGeCEP to cover the whole MAPE-K loop and thereby implement a complete
autonomic manager.

4.3 Classification of CEP Operators

One underlying purpose of AGeCEP is to abstract queries and operators while expressing
any information relevant to their management. To achieve this goal, this section identifies
a set of criteria related to operator management and presents a novel classification of CEP
query operators focused on their reconfiguration capabilities.

This classification is at the core of AGeCEP approach to query reconfigurations. As it
will be discussed in Section 4.4, AGeCEP rewriting rules are applicable to virtually any
set of properly classified CEP operators.
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Figure 4.1: AGeCEP classification of operators.
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Figure 4.2: Operator types - examples.

Figure 4.1 presents an overview of the criteria on which the operators are classified.
Each criterion is detailed in the subsequent subsections.

4.3.1 Operator Type

The type criterion classifies operators according to the number of input and output
streams. There are four different categories in this criterion, illustrated in Figure 4.2:

• Processing : the operator has one input and one output stream only. These operators
can filter events from the input stream, transform them, or both.

• Merge: the operator has two or more input streams, which are processed together
and merged into one output stream.

• Split : the operator has one input stream, which is processed and split into two or
more output streams.

• Merge-Split : the operator has more than one input stream and more than one output
stream.

Merge operators are sub-classified according to the type of merge they execute:

• Union: input events are output as they arrive, with no ordering guarantees.

• Sorted union: input events are output sorted based on a specified set of attributes.

• Custom: a customized function defines how the input streams are merged.
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Finally, split operators are also characterized based on the type of split they perform:

• Random: input events are sent to a randomly selected output stream.

• Attribute: the output stream is selected based on the values of a specified set of
attributes.

• Query : input events are split according to the query from which they come. This
can be considered as a special type of attribute split in which the attribute under
consideration is the query id of the incoming event.

• Custom: a customized function defines how the input events are split.

4.3.2 Sharing

The sharing criterion refers to the ability of a single runtime instance to be shared by
two or more occurrences of an operator. This characteristic is especially important for
multi-query optimization, in which the results of common query subgraphs are reused
among queries.

This criterion is essentially determined by the operator implementation. An operator
is non-shareable if one runtime instance must be created for each operator occurrence.
On the other hand, an operator is shareable if a single runtime instance can implement
more than one occurrence. In this case, three sharing strategies are identified:

• Processing : one operator instance is shared among occurrences that execute the
exact same processing, but using different input streams as sources.

• Source: one operator instance is shared among occurrences that execute similar
processing using the same input streams as sources.

• Processing+Source: one operator instance is shared among occurrences that execute
the same processing on the exact same input streams.

Figure 4.3a informally illustrates an example of a processing shareable operator. In this
case, a single instance can be used to process both input streams sa and sb, as represented
in the right-hand part of the figure. This sharing is possible because the same filter (loc = 1

or 2) is applied to both streams. Moreover, note that the operator implementation must
keep track of the event sources to send the results to the correct output stream. This
type of sharing is usually applied when an operator instance consumes a lot of memory,
and it is therefore important to create as few instances as possible.

In the example from Figure 4.3b, the filter operator is source shareable. In this case,
both filter occurrences process the same input stream sa and have predicates over the
attribute loc. The resulting filter instance implements both predicates and maintains the
outputs of each original operator. This type of sharing is applied when it is more efficient
to implement multiple processing logics as a single operation than it is to implement these
logics independently. For instance, the predicate indexing technique presented by Madden
et al. [109] enables source shareable filters.



CHAPTER 4. AGECEP - CONCEPTS 63

...

Filter
loc=1 or 2

Filter
loc=1 or 2

Op2

Op1

Filter
loc=1 or 2

Op2

...
Op1

sa

sb

sa’

sb’

sa

sb

sa’

sb’

(a) Processing sharing.

Filter
loc=1 or 2 

loc> 3
...

Filter
loc=1 or 2

Filter
loc>3

...
Op2

Op1

Op2

Op1
sa sa’

sa sb’

sa

sa’

sb’

(b) Source sharing.

Filter
loc=1 or 2

...

Filter
loc=1 or 2

Filter
loc=1 or 2

...

Op2

Op1

Op2

Op1
sa sa’

sa sa’

sa

sa’

sa’

(c) Processing+Source sharing.

Figure 4.3: Sharing strategies.

Finally, in Figure 4.3c the filter operator is assumed to be processing+source shareable.
In this example, the exact same data processing is executed on the same input stream,
and therefore only a single instance is necessary. However, the operator must duplicate all
output events and send them to all original output streams. This type of sharing enables
savings in both memory and CPU consumption and is the most commonly used by CEP
systems.

In addition to their sharing strategy, shareable operators can also be categorized ac-
cording to their multi-tenancy support:

• Multitenant-aware: the operator can be shared by queries from different tenants.

• Non-multitenant-aware: the operator can be shared only among queries from the
same tenant.

This criterion is important in the CEPaaS scenario because the system is used by
many customers at the same time. In this case, a multitenant-aware operator needs
to guarantee that customer-related state is kept isolated and that its implementation is
independent of customer-specific data. If these conditions are satisfied, the operator can
be shared among queries from different tenants according to the sharing strategy criterion.
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4.3.3 Duplication

A common strategy used to increase operator throughput is to create more than one
instance of the operator, assign them to different servers (or cores), and split the input
events among these instances. This strategy is illustrated in Figure 4.4.

Because of the prevalence of this strategy, the proposed classification contains a du-
plicable criterion, which is true when the operator can be duplicated and the processing
load distributed according to the described strategy. Moreover, when an operator is du-
plicable, two other aspects must be considered: the required split type, and the required
merge type. These two criteria determine the type of split (merge) operator that precedes
(succeeds) the duplicated operator. The possible split (merge) types are the ones defined
in Section 4.3.1.

The required split and required merge types are ultimately defined by the duplicated
operator implementation. Generally speaking, stateless operators can be duplicated and
accept random splits because each event is processed in isolation. Conversely, stateful
operators usually require attribute splits because they process together events with similar
characteristics (same attribute values). The query split is a less common strategy that is
used mostly by processing shareable operators that are also duplicable.

Moreover, note that operators requiring random splits can actually be preceded by any
type of split. In this sense, a random split is considered weaker than the others because
it imposes fewer constraints on how the split should be done.

Finally, note that a sorted union merge type is needed in scenarios in which the output
stream must be kept ordered after duplication. For example, in Figure 4.4, there is no
guarantee that the events will reach the merge operator om in the same order they reached
the split os. If order needs to be maintained, then the operator om must be a sorted union.

4.3.4 Combination

The combinable criterion is true when two or more consecutive occurrences of an operator
o can be combined into a single operator oc, whose effect is equivalent to applying all
the combined operators in any order. Figure 4.5 illustrates this criterion applied to a
filter operator. It is clear that two consecutive filters using different predicates can be
combined into a single filter with a new predicate defined as the conjunction of the original
predicates.

In most cases, the combined operators oi and the equivalent one oc have the same
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implementation. In other cases, oc is different. For example, two binary joins may be
combined as a multiple join operator, which usually has a different implementation than
the binary operator. Hence, the implementer of a combinable operator o has the respon-
sibility to provide:

• the implementation of operator oc resulting from the combination of o instances.

• a function that, given the parameters of successive instances of o, returns the pa-
rameters of the equivalent combined operator oc.

This criterion is especially useful for SQO, in which operators can be combined to
reduce the number of operators in a query.

4.3.5 Behaviour

This category groups the characteristics of an operator related to its functional behaviour.
More specifically, operators are classified according to three criteria:

• Complexity : refers to the computational complexity of an operator as a function of
the size of the input streams.

• State Management : indicates whether the operator is stateless or stateful. A state-
less operator processes each event in isolation, whereas a stateful one maintains
internal state that is regularly updated with the arrival of new events.

• Selectivity : refers to the relation between the number of output and input events.
An operator selectivity less than one means that the number of output events is less
than the number of input events, whereas a selectivity greater than one implies that
the number of output events is larger than the number of input events.

4.3.6 Discussion

The classification presented in this section has been created based on an extensive litera-
ture review of query lifecycle management research. It focuses on intrinsic reconfiguration
capabilities of query operators that are crucial to establish how they can be reconfigured.
As demonstrated in Section 5.3, these properties enable the expression of a myriad of
different procedures in the context of CEP systems.

Nevertheless, it is expected that not all properties required by current and future
systems are expressed in this classification. For this reason, the classification can be easily
extended with other criteria as needed. In addition, extrinsic operator properties, such
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as runtime information, are not part of the classification because they are too numerous
and tightly coupled to the management procedures that use them. Section 4.4.1 discusses
how new criteria and attributes are handled in AGeCEP.

4.4 Representation of Queries and Reconfigurations

AGeCEP provides graph-based models to represent two fundamental aspects of dynamic
CEP systems: the system state, which is primarily defined by the running queries; and
possible reconfigurations of this state, given by a set of reconfiguration actions. The
following subsections detail both models.

4.4.1 Query Representation Using ADAGs

In AGeCEP, each user-defined query q is represented by an attributed directed acyclic
graph G. Because the graph is attributed, the vertices and edges are augmented with a
set of attributes that qualify them. Formally, such an attributed graph can be specified
by a triple (V,E,ATT ), where:

• the vertices V represent the query elements,

• the edges E represent event streams flowing from one element to another,

• and ATT is a family of attribute sets indexed by V ∪ E.

Formally, each set of the family ATT is defined as a sequence of triples (N,L, T ), where
N , L, and T are the attribute name, value, and type (i.e., domain) respectively.

To represent the types of elements and interactions that may be involved in a CEP
system, AGeCEP also defines stereotypes for the vertices and edges of a query graph.
Each stereotype specifies a set of attributes that are common to elements of that specific
stereotype.

Vertex Attributes

The vertices from a query graph G = (V,E,ATT ) can represent event producers, event
consumers, or query operators, denoted as Vp, Vc and Vo respectively. Vp, Vc and Vo specify
a partition of V , i.e., all sets are disjoint subsets of V , and their union is V .

Query operators all belong to the same stereotype and therefore share the same list of
attributes depicted in Table 4.1. The nature of these attributes is directly related to the
properties considered relevant for defining self-management policies, which were identified
in the classification presented in Section 4.3. As mentioned, this classification is extensible
and new criteria can be added as needed. In this case, the new criteria translate directly
to new attributes, and the possible values for the criteria correspond to the attributes
domain.

Event producers and consumers also define their own stereotypes, which contain
the first five attributes of the operator stereotype: id, impl, params, inDegree, and
outDegree. Event producers (consumers) necessarily have an inDegree (outDegree)
equal to 0.



CHAPTER 4. AGECEP - CONCEPTS 67

Name Type Description

id String a unique identifier
impl String the operator implementation name

params List of Strings the operator parameters
inDegree N the number of incoming edges
outDegree N the number of outgoing edges

type {“processing”, “merge”, “split”, “merge-split”} operator type
mergeType {“union”, “sorted”, “custom”, “N/A”} if type =“merge”, the merge type
splitType {“random”, “attribute”, “query”, “custom”, “N/A”} if type =“split”, the split type

shareable Boolean Is the operator shareable?
shStrategy {“processing”, “source”, “proc+source”, “N/A”} if shareable, the sharing strategy
multitenant Boolean and the multitenant awareness

combinable Boolean Is the operator combinable?
combImpl String if combinable, the combined operator oc’s impl. name
combParam fun: List of List of strings → List of strings and oc’s parameters function

duplicable Boolean Is the operator duplicable?
reqMerge {“union”, “sorted”, “custom”, “N/A”} if duplicable, the succeeding mergeType
reqSplit {“random”, “attribute”, “query”, “custom”, “N/A” } and the preceding splitType

stateful Boolean Is the operator stateful?
selectivity {“1”, “< 1”, “> 1” } the operator selectivity
complexity {“logn”, “n_logn”, “n”, “n2”, “exp” } the operator complexity

Table 4.1: Attributes of the vertex stereotype “operator”.

Name Type Description

id String a unique identifier
sources the power set of Vp producers of events flowing through the edge
queries List of Strings the set of queries that share the edge
attrs List of Strings name of attributes according to which the events in the edge are grouped

Table 4.2: Edge attributes.

Edge Attributes

AGeCEP uses a single stereotype for edges. The attributes of this stereotype are described
in Table 4.2. Note that except for id, all edge attributes can be inferred from the graph
structure and vertex attributes. Similarly, the inDegree and outDegree of a vertex can
also be inferred from the graph. Nevertheless, they are maintained as attributes to simplify
the definition and implementation of reconfiguration actions.

Furthermore, it should be emphasized that neither vertex nor edge attributes are
closed sets and can be extended whenever necessary. In particular, extrinsic properties
such as operator placement and runtime information can also be modelled as vertex and
edge attributes.

Example: AGeCEP Query Representation

Figure 4.6 shows two queries q1 and q2 using the AGeCEP representation. To simplify
the figure, some attributes have been omitted; only attributes relevant to the experiments
in Section 5.4 are included. The notation 〈〈op〉〉 specifies that the vertex is of the op-
erator stereotype, whereas 〈〈prod〉〉 and 〈〈cons〉〉 qualify an event producer or an event
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<<op>>

id=“j1”

impl=“json_parser”

type=“processing”

combinable=“false”

duplicable=“true”

reqSplit=“random”

reqMerge=“union”

<<prod>>

id=“p1”

impl=“kafka”

<<cons>>

id=“c1”

impl=“service”

<<op>>

id=“f1”

impl=“filter”

type=“processing”

combinable=“true”

duplicable=“true”

reqSplit=“random”

reqMerge=“union”

<<op>>

id=“f2”

impl=“filter”

type=“processing”

combinable=“true”

duplicable=“true”

reqSplit=“random”

reqMerge=“union”

<<op>>

id=“xml1”

impl=“xml_conv”

type=“processing”

combinable=“false”

duplicable=“false”

id=“e1” 

sources={“p1”}

queries={“q1”}

attrs=∅

id=“e2” 

sources={“p1”}

queries={“q1”}

attrs=∅

id=“e3” 

sources={“p1”}

queries={“q1”}

attrs=∅

id=“e4” 

sources={“p1”}

queries={“q1”}

attrs=∅

id=“e5” 

sources={“p1”}

queries={“q1”}

attrs=∅

(a) Query q1 - Sequential version.

<<op>>

id=“j1”

impl=“json_parser”

type=“processing”

combinable=“false”

duplicable=“true”

reqSplit=“random”

reqMerge=“union”

<<prod>>

id=“p1”

impl=“kafka”
<<cons>>

id=“c1”

impl=“service”

<<op>>

id=“f12_1”

impl=“filter”

type=“processing”

combinable=“true”

duplicable=“true”

reqSplit=“random”

reqMerge=“union”

<<op>>

id=“f12_2”

impl=“filter”

type=“processing”

combinable=“true”

duplicable=“true”

reqSplit=“random”

reqMerge=“union”

<<op>>

id=“xml1”

impl=“xml_conv”

type=“merge”

mergeType=“custom”

combinable=“false”

duplicable=“false”
<<prod>>

id=“p2”

impl=“kafka”

<<op>>

id=“fSplit”

impl=“split_random”

type=“split”

splitType=“random”

id=“e1” 

sources={“p1”}

queries={“q2”}

attrs=∅

id=“e2” 

sources={“p2”}

queries={“q2”}

attrs=∅

id=“e3” 

sources={“p1”, “p2”}

queries={“q2”}

attrs=∅

id=“e4” 

sources={“p1”, “p2”}

queries={“q2”}

attrs=∅

id=“e5” 

sources={“p1”, “p2”}

queries={“q2”}

attrs=∅

id=“e6” 

sources={“p1”, “p2”}

queries={“q2”}

attrs=∅

id=“e7” 

sources={“p1”, “p2”}

queries={“q2”}

attrs=∅

id=“e8” 

sources={“p1”, “p2”}

queries={“q2”}

attrs=∅

(b) Query q2 - Duplicated filtering.

Figure 4.6: JSON to XML conversion - Storm queries.

consumer. These queries have been extracted from the Powersmiths’ WOW system [127],
a sustainability management platform that uses live measurements of buildings to sup-
port energy management and education. In WOW, queries are implemented in Apache
Storm [18] and are used to process readings coming from building sensors managed by
the platform. The conversion from Storm queries to AGeCEP is straightforward because
Storm also represents queries using DAGs.

Query q1 in Figure 4.6a is used to convert sensor readings from the JSON format
to the native WOW format (XML). The query is implemented as a sequence of four
operators: first, operator j1 converts the JSON reading to a Java object. Next, filters f1
and f2 remove invalid readings from the event stream. Finally, operator xml1 converts
the reading to an XML document and forwards it to the appropriate service.

Query q2 in Figure 4.6b is used for the same purpose, but has a different structure.
First, two producers are attached to the JSON parser operator j1. Following, j1 connects
to a split operator, which distributes the incoming events randomly between two instances
of operator f12. Each instance of f12 executes a processing (filtering) logic equivalent to
the sequential application of f1 and f2. In particular, for this graph, the fact that the
operators process events coming from both producers p1 and p2 is reflected in the sources
attributes of edges e3 to e8.

To provide further illustration of edge attributes, additional examples are shown in
Figure 4.7. In Figure 4.7a, the attribute sources of edge e1 indicates that s1 processes
events coming from producers p1 and p2. The attribute attrs of edges e2 and e3, on
the other hand, shows that operator s1 splits the input events according to the eventId
attribute.

Moreover, in the scenario depicted in Figure 4.7b, the queries attribute of edge e1
indicates that p1 is an event producer shared between queries q1 and q2. Operator f1, in
its turn, is a shareable operator that produces a separate output stream for each query.
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<<op>>

id=“s1”

impl=“attrSplit”

params={“eventId”}

inDegree=1

outDegree=2

type=“split” 

splitType=“attribute”

id=“e1”

sources={“p1”, “p2”}

queries={“q1”}

attrs=∅

id=“e2”

sources={“p1”, “p2”}

queries={“q1”}

attrs={“eventId”}

id=“e3”

sources={“p1”, “p2”}

queries={“q1”}

attrs={“eventId”}

(a) attrs attribute.

<<op>>

id=“f1”

impl=“filter” 

params={“...”}

type=“processing”

shareable=“true”

shStrategy=“source”

<<prod>>

id=“p1”

impl=“Twitter”

id=“e1”

sources={“p1”}

queries={“q1”, “q2”}

attrs=∅

id=“e2”

sources={“p1”}

queries={“q1”}

attrs=∅

id=“e3” 

sources={“p1”}

queries={“q2”}

attrs=∅

(b) queries attribute.

Figure 4.7: Additional examples of edge attributes.

Example: Converting from Declarative Languages

Figure 4.8 exemplifies how queries written in the CQL language [20] are converted to the
ADAG format used in AGeCEP. The original queries q1 and q2 are shown in Figure 4.8a.
As it is common in declarative query languages, CQL queries are transformed into a
graph-based execution plan before being actually run. Figure 4.8b depicts the resulting
plan for q1 and q2. Both queries were processed together and transformed into a single
plan.

From this plan, the conversion to the AGeCEP representation is direct: operators
and queues are mapped to vertices and edges respectively. The resulting ADAG is shown
in Figure 4.8c. Note that the graph expresses most information presented in the query
plan, including the fact that the seq_window operator can be shared among queries that
process the same input sources.

Example: Converting from Pattern-Based Languages

Figure 4.9 shows the conversion from a Cayuga Event Language (CEL) [44] query to AGe-
CEP. CEL is a pattern-based language, even though it uses keywords that are similar to
SQL. For instance, CEL applies the operatorNEXT to search for a sequence of two events
that satisfy a stated condition. This construct is characteristic of this language group.
Other pattern-based operators, such as iteration (operator FOLD) and parameterization,
are also part of CEL.

In Cayuga, queries are transformed into a non-deterministic finite state automaton to
be executed. Figure 4.9a shows a query q and its corresponding automaton. Transitions
between states of this automaton are triggered when the conditions in the edges are satis-
fied. Moreover, when a transition is triggered, a function is executed to map events from
one schema to another. Even though this automaton can be represented as a graph, its
semantic is different from AGeCEP queries. For instance, the automaton states (vertices)
are associated with input streams, whereas in AGeCEP vertices represent operators.

Hong et al. [82] presented a procedure to convert Cayuga automata to graph-based
execution plans. Basically, they introduced two new query operators that implement the
NEXT and FOLD logics and a procedure to convert edge transitions to a sequence of
a filter followed by a projection. The execution plan for the example query is depicted
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Q1: Select B, max(A) 

    From S1 [Rows 50,000]

    Group By B

Q2: Select Istream(*)

    From S1 [Rows 40,000],

         S2 [Range 600 Seconds]

    Where S1.A = S2.A

(a) CQL queries [20]. (b) Generated execution plan [20].

<<op>>

id=“w1”

impl=“seq_window”

type=“processing”

combinable=“false”

duplicable=“false”

shStrategy=“source”

shareable=“true”

<<prod>>

id=“s1”

<<cons>>

id=“c1”

id=“q1” 

sources={“s1”}

queries={“q1”, “q2”}

attrs=∅

id=“q3” 

sources={“s1”}

queries={“q1”}

attrs=∅

<<prod>>

id=“s2”

<<op>>

id=“w2”

impl=“seq_window”

type=“processing”

combinable=“false”

duplicable=“false”

shStrategy=“source”

shareable=“true”

<<op>>

id=“j1”

impl=“bin_join”

type=“merge”

mergeType=“custom”

combinable=“false”

duplicable=“false”

<<cons>>

id=“c2”

<<op>>

id=“i1”

impl=“i_stream”

type=“processing”

combinable=“false”

duplicable=“false”

<<op>>

id=“a1”

impl=“aggregate”

type=“processing”

combinable=“false”

duplicable=“false”

id=“q2” 

sources={“s2”}

queries={“q2”}

attrs=∅

id=“q5” 

sources={“s2”}

queries={“q2”}

attrs=∅

id=“q7” 

sources={“s1”, “s2”}

queries={“q2”}

attrs=∅

id=“q8” 

sources={“s1”, “s2”}

queries={“q2”}

attrs=∅

id=“q6” 

sources={“s1”}

queries={“q1”}

attrs=∅

id=“q4” 

sources={“s1”}

queries={“q2”}

attrs=∅

(c) AGeCEP representation.

Figure 4.8: Conversion from a CQL query to AGeCEP.
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Q: Select Price_1 As IBMPrice1, Price as IBMPrice2
   From (Filter{Name = 'IBM'  And Price > 83}(Stock))
           NEXT{$2.Price > $1.Price}
        (Filter{Name = 'IBM'}(Stock))

Name='IBM' && Price > 83

Name=‘IBM'

$2.Price > $1.Price

Price_1 -> IBMPrice1

Price -> IBMPrice2
Q0

Q1 Q2

(a) Cayuga query [44].

σ1

Stock

;θ

σ2

π1

(b) Cayuga execution plan.

<<op>>
id=“f1”

impl=“filter”
params=“Name=‘IBM’ 

&& Price > 83”
type=“processing”
combinable=“true”
duplicable=“true”

<<prod>>
id=“stock”

id=“e1” 
sources={“stock”}
queries={“q1”}
attrs=∅

<<op>>
id=“n1”

impl=“next”
type=“merge”

mergeType=“custom”
combinable=“false”
duplicable=“false”

id=“e4”
sources={“stock”}
queries={“q1”}
attrs=∅

id=“e3” 
sources={“stock”}
queries={“q1”}
attrs=∅

id=“e2” 
sources={“stock”}
queries={“q1”}
attrs=∅

<<op>>
id=“f2”

impl=“filter”
params=“$2.Price > 

$1.Price”
type=“processing”
combinable=“true”
duplicable=“true”

<<op>>
id=“p1”

impl=“projection”
params=“Price_1, Price”

type=“processing”
combinable=“true”
duplicable=“true”

<<cons>>
id=“c2”

id=“e5” 
sources={“stock”}
queries={“q1”}
attrs=∅

id=“e6” 
sources={“stock”}
queries={“q1”}
attrs=∅

(c) AGeCEP representation.

Figure 4.9: Conversion from a Cayuga query to AGeCEP.

in Figure 4.9b. Once transformed to a graph-based execution plan, the conversion to
AGeCEP is direct and results in the ADAG shown in Figure 4.9c.

Discussion

The AGeCEP query representation has been designed to be as generic as possible. Most
queries written in imperative and declarative languages can be converted directly to an
AGeCEP ADAG. Pattern-based languages, on the other hand, require additional proce-
dures for conversion, such as the one presented by Hong et al. [82] and demonstrated in the
previous example. These additional procedures are needed because most pattern-based
languages are executed as automata that do not follow AGeCEP graph-based model. In
other words, there is a semantic mismatch between the models that must be solved before
using AGeCEP to represent pattern-based queries .

Nevertheless, such mismatch should be solvable in most cases. For instance, Hong et
al. [82] mentioned that the Sase language [150] could be transformed to a graph-based
execution plan using a procedure similar to that used to transform CEL queries. Similar
procedures could also be applied to TESLA [40]. The development of such procedures,
however, is outside the scope of this research and may need to be analyzed case by case.

4.4.2 Query Reconfiguration Using Graph Rewriting

In AGeCEP, query reconfigurations are formally expressed in a rule-oriented fashion using
graph rewriting rules.
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m

mh

L R

G m (G)
h

h hm(push-out)

Figure 4.10: Construction of a push-out: application of a graph rewriting rule.

Various ways of specifying graph rewriting rules have been developed in the past [132].
This research uses the graphical representation and underlying formalism of the AGG2

tool [143], a well-established graph transformation environment [136]. AGG is based on
the Single Push-Out (SPO) approach [45, 104].

Graph Rewriting Rules

The SPO approach is an algebraic technique for graph rewriting based on the category
theory [22], where a rule r is specified by L m−→ R, where:

• L and R are attributed graphs called the left-hand and right-hand sides of r.

• m is a partial morphism from L to R, i.e., a morphism from a sub-graph Lm of L
to R. This morphism is not necessarily injective.

A rule r : L m−→ R is applicable to a graph G if G contains an image of L, i.e., if there is
a homomorphism h from L to G. Such homomorphism is denoted as h : L→ G. Also, the
notation h(Gs) is used to denote the image of some subgraph Gs of G by the morphism
h. The application of r to G with regard to h consists of constructing the push-out [22] of
m and h, as illustrated in Figure 4.10. The result of this application is the graph mh(G).

Informally, the application of r to G with regard to h consists of replacing the image
of L in G by an image of R. This can be understood as a three step process:

1. erasing the image by h of the part of L that is not in m’s domain, h(L\Lm).

2. adding an isomorphic copy of the part of R that is not in the image of m (a copy of
R\m(Lm)).

3. if m is not injective, i.e., if some vertices vi of L have the same image by m, then
the images of these vi by h are merged.

For the rest of this thesis, morphisms m of the introduced rules may not be explicitly
shown. Such morphisms are implicitly defined as the identity mapping between the largest
common sub-graphs of L and R, where vertices and edges are uniquely identified by their
id.

The application of a rule r to a graph G is illustrated in Figure 4.11. The rule r and
its corresponding left- and right-hand sides (L,R) are depicted in Figure 4.11a. In this

2http://user.cs.tu-berlin.de/~gragra/agg/index.html
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id=“2”

L R

id=“1”

id=“3”

id=“4”

id=id1 id=id4
id=“e1”

id=“e2”

id=“e3”

(a) Graph rewriting rule r.

id=“2”

id=“1”

id=“3”

id=“4”

... ...

(b) Target graph G.

id=“2”

id=“1”

id=“3”

id=“4”

... ...

(c) Homomorphism h : L→ G.

id=“2”

id=“1”

id=“3”

id=“4”

... ...

(d) Erasing h(L\Lm).

id=“1” id=“4”

... ...

(e) Adding an isomorphic
copy of (R\m(Lm)).

Figure 4.11: Illustration of a graph rewriting rule r and its application.

rule, the morphism m from L to R is implicit and defined by the identity mapping, as
described in the previous paragraph. The highlighted nodes in L and R correspond to
Lm and m(Lm) respectively.

The target graph is presented in Figure 4.11b, and the steps required to apply the rule
are shown in Figures 4.11c to 4.11e. First, a homomorphism h : L → G is found. Next,
h(L\Lm) is removed from G, followed by the addition of an isomorphic copy of R\m(Lm).
The rule has the effect of suppressing the nodes with id equal to 2 and 3 and connecting
directly the nodes with id 1 and 4.

Rewriting Rules and Attributes in AGeCEP

Vertices and edges appearing on the left- and right-hand side of AGeCEP rules are anal-
ogous to those appearing in queries: operators, event producers or consumers, and event
streams. Hence, they can also be classified according to the stereotypes described in
Section 4.4.1.

One of the main differences is that attributes appearing in a rule may be defined as:

• fixed value. Fixing an attribute value in L means that the corresponding attribute
in the image by h should have the same value. A fixed value is either a parameter
of the rule or a constant written between quotes.

• non-fixed value. If an attribute value is not fixed in L, the corresponding attribute
in the image by h can have any value. Non-fixed valued attributes are omitted in
the rule definition.

• variable. If an attribute is associated with a variable in L, the variable is bound to
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the value of the corresponding attribute in the image by h. If the variable appears
more than once in L, all its occurrences must bind to the same value; otherwise, the
rule is not applicable. A variable that appears in L can also appear in R. In this
case, the variable in R is replaced with its bound value.

• operations. Attributes may be associated with simple operations in R (typically
increment or decrement of values). These operations are applied along with the
rule.

Mutators: Extending Rewriting Rules with Actions on the Real System

Mutators were first introduced as a lightweight method for handling attribute changes [48].
They were described as arbitrary algorithms updating the value(s) of none, one or some at-
tributes. Any rewriting rule could be enriched with a set of mutators which were executed
at the end of its application phase.

Later on, a new kind of mutator was introduced [46] to describe actions on real systems,
typically through method or API calls. Such mutators are called external as opposed to
internal mutators that act only on the model.

In AGeCEP, graph rewriting rules are specified as a couple (L
m−→ R,ACTS), each

rule being enriched with a set ACTS of external mutators µ that enforce model changes
on the real system through API calls.

Correctness of Rewriting Rules in AGeCEP

In dynamic systems, a crucial undesirable implication is a potential loss of correctness
resulting from system adaptations.

In AGeCEP, the correctness of a reconfiguration is linked to the reconfiguration ca-
pabilities of the affected operators: a rule describing a reconfiguration should be applied
only to operators with the proper capabilities (e.g., duplication should be applied to du-
plicable operators). This is guaranteed by fixing the value of the corresponding attributes
on the left-hand side of a rule. Therefore, a properly classified operator can be safely
reconfigured using the defined rules.

Examples

Figure 4.12 illustrates a graph-rewriting rule Pcomb whose goal is to combine a sequence
of two query operators into a single new operator. This rule is part of the operator
combination policy, which will be detailed in Section 5.3.1.

The left-hand side of the rule encodes all necessary conditions that operators must
satisfy to enable the combination:

1. the output of o1 is exactly the input of o2 i.e.:

(a) they are directly connected, as represented by the edge (o1, o2), and

(b) o1(outDegree) = “1” and o2(inDegree) = “1”;

2. they are combinable with each other, i.e.:
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RL

<<op>>

id=id1

impl=op_impl

params=p1

combImpl=opc_impl

combParam=“f”

inDegree=in

outDegree=“1”

combinable=“true”

type=“processing”

<<op>>

id=id2

impl=op_impl

params=p2

combImpl=opc_impl

compParam=“f”

inDegree=“1”

outDegree=out

combinable=“true”

type=“processing”

o1 o2

<<op>>

id=op_idc

impl=opc_impl

params=f(p1, p2)

inDegree=in

outDegree=out

type=“processing”

oco  ,o  :1 2

Figure 4.12: Combination of two combinable successive operators Pcomb.

<<op>>

id=“j1”

name=“json_parser”

type=“processing”

combinable=“false”

duplicable=“true”

requiredSplit=“random”

requiredMerge=“union”

<<prod>>

id=“p1”

impl=“kafka”

<<cons>>

id=“c1”

impl=“service”

<<op>>

id=“f12”

name=“filter”

type=“processing”

combinable=“true”

duplicable=“true”

requiredSplit=“random”

requiredMerge=“union”

<<op>>

id=“xml1”

name=“xml_conv”

type=“processing”

combinable=“false”

duplicable=“false”

id=“e1” 

sources={“p1”}

queries={“q1”}

attrs=∅

id=“e2” 

sources={“p1”}

queries={“q1”}

attrs=∅

id=“e4” 

sources={“p1”}

queries={“q1”}

attrs=∅

id=“e5” 

sources={“p1”}

queries={“q1”}

attrs=∅

Figure 4.13: Query q1 - optimized version.

(a) they are combinable, that is, o1(combinable) =“true” and o2(combinable) =“true”,
and

(b) they have the same implementation, as represented by the attribute impl of
both operators o1 and o2 in L being associated to the same variable op_impl.

The right-hand side of the rule describes the result of a combination. It consists of
deploying a new operator whose impl is determined by the combImpl attribute of the
combined operators, and whose parameters are calculated using the function combParam
applied to o1(params) and o2(params). The rule morphism is not injective and associates
both o1 and o2 with oc. This means that oc is not, strictly speaking, a new operator, but
rather the result of merging o1 and o2. As a result, oc has the inputs of o1 and outputs of
o2.

The result of applying this rule to query q1 from Figure 4.6a is shown in Figure 4.13.

4.5 Summary

This chapter has introduced the concepts of theAttributedGraph Rewriting forComplex
Event Processing Management (AGeCEP) formalism. This formalism was developed to
overcome the fragmentation of current CEP research and development landscape. AGe-
CEP proposes a language-agnostic abstraction of CEP queries and a formalism to ma-
nipulate them, enabling definition of self-management policies that can be integrated into
potentially any CEP system.

AGeCEP represents CEP queries using attributed directed acyclic graphs (ADAG),
a powerful abstract representation to which different query definition languages can be
converted. In AGeCEP, query vertices and edges have a standardized set of attributes that
encode information relevant to self-management. These standard attributes are based on
a novel classification of CEP operators that focuses on their reconfiguration capabilities
and also constitutes a major contribution of this research.
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Self-management policies may ultimately trigger the execution of system reconfig-
urations. AGeCEP formalizes reconfigurations of queries using graph rewriting rules.
Notably, a graph rewriting rule formally specifies both a reconfiguration and the con-
text in which it can be applied, enabling specification of consistent reconfigurations that
guarantee internal self-protection. Moreover, AGeCEP graph rewriting rules are enriched
with mutators, which associate API calls with the application of a rule and guarantees
that model changes are also applied in the real system.

The next chapter focuses on practical aspects of using AGeCEP and evaluates it
regarding both its expressiveness and performance.



Chapter 5

Attributed Graph Rewriting for CEP
Management - Evaluation

This chapter presents a thorough evaluation of the AGeCEP formalism. First, Section 5.1
describes the design of an autonomic manager based on AGeCEP representations of
queries and reconfiguration actions. Next, Sections 5.2 and 5.3 assess AGeCEP expres-
siveness by using it to express generic operator placement procedures and a selected set
of self-management policies. Finally, Section 5.4 evaluates the performance of rewriting
rules applied to reconfigure CEP queries. By considering both expressiveness and perfor-
mance, it is shown that AGeCEP can indeed be used as formal foundation of the CEPaaS
system.

5.1 AGeCEP-Based Autonomic Manager

This section presents the design of an AGeCEP -based autonomic manager. The focus is
not on implementation details, but on how existing approaches can be integrated with
AGeCEP to tackle the whole MAPE-K1 loop and thus implement a complete autonomic
manager for CEP systems.

The presented design uses FRAMESELF [7], a framework that aims to enable im-
plementation of autonomic managers that rely on the MAPE-K loop. In particular,
FRAMESELF provides meta-models and mechanisms for implementing inference rules
and communication between modules.

5.1.1 Runtime Environment Representation

Modelling the runtime environment is an important aspect of CEP systems that is mostly
determined by the operator placement strategy used. Previous research has traditionally
represented queries and the runtime environment as graphs [3, 97]. For the AGeCEP -
based autonomic manager presented in this section, a similar approach has been used:
AGeCEP queries are extended with attributes that are relevant for placement decisions,

1Monitor, Analyze, Plan, Execute - Knowledge
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<<server>>

id=s1

ram=4096

cpus=2

ip=“192.168.0.1”

———

mem_usage=2512

load = 0.34

<<server>>

id=s2

ram=8192

cpus=4

ip=“192.168.0.2”

———

mem_usage=7504

load = 0.12

<<server>>

id=s3

ram=8192

cpus=4

ip=“192.168.0.3”

———

mem_usage=5104

load = 0.55

id=“c1”

———

latency=210

id=“c2”

———

latency=128

id=“c3” 

———

latency=97

Figure 5.1: Runtime environment representation.

and the runtime environment is modelled as an (undirected, potentially cyclic) attributed
graph.

Figure 5.1 shows an attributed graph that represents a runtime environment composed
of three servers. In the graph, vertices and edges represent computational resources and
logical connections between them respectively. The vertices contain intrinsic attributes
that model server characteristics such as the number of CPUs, total RAM, and a unique
IP address. Vertices and edges are also augmented with attributes representing runtime
information such as actual CPU load and memory usage. These attributes are important
for decision making and must be updated when the corresponding monitoring information
is available.

By using this environment representation and the AGeCEP query model, the place-
ment of an operator into a server can be represented using two approaches: as an operator
attribute whose value contains a unique server identifier, or as an edge connecting the op-
erator to the server. For the remainder of this thesis, the first approach is assumed.
Operator placement procedures are further discussed in Section 5.2.

5.1.2 MAPE Modules

The following subsections discuss how the AGeCEP formalism is used by each module of
the MAPE-K loop in the AGeCEP -based autonomic manager.

Monitor: Receiving Events

To implement the monitor module, it is assumed that the runtime environment and user
queries are instrumented to publish monitoring events to the autonomic manager. As an
alternative, a specialized monitoring module can poll the system for monitoring data and
forward them to the manager on behalf of system components. Moreover, it is expected
that events representing user interaction with the system, such as creation of new queries,
will also be made available to the manager.

Once the manager receives monitoring events, it updates the query and environment
models that are stored in the KB and continues to execute the MAPE-K loop. Note that
more advanced architectures with multiple distributed managers can also be implemented,
but are outside the scope of this research.
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Type Event Description

Runtime QueueSize(o, n) Queue from operator o has size n
CPULoad(s, l) CPU load from server s has value l

User NewQuery(q) New query q was created
NewQueries(Q) Set of queries Q was created

Manager Duplicated(o, q) Operator o from query q was duplicated

Table 5.1: Monitored events.

Table 5.1 shows common monitored events used by CEP systems. They are coarsely
classified into three groups: events generated by the runtime environment, including user
queries; events initiated by the user ; and events generated by the autonomic manager.

Note that instead of trying to enumerate all possible events, the table only includes
events used by the self-management policies from Section 5.3. This decision is aligned
with AGeCEP extensible and generic nature: the monitoring data that CEP systems
must provide are tightly linked to the placement procedures and self-management policies
implemented by the autonomic manager. Therefore, defining a fixed set of monitoring
events would restrict the scope of policies that can be implemented. Instead, AGeCEP
allows policies to define the events they need. Analogously to how rule mutators establish
a contract that CEP systems must implement, the events required by a policy define a
contract of events CEP systems must provide.

Monitor, Analyze, and Plan: Inference Rules

Inference rules are central to the monitor, analyze, and plan modules of the MAPE-K
loop. In general, these rules are used to infer new information based on the KB and on
freshly received information.

In the monitor module, the events received by the autonomic manager are processed
by inference rules to infer symptoms. The analysis module uses these symptoms along
with the AGeCEP query and environment models that are stored in the KB to generate
Request for Changes (RFC). Finally, in the plan module, the RFCs and the KB models
are used by another set of rules to create Change Plans (CP).

In the FRAMESELF framework, inference rules are implemented by inference engines
such as Jess [90] and JBoss Drools [89]. This research used JBoss Drools. Symptoms,
RFCs, and CPs are represented as plain Java objects that are exchanged between the
MAPE-K modules.

Execute

The execute module is in charge of carrying out the CPs that it receives. In the AGeCEP -
based autonomic manager, a CP is simply a sequence of reconfiguration actions modelled
by graph rewriting rules that are associated with a set of side-effect mutators. The
execute module enforces each reconfiguration of the CP in two steps: (1) applying the
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graph rewriting rule to update the models; and (2) executing its associated mutators to
update the real system.

In practice, a mutator is an API call that must be implemented by the CEP system be-
ing managed. Accordingly, for the feasibility studies presented in this chapter, a minimal
API has been defined as follows:

• startOperator(o,m): deploys and starts an operator o in server m;

• stopOperator(o): stops and deletes an operator o;

• connect(o1, o2): creates a connection between operators o1 and o2;

• disconnect(o1, o2): removes a connection between operators o1 and o2;

• redirect(o1, o2): redirects all o1 input (output) streams to input (output) o2;

• migrate(o, s1, s2): migrates an operator o from server s1 to server s2.

5.2 Feasibility: Operator Placement

This section discusses placement in the AGeCEP context. As mentioned in Section 2.1.5,
operator placement procedures are used to determine the global initial placement of all
queries, to decide on the placement of a new query or of new operators, or to adjust
the current placement dynamically. In particular, placement can be used by manage-
ment procedures that may require placement decisions (e.g., whenever a new operator is
deployed).

5.2.1 General Principle

Independently of the goal and of the algorithm used, operator placement procedures can
usually be described by a general framework composed of three steps:

1. Metrics from the operators and servers are collected to build a snapshot of the cur-
rent system status. These metrics are usually directly available, for example in the
case of operator queue sizes and server CPU load, but occasionally they need to be
estimated by specialized components that run concurrently with the system. For
instance, in Pietzuch et al. [126], each server communicates with its neighbours to
estimate its coordinates in a latency space. In the case of dynamic placement ad-
justments, these metrics are also used to trigger procedure execution. For example,
in Heinze et al. [70], dynamic adjustment is triggered when an overloaded server is
detected.

2. Using the collected data as input, an algorithm is executed to find the new place-
ment. Because the general operator placement problem is NP-hard [97], these al-
gorithms are usually heuristics that aim to maximize or minimize a utility function
estimated from the collected metrics. For instance, Pietzuch et al. [126] aimed to
minimize network usage, whereas Xing et al. [151] tried to maximize load correlation
among servers.
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3. The results of the algorithm are applied. If a placement has been calculated for new
queries or operators, then they are created in the appropriate servers. Conversely,
if a dynamic adjustment is being performed, then the operators that have changed
allocation are migrated to their new servers.

It is argued here that most operator placement procedures can be expressed using
the AGeCEP formalism and integrated into the AGeCEP -based autonomic manager by
adapting them as follows:

1. The query and runtime environment representations are augmented with attributes
corresponding to the monitored metrics. The metrics are collected using the same
mechanisms as before and are sent to the autonomic manager, which updates the
corresponding attributes upon receipt. In the case of dynamic adjustment proce-
dures, a monitoring inference rule is also created to start the placement procedure
based on the collected metrics.

2. When a placement decision is required, the input data are obtained from the au-
tonomic manager KB, and execution of the placement procedure takes place in the
same way. At this point, the chosen environment representation determines how the
input data is collected. For instance, if placement is represented by edges connecting
operators to servers, then gathering all operators from a server requires traversing
such edges starting from the server vertex. On the other hand, if placement is rep-
resented by operator attributes, then the same goal requires a search through all
operator vertices.

3. Finally, with the newly calculated placement information, the operators are deployed
or migrated through rewriting rules that update the KB and invoke the API calls
startOperator or migrate accordingly.

5.2.2 Examples

This section presents how two different placement procedures can be expressed using
AGeCEP.

Borealis (Xing et al. [151])

In their work, Xing et al. [151] presented heuristic procedures for global and dynamic
adjustment of placements with the goal of minimizing the end-to-end latency of queries.
The general idea of the presented heuristics is that, given an operator o that needs to
be placed, a server must be found with a current workload that is not correlated with
o’s workload. To calculate load correlation, the heuristics build a time series of each
operator’s load based on monitored data. A server load, in turn, is defined as the sum of
all its operators’ loads.

To adapt these heuristics to AGeCEP, the load time series can be maintained as
an attribute of operator vertices. Calculations performed by the heuristics require only
this data. As a result of the algorithms, migration rewriting rules are executed for each
operator that has been selected to move.
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FUGU (Heinze et al. [70])

Heinze et al. [70] presented a dynamic adjustment placement procedure for the FUGU
system. The general idea is to detect overloaded servers and to move operators from them
to underloaded servers. The operators to be moved are selected based on the latency spikes
that their migration will cause; operators with small spikes are moved first.

A server is detected as overloaded when its CPU utilization exceeds a threshold for
x consecutive measurements. This detection can be easily implemented as a monitoring
inference rule. To decide which operators are moved, the latency spike estimation uses
the following operator metrics: load, incoming and outgoing network traffic, state size,
input rate, and processing time per tuple. Note that these metrics can all be obtained
from the query execution engine and stored as attributes of the corresponding operator
vertices in the KB.

After the operators to be moved are selected, their destination is determined based
on a heuristic analogous to the bin-packing problem, in which the server’s available CPU
capacity constitutes the bins and the operators’ loads are the items weight. Once again,
these data are readily available in the KB. Finally, the resulting migrations are enforced
with the aid of rewriting rules.

5.3 Feasibility: Self-Management Policies

This section introduces a selection of self-management policies defined using AGeCEP and
the autonomic manager presented in Section 5.1. For the sake of readability, algorithms
and inference rules are presented as informal descriptions or pseudocode. Appendix A
contains the corresponding inference rules defined in Drools Rule Language [89].

5.3.1 Operator Combination

Description

The operator combination (Comb) policy is directly related to the “combinable” criterion
of the AGeCEP classification. This policy is used to combine sequences of n combinable
operators o1, . . . , on into a single operator oc which has the same effect on the event stream
as the combined sequence. Figure 4.5 shows an example of such a sequence and the result
of applying this policy.

This policy is mostly used in the single-query optimization step and reduces the num-
ber of operators constituting the query, which brings savings in memory consumption. It
can also improve query latency and throughput because the number of operators that are
traversed from event generation to event consumption is reduced.

Realization Using the MAPE-K Loop

Monitor A new query q is submitted by the user, which is signalled by a NewQuery(q)
event. The event is simply forwarded as a NewQuery(q) symptom to the analysis module.
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Algorithm 5.1: CombineAll(q) action, combination of all combinable operator se-
quences in q.
while exists a homomorphism h : Lcomb → q do

apply Pcomb rule to q w.r.t. h;
end

Analysis When a NewQuery(q) symptom is received, the analysis module checks
whether at least one pair of successive operators (o1, o2) are combinable. This is equivalent
to checking whether there is a homomorphism h : Lcomb → q, where Lcomb is the left-hand
side of the graph rewriting rule shown in Figure 4.12. If such a homomorphism exists, a
Combine(q) request for change (RFC) is sent to the plan module (Algorithm A.1).

Plan Upon receipt of a Combine(q) RFC, the CombineAll(q) action is inserted into the
change plan.

Execute The execution of the CombineAll(q) action is described by Algorithm 5.1.
The Pcomb rule is specified in Figure 4.12; its applicability and effect have been described
in Section 4.4.2. This rule operates at the model level only and therefore has no associated
mutator.

5.3.2 Operator Duplication

Description

Operator duplication (Dupl) is a policy used to parallelize an operator execution by cre-
ating multiple instances of the operator and splitting input events among these instances.
As shown in Figure 4.4, the original input stream of an operator o is split by an operator os
such that os(type) = “split”, and the outputs are merged back into a single stream by an
operator om such that om(type) = “merge”. The attributes o(reqSplit) and o(reqMerge)

determine os(splitType) and om(mergeType) respectively.
Dupl can be used to achieve load balancing by distributing the operator instances

over several servers, or to improve query throughput. Generally, query throughput can
be improved when the following conditions are satisfied:

1. the operator processing rate is lower than the incoming event rate.

2. additional resources exist to which extra instances of the operator can be allocated.

However, this policy may also lead to an increase in resource consumption due to the
deployment of supplementary operators.

Realization Using the MAPE-K Loop

Monitor The autonomic manager receives periodic events containing operators perfor-
mance metrics. Based on these data, a monitoring rule might identify an operator as
a bottleneck if it is not outputting events as fast as it is receiving them. Whenever a
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bottleneck is pinpointed, a Bottleneck(o) symptom is sent to the analysis module (Algo-
rithm A.2).

Analysis Whenever a Bottleneck(o) symptom is received, the analysis module checks
whether o is duplicable. If this condition is satisfied, a Duplicate(q, o) RFC is sent to the
plan module (Algorithm A.3).

Plan When planning a Duplicate(q, o) operation, two scenarios must be considered
(Algorithm A.4):

• o has not yet been parallelized, which implies that duplication requires deployment
of a new instance of o and of the appropriate split and merge operators. In this case,
the placement procedure is invoked to determine the place of these new operators
and an InitialDuplication(q, o, ss, so, sm) action is inserted into the change plan,
where ss, so, and sm are the placements determined for the split, the new instance
of o, and the merge operator.

• o has already been parallelized, or more precisely, adequate split and merge operators
have already been deployed. Therefore, duplication consists only of adding a new
operator instance. In this case, the placement so of this new operator is determined
and the AdditionalDuplication(q, o, so) action is added to the change plan.

Execute Depending on the change plan received, two different actions may be executed:
an InitialDuplication(q, o, ss, so, sm) or an AdditionaDuplication(q, o, so) action.

The InitialDuplication(q, o, ss, so, sm) action is described by Algorithm 5.2. Rules
P init1
dupl (id, ss, so, sm), P

init2
dupl (id, ids), and P

init3
dupl (id, idm) used by the algorithm are depicted

in Figure 5.2. Some attributes of o, o1, and o2 are not shown because of space constraints,
but the copies o1 and o2 have the same values as o for all attributes described in Table 4.1,
except for id, inDegree, and outDegree. The algorithm consists of three steps:

1. P init1
dupl (id, ss, so, sm) is applied to q with respect to the unique possible homomor-

phism. Hereafter, when a single morphism is acceptable, it is omitted. Application
of this rule creates the respective split os and merge om and two instances of oper-
ator o. Note that operators os, o2, and om are created in servers ss, so, and sm as
indicated by the “placement” attribute value. In addition, operator o1 is created on
the same server as the original operator o. The mutators executed for this rule are
API calls to startOperator(os, ss), startOperator(o1, s), startOperator(o2, so), and
startOperator(om, sm).

2. P init2
dupl (id, ids) is repeatedly applied as long as possible to redirect all input edges

previously connected to o towards os. This rule is associated with the mutators
disconnect(v, o) and connect(v, os).

3. The P init3
dupl (id, idm) rule merges o and om. As a result, all output edges previously con-

nected to o are redirected to om, and the original operator o is deleted. These changes
are performed on the system by the mutators redirect(o, om) and stopOperator(o).
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Algorithm 5.2: InitialDuplication(q, o, ss, so, sm) action, execution of an initial
duplication.
id← o(id);
apply P init1

dupl (id, ss, so, sm) to q ;
while exists a homomorphism h : Linit2

dupl (id, ids)→ q do
apply P init2

dupl (id, ids) to q w.r.t. h;
end
apply P init3

dupl (id, idm) to q;

RL

<<op>>

id=id

impl=op_impl

inDegree=M

outDegree=N

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

———

placement=s

<<op>>

id=op_id_1

impl=op_impl

inDegree=“1”

outDegree=“1”

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

———

placement=s

<<op>>

id=ids

inDegree=“0”

outDegree=“2”

type=“split”

splitType=rSplit

———

placement=ss

<<op>>

id=idm

inDegree=“2”

outDegree=“0”

type=“merge”

mergeType=rMerge

———

placement=sm

<<op>>

id=op_id_2

impl=op_impl

inDegree=“1”

outDegree=“1”

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

———

placement=so

<<op>>

id=id

impl=op_impl

inDegree=M

outDegree=N

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

———

placement=s

o

o

os

om

o1

o2

(a) Step 1 - P init1
dupl (id, ss, so, sm) - operator duplication.

RL

<<op>>

id=id

impl=op_impl

inDegree=M

outDegree=N

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

<<op>>

id=ids

inDegree=in

outDegree=“2”

type=“split”

splitType=rSplit

<<op>>

id=op_output

<<op>>

id=id

impl=op_impl

inDegree=M-1

outDegree=N

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

<<op>>

id=ids

inDegree=in + 1

outDegree=“2”

type=“split”

splitType=rSplit

<<op>>

id=op_output

os

o

v v

os

o

(b) Step 2 - P init2
dupl (id, ids) - redirect input edge.

RL

<<op>>

id=id

impl=op_impl

inDegree=0

outDegree=N

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

<<op>>

id=idm

inDegree=“2”

outDegree=0

type=“merge”

mergeType=rMerge

<<op>>

id=idm

inDegree=“2”

outDegree=N

type=“merge”

mergeType=rMerge

o om o, om

(c) Step 3 - P init3
dupl (id, idm) - redirect output edges.

Figure 5.2: P init
dupl(id): initial duplication.
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RL

<<op>>

id=id

impl=op_impl

inDegree=“1”

outDegree=“1”

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

<<op>>

id=ids

outDegree=out

type=“split”

splitType=rSplit

<<op>>

id=idm

inDegree=in

type=“merge”

mergeType=rMerge

os om

o1

<<op>>

id=id

impl=op_impl

inDegree=“1”

outDegree=“1”

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit<<op>>

id=ids

outDegree=out + 1

type=“split”

splitType=rSplit

<<op>>

id=idm

inDegree=in + 1

type=“merge”

mergeType=rMerge

os om

o1

<<op>>

id=op_id_n

impl=op_impl

inDegree=“1”

outDegree=“1”

type=“processing”

duplicable=“true”

reqMerge=rMerge

reqSplit=rSplit

———

placement=so
on

Figure 5.3: P add
dupl(id, so): additional duplication.

The AdditionalDuplication(q, o, so) action, on the other hand, is accomplished by
applying the P add

dupl(id, so) rule shown in Figure 5.3. It consists of the simple addition of a
new instance of o connected to the already existing split os and merge om. This rule is
associated with the mutators startOperator(on, so), connect(os, on), and connect(on, om).

5.3.3 Removal of an Unnecessary Merge/Split

Description

The removal of an unnecessary merge/split (RemMS ) policy describes the removal of a
particular pattern of a merge operator followed by a split whose impact on the event
streams is null. Such a pattern has null impact if:

• The merge does not modify the streams that it processes. According to the AGeCEP
classification, union is the only merge type satisfying this condition.

• The split operator does not strengthen the stream specificities, or in other words,
the output streams of the split have the same or fewer constraints than the input
streams of the merge.

The following discussion considers only the case where the number of input streams in
the merge is equal to the number of output streams in the split.

The impact of this policy is positive on both system performance and on resource
consumption because unnecessary operators are suppressed. Hence, this policy is used
whenever possible.

Realization using the MAPE-K loop

Monitor A new query q is submitted by the user, resulting in the NewQuery(q) event
being forwarded to the analysis module as a NewQuery(q) symptom. In addition, when-
ever an operator o from query q is duplicated, a Duplicated(q, o) event is also sent to
analysis as a symptom.
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Algorithm 5.3: RemoveMergeSplit(q, om, os, f) action, execution of a removal.
idm ← om(id);
ids ← os(id);
forall the edges ei ∈ om(pred) do

apply P byp
rem(idm, ids, ei, f(ei)) to q;

end
apply P sup

rem(idm, ids) to q;

Analysis Whenever a NewQuery(q) or a Duplicated(q, o) symptom is received, the
analysis module checks for the existence of an unnecessary merge/split sequence as follows:

1. There is a homomorphism h : Lbyp
rem(idm, ids, ei, eo) → q, where Lbyp

rem(idm, ids, ei, eo)

is the left-hand side of the P byp
rem(idm, ids, ei, eo) rule depicted in Figure 5.4a;

2. The split operator does not strengthen the stream specificities. This condition
cannot be checked for “custom” splits. For the other cases, let om(pred) be the set
of all incoming edges of om and os(succ) be the set of all outgoing edges of os. This
condition is met if there is a bijective function f : om(pred) → os(succ) such that
for all ei ∈ om(pred), with eo = f(ei), one of the following conditions is satisfied:

• os(splitType) = “query” and ei(queries) = eo(queries);

• os(splitType) = “attribute” and ei(attrs) = eo(attrs);

• os(splitType) = “random”.

For each pair (om, os), a RemoveMergeSplit(q, om, os, f) RFC is created using an
arbitrarily selected function f that satisfies condition 2 (Algorithm A.5).

Plan Upon receiving a RemoveMergeSplit(q, om, os, f) RFC, the action
RemoveMergeSplit(q, om, os, f) is inserted into the change plan.

Execute Algorithm 5.3 details how to remove an unnecessary merge/split pattern. The
algorithm is executed in two parts. First, the unnecessary merge and split are bypassed
using the P byp

rem(idm, ids, ei, eo) rewriting rule defined in Figure 5.4a. This rule is repeated
for all pairs of edges (ei, eo) returned by the function f described in the analysis step.
In the second part, the bypassed merge/split is removed using the P sup

rem(idm, ids) rule
(Figure 5.4b).

Note this policy may be executed in a running query. In such a case, each application
of rule P byp

rem(idm, ids, ei, eo) triggers the mutators disconnect(oi, om), disconnect(os, oo)
and connect(oi, oo), whereas the rule P sup

rem(idm, ids) triggers stopOperator(om) and
stopOperator(os).
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(a) Step 1 - Bypassing the merge/split P byp
rem(idm, ids, ei, eo).
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(b) Step 2 - Suppressing the merge/split P sup
rem(idm, ids).

Figure 5.4: Prem(idm, ids): removal of an unnecessary merge/split.

5.3.4 Processing Sub-Streams (ProcSubS)

Description

The processing sub-streams (ProcSubS ) policy transposes to CEP the strategy of dividing
a problem into the solution of several sub-problems. The policy considers an operator o
processing the result of a merge om, as illustrated on the left-hand side of Figure 5.5a.
Ideally, the operation performed by o should be parallelized and conducted on each of
the merged streams. In rough terms, o and om should be “swapped”, as shown on the
right-hand side of Figure 5.5a.

This transformation is equivalent to multiple duplications of o followed by removal of
the initial merge om and the new split introduced by the duplication. Figure 5.5b illus-
trates the query after n duplication steps, where n is the number of om input streams. The
merge and split sequence highlighted in the figure can be removed by the RemMS policy,
resulting in the desired final situation. The policy realization described in this section
leverages this fact and reuses the Dupl and RemMS policies described in Sections 5.3.2
and 5.3.3.

This policy can be applied under various circumstances:

• If there are enough resources to process o instances in parallel, then this policy
can be used to improve query throughput and latency. This effect is even more
pronounced when o(selectivity) < 1. In this case, the policy can also be applied in
the SQO step because the total number of events processed by the merge om may
be significantly reduced.

• If o processes groups of events and o(complexity) is greater than linear, then this
policy reduces the query total CPU consumption;

• In general, the policy can be used to split the load of processing o with other servers
and cores.
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Figure 5.5: Processing sub-streams policy.
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Realization Using the MAPE-K Loop

Monitor This policy can be triggered at runtime whenever a bottleneck of operator o
is detected, which results in the Bottleneck(o) symptom being sent to analysis.

Analysis When a Bottleneck(o) is received, the analysis rule first checks if the policy
can indeed improve query throughput. For instance, it can verify whether the selectivity
of operator o is less than 1. If this is true, the rule searches for a sequence formed by a
merge om and a duplicable operator o by checking for a homomorphism h : Lproc → q,
where the graph Lproc is indicated in Figure 5.5a. Finally, the rule verifies whether the
found sequence om and o satisfies the following conditions:

1. The merge has more than one input stream,

om(inDegree) > 1;

2. The merge om followed by the split introduced by the duplication of o produces a
removable pattern, which translates to:

(a) The merge type of om is “union”,

om(mergeType) = “union”;

(b) The split os introduced during duplication of o does not strengthen stream
specificities. In the RemMS policy, it was shown that a “random” split is always
valid, whereas a “custom” split cannot be considered. In the other cases:

• if o(reqSplit) = “query”, then for each stream e entering om, |e(queries)| =
1;
• if o(reqSplit) = “attribute”, then for each stream e entering om, e(attrs) =
os(param), meaning the streams are already grouped with respect to the
same attributes that the split discriminates.

If these conditions are satisfied, then the processing sub-stream policy can be applied.
To achieve this, the rule inserts n requests for duplication of operator o (Algorithm A.6).
Because the RemMS policy is already executed after each duplication, there is no need to
request it explicitly. In addition, note that even though RemMS is triggered n times, only
the last time succeeds because the others cannot find the mapping function f required by
the RemMS policy.

Plan There is no specific plan for this policy.

Execute There is no specific execution for this policy.
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Figure 5.6: Ppred: predicate indexing.

5.3.5 Predicate Indexing

Description

This policy (PredIndex ) implements the predicate indexing MQO technique introduced by
Madden et al. [109]. The technique detects when two or more filters process the same input
stream and have predicates over the same attributes and replaces both occurrences with
a single filter. This is an example of source sharing, as explained in Section 4.3.2. In this
case, the filter under consideration has special data structures that enable it to evaluate
multiple (range) predicates more efficiently than evaluating each predicate independently.

Realization Using the MAPE-K Loop

Monitor A set of queries Q is submitted by the user, resulting in a NewQueries(Q)
event being forwarded to the analysis module as a symptom.

Analysis The analysis module checks whether a pair of filters can be shared by searching
for a homomorphism h : Lpred → Q, where Lpred is the left-hand side of the graph rewriting
rule Ppred in Figure 5.6. If a homomorphism exists, the module also checks whether the
predicates range over the same attributes. If so, a PredicateIndex(Q) RFC is sent to the
plan module (Algorithm A.7).

Plan Upon receipt of the PredicateIndex(Q) RFC, the PredicateIndexAll(Q) action
is inserted into the change plan.

Execute Execution of this policy is equivalent to repeatedly applying rule Ppred, de-
scribed in Figure 5.6. Note that the two producer vertices p1 and p2 shown in L actually
represent the same input source, as they are associated with the same implementation
and parameters. The resulting grouped filter is logically equivalent to the execution of
both predicates. This policy is applied only at the query model level, and therefore there
is no associated mutator.
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Figure 5.7: Comb policy execution time.

5.4 Viability: Performance Evaluation

This section discusses the viability of AGeCEP as a formal foundation for developing
generic CEP algorithms and management procedures. The analysis focuses on the time
required to transform CEP queries using both simple and complex graph rewriting rules.

In the following, the AGG tool [143] was used to define and apply the graph rewriting
rules. The experiments were conducted on a server with two six-core processors (Intel
Xeon E5-2630, 2.6GHz) and 96GB of RAM. The server was running Ubuntu Linux 14.04
and Java 1.7.0_75.

5.4.1 Simple Policy

The first experiment verified the execution time and scalability of the actions executed by
the Comb policy (Section 5.3.1). This is a simple policy that consists of a single rewriting
rule in which only two vertices are matched.

The total number of queries to which the rule was applied varied from 100 to 1000, and
for each number, three query compositions were tested. In the first composition, 20% of
the queries were clones of query q1 (Figure 4.6a), and 80% were clones of q2 (Figure 4.6b).
In the second and third compositions, query q1 represented 50% and 80% of the total
queries respectively. Note that only query q1 has a sequence of combinable filters f1 and
f2.

The graph in Figure 5.7 shows the average execution time of 30 runs along with the
99% confidence interval. The growth in execution time is close to linear. For all three
compositions, 100 queries were processed in less than one second, and 1000 queries in less
than 14 seconds. For the 80% composition, this is equivalent to rewriting 800 queries
according to the operator combination policy.

5.4.2 Complex Policy

This experiment verified the performance and scalability of complex sequences of actions.
To perform this experiment, the analysis was divided into two parts. First, the execution
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Figure 5.8: Query q2 - optimized version.

(a) Dupl execution time.
(b) Dupl followed by RemMS execution
time.

Figure 5.9: Dupl and RemMS policies execution times.

time for applying the Dupl policy (Section 5.3.2) was assessed. Following, the execution
time for applying Dupl followed by RemMS (Section 5.3.3) was analyzed.

Both parts were executed using the same numbers of queries and the same query
compositions as in the previous experiment. In this case, however, the duplication was
applied only to the operator j1 belonging to query q2 clones (Figure 4.6b). Note that after
j1 duplication, the newly created merge forms a void sequence with the fSplit operator.
Applying RemMS therefore caused this sequence to be removed, resulting in the query
depicted in Figure 5.8.

Figure 5.9a depicts the execution time of theDupl policy as a function of the number of
queries for all three compositions. For each duplication, four rewriting rules were applied:
P init1
dupl once to create the two instances of j1 connected to a new split and merge; P init2

dupl

twice to redirect j1 inputs (p1 and p2) to the new split; and P init3
dupl to connect the new

merge to the j1 successor (fSplit). For the 20% composition, 1000 queries were processed
in less than 40 seconds, which still is within reasonable time bounds.

The execution time to apply Dupl followed by RemMS is shown in Figure 5.9b.
To execute the RemMS policy, three more rewriting rules were applied: P byp

rem twice to
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connect each instance of j1 to an instance of f12, and P sup
rem once to remove the redundant

merge and split. Therefore, Dupl followed by RemMS requires the application of seven
rewriting rules in total. The graph clearly shows an exponential growth that is especially
pronounced in the 50% and 80% scenarios. In these scenarios, rewriting all queries may
take minutes. Indeed, for the 80% scenario there are no data point for 900 and 1000
queries because the execution time exceeded the established timeout of 15 minutes.

It is important to discuss these results under proper assumptions about how these
rules will be applied in practice. Finding homomorphisms in graphs is a well-known NP-
complete problem [55]. Nevertheless, most of the time, these rules will be applied to a
much smaller number of queries. For example, SQO policies are executed in response
to new queries, and therefore only them need to be analyzed. Similarly, most runtime
management rewriting rules are applied only to the small subset of running queries that
need to be rewritten. For instance, as described in Section 5.3.2, duplication is performed
only after a bottleneck has been pinpointed. The extreme cases described in this section
were investigated for theoretical purposes and for completeness of analysis.

5.5 Summary

To demonstrate the feasibility of AGeCEP for specification and enforcement of self-
management policies, this chapter introduced the design of an autonomic manager based
on AGeCEP and a selection of five policies built on this design. Furthermore, it pre-
sented a generic procedure to adapt operator placement procedures to AGeCEP. Finally,
this chapter investigated the viability of AGeCEP by executing performance measure-
ments of query reconfigurations. By considering both expressiveness and performance,
these results suggest that AGeCEP can be effectively used to develop algorithms for
application and integration into diverse modern CEP systems.

The next chapter discusses CEPSim, a simulator of cloud-based CEP system that uses
AGeCEP as query representation model.



Chapter 6

Complex Event Processing Simulator

This chapter1 introduces CEPSim, a simulator that has been developed to overcome the
difficulties of evaluating CEP systems and of comparing query management and processing
approaches. The chapter starts with a discussion about CEPSim motivation and benefits.
Following this discussion, Sections 6.2 and 6.3 introduce CEPSim design principles and
the foundational concepts on top of which CEPSim is built. Finally, the simulation
algorithms and a thorough evaluation of CEPSim are presented in Sections 6.4 and 6.5.

6.1 Motivation

The resurgence of interest in CEP systems caused by the new Big Data world has been
accompanied by the use of cloud environments as their runtime platform. Clouds are
usually leveraged to provide the low latency and scalability needed by modern applica-
tions [25, 69, 128]. Other systems, such as the CEPaaS system proposed in this research,
also explore cloud computing to facilitate offering CEP functionalities in the services
model. In this context, the development of efficient operator placement and scheduling
strategies is essential to achieve the required quality of service. However, validating these
strategies at the required Big Data scale in a cloud environment is a difficult problem and
constitutes a research problem per se.

First, cloud environments are subject to variations that make it difficult to reproduce
the environment and conditions of an experiment [56]. Moreover, setting up and main-
taining large cloud environments are laborious, error-prone, and may be associated with
a high financial cost. Finally, there are also many challenges related to generating and
storing the volume of data required by Big Data experiments.

Simulators have been used in many different fields to overcome the difficulty of execut-
ing repeatable and reproducible experiments. Early research into distributed systems [105]
and grid computing [33] used simulators, as well as the more recent field of cloud com-
puting [34, 92, 119]. Generally, cloud computing simulators make it possible to model
cloud environments and to simulate different workloads running on them. Nonetheless,
these simulators are mostly based on application models and simulation algorithms that
cannot represent properly the dynamics of CEP systems. To overcome these limitations,

1The content of this chapter has been published as a conference paper [76] and as a journal paper [77].
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Figure 6.1: CEPSim overview.

this research presents CEPSim, a flexible simulator of cloud-based CEP systems.
CEPSim extends CloudSim [34] using a query model based on AGeCEP and intro-

duces simulation algorithms based on a novel abstraction called event sets. CEPSim
can be used to model different types of clouds, including public, private, hybrid, and
multi-cloud environments, and to simulate execution of user-defined queries on them. In
addition, it can also be customized with various operator placement and scheduling strate-
gies. These features enable system architects and researchers to analyze the scalability
and performance of cloud-based CEP systems and to easily compare the effects of different
query processing strategies.

6.2 System Overview

CEPSim is a simulator for cloud-based CEP systems that can be used to study the
scalability and performance of CEP queries and to compare the effects of different query
processing strategies. It has been developed with the following design principles as goals:

• Generality : it can simulate different cloud-based CEP systems independently of
query definition languages and platform specificities.

• Extensibility : it can be extended with different operator placement and operator
scheduling strategies.

• Multi-Cloud : it can run simulations that span multiple clouds;

• Reuse: it can reuse capabilities that are present in CloudSim and comparable sim-
ulators.

Because of its maturity and extensibility, CloudSim was chosen as the base cloud
simulator on top of which CEPSim was built. Figure 6.1 shows an overview of CEPSim
and how it is related to CloudSim.

CloudSim provides the basic simulation framework and two main groups of function-
alities: datacentres and policies. The former group includes abstractions used to represent
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the physical cloud environment, whereas the latter consists of customizable strategies that
control the dynamic aspects of the environment.

CEPSim significantly extends these functionalities to enable simulation of CEP queries.
In Figure 6.1, these extensions are also organized into two groups: foundation and simu-
lation. The former group contains the fundamental CEPSim abstractions and is detailed
in Section 6.3, whereas the latter implements the CEP simulation logic and is described
in Section 6.4.

To achieve the generality goal, CEPSim assumes that user queries can be converted to
the AGeCEP query model described in Section 4.4.1. As discussed previously, AGeCEP
provides a technology- and language-agnostic representation of queries to which diverse
query languages can be converted.

Once converted, CEPSim assumes that the queries run continuously, processing input
events that are constantly pushed into the system. The input streams are expected to be
unbounded, but the user must specify for how long the simulation should run.

To simulate distributed (networked) queries, CEPSim’s distribution model assumes
that parts of the query ADAG are allocated to different VMs and that these VMs com-
municate with each other using a network. In addition, CEPSim assumes that multiple
queries may be running simultaneously in the same VM and that they can belong to
different users.

Finally, CEPSim does not execute any form of single-query or multiple-query op-
timization because it expects that the submitted queries have already been optimized.
Nevertheless, to support these optimizations, CEPSim allows event sources and opera-
tors to be shared among queries according to the strategies described in Section 4.3.2.

Currently, the main limitation of CEPSim is the fact it only supports scenarios in
which the number of simulated queries is fixed and these queries are neither reconfigured
nor fail at runtime. However, most often this limitation can be circumvented by running
and comparing two simulations: one of a scenario before reconfiguration, and another of
a scenario after.

6.3 CEPSim Foundation

This section presents CEPSim foundation concepts on top of which the simulation al-
gorithms are implemented. First the CEPSim query model, which is used to define the
simulated queries, is discussed. Following, the event set and event set queue abstractions
are described.

6.3.1 Query Model

CEPSim uses AGeCEP as its formal foundation. Therefore, every user-defined query
q is represented by an attributed directed acyclic graph G = (V,E,ATT ), where each
vertex v ∈ V represents a query element and the edges (u, v) ∈ E represent event streams
flowing from an element u to another element v. In addition, the set of vertices V
is partitioned into Vp, Vc, and Vo representing event producers, event consumers, and
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Figure 6.2: CEPSim query example.

operators respectively. Figure 6.2 shows an example of a query q. Some attributes have
been omitted for the sake of clarity.

CEPSim overcomes CloudSim batch application model by usingAGeCEP query model,
which can represent complex data processing flows consisting of multiple interconnected
steps. In addition, as discussed in Section 4.4.1, most existing CEP query languages can
be converted to the AGeCEP model, which emphasizes the generic aspect of CEPSim.

Moreover, CEPSim extends AGeCEP representation in order to make it more appro-
priate for simulations. First, every vertex is extended with a new attribute ipe, which
represents the number of CPU instructions needed to process a single event. This is an
important piece of information required by the simulation algorithms. For event produc-
ers, this attribute estimates the number of instructions required to take an event from
the system input and forward it to query execution. In other words, it does not include
the effort required to generate the event because event generation does not usually occur
within the CEP system.

Second, every edge (u, v) ∈ E is extended with a selectivity attribute that determines
how many of the events processed by u are actually sent to v. In Figure 6.2, the query
edges are annotated with their selectivity values. For instance, edges e4 and e5 selectivity
are both 0.5. Therefore, if s1 processes 100 events, 50 of them will be sent to f1 and the
other 50 to f2. A selectivity can be greater than one in the case where the operator outputs
more than one event based on a single input, e.g., creating two alarms from a single sensor
reading. Note that in AGeCEP, selectivity is also a vertex attribute that refers to the
total number of events that are output as a function of the number of input events. In
other words, the vertex selectivity is the sum of all its outgoing edges selectivity.

Third, CEPSim also introduced the “windowed” stereotype to characterize operators
that process windows of events and combine them in some manner. Typical examples are
aggregation operators that count events or calculate the average value of attributes. This
new stereotype is necessary because the simulation of windowed operators is implemented
by a different algorithm that requires information not included in the regular “operator”
stereotype. In particular, windowed operators have three extra attributes: a window size,
an advance duration, and a combination function.

Figure 6.3 illustrates the window and advance concepts. The window specifies the
period of time from which the events are taken and the advance duration defines how
the window slides when the previous window closes. Finally, the combination function is
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Figure 6.3: Windowed operator attributes.

defined as:
f : Rm

≥0 → R≥0 (6.1)

where m is the number of operator predecessors. This function regulates the number of
events that are sent to the output given the number of events accumulated in the input.
Commonly, it is defined as a constant function f(~x) = 1, meaning that for each window
only one event is generated (e.g., for counting events).

Finally, every event producer p in CEPSim is associated with a generator function
gp that determines the total number of events produced by p given a point in time.
Formally, the generator function is defined as a monotonically increasing function from
the time domain to the set of positive integers:

gp : R≥0 → N, s.t. x ≤ y then gp(x) ≤ gp(y) (6.2)

6.3.2 Event Sets

An event set is an abstraction that represents a batch of events and is the basic processing
unit used by CEPSim. This abstraction has been created to improve the simulator perfor-
mance and to assist in calculating the simulation metrics. Operators exchange event sets
instead of individual events, and all system queues and temporary buffers are composed
of event sets.

Formally, an event set e is an instance of an EventSet class that contains the following
attributes2:

• cardinality (cn): number of events in the set. The notation |e| is used hereinafter
as a shortcut for e.cn.

• timestamp (ts): a timestamp associated with the set, which can be used for various
purposes. Most often, it contains the timestamp at which the set has been created.

• latency (lt): the average of the latencies of the events in the set. Event latency
is defined as the period of time elapsed from the event creation to the moment at
which the event is added to the set.

• totals (tt): a map that, for each producer vp ∈ Vp, stores the number of events that
must have been produced by vp to originate the events currently in the set. The

2Hereafter, the dot notation is used to access object attributes.
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goal of this attribute is to track caused by (or is result of ) relationships between the
events in the set and the produced events.

In addition to these attributes, four operations are also defined for event sets: sum,
extract, select, and update.

• Sum: is applied to two event sets e1 and e2 and results in a new event set er
containing all events from both sets. It is defined as:

er = e1 + e2 (6.3a)

such that

|er| = |e1|+ |e2| (6.3b)

er.ts =
|e1| · e1.ts+ |e2| · e2.ts

|e1|+ |e2|
, (6.3c)

er.lt =
|e1| · e1.lt+ |e2| · e2.lt

|e1|+ |e2|
, (6.3d)

er.tt : Vp → R≥0, s.t. er.tt[vp] = e1.tt[vp] + e2.tt[vp] (6.3e)

• Extract : is applied to an event set e and the number of events to be extracted n.
The results are an event set er consisting of the extracted events, and an event set
em containing the remaining events from e,

(er, em) = e− n (6.4a)

such that

|er| = n (6.4b)

er.tt : Vp → R≥0, s.t. er.tt[vp] = (n/|e|) · e.tt[vp] (6.4c)

|em| = |e| − n (6.4d)

em.tt : Vp → R≥0, s.t. em.tt[vp] = e.tt[vp]− er.tt[vp] (6.4e)

and the latency and timestamp attributes from er and em are the same as in e.

• Select : is applied to an event set e and a selectivity s. It selects a subset of events
from the event set:

er = e ∗ s (6.5a)

such that
|er| = |e| · s (6.5b)

and the remaining attributes from er are the same as in e.

• Update: is applied to an event set e and a timestamp ts. It simply brings the event
set latency and timestamp up to date:

er = update(e, ts) (6.6a)
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Algorithm 6.1: Event set queue - dequeue operation.
Data: . Q, Event set queue
. n, Number of events to be extracted

1 function dequeue(Q, n)
2 e← empty event set
3 while n > 0 and !isEmpty(Q) do
4 h← dequeue(Q) // Extract the head of the queue Q
5 if |h| > n then
6 (h, r)← h− n
7 prepend(Q, r) // Return r to the head of the queue Q

8 end
9 e = e+ h

10 n← n− |h|
11 end

such that

er.ts = ts (6.6b)

er.lt = e.lt+ (ts− e.ts) (6.6c)

and the remaining attributes from er are the same as in e.

6.3.3 Event Set Queues

An event set queue is simply a queue where the elements are event sets. As with any
regular queue, it is possible to enqueue and dequeue elements in a first-in, first-out man-
ner. In addition, an event set queue has an overload dequeue operation that receives the
number of events to be extracted and returns an event set representing these events.

Algorithm 6.1 shows this operation in pseudo-code. The algorithm removes event sets
from the queue Q until the resulting event set e reaches size n. When the removed event
set h has more events than what is required to complete n, the algorithm extracts the
necessary events from h and returns the remaining events to the queue (lines 5-8).

Finally, an event set queue Q also has a cardinality defined as the sum of the cardi-
nalities of all event sets in the queue:

|Q| =
∑
e∈Q

|e| (6.7)

6.4 CEPSim Simulation

This section presents the CEP simulation logic implemented by CEPSim. First it is
discussed the role of operator placement and scheduling strategies in the simulation. Fol-
lowing, the simulation procedures are presented both at operator and at placement level.
Finally, it is described how CEPSim calculates the simulation metrics.
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Figure 6.4: Placement definitions.

6.4.1 Operator Placement

Once the queries are modelled, the next step in any simulation is to define a set of
placements. Each placement maps a set of query vertices to the VM where they will
execute. Note that the vertices from a single query can be mapped to more than one VM,
which implies distributed execution of the query. A placement can also contain vertices
from more than one query. Figure 6.4 illustrates the placement concept: Placement1
maps all vertices from Query1 and some from Query2 to V m1, whereas Placement2 maps
the remaining Query2 vertices to V m2.

Defining placement for a query is part of its lifecycle, as discussed in Section 2.1.5.
This mapping is one of the most determining factors of a CEP system performance. Be-
cause of this importance, CEPSim is pluggable and enables the use of different placement
strategies. By default, users must manually specify the mapping of vertices to VMs when
submitting a query to CEPSim.

6.4.2 Operator Scheduling

Operator scheduling is the procedure that, given a set of running queries and their internal
state, defines which operator should run next and for how long it should run. A scheduling
strategy can fundamentally determine the performance of a CEP system by optimizing
for different aspects of the system, such as overall QoS [1] or memory consumption [23].
Because of this significance, CEPSim also allows different scheduling strategies to be
plugged in and used during a simulation.

CEPSim contains two built-in scheduling strategies, and both are based on an aux-
iliary allocation strategy. In this context, the allocation strategy divides the available
instructions among the placement vertices, whereas the scheduling strategy determines
how the vertices are traversed and how the allocated instructions are used.

The two allocation strategy implementations provided by CEPSim are:

• Uniform allocation: divides the available instructions equally among all placement
vertices.

• Weighted allocation: divides the available instructions proportionally to the ipe
attribute of each vertex.
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These two strategies can be combined with the provided scheduling strategies, which
work as follows:

• Simple scheduling : the vertices are sorted in topological order and traversed only
once according to this order. Each vertex receives the number of instructions de-
termined by the allocation strategy, independently of the number of instructions
required.

• Dynamic scheduling : the vertices are sorted in topological order and traversed in
one or more rounds. In each round, each vertex receives the minimum between
the number of instructions determined by the allocation strategy and the number
of instructions required to process all events in the input queues. The process
is repeated until there are no more instructions left to be allocated or events to
be processed. This strategy tries to redirect non-used instructions to overloaded
vertices and thereby improve query throughput.

6.4.3 Operator Simulation

In CEPSim, the simulation of an operator execution is accomplished by reading event sets
from the operator’s input queues, processing them, and writing output event sets to its
output queues. The general procedure used to simulate an operator execution is detailed
in Algorithm 6.2.

The algorithm operates in three main steps:

1. Lines 2-6 : Calculates the number of input events that can be processed. This
number is the minimum between the total number of events in all input queues
and the maximum number of events that can be processed given the number of
allocated instructions n. This maximum is obtained by dividing n by the operator
ipe attribute.

2. Lines 7-11 : Dequeues events from the input queues and builds a new event set e
representing the dequeued events. The number of events dequeued from each input
queue is proportional to its size. This procedure aims to balance the queues by
processing more events from queues with more elements.

3. Lines 12-16 : Enqueues the recently created event set e into the operator output
queues. While enqueuing, the selectivity value of the edge connecting the operator
to each of its successors vs is taken into consideration.

Event producers and consumers are simulated in a similar way. Because event pro-
ducers do not have predecessor vertices, the input events are read from the generator
associated with them. Event consumers, on the other hand, do not have output queues.
The processed events are accumulated into a single output event set that consolidates all
events consumed during the simulation.

Simulating windowed operators is different because output events are generated only
when a window closes. In addition, whenever a window does not close, the input events
must be correctly processed and accumulated.



CHAPTER 6. COMPLEX EVENT PROCESSING SIMULATOR 104

Algorithm 6.2: Operator simulation.
Data: . op, operator with attributes:
- ipe, instructions per second
- pred, operator predecessors
- succ, operator successors
- input, map of input event set queues
- selectivity, map of outgoing edge selectivities
- ouput, map of output event set queues
. n, number of instructions
. ts, start timestamp

1 function simulate(op, n, ts)
2 totin ← 0
3 forall the vp ∈ op.pred do
4 totin ← totin + |op.input[vp]|
5 end
6 evt← min(totin, n/op.ipe)
7 e← empty event set
8 forall the vp ∈ op.pred do
9 no← (|op.input[vp]|/totin) ∗ evt

10 e← e + dequeue(op.input[vp], no)
11 end
12 e← update(e, ts)
13 forall the vs ∈ op.succ do
14 en← e ∗ op.selectivity[vs]
15 enqueue(op.output[vs], en)
16 end

Algorithm 6.3 describes the simulation procedure of a windowed operator w. To
implement the simulation, every windowed operator has an auxiliary data structure that
is used to accumulate the processed events. Figure 6.5 shows an example of a windowed
operator and its corresponding data structure.

The data structure works as a circular array divided into l slots, on which each slot
represents a timeframe equivalent to one advance period within the time window. For
example, the windowed operator from Figure 6.5a has a window size of 30 seconds and
an advance period of 10 seconds, resulting in an array of size 3. Initially, slots 0, 1, and 2
represent the intervals between 0-10, 10-20, and 20-30 seconds respectively. Each position
of this array contains one event set for each operator predecessor (p1 and p2). These event
sets accumulate events coming from the predecessors during each slot period.

To use this data structure, the windowed operator maintains two auxiliary variables,
index and next. The index variable points to the slot where the accumulation should
currently take place, whereas next stores the next timestamp at which the window closes.

These variables are primarily used between lines 2 and 8 of Algorithm 6.3. First, when
a window closes, an auxiliary procedure generateOutput is invoked to generate the output
event set (Algorithm 6.4). Following this invocation, the next and index variables are
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Algorithm 6.3: Windowed operator simulation.
Data: . w, with all regular operator attributes plus:
- window, window size
- advance, advance period
- f, combination function
- acc, accumulation data structure
- index, current slot in the accumulation data structure
- next, next timestamp at which a window closes
. n, number of instructions
. ts, start timestamp

1 function simulate(w, n, ts)
2 slots← w.window/w.advance
3 while ts > w.next do
4 generateOutput(w,w.index, ts)
5 w.next← w.next+ w.advance
6 w.index← (w.index+ 1) mod slots
7 reset(w.acc, w.index)
8 end
9 totin ← 0

10 forall the vp ∈ w.pred do
11 totin ← totin + |w.input[vp]|
12 end
13 evt← min(totin, n/w.ipe)
14 forall the vp ∈ w.pred do
15 no← (|w.input[vp]|/totin) ∗ evt
16 e← dequeue(w.input[vp], no)
17 accumulate(w.acc, w.index, vp, e)
18 end

adjusted, and the next slot is reset. Note that this loop can be executed more than once
if more than one window has closed since the last simulation.

The following lines (9 to 18) are similar to the stateless operator simulation presented
in Algorithm 6.2, but instead of writing the processed event sets into the output queues,
they are accumulated at the current time slot.

The last part of the windowed operator simulation is the generateOutput procedure
shown in Algorithm 6.4. The loop between lines 4 and 11 builds an event set for each
predecessor and a sum of these event sets sumt. This step is also shown in Figure 6.5b,
in which sum(p1) is calculated as e1 + e3 + e5, sum(p2) as e2 + e4 + e6, and sumt is the
sum of sum(p1) and sum(p2).

From lines 12 to 16, the output event set out is built according to the idea that this
event set is caused by, or is a result of, all events accumulated in the window:

• cardinality (out.cn) is set to the result of the combination function f . This function
receives as argument a set of event sets, each one encapsulating all events received
from a specific predecessor vp during the window timeframe, and returns the number
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Figure 6.5: Windowed operator simulation.

of events that must be generated.

• latency (out.lt) is set to the average latency of all events in the window (sumt.lt)
plus their average waiting time. The waiting time is calculated as the difference
between the current timestamp (ts) and the average timestamp of all events in the
window (sumt.ts).

• timestamp (out.ts) is set to the current timestamp.

• totals (out.tt) is set to the sum of all totals from the event sets in the current slot
only, as events in previous slots have already been considered in past windows.

6.4.4 Placement Simulation

After describing how CEPSim simulates operators, this subsection focuses on the algo-
rithm used to simulate queries. A pseudo-code description of this procedure is presented
in Algorithm 6.5.

The first thing to note is that the basic unit of simulation is a placement, not a query,
which implies that all vertices allocated to a VM are simulated at once. This approach
enables operator scheduling strategies to consider simultaneously all vertices in a VM and
potentially make better decisions regarding their scheduling optimization criteria.

This procedure simulates execution of a placement for the duration of a simulation
tick. As shown in Figure 6.6, the CloudSim simulation framework repeatedly invokes
this procedure to represent the passing of time. Therefore, the simulation tick length is
a parameter that enables users to trade off precision against computational cost. For
example, if the tick is long, the procedure will be invoked fewer times, but the produced
events will be grouped into relatively large event sets and processed as such. On the other
hand, a shorter tick translates into smaller event sets and potentially more precise results.

The following parameters are required by the procedure: a pre-allocated number of
instructions n, the simulation time at which the procedure has been invoked ts, and the
CPU capacity cp (measured in MIPS) available to the placement. The CloudSim simula-
tion framework determines these arguments at each invocation: first, a cloudlet scheduler
calculates cp by distributing the total CPU processing power among all processes concur-
rently running on the VM. In Figure 6.6, the placement p1 has only cp1 MIPS available
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Algorithm 6.4: Windowed operator - generate output.
Data: . w, windowed operator
. index, current index in w(acc)
. ts, start timestamp

1 function generateOutput(w, index, ts)
2 sum← empty map
3 sumt ← empty event set
4 forall the vp ∈ w.pred do
5 e← empty event set
6 for i = 0 to slots do
7 e← e+ w.acc[i][vp]
8 end
9 sumt ← sumt + e

10 sum[vp]← e

11 end
12 out← empty event set
13 out.cn← f(sum)
14 out.lt← sumt.lt+ (ts− sumt.ts)
15 out.ts← ts
16 out.tt← sum(w.acc[index]).tt
17 forall the vs ∈ w.succ do
18 en← out ∗ w.selectivity[vs]
19 enqueue(w.output[vs], en)
20 end

because it shares the same VM with two cloudlets c2 and c3. Following, the number of
instructions n is derived by multiplying the available capacity cp by the simulation tick
length. In Figure 6.6, the value of n is equivalent to the area encompassed by each process.

In summary, there are three main steps in Algorithm 6.5:

1. All generators associated with the placement event producers are activated to de-
termine the number of events that have been generated from the last simulation tick
to the current one (lines 2-4);

2. The scheduling strategy associated with the placement is invoked to define the order
in which the vertices will be simulated and the number of instructions allocated to
each vertex (line 5).

3. All vertices are traversed and simulated according to the specified order (lines 6-15).
The scheduling strategy returns an iterator of pairs, each one containing a vertex
pointer (next.v) and the number of instructions allocated to it (next.n). With these
two parameters, the operator simulation procedure is invoked (line 9). Next, the
current timestamp ts is adjusted to reproduce the passing of time (line 10). Finally,
the event sets in each of the vertex output queues are moved to the input queues of
their respective successors (lines 11-14).
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Figure 6.6: Execution of a simulation tick.

Networked Queries

To simulate networked (distributed) queries, the CEPSim placement simulation from
Algorithm 6.5 received two main modifications.

First, at the moment that event sets are moved from the operator output queues to the
input queues of its successors (lines 11-14), the algorithm checks whether the successor
vertex belongs to the same placement or not. If it does, the event set is moved to the
destination queue as usual. If it does not, then the event set and the destination vertex
id are sent to a network interface, which executes three main steps:

1. Locate the placement where the successor vertex resides by consulting the
CepSimBroker (implementation details can be examined in Appendix B).

2. Calculate the delay in transferring the event set to the destination VM. This calcu-
lation depends on the network interface implementation in use.

3. Schedule a simulation event on the destination VM signalling the arrival of the event
set. This event is scheduled using the simulation framework provided by CloudSim.

The second modification is in the main loop between lines 6 and 15. Before each
iteration, the algorithm checks whether any simulation event (representing the arrival of
an event set) is scheduled during the operator time slice. If one is, the time slice is split in
two at the event set arrival time, and the event set is enqueued into its destination queue
between the two slices.

This procedure is illustrated in Fig. 6.7. In the query from Figure 6.7a, vertices p3,
f3, and f4 are placed into one VM, and the remaining vertices are placed into another.
The diagram in Figure 6.7b shows the placements schedule as a function of time. At the
end of the first iteration, vertex f4 “sends” an event set to its successor m3. This step
is represented by scheduling a simulation event on the destination placement after the
period of time required to transfer the event set from f4 to m3. In the second iteration,
the simulation algorithm detects the scheduled event before starting the m3 simulation.
The m3 time slice is split into two halves (m′3 and m′′3), and the event set is enqueued
right after m′3 finishes.
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Algorithm 6.5: Placement simulation.
Data: . Schedule, Operator scheduling strategy
. p, placement to be simulated
. n, number of instructions
. ts, start timestamp (in ms)
. cp, allocated CPU capacity (in MIPS)

1 function simulate(p, n, ts, cp)
2 forall the vp ∈ p.producers do
3 generate(vp, ts)
4 end
5 it← schedule(p, n)
6 while next← it.next do
7 v ← next.v
8 nv ← next.n
9 simulate(v, nv, ts)

10 adjustTime(ts)
11 forall the vs ∈ v.succ do
12 en← dequeue(v.output[vs])
13 enqueue(vs.input[v], en)
14 end
15 end

Bounded Queues

Most CEP systems limit the size of operator queues to avoid memory overflow and to
maintain overall system performance. Because of this characteristic, CEPSim also sup-
ports the definition of bounded input operator queues. When using this feature, it is
necessary to define the behaviour of the system when new events arrive at an already full
queue. Currently, CEPSim supports the application of backpressure to vertex predeces-
sors.

When using backpressure, at the end of the simulation procedure operators inform
their predecessors about the maximum number of events accepted for the next iteration.
The predecessors limit their output on the next tick if needed. Nevertheless, when an
operator limits its output, it may also accumulate events in its own input queues and
consequently apply backpressure on its predecessors. Ultimately, the backpressure arrives
at the event producers, which may choose to discard extraneous events or accumulate
them in their own queues.

6.4.5 Metrics

One of the most important parts of any simulator is the set of metrics obtained as a
result of the simulation. As CEP queries performance are usually measured in terms
of its latency and throughput, CEPSim provides built-in implementations for these two
metrics.
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Figure 6.7: Networked query simulation.
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Figure 6.8: Event sets created during a simulation tick.

Query Latency

The query latency metric is defined for every consumer vc as the average number of
milliseconds elapsed from the moment an event arrives at the query to the moment it is
consumed by vc. In other words, it measures how long a query takes to process an event.

This metric can be easily obtained because event consumers have an output event set
that accumulates all events that have been consumed during a simulation. Therefore, the
value of latency(vc) is simply the latency of the vc output event set:

latency(vc) = vc.output.lt (6.8)

Figure 6.8 exemplifies how the event set latencies are calculated and updated during
a simulation tick. The event sets es1 and es2 were generated at timestamp ts = 5. At
ts = 10 the producer p1 sends es1 to f1, and at ts = 13 producer p2 sends es2 to f1. Note
that es1 and es2 latency attributes are updated to take into account the time elapsed from
the event set generation to the moment they are output. When processed by f1, both
event sets are summed according to Equation 6.3a, resulting in a new event set es12. At
ts = 15, a new event set es3 is created by updating es12 timestamp and applying (f1, f2)

selectivity to it:
es3 = update(es12, ts) ∗ (f1, f2).selectivity (6.9)

Following, the es3 event set is sent to f2, where a similar procedure is executed and a new
event set es4 is created. Finally, es4 is sent to the consumer c1, where the final event set
es5 is created and added to the output event set.
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Query Throughput

The query throughput metric is calculated for each consumer vc as the average number of
events processed per second during its lifespan.

The throughput value of an event consumer vc is also obtained with the aid of vc’s
output event set. In this case, its totals attribute contains the number of events generated
by each producer that have resulted in the events in the set. Therefore, the throughput can
be obtained by summing the values for all producers and dividing this sum by the query
simulation time (in seconds). However, if there is more than one path from a producer vp
to the consumer vc, then the output event set contains duplicates incorporated into the
totals values for vp and needs to be fixed.

Figure 6.9 shows a scenario in which this duplication occurs. The operator s1 splits
es1 into two event sets es2 and es3, which are transformed into es4 and es5 and combined
again into es6. In the m1 output, es6.tt(p1) = 20, yet the correct value should be 10. The
metric can be simply fixed by dividing it by 2 because there are two paths from p1 to m1.

Formally, the query throughput of a consumer vc is given by:

throughput(vc) =

( ∑
vp∈Vp

vc.output.tt(vp)

|paths(vp, vc)|

)
/q.time (6.10)

where |paths(vp, vc)| is the number of paths from producer vp to consumer vc and q.time
is the total query simulation time.

6.5 Evaluation

This section describes the experiments that have been performed to analyze the CEPSim
simulator. First, CEPSim is validated by comparing the latency and throughput metrics
obtained by running queries on a real CEP system and by simulating them on CEPSim.
Second, the simulator performance is assessed by analyzing the execution time and mem-
ory consumption of various simulation scenarios. Finally, it is also investigated the effects
of different parameters on the simulator behaviour.



CHAPTER 6. COMPLEX EVENT PROCESSING SIMULATOR 112

Outlier

Detector

Bolt

Random

Sensor

Spout

Reading

AverageBolt
window=15

advance=15

DB

Consumer

Bolt

q1

(a) Query q1 - Average window.

Json

ParserBolt

Random

Sensor

Spout

Latency

Measurer

Bolt

Validate

Reading

Bolt

XmlOutput

Bolt

q2

(b) Query q2 - JSON converter.

Figure 6.10: Storm topologies.

6.5.1 Case Study

The queries used in the experiments in this section have been extracted from Powersmiths’
WOW system [127], a sustainability management platform that draws on live measure-
ments of buildings to support energy management. Powersmiths’ WOW uses Apache
Storm [18] to process in near real-time sensor readings coming from buildings managed
by the platform.

Figure 6.10 shows the Storm queries (topologies) used in the experiments in this
section. A spout in the Storm terminology is equivalent to an event producer, whereas a
bolt is equivalent to an operator. There is no concept analogous to an event consumer in
Storm.

There are three main steps in the query q1 from Figure 6.10a: the OutlierDetectorBolt
detects and filters anomalous sensor readings, the ReadingAverageBolt groups readings
into windows of 15 seconds and calculates their average, and theDBConsumerBolt stores
the calculated average in a database. By aggregating the sensor data into 15-second
windows, the query reduces the amount of data that is written to the database.

The query q2 presented in Figure 6.10b, on the other hand, is used to convert from
the JSON format to the native WOW format (XML). This query is used because some
existing sensors cannot be modified to send data according to the WOW interface. The
query is composed of three main steps: the JsonParserBolt parses the JSON request, the
V alidateReadingBolt validates the request values, and the XmlOutputBolt converts the
request to XML format. The last bolt (LatencyMeasurerBolt) is used only to measure
the latency and throughput of the conversion process.

6.5.2 Environment

Table 6.1 describes the cluster of virtual machines used in the experiments to run Storm
topologies. All six VMs were deployed on the same physical server (12 cores Intel Xeon E5-
2630, 2.6GHz / 96GB RAM). VMs #1 and #2 run zookeeper (which coordinates cluster
communication) and nimbus (which assigns Storm tasks to workers). The workers VMs
#3 to #6 are the ones which effectively execute the queries. The VM memory sizes have
been dimensioned to not be a bottleneck in the experiments. A similar physical server
hosted the database system and was also used to run all CEPSim simulations described
in the experiments.
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Table 6.1: Storm VM cluster specification.

VM # CPU Mem. Description
1 1 core - Intel Xeon E5-2630 2.6 GHz 512 MB zookeeper
2 1 core - Intel Xeon E5-2630 2.6 GHz 768 MB nimbus
3-6 1 core - Intel Xeon E5-2630 2.6 GHz 2048 MB workers

Table 6.2: Software specification.

Name Version Description
Ubuntu 14.04.2 Physical server Operating System
CentOS 6.5 VM Operating System
VirtualBox 4.3.24 Virtualization Software
OpenJDK 1.7.0_75 Java Runtime Environment
Apache Storm 0.9.3 CEP system
MySQL 5.5.41 Database system

The software used in the experiments is presented in Table 6.2. All Storm topolo-
gies have been implemented using Storm’s Java API and use standard Java libraries for
database access and XML processing.

6.5.3 Set-Up

Before any simulation, the Storm queries had to be converted to AGeCEP formalism.
This conversion was straightforward because both Storm and AGeCEP use DAGs as
their underlying query model.

Figure 6.11 depicts the AGeCEP model of both queries presented in Section 6.5.1.
Attributes not used by the simulation are omitted from the figure. Each edge connecting
two vertices is annotated with its corresponding selectivity. In both queries, an event
consumer is also added to group all events consumed by the query.

To estimate the operator’s ipe attribute, two methods have been used:

• Latency estimation: the operator is fed with random events at increasing rates and
the average processing time (in milliseconds) is calculated for each rate value. The
minimum average is assumed to be the operator latency opl. The ipe attribute is
then calculated as:

op.ipe = (cpum · 106)/
(
1000

opl

)
(6.11)

where cpum is the CPU processing power estimated in MIPS.

• Maximum throughput estimation: the maximum throughput opt is estimated by
feeding the operator process with as many events as possible. The ipe attribute is
then estimated as:

op.ipe = (cpum · 106)/opt (6.12)

Experimental results have shown that the “latency” method provides better estimation
for lower throughput operators, such as the DBConsumerBolt, whereas the “maximum
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Figure 6.11: Storm queries converted to the AGeCEP model.

Table 6.3: Simulation parameters.

Parameter Value

CloudSim
VM Processor 2 x 2500 MIPS
VM Allocation Policy Simple
VM Scheduler Time shared

CEPSim

Simulation Tick Length 100ms
Placement Strategy User defined
Allocation Strategy Uniform
Scheduling Strategy Dynamic
Generator Uniform
Queue size 2048

throughput” method is better for higher throughput operators. This difference exists
mainly because it is hard to estimate latency accurately when the time spent processing
each event is very short.

For the experiments in this research, all ipe values were calculated using the “maximum
throughput” method, except for DBConsumerBolt.

6.5.4 Validation

The first step in CEPSim validation was to unit test all components and to execute a set
of sanity checks to detect programming bugs and inconsistent behaviour. After this phase,
a set of experiments was executed aiming to compare the performance metrics obtained
by running queries on a real CEP system (Apache Storm) and by simulating them on
CEPSim. This validation approach is similar to the ones adopted by other simulators,
such as NetworkCloudSim [56], iCanCloud [119], and Grozev and Buyya [66].

In all simulations, CEPSim was used to create an environment as close as possible to
the Storm VM cluster. Table 6.3 summarizes the main parameters used in the simula-
tions. VMs have been modelled as having two processors, even though only one physical
processor was allocated for each. This was done because the processors used in the ex-
periments are hyper-threaded, which enables a higher degree of parallelism than regular
processors. The queue size was set to 2048 because by default Storm has buffers with 1024
elements at both the output and input of each operator, but in CEPSim, accumulation
happens only at the operators’ input queues.
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(a) Latency. (b) Throughput.

Figure 6.12: Metrics estimation results - query q1.

Single Query

This first experiment validated CEPSim simulation of a single query running entirely on
a single VM.

To obtain the Storm metrics, both queries from Fig. 6.10 were first instrumented to
output the average throughput and latency every minute. In addition, the query Spouts
(event producers) were modified so that the user could define the number of sensors n
that send data to the query. Each sensor generated 10 sensor readings per second, of
which 5% were anomalies.

The graphs from the experiments were obtained by varying the number of sensors
n, which consequently varied the number of events generated per second. For each n,
the queries were run for 15 minutes and the average latency (throughput) for each of
the last 10 minutes were collected. Note that each data point is an observation from a
sampling distribution of the average query latency (throughput). CEPSim results were
also obtained by varying n and by collecting metrics of the last 10 minutes of 15 minutes
simulations. The graphs show the mean value of these averages and their 99% confidence
interval (in other words, the confidence interval of the sampling distribution). In most
cases, the confidence interval is small and not visible in the graphs.

Figure 6.12 shows query q1 latency and throughput as a function of the input rate.
Generally speaking, CEPSim achieved very high accuracy for both metrics when compared
to Storm. The latency estimation error was less than 1% up to 1000 events/second and
was kept below 7.5% up to 20000 events/second. The throughput calculation was even
more accurate, with almost no error up to 20000 events/second.

The major estimation error occurred at 22500 events/second, at which point the la-
tency obtained by CEPSim was lower than the real value. Further analysis showed that at
this point, the Storm query overloaded, and its behaviour became very unpredictable, as
can be seen in the high variance of this data point. Nevertheless, CEPSim still correctly
predicted the maximum query throughput around 21000 events/second, as shown in the
throughput drop in Figure 6.12b.

Results for the latency and throughput of query q2 are shown in Figure 6.13. The
latency axis in Figure 6.13a has a log scale because the measured values encompass five
orders of magnitude. Once again, the throughput calculation exhibited very small er-
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(a) Latency. (b) Throughput.

Figure 6.13: Metrics estimation results - query q2.

ror, and the maximum query throughput was closely estimated at approximately 21000
events/second.

The latency estimation at slow input rates showed some error because it is extremely
hard to estimate latency accurately at sub-millisecond precision. At 100 events/second,
the simulation values approached those obtained with Storm and remained close up to the
overload point at 22500 events/second. After this point, the simulation latency plateaued,
whereas the Storm value spiked. This difference was caused mainly by the way that CEP-
Sim handles full queues by using backpressure and discarding generated events. Storm,
on the other hand, delays generation of events, but does not discard them.

Networked Query

This experiment aimed to validate CEPSim simulation of distributed queries. To perform
this experiment, the query from Figure 6.10a was distributed into two VMs, such that
the DBConsumerBolt was placed into the worker2 server and all remaining vertices into
worker1.

A constant delay network interface was used to simulate this query. In this network
implementation, every event set sent through the network takes a fixed amount of time
to arrive at its destination. This is a reasonable approximation because all VMs from
the experiment were running on the same physical server and no real network traffic was
generated. The delay was estimated as 1 ms in a separate experiment. Furthermore, a
simulation tick length of 10 ms was used to improve the simulation precision (see discussion
on Section 6.5.6).

Figure 6.14 shows the simulated latency and throughput were very accurate and
precise. The latency error was less than 7% up to 27500 events/second. At 30000
events/second, the Storm query started to overload and the error increased, but the
CEPSim results remained within the confidence interval. Moreover, CEPSim estimated
the maximum throughput as approximately 34000 events/second, which is very close to
Storm’s overload point.
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(a) Latency. (b) Throughput.

Figure 6.14: Metrics estimation results - networked query q1.

Table 6.4: Multiple queries experiment - Latency measurements (in ms).

Apache Storm CEPSim
Placement1 12921.11 13234.15 +2.42%
Placement2 9840.91 10117.70 +2.81%
Placement3 12575.42 12030.00 -4.33%
Placement4 9795.91 10061.83 +2.71%

Multiple Queries

This experiment analyzed CEPSim’s behaviour when simulating multiple queries running
concurrently. To do so, first a Storm cluster was created at the Amazon EC2 service [10].
The setup was similar to the one presented in Table 6.1, but all VMs were configured as
instances of the m4.large type (2 vCPUs and 8GB of RAM).

Four placements were then compared in a scenario where four copies of query q1 were
simultaneously run:

1. Placement1: one VM, with all four queries placed on it;

2. Placement2: two VMs, with two queries placed on each;

3. Placement3: two VMs, with all four instances of DBConsumerBolt placed on one
VM and the remaining bolts on the other;

4. Placement4: four VMs, with one query placed on each.

To avoid possible bottlenecks in the database server, DBConsumerBolt was replaced
by a mock implementation which does not access the database, but spins in a busy loop for
4.5 ms (the average time spent to process a single event, as measured by the methodology
described in Section 6.5.3).

Table 6.4 presents the average latency of all four queries for both Apache Storm
and CEPSim and for all four placements. The CEPSim column also shows the relative
estimation error. Each query was set up to process 10,000 events/second. The throughput
metric has been omitted from the table because it was correctly measured as 10,000
events/second in all scenarios.

The results from this experiment demonstrated that CEPSim can accurately simulate
multiple queries running on the same VM and can be used to analyze different placement
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(a) Execution time. (b) Memory consumption.

Figure 6.15: Execution time and memory consumption - single VM.

strategies. For instance, the experiment showed that running two instances of query q1
on the same VM does not greatly affect their performance, as illustrated by the small
latency increase from Placement4 to Placement2. It is also clear from Placement1’s
latency that placing four queries on the same VM can overload it and may not be a good
option depending on the users’ QoS requirements.

6.5.5 CPU and Memory Overhead

This section presents two experiments that measured the execution time and memory
consumption of CEPSim simulations.

Figures 6.15a and 6.15b depict the results from the first experiment. This experiment
simulated a single VM running n instances of query q2 from Fig. 6.10b. The simulation
time was set to 5 minutes and each query processed 100 events/second. For each value of
n, the simulation was executed 10 times and the execution time and memory consumption
were recorded. The graphs show the average of these values alongside the 99% confidence
interval. CEPSim was able to simulate 100 queries in approximately 7 seconds and using
less than 40 MB of memory. Furthermore, both metrics grew sub-linearly as a function
of the number of queries.

The results from the second experiment are shown in Figure 6.16. In this experiment,
each VM ran a fixed number of queries, and the number of VMs in the datacentre was
varied. The graphs show results for two different combinations. In the first, the number
of queries per VM was set to 10 and the number of VMs varied from 10 to 1000; in the
second, the number of queries per VM was set to 100 and the number of VMs varied from
1 to 100. Both combinations resulted in the same number of total queries, but enabled
comparison of the effects of different query placements on CEPSim performance.

The results for the two combinations were very similar. The maximum simulation time
was approximately 7 minutes for a total of 10000 queries, which translates to 1 million
events per second. Less than one 1 GB of memory was needed to run this simulation.
Once again, both execution time and memory consumption scaled sub-linearly. This same
behaviour is expected as long as the available RAM is larger than the memory required
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(a) Execution time. (b) Memory consumption.

Figure 6.16: Execution time and memory consumption - multiple VMs.

(a) Latency. (b) Throughput.

Figure 6.17: Parameters experiments - Scheduling and allocation strategies.

by the simulation.

6.5.6 Simulation Parameters

The two experiments described in this section aimed to evaluate the effect of different
parameters in the simulations. First, it was analyzed how scheduling and allocation
strategies affect the simulation metrics estimation. In addition, the effects of simulation
tick length on CEPSim was assessed.

Operator Scheduling

To analyze the effects of operator scheduling strategies, query q1 latency and throughput
were estimated using the default and dynamic scheduling strategies combined with the
uniform and weighted allocation strategies. Figure 6.17 summarizes the results obtained
when query input rate was configured to 100, 500, and 10000 events/second.

When the default scheduling strategy was used in high input rate scenarios, the
throughput was considerably underestimated and the latency overestimated. This oc-
curred mainly because DBConsumerBolt was scheduled at every simulation tick, even
though it receives events only when its predecessor ReadingAverageBolt window closes.
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Table 6.5: Parameters experiments - Simulation tick length.

Query Tick length Latency (ms) Execution
(ms) time (ms)

Local 10 10078.43 - 63400.43
100 10140.53 0.62% 9645.23
1000 10415.02 3.34% 2811.64

Networked 10 9730.00 - 66385.91
100 9865.01 2.78% 10058.58
1000 12636.47 29.87% 3106.90

This problem was even more pronounced when weighted allocation was used. In this case,
the number of instructions that DBConsumerBolt received was proportional to its ipe,
which is much higher than the other operators’ ipes.

When using dynamic scheduling strategy, CEPSim better approximated Apache
Storm’s results in all scenarios. Nevertheless, when used with weighted allocation, dy-
namic scheduling underestimated the average latency in the 10000 events/second case.
In this combination, the dynamic strategy prioritized DBConsumerBolt whenever there
are events on its input queues, resulting in lower latency at the cost of lower maximum
throughput.

Simulation Tick Length

To evaluate the effects of simulation tick length on CEPSim, query q1 was simulated
using different simulation tick lengths in both local and networked cases. The results are
summarized in Table 6.5. The latency column shows the metric values estimated by the
simulation. The execution time column displays the average of 10 simulations, each one
including 100 instances of the query running for 5 minutes.

The results show that the simulation tick length enables users to adjust the trade-off
between precision and computational cost. A longer tick introduced estimation error for
both scenarios, but the execution time was significantly reduced. The error was more
pronounced in the networked query case because of the way network communication is
implemented in CEPSim: if a message is sent to a placement that has already been
scheduled, then the message will be processed on the next simulation tick only.

6.5.7 Discussion

The experimental results described in this section showed that CEPSim can effectively
model real CEP queries and simulate them in a cloud environment. Execution time
measurements also demonstrated that CEPSim has excellent performance, being able to
simulate 100 queries running for 5 minutes in 7 seconds only.

One of the main CEPSim use cases is to understand query behaviour at various input
event rates. The experiments described in Section 6.5.4 showed that this study can be
performed using CEPSim with relatively good accuracy and precision for both distributed
and non-distributed queries and for both high and low input rate scenarios.
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As another important use case, the experiments described in Section 6.5.4 - “Multiple
queries” showed that CEPSim can also be used to simulate multiple queries running on
the same VM. The latency estimation error was kept fairly low during the experiment
and enabled comparison of different operator placement strategies.

The limitations showed by CEPSim to simulate query q1 at the maximum input rate
highlighted the difficulty of simulating a system in an overloaded state. Further analysis
concluded that, at this point, most of the query latency consisted of I/O waiting time, as
theDBConsumerBolt writes to the database every event it receives. In this situation, the
operating system continues to schedule other threads and processes, which can continue to
process events on their turns. CEPSim uses a simplified model in which operator latency
is caused by processing time spent on CPU only. In addition, the metric calculation errors
at high input rates were also caused by differences in the strategy adopted to control the
query load: while CEPSim uses backpressure, Storm follows a pull strategy on which
events are requested from the producer only when there is available space at the operator
queues.

As a final observation, it is claimed that CEPSim can be efficiently used for Big
Data simulations. Results from the experiments in Section 6.5.5 demonstrated that the
simulator scales well and handles large numbers of queries with a small memory footprint.
In addition, CEPSim customizability also enables the user to fine control the simulation by
changing parameters such as the simulation tick length and scheduling strategy. Moreover,
even though Storm has not been stressed at a larger scale, most experimental results are
also applicable to these scenarios. This is true because, in practice, the distribution of
Storm (and other CEP systems) queries is limited to a few nodes. In other words, distinct
VMs usually run independent pieces of computation that can be simulated in isolation
from others.

6.6 Summary

This chapter presented CEPSim, a simulator for cloud-based CEP systems. CEPSim
can model different CEP systems by converting user queries to the AGeCEP representa-
tion. The modelled queries can be simulated on different environments, including private,
public, hybrid, and multi-clouds. In addition, CEPSim also allows customization of op-
erator placement and scheduling strategies, as well as the queue size and data generation
functions used during simulation.

Experimental results have shown that CEPSim can simulate a large number of queries
running on a large number of virtual machines within a reasonable time and with a very
small memory footprint. Furthermore, the experiments also demonstrated that CEPSim
can model a real CEP system (Apache Storm) with good accuracy and precision. To-
gether, these results validated CEPSim as an effective tool for simulation of cloud-based
CEP systems in Big Data scenarios.

By using CEPSim, architects and researchers can quickly experiment with different
configurations and query processing strategies and analyze the performance and scalability
of CEP systems. Hopefully, the availability of a simulator may also encourage research in
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this field.
The next chapter presents the last contribution of this research: the design and pro-

totype implementation of the CEPaaS system.



Chapter 7

Complex Event Processing as a Service

This chapter presents the design and implementation of a Complex Event Processing as a
Service (CEPaaS ) system. First, the motivation and goals of this system are discussed in
Section 7.1, followed by an overview of its architectural features in Section 7.2. Next, the
system architecture, design and implementation are detailed in Sections 7.3, 7.4 and 7.5.
Finally, the system is evaluated regarding its processing latency and fault tolerance in
Section 7.6.

7.1 Motivation

Despite a recent surge of interest in CEP motivated by its use in Big Data scenarios,
today the CEP market is still dominated by a few proprietary solutions [86, 123, 139]
that require large investments for their acquisition, but are still not as flexible as desired.
Alternatively, on the other side of the spectrum, many companies adopt open-source,
low-level systems [17, 18, 153] whose deployment demands intense technical training and
high operating costs.

To address these problems, this research proposes the creation of a CEP as a Service
(CEPaaS ) system to enable the offering of CEP functionalities in the cloud services model.
This model brings many advantages to the system users, such as no up-front investment,
low maintenance cost, and ubiquitous access via the Internet.

Nevertheless, offering such a service involves many challenges, which is reflected in
the limited number of similar services today. First, low latency is essential to many CEP
use cases, but is difficult to achieve in a service environment because there is no control
over the locations of event sources and consumers. In addition, some use cases impose an
unpredictable and variable load over the system, requiring the implementation of elasticity
capabilities in the system.

Moreover, CEPaaS is inherently multi-tenancy, which also brings many implications
to the system architecture and design. For instance, a multi-tenancy system has to have
high availability because an outage affects many customers and can seriously damage the
service provider reputation. It is also necessary to control the resource usage of user
queries and guarantee their isolation so that they do not interfere with each other.

By offering it to anyone with Internet access, the system is expected to scale primarily

123
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in the number of queries rather than in the input event rate of a small number of queries.
Finally, by targeting such a wide spectrum of users, the system must be usable by non-
specialists, but at the same time should not prohibit the definition of custom processing
logic by advanced users.

The next sections discuss in detail the architecture, design and implementation of a
CEPaaS system that aim to solve the mentioned challenges.

7.2 System Overview

To handle the challenges associated with offering CEP as a managed service, the CEPaaS
system is built on three main pillars: a multi-cloud architecture, container management
systems (CMS), and an extensible multi-tenant design. The first two are leveraged at
the architectural level to provide a scalable and fault-tolerant runtime environment for
queries. The third provides a novel design in which the system applicability increases
with the number of users.

Figure 7.1 shows an overview of the system architecture. The figure depicts one
primary and two secondary deployments of the system, each one running in a different
cloud. In this context, cloud is loosely defined as a cluster of servers offered by a cloud
provider that are connected via a high speed network and are geographically close to each
other. In terms of Amazon’s and Google’s nomenclature, this definition implies that the
servers from a cloud are running on the same region or zone.

This architecture is not strictly compliant with the multi-cloud definition provided in
Section 2.2.3, which requires clouds managed by different providers. The CEPaaS system,
on the other hand, only demands clouds that are physically apart. Note, however, that
this less architecture already brings the two most important advantages of multi-cloud to
the CEPaaS system. First, it increases system availability, as it is possible to continue to
process user queries even if an entire cloud goes off-line. Second, it enables exploration of
the geographical diversity of clouds, creating the possibility of a strategic deployment in
which system resources are positioned close to event sources and consumers.

It is important to emphasize the architecture does not need to be modified whether the
clouds are managed by different providers or not. In both cases, all three deployments
from the figure contain a set of system components that are required for running user
queries. The primary deployment also hosts components used for user interaction. Note
that the number of secondary deployments is not fixed and depends on the quality of the
service that the provider wants to offer.

Another important aspect of the CEPaaS architecture is that every deployment is
managed by a CMS, which is either provided as a managed service, such as Amazon
Container Service [11] and Google Container Engine [60], or is pre-installed in the cloud
servers. By encapsulating every system component as an application container it is pos-
sible to isolate and control their resource usage. This encapsulation also facilitates and
encourages independent upgrade of system functionalities. These benefits are similar to
the ones brought by VMs, yet with less execution overhead and more efficient usage of
resources (Section 2.3). Moreover, the infrastructure provided by a CMS guarantees that
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Figure 7.1: CEPaaS system architecture.

all containers are constantly running, which drastically simplifies the implementation of
fault-tolerance in the system.

It is important to note that even user queries are executed as application containers
in CEPaaS. This is a very important design decision that brings two additional benefits
to the system. First, scalability in the number of queries is naturally handled as new
query containers are created and scheduled by the CMS. Second, because queries have
different resource requirements and workload profiles, an intelligent scheduling strategy
can significantly increase the utilization level of the cloud servers.

On top of this architecture, the CEPaaS system adopts an extensible multi-tenant
design based on a query template mechanism that relieves users from learning query
definition languages. In the CEPaaS system, queries are created by simply instantiating
query templates. In addition, advanced users can still create new query templates based
on a library of operator templates or create new operator templates based on a Java API.
Finally, because query and vertex templates can be shared among customers, this design
promotes a strong library of operators and queries that is maintained and reinforced by
the users themselves.

7.3 System Architecture

The CEPaaS system architecture is based on one or more deployments, which run in clus-
ters of servers in multiple cloud environments. All CEPaaS deployments are managed by a
CMS and contain three system components necessary for running user queries: the Config
Manager, which maintains the system configuration; the Message Broker, which functions
as the system communication hub; and the Query Analyzer and Manager (QAM), which is
responsible for managing the lifecycle of user queries. The primary deployment also hosts
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the CEPaaS Core, CEPaaS Web and Data Storage components, which together provide
an API and a Web Application that can be used to interact with the CEPaaS system. In
the following subsections, these components and their interactions are discussed in detail.

7.3.1 Container Management System

CEPaaS architecture assumes that every cloud used by the system is controlled by a
CMS. From the architectural standpoint no specific CMS implementation is required as
long as it provides all functionalities expected. In theory, even different implementations
could be used simultaneously, only requiring the adaptation of the pieces of code and
scripts that interact directly with the CMS.

The following list summarizes the features that must be provided by the CMS:

• Docker support : every CEPaaS component has an associated Docker [114] image,
and the CMS must support the creation of multiple containers based on this image.

• Container scheduling : once a container is created, it must be automatically sched-
uled in one of the cloud servers.

• Container fault-tolerance: a system administrator specifies the number of replicas
for each container type, and the CMS must guarantee that this number is respected.
In other words, the CMS must automatically detect failed containers and restart
them if needed. In CEPaaS, every system component is replicated at least twice to
guarantee high-availability of the system.

• Dynamic attachment of volumes : the CMS must be capable of associating a con-
tainer to a data volume and of automatically attaching it to the server in which
the container is scheduled. This attachment must be dynamic because the server
in which a container runs is unknown beforehand. In CEPaaS, the Config Man-
ager, Data Storage, and Message Broker components require persistent data and,
therefore, use this feature.

• Automatic load balancing : when multiple replicas of the same container are created,
the CMS must support the creation of a service associated with an external IP and
must automatically forward requests sent to this IP to the container replicas. This is
necessary to guarantee that the CEPaaS Core and Web components are externally
accessible and have a load balancing mechanism in place.

• API access : the CMS must provide an API that other pieces of software can use to
control and monitor the runtime environment. In particular, the QAM component
requests the creation and removal of query containers, and both QAM and CEPaaS
Core examine the runtime status of existing query containers.

These other features are also expected even though they are not essential:

• Image registry : ideally, the CMS should have a local registry that can be used to
store the container images used by the system. If a registry is not available, public
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registries can be used. In this case, however, the CMS must have Internet access as
a way to contact them.

• Advanced scheduling capabilities : a good scheduling strategy should guarantee that
the servers have enough resources to run all containers allocated to them and the
load of all servers is relatively balanced. At the same time, the scheduler should
maintain the utilization level of all servers as high as possible to reduce the cost of
running the system. Finally, the scheduler should allocate replicas from the same
container in different servers in order to improve the availability of each service.

Note that the interaction with the CMS takes place at two distinct moments. The first
moment is when a new CEPaaS deployment is created and all system components must
be set up. This step is usually performed by a system administrator and results in the
creation of the system component containers. After a deployment is created, the QAM
and CEPaaS Core components constantly interact with the CMS to create new queries
and poll for their status.

Currently, the Kubernetes [63] system described in Section 2.3.2 is the only CMS
which provides all functionalities required by CEPaaS, and, therefore, it was adopted in
this research.

7.3.2 Message Broker

The Message Broker component is the communication hub of the CEPaaS system. Its
main purpose is to decouple producers and consumers of messages, and to guarantee
that messages are delivered to their intended destinations even in the case of failures.
Currently, the Message Broker is used for the following:

• QAM monitored events : the QAM component uses theMessage Broker as the source
of its input events. These events include user requests to create and remove queries,
and also monitoring information about the status of running queries and servers.

• Queries input events : all events processed by CEPaaS queries are sent from the
event producers to the Message Broker, and then processed from there. Most event
producers are external to CEPaaS and, therefore, it is fundamental to decouple
them from system internals.

Every CEPaaS deployment has a cluster of message brokers that serve as destination
of all messages addressed to its local components. Similarly to CMS, CEPaaS can use
different implementations of message brokers as long as they provide all guarantees re-
quired by CEPaaS. More specifically, the message broker is expected to be fault-tolerant,
to handle a high volume of events, and to provide some mechanism that enables parallel
consumption of events from the same topic. Currently, the CEPaaS system uses Apache
Kafka [94] as the Message Broker.

Figure 7.2 shows an overview of Apache Kafka architecture. In Kafka, messages are
grouped into topics and each topic is divided into a number of partitions. Each partition,
in turn, contains a sequence of messages and is internally structured as an append-only
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Figure 7.2: Apache Kafka architecture.

log file. To guarantee durability and fault-tolerance, Kafka replicates every partition to
other nodes of the cluster. The number of replicas is configurable, and in CEPaaS this
number is currently set to three. In Figure 7.2, both topics are illustrated with three
partitions (P0, P1 and P2) and two replicas for each partition.

When messages are sent to a topic, the client application determines a target partition
based on a hash value of key attributes or some customized logic. To read messages from
the topic, a consumer application can subscribe to a specific topic and set of partitions
to receive the respective messages. For each partition, consumers read messages from the
partition leaders only, which are shown in bold in Figure 7.2. Although it is guaranteed
that messages from a single partition are delivered in an ordered fashion, the same does
not apply between messages from different partitions and topics.

Alternatively, one or more consumers can form a consumer group and subscribe to
the entire topic. In this case, Kafka automatically divides the partitions and assigns
them to consumers belonging to the same group. Furthermore, Kafka also monitors this
assignment and re-evaluates it in case new consumers are added or removed. This situation
is illustrated in Figure 7.2 by consumer groups 1 and 2. The topic partitions are evenly
divided between the consumers from the group. This is an important feature because it
facilitates parallel consumption of events from the same topic.

7.3.3 CEPaaS Core / Web / Data Storage

The CEPaaS Core component implements the main API used for interaction with the
CEPaaS system. For example, this API is used to create new event producers and queries
and to remove running queries.

The API is provided as a REST interface and the data exchange format is JSON.
Internally, CEPaaS Core is implemented using Play! Framework1, and most of the appli-
cation state is kept in the Data Storage component. For instance, this storage contains

1https://www.playframework.com
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information about the system users, available operator templates, and the list of created
queries. Runtime information, such as the status of a query, is directly obtained from
the CMS and from the query containers. A detailed description of the API is provided in
Appendix C.

The Core and Data Storage components are only available at the primary deployment.
Therefore, if this deployment is off-line, all services provided by the API are not accessible.
This is a current limitation of the CEPaaS architecture that exists because it is difficult
to maintain Data Storage replicas consistently synchronized, especially when they are
separated by a high-latency WAN network and can be concurrently modified. CEPaaS
currently uses MongoDB2 as storage, which does not support this scenario. In future
work, this limitation will be lifted.

The CEPaaS Web component, on the other hand, is a traditional Web application that
acts as the Core frontend and complement of the API. It is implemented using traditional
Web technologies HTML 5, CSS 3, Bootstrap3 for layout, and jQuery4 library to facilitate
JavaScript programming. All communication between Web and Core is performed via the
REST interface.

7.3.4 Config Manager

The Config Manager is responsible for all configuration information needed by the system,
such as the IP address of messages brokers, the name of topics used to receive data from
external agents, and others.

The decision to store this information logically separated from the Data Storage has
been taken because it is important to have configuration data always available and strongly
consistent. Because these data rarely change and their size are much smaller than the
size of application data, it is possible to use a storage solution that has trade-offs and
consistency guarantees distinct from the Data Storage. In addition, systems that are
commonly used to store configuration data, such as Zookeeper [83] and etcd5 also provide
extra functionalities that can be applied to coordinate distributed components.

The current CEPaaS prototype maintains the configuration data in a MongoDB
database, which is also used as the Data Storage component in primary deployments.
The configuration data is manually synchronized between the MongoDB instances when-
ever they change. The CMS monitors these instances and restarts them as soon as a
failure is detected, which reduces the down time in case of failures. In the future, Mon-
goDB will be replaced by a specialized configuration manager with better support for
data synchronization and distributed coordination.

7.3.5 Query Analyzer and Manager

QAM is the component responsible for managing the lifecycle of user queries and of the
runtime environment. Every CEPaaS deployment has a set of QAM replicas that process

2https://www.mongodb.com
3http://getbootstrap.com
4https://jquery.com
5https://coreos.com/etcd/
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Figure 7.3: Class diagram of the CEPaaS system.

events from the local deployment.
QAM implements an autonomic manager similar to the one described in Section 5.1.

Its main responsibilities include:

• Create query : requests to create new queries are sent by the Core component on
behalf of the system users. When receiving such requests, QAM optimizes the query
graph and initializes the Message Broker to receive events intended for the query.

• Start query : requests to start a query are also sent by the Core component on
behalf of the system users. In this case, QAM resolves all query configurations,
converts the queries to the AGeCEP format, and invokes the CMS to create new
query containers.

• Stop query : when QAM receives a request to stop a query, it simply invokes the
CMS to remove the corresponding query container.

• Query monitoring : monitoring information is sent periodically by the query con-
tainers to QAM containing metrics about query performance, such as the size of
operator queues, processing latency, and throughput. This data is processed by
self-management policies, which can react to the monitored data and execute recon-
figuration actions to improve the query quality of service.

Details of these procedures are provided in Section 7.5.

7.4 System Design

The CEPaaS system is designed to be multi-tenant, flexible, and accessible for non-
technical users. To enable this, it leverages the idea of query templates as pre-defined
event processing recipes that can be customized and instantiated. A class diagram showing
CEPaaS core concepts is shown in Figure 7.3.
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7.4.1 Tenant

A tenant is a company, group, or a single individual that uses the system. In a scenario
in which the CEPaaS system is offered as a paid service, the tenant is the entity that
establishes a contract with the service provider.

Associated with each tenant there is a set of users, who are the ones who operate the
system. A user has an email and password that are used to log into the Web application
and to authorize API calls sent to the Core component. In addition, every tenant also
registers a set of event sources, representing systems, devices, or any other source that
produces events consumed by the tenant queries. For instance, a tenant that uses the
system to monitor the resource consumption of buildings can register as event sources
electricity meters, temperature sensors, or any other device that produces data and needs
to be integrated into the system.

Finally, each tenant also has an associated library that contains the vertex and query
templates that its users are allowed to use. Details about templates are discussed next.

7.4.2 Vertex Templates

Vertex templates constitute the query template building blocks. According to the role
they have in a query, vertex templates are classified as producer, operator, or consumer
templates.

A producer template represents a certain way to introduce events into the system. For
instance, CEPaaS has a built-in “kafka” producer template that reads incoming events
from the Message Broker. Nevertheless, other types of producer templates can also be
used to read events from alternative sources such as Amazon Kinesis [12] and Google
Pub/Sub [62].

An operator template, on the other hand, represents a piece of logic that can be reused
in the context of event processing queries. In practice, every operator template instance
is associated with a set of classes that implement the processing logic and are used at
runtime. Details of this association are presented in Section 7.5.2. Currently, CEPaaS
provides a set of built-in operator templates that can be used by any user with access to
the system. In the future, users will also be able to create their own operator templates
and (optionally) share with others.

Finally, consumer templates are used to represent actions executed on the query re-
sults. For instance, query results can be translated into alerts, such as email messages
to system administrators, or can be published into the CEPaaS Message Broker. Like
the other vertex template types, CEPaaS provides built-in implementations for the most
common cases and additional ones can be added if needed.

Independently of its type, every vertex template is associated with a set of parameters
and configurations. Parameter values are used to customize template behaviour, and
are set by the users. For example, the “filter” operator template has a parameter named
“expression” that stores the boolean expression to be evaluated by the filter. Configuration
values, on the other hand, are used to bind templates to the runtime infrastructure in
which they are running. For instance, the “kafka” producer template has a configuration
named “broker list” that contains the IP addresses of the local Apache Kafka brokers.
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Figure 7.4: CEPaaS core concepts.

Unlike parameters, configurations are not related to business logic and are automatically
resolved by the CEPaaS infrastructure when a query is started.

7.4.3 Queries

Using the three types of vertex templates as building blocks, a query template is defined by
connecting them into a coherent graph structure that implements some event processing
logic. Similarly to vertex templates, users can also share query templates they created
with other users. In this way, the system aims to build a strong collection of query
templates that are sourced from its own user base.

There are only a few constraints about what constitutes a valid query template. First,
the graph must be acyclic. Second, a query template is not allowed to have more than one
producer template associated with the same event source. Finally, each query template
can have only one consumer template. Note this constraint does not restrict the number
of event consumers of a query: the consumer template simply represents an action that is
executed on the query results. For instance, the “kafka” consumer template forwards the
query results to the system Message Broker and, from there, they can be read from any
number of other queries and external entities.

Moreover, it is important to note that a query template is not a runtime entity, but
simply a description of a potentially reusable event processing logic. An actual running
query is only created when a query template is instantiated. At this moment, the user
must provide values for all vertex template parameters that do not have default values.

Figure 7.4 illustrates these concepts further. The far left of the figure shows a set of
vertex templates belonging to the tenant library. In the centre, a selected set of these
vertex templates are connected together to create a new query template in which a window
operator groups events to calculate the average value of a certain attribute and a filter is
executed over this average. For example, this query template can be used to detect sensor
readings that are above or below a threshold.

The right part of the figure depicts two queries created from this query template.
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{
   "sourceId": 120,
   "timestamp": 1461112695065, 
   "value": 10.0
}

(a) Sensor reading.

{
   "name": "qam_server1"
   "server_ip": [
      "192.168.1.134",
      "10.0.1.22”
   ],
   "timestamp": 1461112909072, 
   "cpu_load": 0.34,
   "memory": {
      "used": 2155,
      "available": 1941 
   }
}

(b) Server monitoring informa-
tion.

Figure 7.5: Events - JSON representation.

Note that for each query a different set of parameters is provided, which results in the
same logic being executed in two different contexts. For instance, one query can be used
to monitor the temperature of the IT room, whereas the other can verify a transformer
temperature. Details of the query creation procedure are described in Section 7.5.4.

7.5 System Implementation

This section discusses implementation details of the CEPaaS system. It starts by ex-
amining how events are represented. Following that, it details how a vertex template is
defined and presents the list of vertex templates currently built into the system. Finally,
it describes the query execution engine including details of the transformation from query
templates to containers and of the fault-tolerance guarantees provided by the system.

7.5.1 Events

In the CEPaaS system, events are defined as the computational representation of some-
thing that happened in the context of interest. Because CEPaaS is a multi-tenant system
not tied to any specific domain, this definition is intentionally generic. For instance, de-
pending on the domain to which the system is applied, an event can represent a sensor
reading, the CPU consumption of a server, or the creation of a new user on a website.

Independently of their semantics, all events are represented as JSON documents [29].
JSON is a lightweight, structured representation of data that is used in most APIs avail-
able today, including in the CEPaaS Core.

Figure 7.5 depicts two events represented in JSON. The event in Figure 7.5a represents
a sensor reading and contains three simple attributes. The event in Figure 7.5b also
contains a list attribute (server_ip) and a nested document (memory).

Because of the chosen representation, events in CEPaaS are also schema less. In other
words, events are not associated with a formal description of its structure (attributes
and datatypes). Therefore, event streams exchanged between operators are not “strongly
typed” and the system does not check for output and input compatibility between oper-
ators when a query template is defined.
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{
 “name”: “filter”,
 “description”: “…”, 
 “parameters”: [
  { “name”: “expression”, “type”: “simple”, “kind”: “string” }
 ],
 “configurations”: [ ],
 “classification”: {
  “duplicable”: “true”, “requiredSplit”: “random”, …  
 }
}
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Figure 7.6: Vertex template definition.

Because of this limitation, the user who instantiates a query is responsible for guaran-
teeing that the input events contain all data needed by the query template and the data
has the correct datatypes. The disadvantage of this approach is that some errors are only
detected at runtime, which complicates initial configuration and tests. Nevertheless, this
also brings two advantages to the system. First, it reduces the runtime overhead because
events are processed as they come without further checking. Second, it facilitates the
creation of generic operators that can be used in a variety of query templates.

During processing, the processed events are encapsulated into objects called tuples
and exchanged between query operators. Tuples keep additional information about events,
such as the timestamp at which they entered the system and the sequence of operators that
they have been through. This extra information is used to calculate operator performance
attributes and the query quality of service.

7.5.2 Vertex Template Logic

In CEPaaS, every vertex template is defined by two main parts: the metadata and the
implementation. Figure 7.6 shows the definition of the “filter” operator template.

The metadata is defined by a JSON document and includes basic information about
the template, such as its name, description, and the set of parameters and configurations
it uses. Moreover, the metadata also contains the template classification according to the
AGeCEP criteria presented in Section 4.3. This classification is essential because it tells
how an operator can be managed by the CEPaaS system. For instance, the duplicable
criterion indicates if an operator can be duplicated to parallelize its execution. All these
metadata are provided by the user who created the template and are stored in the Data
Storage component.

The implementation part of a vertex template, on the other hand, is defined by a set
of classes that implement three distinct interfaces: Initializer, Resolver, and Logic. The
definitions of these interfaces are shown in Figure 7.7. Note that a vertex template does
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not implement Logic directly, but one of its sub-interfaces according to its type.
To show how each of the vertex template classes are employed, Figure 7.8 illustrates

the typical states of a CEPaaS query and how the template classes are linked to query
state transitions. When a query template is instantiated, a query is created and the setup
method from all vertex initializers used in the query is executed. The vertex initializers are
responsible for preparing the environment for query execution by setting up any resource
needed by the templates. For instance, during setup the “kafka” producer initializer checks
in the Config Manager to learn whether the event source associated with it already has
an allocated partition in the Message Broker. If it does not, then an allocation is created.
Conversely, the initializers also have a teardown method which is run when a query is
removed from the system.

The template resolver, on the other hand, is executed every time the query is started
or restarted. Its main goal is to resolve all the vertex configurations by interacting with
the Config Manager. For instance, in the “kafka” producer case, the resolver reads con-
figurations about the brokers IP addresses, the tenant’s topic name, and the event source
partition.

Finally, the logic part is the one that defines the event processing logic itself. Note
there is one specific interface for each vertex template type: Producer, Operator, and
Consumer. They all inherit from a common interface Logic and therefore share the method
init, which acts as the constructor of the Logic object. For example, in this method the
“kafka” producer establishes connections with all Kafka brokers.

The main logic of a Producer is defined in the method read, which returns a future of
a sequence of tuples. By using a future as the return type, CEPaaS enables the producer
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Figure 7.9: A DRL rule definition.

implementation to control when the method should return and, therefore, to regulate how
data is transferred from the producer to the query. At runtime, every time a future is
fulfilled the method read is invoked again to request the production of more tuples.

Analogously, an Operator main logic is implemented in the process method, which
receives a tuple as input and returns a sequence of tuples and a destination to which these
tuples must be sent. Note that different implementations of the Destination interface
enable the operator to fine control the target of the tuples: to an Error queue, to a
Single successor, to Multiple successors, to All successors, or to None of them. More
details can be consulted in Appendix D, which contains a complete definition of the “filter”
operator template.

The CEPaaS system also provides an alternative way to define operator templates by
using the Drools Rule Language [89] (DRL) instead of Java code. All operator templates
defined this way are associated with the same DroolsOperator class, which is configured
to read a DRL file with the rule content.

Figure 7.9 shows a DRL example. Values specified in curly brackets are parameters
of the operator template that must be specified by the user when instantiating a query
template. DRL rules are declarative in nature and enable the specification of pattern-
based conditions, including the use of quantifier operators and event windows. In this
example, an alarm is created whenever the average value of a certain sensor over the last
windowSize seconds is higher than an upperLimit.

Finally, the process method contains the event processing logic for Consumers. The
method is similar to the Operator’s read method, but it simply returns a Try object
signaling the success or failure of the processing.

7.5.3 Built-In Templates

The CEPaaS system provides a set of built-in vertex templates that can be used by any
tenant to define query templates. These built-in vertex templates provide common event
processing logic that are reused and integrated with user-defined operators to implement
the tenant’s business requirements. The list of currently available built-in vertex templates
are:

• Kafka Producer : reads incoming events of a specified event source from the built-in
Message Broker. This producer assumes that each tenant has its own topic with a
configurable number of partitions (by default 20), and the tenant event sources are
evenly distributed among these partitions. Figure 7.10a shows a schematic of how
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Figure 7.10: Kafka Producer and Consumer.

topics and partitions are organized. Each partition of the tenants’ topics receives
data from many event sources. For instance, partition 1 from tenant 1 receives data
from sources s1, s3, and s8.

This design has been chosen over a design having one topic per event source to avoid
the creation of too many topics in the broker. However, this design implies that a
producer may receive events from more than one event source when reading from
a single partition. In this case, events that are not addressed to the producer are
simply discarded. For instance, the producer p3 from Figure 7.10a receives data
from s1, s3, and s8 but only forwards s3 events.

Moreover, this producer template can be configured to periodically checkpoint the
offset of the last processed event into the Messsage Broker. By doing so, it can
continue to process events from the last checkpoint after a restart. More details
about this recovery mechanism are provided in Section 7.5.4.

• Filter : removes events that do not satisfy a boolean expression from the event
stream. It supports expressions consisting of boolean, relational, and simple arith-
metic operators.

• Projection: extracts a subset of attributes from the input events and creates new
events in the output that contain only this subset.

• Augmentation: augments input events with new attributes that are derived from
existing attribute values. It also supports boolean, relational, and simple arithmetic
operators, in addition to string concatenation.

• Windowing : groups input events into windows, and emits tuples containing the
grouped events. The current implementation is based on the window size and ad-
vance parameters, and is similar to the windowed operator described in Section 6.3.1.

• Kafka Consumer : sends the query results to theMessage Broker. As in the producer
template, each tenant also has a topic to store its resulting events. In this case,
however, the events are partitioned per kafka consumer instance (and consequently,



CHAPTER 7. COMPLEX EVENT PROCESSING AS A SERVICE 138

per query). Figure 7.10b shows an schematic of how topics and partitions are
organized for the consumers case. Each consumer sends data to a single partition
of the tenant topic.

• Email Consumer : sends the query results to a configurable email address.

For all these built-in templates, the Data Storage is pre-populated with their corre-
sponding metadata, and the operator logic classes are included in query execution engine
binaries.

7.5.4 Query Execution Engine

CEPaaS query execution engine is built on top of Akka [6], a programming toolkit created
to facilitate the implementation of distributed, scalable, and fault-tolerant applications.
To achieve these goals, Akka applies the actor model of concurrent computation presented
by Hewitt et al. [73].

The actor model is based on the principle that a program can be modelled as a set of
actors that only communicate with each other through a set of asynchronous messages.
When an actor receives a message, it can react by sending other messages, by designating
the behaviour to be used in the next message, or by creating new actors. This relatively
simple model relieves the programmer from dealing with thread management and locking
issues because the actor state is only accessible by itself. In other words, if one actor
needs to access another actor’s state, it needs to explicitly request it with a message and
the response is received later in another message. The concurrency in such a program
primarily happens between actors processing their own set of messages.

The Akka toolkit adds more functionalities to this model and adapts it to distributed
and fault-tolerant scenarios. In Akka, distribution is primarily achieved by making actors
location-transparent. An actor communicates with others using actor reference objects,
which can point either to local or to remote actors. From the sender point of view,
communication with remote actors is indistinguishable from local communication. Fault
tolerance, on the other hand, is based on a supervision hierarchy model in which an actor
monitors its children actors for failures and decides what to do when such a failure is
detected.

In runtime, every Akka actor is part of an actor system, which hosts a series of services
that are shared among its actors (e.g., logging and configuration). Every actor system also
has a dispatcher that manages actor scheduling and execution. In practice, a dispatcher
is usually implemented via a thread pool. Finally, to exchange messages, every actor is
associated with a mailbox that is used to hold messages destined for it. By default the
mailbox is a simple unbounded queue, but other implementations are available and can
be used to adapt the actor to different scenarios.

The CEPaaS system leverages Akka functionalities to provide a robust and fault-
tolerant environment for query execution. The following subsections discuss how a user
query is created and transformed into Akka actors for execution.
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Figure 7.11: Sequence diagram - query creation.

Query Creation

Figure 7.11 depicts a sequence diagram that details query creation in CEPaaS. When the
CEPaaS Core component receives a creation request, it first inserts the new query into
the Data Storage. Next, it determines in which CEPaaS deployment the query should
run. Currently, each tenant is associated with a single deployment to which all its queries
are allocated. Once determined, a “create query” message is sent to the Message Broker
from that deployment. This message is eventually consumed by QAM, which invokes the
Initializers for all vertices and prepares the environment for the query execution.

Query Start

Starting a query is a complex process that involves most CEPaaS components. To facil-
itate its understanding, this process is depicted in two sequence diagrams. The first, in
Figure 7.12, shows it from the moment a request is received up to the query container
creation. The second, depicted in Figure 7.13, illustrates how the Akka actors are created
and mapped to a query.

When CEPaaS Core first receives a request to start a query, it determines in which
deployment the query has been created and forwards the request to the corresponding
Message Broker. This message is eventually consumed by QAM, which then executes the
following steps:

1. Invokes the Resolvers for all vertices in the query. Here, most resolvers will interact
with the Config Manager to determine its configuration.

2. Converts the query to the AGeCEP model. Note that for queries based on query
templates the conversion to AGeCEP model is direct because the query template
is a DAG and every vertex template is, by definition, already classified according
to AGeCEP criteria. In the future, queries will be defined in other languages, and
this step will normalize them to the universal AGeCEP representation.

3. Creates a JSON description of the AGeCEP query. This description contains all
information needed to execute the query, including configuration values (determined
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in the previous step), name of vertex template implementation classes, and tenant
details.

4. Requests the CMS to create a query container.

The query container receives as parameter the JSON document created in step 3
and passes it to the main method of the query application. In the main method, the
application creates an actor system and a query actor to manage the execution of the
AGeCEP query specified in the JSON. The query actor, in turn, iterates through all query
vertices in backwards topological sort order and for each vertex creates the corresponding
Logic class, invokes the init method, and creates a vertex actor to encapsulate the logic.
Finally, a start message is sent to the query actor to signal the execution start.

Query Execution

Figure 7.14 illustrates how application containers and the Akka framework are used to
run AGeCEP queries. Each query is encapsulated in a Docker container and is scheduled
by the CMS. Inside the container, an Akka actor system runs on top of a Java Virtual
Machine (JVM) and hosts all actors that are part of the query.

As explained in the previous section, every query has at least one corresponding query
actor that is responsible for creating the vertex actors and for supervising them. The
vertex actors, in turn, execute the event processing logic according to the encapsulated
vertex:

1. Producer actors : on initialization, the actor invokes the read method from the
encapsulated Producer. When the returned future completes, the actor forwards
the produced events to its successor and invokes the read method again.

2. Operator actors : when an operator actor receives events from its predecessors, it
forwards the events to the encapsulated operator logic and processes the results of
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this invocation. As explained in Section 7.5.2, the resulting events can be forwarded
to one, multiple, or all successors. Alternatively, they can be discarded or sent to
an error queue in case of problems.

3. Consumer actors : the consumer actor works similarly to the operator actor: the
events received are forwarded to the encapsulated consumer logic and the results are
processed. Because consumer logic never produces new events, the only two possi-
ble outcomes are success, in which case the events are assumed to be successfully
consumed, and failure, in which case the input events are sent to an error queue.

Fault Tolerance

Fault tolerance of the CEPaaS queries is implemented by a two-level supervision hierarchy.
The first level occurs internally to the query container and is managed by the Akka

toolkit. As mentioned in the “Query Execution” section, every query container has a query
actor that creates the vertex actors and, as such, is responsible for supervising them. If a
vertex actor fails, the error is detected by the supervisor, which restarts the failed actor.
To avoid continuous restarts, the supervisor implements an exponential back-off algorithm
that increases the time delay between restarts every time a child actor fails. In addition,
if the restart delay reaches a configurable maximum (by default one minute) then the
query actor itself (and the container) will also fail.

The second level of supervision is managed by the CMS. Every query container sched-
uled by the CMS is associated with a replication controller, which is responsible for
maintaining one replica of the query container running. Therefore, if a server crashes,
or a query container stops working, the replication controller detects it and requests the
creation of a new container to replace it.

Because events sent by the external producers are persisted in the Message Broker
before delivery, these producers are unaware of possible problems with their queries and
no event is lost in case of a query failure. Upon restart, the “kafka” producer retrieves
from the Message Broker the last committed checkpoint and restarts processing events
from this position. This mechanism guarantees that all events are delivered at-least-once
to the query, but does not guarantee they are all processed. For instance, an already
checkpointed event that is part of an aggregation window may be lost if a failure occurs.
In addition, the calculated state of this window is also lost upon a failure and needs to
be rebuilt starting from the next consumed message.

CEPaaS recovery mechanism, therefore, implements gap recovery and is similar to
the amnesia approach presented by Hwang et al. [84]. Mechanisms that implement re-
covery with stronger guarantees have been thoroughly studied in the literature and will
be incorporated to the CEPaaS system as future work [17, 53, 84].

Monitoring

In addition to the basic query creation and removal functionalities, the QAM compo-
nent also monitors running queries to adjust them to changing conditions and to provide
runtime information for the system users.
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Monitoring information is collected periodically by the query actors and is sent to
a special Message Broker topic. This information includes the number of events in the
operator queues, total events processed, average query throughput, and average query
latency. The monitoring topic is partitioned by the tenant ID and is read by a set
of QAM replicas belonging to the same consumer group. As described previously, the
Message Broker automatically distributes these partitions among consumers, enabling
parallel consumption of events and significantly improving QAM scalability.

Upon receiving monitoring information, QAM executes the MAPE-K loop described
in Section 5.1. First, query representations stored in an in-memory knowledge base are
updated with the received information. This information is then fed to the monitoring
module and to the set of self-management policies present in the KB. The execution of
inference rules is managed by Jboss Drools [89]. Currently, only simple rules that detect
whether a query is overloaded are executed. As future work, the policies described in
Section 5.3 will be incorporated into QAM.

7.5.5 Limitations

The CEPaaS implementation presented in this chapter does not explore its multi-cloud
architecture to the full extent. In particular, there are two main limitations that will
be lifted in the future. First, the CEPaaS system currently does not tolerate the failure
of an entire cloud (deployment). Fault-tolerance at the cloud level, however, is essential
for a cloud-based high-available system because no single provider can guarantee 100%
availability. To provide such capabilities, the system will implement mechanisms to detect
deployment failures and to move the execution of queries between deployments.

Second, the deployment at which queries execute is selected based on pre-defined
configurations that associate each tenant with a deployment. Ideally, this selection should
be dynamic based on the location of event producers and consumers. Even further, a query
can be split into more than one container that are scheduled into different deployments.
This dynamic scheduling can enable further reduction of the end-to-end query latency
and provide an even better experience for the end user.

Another limitation of the CEPaaS system is the lack of native support for enrichment
use cases, in which events are enriched with historical data previously stored in a database.
Currently, the Data Storage is accessible only by CEPaaS components and cannot be read
nor written by user queries. Therefore, it is the user responsibility to maintain a database
in his or her own environment to be accessed by his or her queries. In the future, the
CEPaaS system will provide a managed database that can be used for this purpose.

7.6 Evaluation

This section presents an evaluation of the CEPaaS system focused on two main aspects.
First, a set of experiments were executed to measure the latency of CEPaaS queries and
to assess the effects of the multi-cloud architecture in this latency. Second, another set of
experiments validated the fault-tolerance mechanism provided by the CMS and estimated
the recovery time of failed queries. The results presented here confirm that the proposed
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Figure 7.15: Query used in the CEPaaS experiments.

CEPaaS architecture can indeed be used to handle the challenges associated with offering
CEP as a managed service.

7.6.1 Set-Up

For all experiments presented in this section, the Google Container Engine (GKE) [60]
service was used to create two deployments of the CEPaaS system. The first deployment
was created in the us-central1 zone, located in Council Bluffs, Iowa, USA, whereas the
second deployment was created in the asia-east1 zone, located in Changhua County,
Taiwan. GKE enables the creation of clusters of servers controlled by Kubernetes managed
instances, which eliminates the need for installing and configuring it.

Each deployment was set up with five servers of type n1-standard-4, which has four
virtual CPUs6, 15 GB of memory and a 100 GB hard drive. From the five servers,
three were reserved to run system components and the remaining two were used to run
user queries. This separation was artificially implemented to isolate the queries from
interference from other system components. Note that, in practice, this separation is not
necessary and the CMS may place queries in any of the servers available in the cluster.

Figure 7.15 shows the AGeCEP representation of the query used in the experiments.
This query has also been adapted from the Powersmiths WOW [127] system and aims
to convert JSON requests, which are sent by temperature sensors, to the native WOW
format (XML document). The query is composed of three main steps. First, a “filter”
removes invalid temperature readings from the event stream. Second, an “augmentation”
operator is used to include a new attribute in the event containing the temperature reading
converted to Fahrenheit. Finally, the last operator creates a XML document based on the
attributes included in the JSON. This is a user-defined operator created specifically for
this experiment.

To measure the end-to-end query latency, the following procedure was executed: for
each query, both a producer client and a consumer client were deployed in a single server.
The producer sent events to the CEPaaS system at a specified rate, and every event
sent was timestamped with the server local time. The consumer, in turn, read the query
results from the CEPaaS Message Broker. For every event read, the consumer registered
the receiving timestamp and compared it with the timestamp that was sent in order to
obtain the latency. Note that because both producers and consumers were deployed in
the same server, it was possible to avoid clock synchronization issues and to obtain more

6A virtual CPU is implemented as a single hardware hyper-thread on a 2.6 GHz Intel Xeon E5 (Sandy
Bridge), 2.5 GHz Intel Xeon E5 v2 (Ivy Bridge), or 2.3 GHz Intel Xeon E5 v3 (Haswell) [60]
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Figure 7.16: Query latency - 95% percentile - client in us-east-1 region.

precise measurements.
Finally, all client servers were deployed in the Amazon EC2 [10] service and not in

Google’s cloud. This setup enabled measurements that are closer to a real user using
the system via Internet because it avoids high-speed links that exist between datacentres
from the same provider.

7.6.2 Latency Evaluation

To evaluate the end-to-end query latency and to measure the effects of the multi-cloud
architecture in this latency, two experiments were executed.

In the first experiment, a client located in the us-east-1 (Northern Virginia, USA)
AWS region was used to access queries running in the us-central1 and asia-east1 CEPaaS
deployments. Figure 7.16 shows the results of this experiment. For each deployment,
clients for 1, 2, 4, and 8 queries were run at 1 event/sec and 100 events/sec generation
rate. Each measurement ran for 11 minutes, and the graphic shows the 95% percentile
latency value for the last 10 minutes.

The results show that for both 1 and 100 events/sec the latency of the asia-east1
deployment is larger than of the us-central1. The increase in latency ranges from 70%
for the 8 queries and 1 event/sec case to 172% for the 1 query and 100 events/sec case.
The results also demonstrate that increasing the number of queries up to 8 (4 queries in
each server) has little effect on the latency (40% increase in the worst case). Finally, it is
also possible to note that increasing the event generation rate naturally increases the 95%
percentile latency value, because more events are generated and they spend more time in
the system queues before being processed.

The second experiment executed is similar, but the client was located in the asia-
northeast-2 (Seoul, South Korea) AWS zone. The results for this experiment are shown
in Figure 7.17. Once again, there is significant improvement for clients when they access
nearby deployments (ranging from 60% to 70% in this experiment). An increase in latency
at higher generation rates was also noticed.

The results obtained by these experiments conform to the hypothesis that geographical
proximity translates to lower query latency. The experiments also validated the CEPaaS
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Figure 7.17: Query latency - 95% percentile - client in asia-northeast-2 region.

approach of leveraging multiple clouds to position system components closer to the clients.

7.6.3 Fault Tolerance

To test the fault tolerance mechanism provided by the CEPaaS system, two experiments
were executed.

The goal of the first experiment was to assess the time required to recover from failures.
To achieve this goal, an instance of the query shown in Figure 7.15 was created in the us-
central1 deployment. The query was configured to checkpoint the offset every five seconds.
In addition, a client located in the us-east-1 AWS region was created and configured to
send events at 1 event/sec rate. At time t = 30, the query container was killed, which
activated the fault tolerance mechanism. Because offset checkpointing was turned on, the
query restarted its execution from the last committed offset.

Figure 7.18 shows the latency measured for each event sent during the experiment.
The y (latency) axis is in log scale. In general, the latency oscillates between 50 and 100
ms, and for only the four events between t = 35 to 39 the measured latency was higher.
The maximum value of 4 seconds was measured at t = 35. This result shows that the
query could quickly recover from the failure and return to its normal behaviour.

To assess the overhead of offset checkpointing, Figure 7.18 also shows the same exper-
iment executed for a query without this mechanism activated. The measured latencies
are similar in both cases, which shows that the overhead is small. In addition, the result
also shows that the recovery time in both cases are similar, even though some messages
are lost when offset checkpointing is disabled.

In the second experiment, a more complex fault tolerance scenario was also analyzed.
In this scenario, four instances of the query in Figure 7.15 were created in the us-central1
deployment and distributed between two servers. As in the first experiment, four clients
were created in the us-east-1 AWS region and configured to send events to the queries at
1 event/sec rate. At time t = 30, two queries from the same server were killed and forced
to be rescheduled into the other server.

Figure 7.19 shows the results of this experiment. Queries 1 and 3 are the ones that
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Figure 7.18: Query latency - fault tolerance experiment.

Figure 7.19: Query latency - fault tolerance experiment in a complex scenario.

were killed and rescheduled. First thing to note is that the latency for queries 2 and 4
were not affected during the whole experiment, which shows that queries are properly
isolated from concurrent activities happening in the system. Moreover, the time needed
to recover from failure and relocate the queries to another server is similar to the recovery
time in the first experiment, in which the failed query was rescheduled in the same server.

These experiments show the fault-tolerance mechanism implemented by the CEPaaS
system is effective and can quickly recover failed queries without losing messages.

7.7 Summary

This section presented the design and implementation of a CEP as a Service (CEPaaS )
system and evaluated it in a series of experiments.

The proposed CEPaaS system is based on a novel architecture that uses multiple
clouds to improve the system fault-tolerance and to explore the geographical diversity of
public cloud datacentres. The architecture also explores application containers as a way
to encapsulate system components, and uses CMS to schedule and to manage containers
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execution. Finally, the system proposes query templates as an extensible mechanism to
define new queries without the need of learning query definition languages.

The experiments demonstrated that multi-cloud architecture can be explored as a
way to reduce the query latency. In addition, they also showed that the fault-tolerance
mechanism provided by the system is efficient and can quickly recover queries from failures.

The next chapter concludes this thesis by reviewing its main contributions and by
discussing possible directions for future work.



Chapter 8

Conclusion

This research has presented a series of contributions towards the development of a Com-
plex Event Processing (CEP) system that can be offered as a service and used over the
Internet. The development of this CEP as a Service (CEPaaS ) system aims to bring the
advantages of the services model to CEP, but it involves many challenges that encom-
pass the whole research and development cycle. In particular, this work identified and
proposed solutions for three open problems:

• The problem of understanding and reusing existing CEP procedures and algorithms
that is caused by the large variety of current solutions, the use of inconsistent
terminology, and the lack of a standard query definition language.

• The problem of evaluating CEP systems and comparing them with existing ap-
proaches that is caused by difficulties in executing repeatable Big Data experiments
in cloud environments and the lack of proper tools.

• The problem of designing and implementing a CEPaaS system, caused by functional
and non-functional requirements that must be satisfied by the implementation, such
as multi-tenancy, fault-tolerance, and low-latency query execution.

More importantly, even though they were identified and discussed in the context of
the CEPaaS system, these problems are general and often found in the context of similar
research. Therefore, either by considering the contributions presented in isolation or
together, this work significantly advances the CEP state-of-the-art and provides novel
tools and methodologies that can be applied to CEP research and development.

In the next section, the contributions of this research are reviewed. Opportunities for
future work are identified in Section 8.2.

8.1 Contributions

To solve the problem of understanding and reusing existing CEP procedures and al-
gorithms, this research proposed the Attributed Graph Rewriting for Complex Event
Processing Management (AGeCEP) formalism. Its main goal is to provide a formal way
to express queries and query reconfigurations independently of query definition language

149
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and technology. By doing so, it provides a common ground through which management
procedures can be expressed. Moreover, it also enables procedures expressed in AGeCEP
to be applied to systems that adopt it as the underlying formalism.

Queries in AGeCEP are directed acyclic graphs whose vertices and edges are aug-
mented with a standardized set of attributes used for decision making in runtime man-
agement procedures. These attributes are defined based on a novel classification of CEP
operators, which has also been developed in this research and focuses on reconfiguration
capabilities of CEP operators.

Query reconfigurations, on the other hand, are represented as graph rewriting rules
based on the Single-Pushout approach [104]. In AGeCEP, the rewriting rules consider
the vertices’ characteristics, as determined by their attributes, to determine whether a
rule can be applied. Therefore, the formalism can establish correctness guarantees for
the reconfigurations: rules are never applied to incompatible operators and queries. In
addition, AGeCEP rewriting rules are also associated with a set of mutators, which are
executed as a side-effect of rule application. This mechanism guarantees that changes
performed in the query models are correctly reflected in the real system.

The applicability of AGeCEP has been demonstrated in this research at many levels.
First, it was shown that queries written in diverse language paradigms, such as Storm
topologies [18], CQL [20], and CEL [44] queries, can be converted to AGeCEP ADAG
format. In addition, a design for an autonomic manager based on AGeCEP was proposed
along with a specially selected set of self-management policies, including procedures intro-
duced by other researches such as operator duplication [38] and predicate indexing [109].
Furthermore, this work presented a generic methodology to adapt operator placement
procedures to AGeCEP and exemplified it by showing how the procedures by Xing et
al. [151] and Heinze et al. [70] can be expressed using this approach. Finally, AGeCEP
has been used in the other contributions of this work. Both CEPSim and the CEPaaS
system use AGeCEP query representation, and the CEPaaS QAM component is based
on the AGeCEP autonomic manager.

The second major contribution of this research is CEPSim, a simulator of cloud-based
CEP systems. This tool has been developed to overcome the challenges of evaluating CEP
systems in Big Data scenarios and comparing them with existing approaches. CEPSim can
model different types of cloud environments and can simulate the execution of AGeCEP
queries on them. Furthermore, it can be extended with new operator scheduling and
operator placement strategies. In conjunction, these features enable quick comparison of
different query processing and management approaches without the hassle of setting up
and maintaining large cloud environments and data sources. Moreover, CEPSim can also
streamline the execution of long running and dynamic tests.

To implement these features, CEPSim extended CloudSim [34] and adapted it to CEP.
At its core, CEPSim provides algorithms to simulate operators and queries running in
single or multiple servers. These algorithms are based on a novel concept called event
sets, which represents a small batch of events and constitutes the smallest unit of data
exchanged by simulated operators. Event sets are used by CEPSim both to improve the
simulation performance and to assist in the calculation of query metrics. In addition,
CEPSim algorithms also contain extension points to which new operator placement and
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scheduling strategies can be attached. By doing so, the user can customize the behaviour
of the simulator and analyze the effects of different strategies on query performance.

Experiments were executed to assess the simulation of queries running on single and
multiple servers in both private and public clouds. The results demonstrated that CEPSim
can effectively simulate CEP queries and estimate query performance metrics with good
accuracy. Moreover, they also showed that even very large simulations can be executed by
CEPSim in a reasonable amount of time and without excessive consumption of resources.

As the final major contribution, this research also tackled the challenge of design-
ing and implementing a CEPaaS system. The resulting prototype implementation was
discussed in Chapter 7.

The proposed CEPaaS system adopts an architecture based on multi-cloud environ-
ments controlled by a CMS. By leveraging multiple clouds, the system can resist failures
of entire datacentres and even cloud providers. In addition, it can also explore the ge-
ographical diversity of clouds to position system components closer to the event sources
in order to reduce query latency. The CMS, on the other hand, manages the runtime
environment and provides many functionalities needed by the system, such as scheduling
of components and monitoring of containers for fault-tolerance. In addition, the CMS col-
lects metrics and logs of the running containers and underlying infrastructure, which can
be used both by system administrators and by users who are looking for more information
about their queries.

The CEPaaS system also leverages a multi-tenant extensible design to provide CEP
functionalities as services. It explores the concept of vertex templates as a way to encap-
sulate event processing logic. These vertex templates are put together in query templates,
which specify event processing recipes that can be shared among system users. In this
context, queries are defined as instances of query templates. The user instantiates a
query template and provides the required parameters to customize the template to its
own needs. In runtime, queries are encapsulated in application containers and use the
Akka toolkit [6] as the execution engine.

Finally, experimental results showed that the proposed architecture satisfies the re-
quirements of a CEPaaS system. Query latency can be significantly reduced by deploying
them closer to the event producers and consumers. Also, fault tolerance is efficiently han-
dled by the CMS.

8.2 Future Work

Despite the significant contributions of this research, the CEP research area is still young
and has many open challenges. Therefore, the work presented here can be extended in
many directions to advance even further the state of the art. In particular, it should
be noticed that the CEPaaS system presented here is only a minimum viable product
built to validate the proposed architecture. The development of such prototype, however,
enabled the identification of many research challenges that can be addressed in the future.

The following is a list of future directions to which this research can be extended:

• The AGeCEP formalism can be extended to include other aspects commonly found
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in CEP management scenarios. In particular, proposing a formal model to represent
modern runtime environments is an interesting research problem. This model would
need to consider complex datacentre organizations, including the relationship among
servers, virtual machines, and, possibly, containers. It would also need to include
modelling of the physical and logical networks, as well as of multiple types of clouds.
The simple model presented in this research does not take all of these aspects into
consideration, which may be needed for more complex placement procedures.

• The AGeCEP -based autonomic manager described in Chapter 5 needs to be thor-
oughly tested in real scenarios. Even though the CEPaaS QAM component is based
on this manager, the lack of support for operator migration and distributed query
execution limited the management policies that could be tested with CEPaaS. A
more complete evaluation of the AGeCEP autonomic manager would include testing
additional policies, and also applying the same set of policies to manage different
CEP systems. Notably, this autonomic manager can be integrated with CEPSim to
facilitate testing of new self-management policies.

• Even though it is already capable of simulating various scenarios, CEPSim has
limited functionalities regarding simulation of dynamic scenarios. Currently, queries
cannot be added or removed during a simulation, and there is no support for operator
migration. Another interesting functionality that should be added is to enable users
to define their own load shedding strategies and compare their effects on query
performance metrics.

• CEPSim also needs to be extended with better runtime environment modelling
capabilities. For instance, it can include the notion of clients that interact with
the queries and possibly associate them with a geographic position so as to enable
modelling of access latency. Moreover, it is also necessary to study the implications
of simulating application containers.

• CEPSim performance can be further improved, especially regarding execution time.
Most computers today have multiple cores and it is essential to leverage them to
speed up the simulations. User queries are often independent and therefore can be
simulated in parallel.

• The CEPaaS system approach to query execution creates a whole new era for op-
erator and query placement algorithms. Because the queries are encapsulated in
application containers, the placement problem can be translated to dividing the
query into containers and placing them into the cluster. To the best of our knowl-
edge, there is no existing research that models the operator placement problem in
this way. In this context, a good scheduling strategy can significantly increase the
datacentre utilization level and improve the query quality of service. From the ar-
chitectural point of view, this also creates another challenge about how to integrate
the CMS scheduler with CEPaaS query management modules.

• Currently, the allocation of queries to CEPaaS deployments is fixed, but this could
be dynamically decided based on the geographical position of event sources and
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consumers. Furthermore, the system could automatically spawn new deployments
when it detects a cluster of event sources from an area that is not currently attended
by current deployments.

• CEPaaS should be better equipped to deal with scalability in the volume and veloc-
ity of events from a single stream in addition to scalability in the number of queries.
This type of scalability is traditionally achieved by splitting the query execution
into sub-queries that run in distinct servers and communicate via the network. In
CEPaaS, this problem is intimately related to the placement of query containers.

• The CEP literature is vast and, therefore, existing CEP techniques can be integrated
into the CEPaaS system to make it more robust and resilient. For example, possible
future work could integrate checkpoint of stateful operators so that the operator
state is not lost upon restarts. Other techniques, such as upstream backup and
persistence of intermediate messages, can also be explored.

• Even though the system was designed to incorporate user-defined logic, this func-
tionality still needs to be completely implemented. The idea is to dynamically
download and load the operator logic classes in query containers that need them.
This functionality can significantly improve the system applicability and, therefore,
is an important future roadmap.

• There is a challenge related to the execution of self-management policies in very
large CEPaaS deployments. Currently, each QAM replica consumes events from a
subset of tenants only, which implies that no replica has a complete picture of the
system. In this context, self-management policies can only reason based on queries
managed by the same replica. Moreover, the QAM knowledge base (KB) does not
contain a runtime environment representation, which also limits the type of rules
that can be enforced. To solve these limitations, two approaches can be explored.
First, it is possible to design a hierarchy of QAMs in which top-level managers take
“global” decisions whereas low-level managers are responsible for query-local actions.
Another approach is to implement a distributed memory KB, in which each QAM
replica has access to the whole KB that is shared and distributed among them.

• Current CEPaaS implementation does not handle privacy and security. Access to
send and receive data from the Message Brokers must be granted only to authorized
users. Access to vertex and query templates should also be controlled according to
the users’ sharing configuration. Furthermore, user-defined vertex templates should
run in a managed environment in order to avoid the execution of malicious code and
potential security breaches. These features obviously need to be integrated into the
system before it goes to production.

• Additional producer templates should be implemented alongside the infrastructure
needed to provide them. Right now, most external communications is provided via
Apache Kafka. Despite its great performance and scalability, Apache Kafka uses a
binary protocol to communicate with clients, and client libraries are not available
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in many languages. Therefore, alternative ways of receiving data can facilitate
the interaction with external agents. For instance, REST HTTP and MQTT [120]
are protocols that can be used for this purpose. Similarly, additional consumer
templates can also be added. Results of queries can be written to database tables
or feed dynamic monitoring dashboards.

• The CEPaaS system can be extended to provide a lightweight way of defining
schemas for events and vertex templates. By doing so, it will be possible to guarantee
consistency of query templates at design time.

• Finally, an important feature for a production CEPaaS system is to define different
QoS levels for the paying tenants and to enforce them during query execution. To
achieve this goal, a number of mechanisms can be used, such as limiting the input
event consumption rate and output production rate, automatically constraining the
number and size of query containers that a tenant can have, and prioritizing tenant
workloads. Furthermore, the system also needs to properly audit tenant usage so
they can be correctly charged.
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Appendix A

Self-Management Policies Inference
Rules

This appendix presents the inference rules used in the MAPE loop by the self-management
policies from Section 5.3. The rules are written in Drools Rule Language [89], a declarative
language based on the event-condition-action paradigm.

Algorithm A.1: Operator combination - analysis inference rule.

Algorithm A.2: Operator duplication - monitoring inference rule. A bottleneck is
detected if an operator queue size is trending up considering the last 5 monitoring
events.
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Algorithm A.3: Operator duplication - analysis inference rule.

Algorithm A.4: Operator duplication - plan inference rule. The left-hand side of
rule P add

dupl(id, so) (Figure 5.3) is used to verify if the appropriate merge and split
operators are already in place.

Algorithm A.5: Removal of an unnecessary merge/split - analysis inference rule.
The method hasMapping searches for the bijective function f defined in Sec-
tion 5.3.3.
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Algorithm A.6: Processing sub-streams - analysis inference rules. It finds a se-
quence of a merge and a duplicable operator by searching for an homomorphism
Lproc → q. The method checkSubStream verifies the sub-stream conditions defined
in Section 5.3.4.

Algorithm A.7: Predicate Indexing - analysis inference rule.



Appendix B

CEPSim Implementation

This appendix details the CEPSim implementation. It starts with an overview of the sim-
ulator components, and it is followed by a description of the core classes. The integration
of CEPSim with CloudSim is also discussed.

B.1 Overview

Based on the design principles and goals presented in Chapter 6, CEPSim has been
designed with three main components, as shown in Figure B.1:

• CEPSim Core: implements the CEPSim concepts shown in Figure 6.1. It provides
APIs that enable the definition of queries and the creation of operator placement and
scheduling strategies. In addition, it also implements the simulation logic described
in Section 6.4.

• CloudSim: implements the CloudSim concepts shown in Figure 6.1. It provides
the overall simulation framework, which controls the main simulation loop and the
scheduling of simulation events. It is also used to define the cloud computing en-
vironment where the queries are simulated and to customize resource allocation
policies.

• CEPSim Integration: implements the pieces necessary to integrate the CloudSim
simulation engine with the CEP-specific logic provided by CEPSim Core. It guar-
antees loose coupling between the two and enables future integration with other
simulators.

The following subsections detail the CEPSim Core and Integration components.

B.2 CEPSim Core

CEPSim Core classes and interfaces can be grouped into four main packages: event, which
contains the event set and event set queue definitions; the query model, which contains
the base classes used to describe queries; the query executor, which manages the query
simulation; and metrics, which contains the metrics calculation framework.
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CloudSim
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Figure B.1: CEPSim components.
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Figure B.2: Class diagram - event and query model packages.

The class diagram in Figure B.2 shows the main parts of the event and query model
packages. Event sets and event set queues are implemented by classes with the same
respective names in the event package. The Query class represents CEP queries and, as
determined by its definition, is composed of one or more V ertex objects and one or more
Edges.

Two subclasses of V ertex have been identified: OutputV ertex and InputV ertex. The
former represents vertices with outgoing edges, and the latter represents vertices with
incoming edges. Note that both OutputV ertex and InputV ertex are associated with one
or more instances of the EventSetQueue class representing their output and input queues
respectively.

The EventProducer class describes event producers and therefore is a subclass of
OutputV ertex only. Similarly, EventConsumer characterizes event consumers and is a
subclass of InputV ertex. An Operator is both an OutputV ertex and an InputV ertex

because it receives events from some vertices and sends them to others. The Operator
class also has aWindowedOperator subclass that is used to represent windowed operators.

Finally, note that every EventProducer is associated with a Generator instance,
which implements the generation function defined in Equation 6.2. CEPSim currently
provides two implementations of this function:

• UniformGenerator: generates a constant number of events per simulation interval;

• UniformIncreaseGenerator: generates a uniformly increasing number of events



APPENDIX B. CEPSIM IMPLEMENTATION 175

metrics

-id: String

Query

-vmId: String

Placement

+run(): History

Placement
Executor

defines

1

1

uses

1

1..*produces

<<interface>>

AllocationStrategy

<<interface>>

OpSchedule
Strategy

Uniform
AllocationStrategy

Weighted
AllocationStrategy

Default
ScheduleStrategy

Dynamic
ScheduleStrategy

LatencyThroughput
Calculator

Latency
Metric

Throughput
Metric

<<interface>>

MetricCalculator
<<interface>>

Metric

-id: String

-ipe: Double

Vertex1..* 1..*

1..*<<interface>>

OpPlacement
Strategy

CustomOp
PlacementStrategy

1

1..*

Figure B.3: Class diagram - query executor and metrics packages.

until it reaches a maximum rate. After this point, this maximum rate is maintained
until the end of the simulation.

The main classes and interfaces of the query executor and metrics packages are shown
in Figure B.3. The Placement class is the central entity, representing the mapping of one
or more vertices to the VM in which they will be executed. To create these placements,
CEPSim users must provide an implementation of the OpPlacementStrategy interface,
which defines an operator placement strategy. Currently, CustomOpP lacementStrategy
is the only strategy provided by CEPSim, but others can be easily added. In this strategy,
users must manually specify the mapping of vertices to VMs.

The PlacementExecutor class encapsulates a Placement and implements the place-
ment simulation algorithm described in Section 6.4.4. This class uses an instance of
the OpScheduleStrategy interface, which defines the operator scheduling strategy to be
used during the simulation. Note that implementations for the scheduling and allocation
strategies described in Section 6.4.2 are provided out-of-the-box by CEPSim.

In addition, the PlacementExecutor also interacts with one or more instances
of the MetricCalculator interface to calculate the simulation metrics. The
LatencyThroughputCalculator class shown in the figure is a built-in implementation
that computes both metrics described in Section 6.4.5.

B.3 CEPSim Integration

In accordance with the reuse design principle, CEPSim leverages many functionalities
provided by CloudSim to enable the simulation of CEP queries. This section describes
how CloudSim has been extended and integrated with the CEPSim core. The main parts
of this extension are depicted in the class diagram in Figure B.4.
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Figure B.4: CEPSim integration with CloudSim.

The main part of this extension is the CepQueryCloudlet class, a Cloudlet specializa-
tion that encapsulates the PlacementExecutor class described in the preceding section.
During the simulation, a CepQueryCloudlet orchestrates a PlacementExecutor execu-
tion by invoking the simulate method at each simulation tick.

The other main classes created for the integration are:

• CepSimBroker: a mediator between cloud users and providers [34]. The
CepSimBroker extends the CloudSim broker to handle CepQueryCloudlets. It
also maintains a mapping of all vertices to the VMs to which they have been allo-
cated.

• CepSimDatacenter: this datacentre specialization handles CepQueryCloudlets and
guarantees that the state of all simulated entities is updated at equally spaced
intervals.

• CepQueryCloudletScheduler: a cloudlet scheduler defines how the processing power
of a VM is shared among all cloudlets allocated to it [34]. This research extends the
time-shared policy to handle infinite or duration-based cloudlets.

The sequence diagram in Figure B.5 summarizes how these classes work in tan-
dem to implement a simulation cycle. First, the CepSimDatacenter receives a
V m_Datacenter_Event signal, which is a CloudSim simulation event used to update
the state of all simulated entities in a datacentre. By default, this event is signalled when
cloudlets resume or end their execution. In CEPSim, this behaviour has been changed so
that the event is signalled at regular intervals with the length of a simulation tick. This
guarantees that the CEP queries are periodically updated and renders the simulation
more precise.

After receiving this event, CepSimDatacenter invokes the updateV msProcessing

method in all hosts in the datacentre. Note that the current simulation time is passed as
a parameter of this method call and therefore all hosts share the same clock. Following,
each host calls another updateV msProcessing method in all VMs currently deployed on
it. At this point, the host also informs the number of MIPS allocated to each VM, which
is obtained based on the VM scheduling policy in use.
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Figure B.5: Sequence diagram - simulation cycle.

Next, the VM delegates the update task to the cloudlet scheduler, which determines
the number of instructions available to each cloudlet running on that particular VM based
on the time-shared policy. Finally, the method updateCloudletF inishedSoFar is invoked
on every CepQueryCloudlet, which delegates the simulation to the encapsulated instance
of PlacementExecutor.



Appendix C

CEP as a Service API

CEPaaS Core API is mostly composed of CRUD methods for the core entities of the
system. The API has been modeled according to the REST and Resource Oriented
Architecture paradigm [74], and all data is exchanged in the JSON format [29].

Table C.1 shows the main resources of the API. Most entities are namespaced by the
tenant to which they belong. Query and vertex templates have their own namespace, but
private templates are accessible only by the user who created them.
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Table C.1: CEPaaS Core API.

Resource HTTP Method Description
/querytemplates GET Obtain all query templates.

PUT Create a new query template.
/querytemplates/{id} GET Obtain details of a query template with the specified id.

POST Update the query template with the specified id.
DELETE Delete the query template with the specified id.

/vertextemplates GET Obtain all vertex templates.
/vertextemplates/{id} GET Obtain details of a vertex template with the specified id.

DELETE Delete the vertex template with the specified id.
/tenants/{tenantId}/libraries GET Obtain a list of all libraries from a tenant.
/tenants/{tenantId}/users GET Obtain a list of all users from a tenant.

PUT Create a new user associated with the tenant.
/tenants/{tenantId}/users/{id} GET Obtain details of a user with the specified id.

POST Update the user with the specified id.
DELETE Delete the user with the specified id.

/tenants/{tenantId}/queries GET Obtain a list of all queries from a tenant.
PUT Create a new query.

/tenants/{tenantId}/queries/{id} GET Obtain details of a query with the specified id.
DELETE Delete a query with the specified id.

/tenants/{tenantId}/queries/{id}/start POST Start to run a query with the specified id.
/tenants/{tenantId}/queries/{id}/stop POST Stop a query with the specified id.
/tenants/{tenantId}/eventsources GET Obtain a list of all event sources from a tenant.

PUT Create a new event source associated with the tenant.
/tenants/{tenantId}/eventsources/{id} GET Obtain details of an event source with the specified id.

POST Update the event source with the specified id.
DELETE Delete the event source with the specified id.



Appendix D

CEP as a Service Operator Template
Definition

This appendix contains the complete definition of the “filter” operator template. An
operator template is composed of two main parts: the metadata (Figure D.1) and the
implementation (Figure D.2).

The metadata is a JSON document that describes an operator, including its name,
parameters, and AGeCEP classification. The implementation is a Scala or Java code that
implements one of the vertex templates interfaces described in Section 7.5.2. In the code
shown in Figure D.2, the method configure initializes the operator instance by parsing
the “condition” parameter, and the method process sends to the vertex successors only
events which satisfy the condition specified.

Figure D.1: Filter operator metadata.
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Figure D.2: Filter operator implementation.
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