Users of mobile networks are increasingly demanding higher data rates from
their service providers. To cater to this demand, various signal processing
and networking algorithms have been proposed. Amongst them the multiple
input multiple output (MIMO) scheme of wireless communications is one of
the most promising options. However, due to certain physical restrictions,
e.g., size, it is not possible for many devices to have multiple antennas
on them. Also, most of the devices currently in use are single-antenna
devices. Such devices can make use of the MIMO scheme by employing
cooperative MIMO methods. This involves nearby nodes utilizing the antennas
of each other to form virtual antenna arrays (VAAs). Nodes with limited
communication ranges can further employ multi-hopping to be able to
communicate with far away nodes. However, an ad-hoc communications scheme
with cooperative MIMO multi-hopping can be challenging to implement because
of its de-centralized nature and lack of a centralized controling entity
such as a base-station. This thesis looks at methods to alleviate the
problems faced by such networks.In the first part of this thesis, we look,
analytically, at the relaying scheme under consideration and derive closed
form expressions for certain performance measures (signal to noise ratio
(SNR), symbol error rate (SER), bit error rate (BER), and capacity) for the
co-located and cooperative multiple antenna schemes in different relaying
configurations (amplify-and-forward and decode-and-forward) and different
antenna configurations (single input single output (SISO), single input
multiple output (SIMO) and MIMO). These expressions show the importance of
reducing the number of hops in multi-hop communications to achieve a better
performance. We can also see the impact of different antenna configurations
and different transmit powers on the number of hops through these
simplified expressions.We also look at the impact of synchronization errors
on the cooperative MIMO communications scheme and derive a lower bound of
the SINR and an expression for the BER in the high SNR regime. These
expressions can help the network designers to ensure that the quality of
service (QoS) is satisfied even in the worst-case scenarios. In the second
part of the thesis we present some algorithms developed by us to help the
set-up and functioning of cluster-based ad-hoc networks that employ
cooperative relaying. We present a clustering algorithm that takes into
account the battery status of nodes in order to ensure a longer network
life-time. We also present a routing mechanism that is tailored for use in
cooperative MIMO multi-hop relaying. The benefits of both schemes are shown
through simulations.A method to handle data in ad-hoc networks using
distributed hash tables (DHTs) is also presented. Moreover, we also present
a physical layer security mechanism for multi-hop relaying. We also analyze
the physical layer security mechanism for the cooperative MIMO scheme. This
analysis shows that the cooperative MIMO scheme is more beneficial than
co-located MIMO in terms of the information theoretic limits of the
physical layer security.Nutzer mobiler Netzwerke fordern zunehmend höhere Datenraten von ihren
Dienstleistern. Um diesem Bedarf gerecht zu werden, wurden verschiedene
Signalverarbeitungsalgorithmen entwickelt. Dabei ist das "Multiple input
multiple output" (MIMO)-Verfahren für die drahtlose Kommunikation eine der
vielversprechendsten Techniken. Jedoch ist aufgrund bestimmter
physikalischer Beschränkungen, wie zum Beispiel die Baugröße, die
Verwendung von mehreren Antennen für viele Endgeräte nicht möglich. Dennoch
können solche Ein-Antennen-Geräte durch den Einsatz kooperativer
MIMO-Verfahren von den Vorteilen des MIMO-Prinzips profitieren.
Dabei schließen sich naheliegende Knoten zusammen um ein sogenanntes
virtuelles Antennen-Array zu bilden. Weiterhin können Knoten mit
beschränktem Kommunikationsbereich durch mehrere Hops mit weiter
entfernten Knoten kommunizieren. Allerdings stellt der Aufbau eines solchen
Ad-hoc-Netzwerks mit kooperativen MIMO-Fähigkeiten aufgrund der dezentralen
Natur und das Fehlen einer zentral-steuernden Einheit, wie einer
Basisstation, eine große Herausforderung dar. Diese Arbeit befasst sich mit
den Problemstellungen dieser Netzwerke und bietet verschiedene
Lösungsansätze.Im ersten Teil dieser Arbeit werden analytisch in
sich geschlossene Ausdrücke für ein kooperatives
Relaying-System bezüglicher verschiedener Metriken, wie das
Signal-Rausch-Verhältnis, die Symbolfehlerrate, die Bitfehlerrate und die
Kapazität, hergeleitet. Dabei werden die "Amplify-and forward" und
"Decode-and-forward" Relaying-Protokolle, sowie unterschiedliche
Mehrantennen-Konfigurationen, wie "Single input single output" (SISO),
"Single input multiple output" (SIMO) und MIMO betrachtet. Diese Ausdrücke
zeigen die Bedeutung der Reduzierung der Hop-Anzahl in Mehr-Hop-Systemen,
um eine höhere Leistung zu erzielen. Zudem werden die Auswirkungen
verschiedener Antennen-Konfigurationen und Sendeleistungen auf die Anzahl
der Hops analysiert. Weiterhin wird der Einfluss von
Synchronisationsfehlern auf das kooperative MIMO-Verfahren herausgestellt
und daraus eine untere Grenze für das
Signal-zu-Interferenz-und-Rausch-Verhältnis, sowie ein Ausdruck für die
Bitfehlerrate bei hohem Signal-Rausch-Verhältnis entwickelt.
Diese Zusammenhänge sollen Netzwerk-Designern helfen die Qualität des
Services auch in den Worst-Case-Szenarien sicherzustellen.
Im zweiten Teil der Arbeit werden einige innovative
Algorithmen vorgestellt, die die Einrichtung und die Funktionsweise von
Cluster-basierten Ad-hoc-Netzwerken, die kooperative Relays verwenden,
erleichtern und verbessern. Darunter befinden sich ein
Clustering-Algorithmus, der den Batteriestatus der Knoten berücksichtigt,
um eine längere Lebensdauer des Netzwerks zu gewährleisten und ein
Routing-Mechanismus, der auf den Einsatz in kooperativen MIMO
Mehr-Hop-Systemen zugeschnitten ist. Die Vorteile beider Algorithmen werden
durch Simulationen veranschaulicht.
Eine Methode, die Daten in Ad-hoc-Netzwerken mit verteilten Hash-Tabellen
behandelt wird ebenfalls vorgestellt. Darüber hinaus wird auch
ein Sicherheitsmechanismus für die physikalische Schicht in
Multi-Hop-Systemen und kooperativen MIMO-Systemen präsentiert. Eine Analyse
zeigt, dass das kooperative MIMO-Verfahren deutliche Vorteile gegenüber dem
konventionellen MIMO-Verfahren hinsichtlich der informationstheoretischen
Grenzen der Sicherheit auf der physikalischen Schicht aufweist