68 research outputs found

    The improvements in ad hoc routing and network performance with directional antennas

    Get PDF
    The ad hoc network has typically been applied in military and emergency environments. In the past decade, a tremendous amount of MAC protocols and routing protocols have been developed, but most of these protocols are designed for networks where devices equipped with omni-directional antennas. With fast development of the antenna technology, directional antennas have been proposed to improve routing and network performance in ad hoc networks. However, several challenges and design issues (like new hidden terminal problem, deafness problem, neighbor discovery problem and routing overhead problem) arise when applying directional antennas to ad hoc networks, consequently a great number of directional MAC and routing protocols have been proposed. In this thesis the implementation of directional antennas in ad hoc networks is studied from technical point of view. This thesis discusses the problems of utilizing directional antenna in ad hoc networks and reviews several recent proposed MAC algorithms and routing algorithms. The improvement of ad hoc routing and network performance with directional antennas compared with omni-directional antennas are evaluated based on simulations which are done with the QualNet simulator. The main finding of this study is that directional antennas always outperform omni-directional antennas in both static and mobility scenarios, and the advantage of directional antennas is more obvious when channel condition becomes worse or mobility level is larger. This thesis provides a survey of directional MAC and routing protocols in ad hoc networks. The result and principles obtained in this thesis are quite valuable for researchers working in this field. They can use it as reference for further researches. The theory parts of smart antenna technology and IEEE 802.11 MAC protocol can be considered as a technical introduction for beginners

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Performance improvement of ad hoc networks using directional antennas and power control

    Get PDF
    Au cours de la dernière décennie, un intérêt remarquable a été éprouvé en matière des réseaux ad hoc sans fil capables de s'organiser sans soutien des infrastructures. L'utilisation potentielle d'un tel réseau existe dans de nombreux scénarios, qui vont du génie civil et secours en cas de catastrophes aux réseaux de capteurs et applications militaires. La Fonction de coordination distribuée (DCF) du standard IEEE 802.11 est le protocole dominant des réseaux ad hoc sans fil. Cependant, la méthode DCF n'aide pas à profiter efficacement du canal partagé et éprouve de divers problèmes tels que le problème de terminal exposé et de terminal caché. Par conséquent, au cours des dernières années, de différentes méthodes ont été développées en vue de régler ces problèmes, ce qui a entraîné la croissance de débits d'ensemble des réseaux. Ces méthodes englobent essentiellement la mise au point de seuil de détecteur de porteuse, le remplacement des antennes omnidirectionnelles par des antennes directionnelles et le contrôle de puissance pour émettre des paquets adéquatement. Comparées avec les antennes omnidirectionnelles, les antennes directionnelles ont de nombreux avantages et peuvent améliorer la performance des réseaux ad hoc. Ces antennes ne fixent leurs énergies qu'envers la direction cible et ont une portée d'émission et de réception plus large avec la même somme de puissance. Cette particularité peut être exploitée pour ajuster la puissance d'un transmetteur en cas d'utilisation d'une antenne directionnelle. Certains protocoles de contrôle de puissance directionnel MAC ont été proposés dans les documentations. La majorité de ces suggestions prennent seulement la transmission directionnelle en considération et, dans leurs résultats de simulation, ces études ont l'habitude de supposer que la portée de transmission des antennes omnidirectionnelles et directionnelles est la même. Apparemment, cette supposition n'est pas toujours vraie dans les situations réelles. De surcroît, les recherches prenant l'hétérogénéité en compte dans les réseaux ad hoc ne sont pas suffisantes. Le présent mémoire est dédié à proposer un protocole de contrôle de puissance MAC pour les réseaux ad hoc avec des antennes directionnelles en prenant tous ces problèmes en considération. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Réseaux ad hoc, Antennes directives, Contrôle de puissance

    Layer 2 Path Selection Protocol for Wireless Mesh Networks with Smart Antennas

    Get PDF
    In this thesis the possibilities of smart antenna systems in wireless mesh networks are examined. With respect to the individual smart antenna tradeoffs, a routing protocol (Modified HWMP, MHWMP) for IEEE 802.11s mesh networks is presented, that exploits the full range of benefits provided by smart antennas: MHWMP actively switches between the PHY-layer transmission/reception modes (multiplexing, beamforming and diversity) according to the wireless channel conditions. Spatial multiplexing and beamforming are used for unicast data transmissions, while antenna diversity is employed for efficient broadcasts. To adapt to the directional channel environment and to take full benefit of the PHY capabilities, a respective MAC scheme is employed. The presented protocol is tested in extensive simulation and the results are examined.:1 Introduction 2 Wireless Mesh Networks 3 IEEE 802.11s 4 Smart Antenna Concepts 5 State of the Art: Wireless Mesh Networks with Smart Antennas 6 New Concepts 7 System Model 8 Results and Discussion 9 Conclusion and Future Wor

    Analysis and Ad-hoc Networking Solutions for Cooperative Relaying Systems

    Get PDF
    Users of mobile networks are increasingly demanding higher data rates from their service providers. To cater to this demand, various signal processing and networking algorithms have been proposed. Amongst them the multiple input multiple output (MIMO) scheme of wireless communications is one of the most promising options. However, due to certain physical restrictions, e.g., size, it is not possible for many devices to have multiple antennas on them. Also, most of the devices currently in use are single-antenna devices. Such devices can make use of the MIMO scheme by employing cooperative MIMO methods. This involves nearby nodes utilizing the antennas of each other to form virtual antenna arrays (VAAs). Nodes with limited communication ranges can further employ multi-hopping to be able to communicate with far away nodes. However, an ad-hoc communications scheme with cooperative MIMO multi-hopping can be challenging to implement because of its de-centralized nature and lack of a centralized controling entity such as a base-station. This thesis looks at methods to alleviate the problems faced by such networks.In the first part of this thesis, we look, analytically, at the relaying scheme under consideration and derive closed form expressions for certain performance measures (signal to noise ratio (SNR), symbol error rate (SER), bit error rate (BER), and capacity) for the co-located and cooperative multiple antenna schemes in different relaying configurations (amplify-and-forward and decode-and-forward) and different antenna configurations (single input single output (SISO), single input multiple output (SIMO) and MIMO). These expressions show the importance of reducing the number of hops in multi-hop communications to achieve a better performance. We can also see the impact of different antenna configurations and different transmit powers on the number of hops through these simplified expressions.We also look at the impact of synchronization errors on the cooperative MIMO communications scheme and derive a lower bound of the SINR and an expression for the BER in the high SNR regime. These expressions can help the network designers to ensure that the quality of service (QoS) is satisfied even in the worst-case scenarios. In the second part of the thesis we present some algorithms developed by us to help the set-up and functioning of cluster-based ad-hoc networks that employ cooperative relaying. We present a clustering algorithm that takes into account the battery status of nodes in order to ensure a longer network life-time. We also present a routing mechanism that is tailored for use in cooperative MIMO multi-hop relaying. The benefits of both schemes are shown through simulations.A method to handle data in ad-hoc networks using distributed hash tables (DHTs) is also presented. Moreover, we also present a physical layer security mechanism for multi-hop relaying. We also analyze the physical layer security mechanism for the cooperative MIMO scheme. This analysis shows that the cooperative MIMO scheme is more beneficial than co-located MIMO in terms of the information theoretic limits of the physical layer security.Nutzer mobiler Netzwerke fordern zunehmend höhere Datenraten von ihren Dienstleistern. Um diesem Bedarf gerecht zu werden, wurden verschiedene Signalverarbeitungsalgorithmen entwickelt. Dabei ist das "Multiple input multiple output" (MIMO)-Verfahren für die drahtlose Kommunikation eine der vielversprechendsten Techniken. Jedoch ist aufgrund bestimmter physikalischer Beschränkungen, wie zum Beispiel die Baugröße, die Verwendung von mehreren Antennen für viele Endgeräte nicht möglich. Dennoch können solche Ein-Antennen-Geräte durch den Einsatz kooperativer MIMO-Verfahren von den Vorteilen des MIMO-Prinzips profitieren. Dabei schließen sich naheliegende Knoten zusammen um ein sogenanntes virtuelles Antennen-Array zu bilden. Weiterhin können Knoten mit beschränktem Kommunikationsbereich durch mehrere Hops mit weiter entfernten Knoten kommunizieren. Allerdings stellt der Aufbau eines solchen Ad-hoc-Netzwerks mit kooperativen MIMO-Fähigkeiten aufgrund der dezentralen Natur und das Fehlen einer zentral-steuernden Einheit, wie einer Basisstation, eine große Herausforderung dar. Diese Arbeit befasst sich mit den Problemstellungen dieser Netzwerke und bietet verschiedene Lösungsansätze.Im ersten Teil dieser Arbeit werden analytisch in sich geschlossene Ausdrücke für ein kooperatives Relaying-System bezüglicher verschiedener Metriken, wie das Signal-Rausch-Verhältnis, die Symbolfehlerrate, die Bitfehlerrate und die Kapazität, hergeleitet. Dabei werden die "Amplify-and forward" und "Decode-and-forward" Relaying-Protokolle, sowie unterschiedliche Mehrantennen-Konfigurationen, wie "Single input single output" (SISO), "Single input multiple output" (SIMO) und MIMO betrachtet. Diese Ausdrücke zeigen die Bedeutung der Reduzierung der Hop-Anzahl in Mehr-Hop-Systemen, um eine höhere Leistung zu erzielen. Zudem werden die Auswirkungen verschiedener Antennen-Konfigurationen und Sendeleistungen auf die Anzahl der Hops analysiert.  Weiterhin wird der Einfluss von Synchronisationsfehlern auf das kooperative MIMO-Verfahren herausgestellt und daraus eine untere Grenze für das Signal-zu-Interferenz-und-Rausch-Verhältnis, sowie ein Ausdruck für die Bitfehlerrate bei hohem Signal-Rausch-Verhältnis entwickelt. Diese Zusammenhänge sollen Netzwerk-Designern helfen die Qualität des Services auch in den Worst-Case-Szenarien sicherzustellen. Im zweiten Teil der Arbeit werden einige innovative Algorithmen vorgestellt, die die Einrichtung und die Funktionsweise von Cluster-basierten Ad-hoc-Netzwerken, die kooperative Relays verwenden, erleichtern und verbessern. Darunter befinden sich ein Clustering-Algorithmus, der den Batteriestatus der Knoten berücksichtigt, um eine längere Lebensdauer des Netzwerks zu gewährleisten und ein Routing-Mechanismus, der auf den Einsatz in kooperativen MIMO Mehr-Hop-Systemen zugeschnitten ist. Die Vorteile beider Algorithmen werden durch Simulationen veranschaulicht. Eine Methode, die Daten in Ad-hoc-Netzwerken mit verteilten Hash-Tabellen behandelt wird ebenfalls vorgestellt. Darüber hinaus wird auch ein Sicherheitsmechanismus für die physikalische Schicht in Multi-Hop-Systemen und kooperativen MIMO-Systemen präsentiert. Eine Analyse zeigt, dass das kooperative MIMO-Verfahren deutliche Vorteile gegenüber dem konventionellen MIMO-Verfahren hinsichtlich der informationstheoretischen Grenzen der Sicherheit auf der physikalischen Schicht aufweist

    Mobile Ad hoc Networking: Imperatives and Challenges

    Get PDF
    Mobile ad hoc networks (MANETs) represent complex distributed systems that comprise wireless mobile nodes that can freely and dynamically self-organize into arbitrary and temporary, "ad-hoc" network topologies, allowing people and devices to seamlessly internetwork in areas with no pre-existing communication infrastructure, e.g., disaster recovery environments. Ad hoc networking concept is not a new one, having been around in various forms for over 20 years. Traditionally, tactical networks have been the only communication networking application that followed the ad hoc paradigm. Recently, the introduction of new technologies such as the Bluetooth, IEEE 802.11 and Hyperlan are helping enable eventual commercial MANET deployments outside the military domain. These recent evolutions have been generating a renewed and growing interest in the research and development of MANET. This paper attempts to provide a comprehensive overview of this dynamic field. It first explains the important role that mobile ad hoc networks play in the evolution of future wireless technologies. Then, it reviews the latest research activities in these areas, including a summary of MANET\u27s characteristics, capabilities, applications, and design constraints. The paper concludes by presenting a set of challenges and problems requiring further research in the future

    AODV enhanced by Smart Antennas

    Get PDF
    corecore